前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[Spark动态资源调度应对网络波动 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Consul
... 服务实例异常退出或网络波动 若服务实例意外终止(如进程崩溃、资源不足被系统kill等)或者网络抖动导致Consul Agent与服务实例之间的通信中断,也会触发服务实例的自动注销。 2.3 Consul Agent配置问题 Consul Agent的配置也可能是原因之一,例如Agent的 retry_join 参数设置不当,可能导致Agent无法稳定加入集群,从而影响服务注册和心跳维持。 3. 解决思路与实践 3.1 精细化健康检查配置 针对健康检查引发的问题,我们需要结合业务场景合理设置健康检查间隔、超时时间和失败阈值,避免由于短暂的性能波动或同步延迟导致服务实例被误注销。 3.2 强化服务实例稳定性 优化服务实例自身的设计,确保其具有良好的容错能力,尽量减少因异常而退出的情况发生。同时,对网络环境进行优化,保证Consul Agent与服务实例之间稳定的网络连接。 3.3 配置Consul Agent正确加入集群 仔细审查并调整Consul Agent的配置,确保其能准确无误地加入到Consul集群中。在部署云环境时,为了让Agent能够自动重新连接,我们可以灵活运用动态DNS这个小工具,或者直接采用云服务商提供的服务发现机制,这样一来,即使出现问题,Agent也能自己找到回家的路,保持稳定连接。 4. 结语与思考 面对Consul中服务实例频繁自动注销的问题,我们需要像侦探一样,从多个角度抽丝剥茧寻找问题根源。实践中,正确的健康检查策略、稳定的服务实例以及合理的Consul Agent配置缺一不可。这样才行,我们才能打造出一个既结实又稳当的服务发现系统,让Consul在咱们的微服务家族里真正地发挥作用,发挥出它应有的价值。 以上内容只是抛砖引玉,实际情况可能更为复杂多样,解决问题的过程中,我们也需要不断观察、学习、反思与改进,让技术服务于业务,而不是成为业务发展的绊脚石。在这个过程中,每一步的探索都充满了挑战与乐趣,而这正是技术的魅力所在!
2024-01-22 22:56:45
520
星辰大海
MemCache
...Memcached以应对大规模、高并发的业务场景成为技术人员关注的焦点。 近期,业界针对Memcached的优化实践与研究也在不断深入。例如,一些大型互联网公司通过采用一致性哈希算法进行数据分片,进一步提升缓存分布的均匀性和扩展性;同时结合机器学习预测热点数据和动态调整缓存策略,从而降低过期键集中处理带来的压力。 另外,考虑到云原生时代的到来,Kubernetes等容器编排技术为Memcached提供了更为灵活的部署方案。通过自动扩缩容机制以及服务网格(如Istio)对网络流量的智能调度,可以更精确地调控Memcached集群资源,确保其在高负载下的稳定性和响应速度。 此外,开源社区也正在积极探索新一代缓存解决方案,如Redis Cluster和CockroachDB等,它们在设计之初就充分考虑了大规模分布式环境下的性能瓶颈问题,提供了一种可能替代或补充Memcached的选择。 综上所述,在实际运维中,我们不仅要深入理解并解决Memcached负载过高导致响应延迟的问题,还要紧跟技术发展趋势,适时引入新的技术和工具,以便更好地应对复杂多变的业务需求,持续优化系统性能。
2023-03-25 19:11:18
122
柳暗花明又一村
Apache Solr
...领域的最新进展和技术动态。据2023年SolrCon全球大会上的分享,Apache Solr 9.0版本针对大规模数据集的facet统计性能进行了深度优化,引入了新的并行化处理机制和内存管理策略,在保证跨分片统计准确性的同时,有效缓解了由于facet.method=enum带来的性能瓶颈问题。 同时,业界也开始探索结合实时计算引擎(如Apache Flink、Spark)与Solr进行联合查询的可能性,通过将部分复杂的facet统计任务卸载到这些引擎中处理,实现更高效的大规模数据聚合。例如,某知名电商平台就成功实践了这一方案,他们利用Flink流式处理能力对Solr检索出的数据进行实时统计分析,既确保了facet统计的精确性,又显著提升了响应速度。 此外,随着云原生技术的发展,容器化和Kubernetes等技术也被应用于Solr集群的部署与管理,以实现资源的弹性伸缩,这为解决分布式环境下facet统计的问题提供了新的思路。通过精细调控各分片资源,可以更灵活地应对高并发查询及大数据量facet统计的需求,从而在实际业务场景中取得更好的效果。因此,紧跟Apache Solr项目发展动态以及行业内的最佳实践案例,对于持续优化分布式搜索系统的facet统计功能具有重要意义。
2023-11-04 13:51:42
376
断桥残雪
Etcd
...环境提供了弹性伸缩和资源调度策略,例如通过Kubernetes的Horizontal Pod Autoscaler (HPA)可以根据Etcd的实际资源使用情况动态调整其所在Pod的内存资源配置,从而有效防止因内存不足导致的压缩失败问题。 同时,在软件开发和运维领域,深入理解和掌握基础组件的工作原理,并结合最新的技术发展动态进行实践升级至关重要。对于Etcd用户来说,除了关注官方文档更新外,积极参与社区讨论、阅读相关研究论文和技术博客,可以及时洞察到类似Datacompressionerror的新问题及其解决方案,确保在实际生产环境中实现稳定、高效的分布式存储服务。
2023-03-31 21:10:37
440
半夏微凉
Kubernetes
...索将有助于我们更好地应对实际运维场景中的挑战。近期,随着云原生技术的快速发展,Kubernetes集群的规模和复杂性不断提升,如何优化Pod设计以适应不同微服务架构的需求成为业界关注焦点。 例如,在2022年春季发布的Kubernetes 1.23版本中,引入了对“Pod优先级与抢占”功能的重大改进,这使得在多个Pod对应一个应用的场景下,系统可以根据优先级智能地调度和管理资源,从而在保持高可用性和稳定性的同时,也能灵活应对突发流量或关键服务需求。 另外,有专家深入解读了Pod设计原则,并引用Netflix等大型企业实践案例,强调在设计Pod时需充分考虑容错性、可观察性和扩展性。他们提倡采用Sidecar模式,即将辅助服务作为独立容器部署在同一Pod内,既能共享主应用容器的网络命名空间,又能避免单点故障影响整体服务。 此外,针对资源利用率问题,社区提出了基于垂直 Pod 自动扩缩的解决方案,通过监控Pod内部各容器的资源使用情况,实现精细化管理和动态扩容,从而在确保服务性能的同时,有效提升集群资源的整体效率。 总之,Kubernetes中的Pod设计与部署是一个持续演进的话题,结合最新的技术和行业最佳实践,我们可以不断优化微服务在Kubernetes环境下的部署方式,以满足日益复杂的业务需求。
2023-06-29 11:19:25
134
追梦人_t
Netty
...Netty作为高性能网络通信框架,在实现客户端与服务器之间的稳定、高效连接时,出现客户端频繁异常断开的问题。这种情况犹如人际交往中的“突然冷场”,令人困扰且急需解决。这篇文会拽着你一起,像侦探破案那样挖掘这个问题背后可能藏着的“元凶”,并且咱们还会通过实实在在的代码实例,把它掰开揉碎了,好好研究探讨一番。 2. 问题描述及常见场景 首先,让我们描绘一下这个现象:在使用Netty构建的客户端应用中,客户端与服务器建立连接后,连接状态并未保持稳定,而是频繁地出现异常断开的情况。这可能导致数据传输中断,影响整个系统的稳定性与可靠性。 3. 可能的原因分析 (1) 网络环境不稳定:就像我们在拨打电话时会受到信号干扰一样,网络环境的质量直接影响到TCP连接的稳定性。例如,Wi-Fi信号波动、网络拥塞等都可能导致连接异常断开。 java EventLoopGroup workerGroup = new NioEventLoopGroup(); Bootstrap b = new Bootstrap(); b.group(workerGroup); b.channel(NioSocketChannel.class); b.option(ChannelOption.SO_KEEPALIVE, true); // 开启TCP保活机制以应对网络波动 (2) 心跳机制未配置或配置不合理:Netty支持心跳机制(如TCP KeepAlive)来检测连接是否存活,若未正确配置,可能导致连接被误判为已断开。 java b.option(ChannelOption.CONNECT_TIMEOUT_MILLIS, 30000); // 设置连接超时时间 b.handler(new ChannelInitializer() { @Override protected void initChannel(SocketChannel ch) throws Exception { ChannelPipeline p = ch.pipeline(); p.addLast(new IdleStateHandler(60, 0, 0)); // 配置读空闲超时时间为60秒,触发心跳检查 // ... 其他处理器添加 } }); (3) 资源未正确释放:在客户端程序执行过程中,如果未能妥善处理关闭逻辑,如Channel关闭不彻底,可能会导致新连接无法正常建立,从而表现为频繁断开。 java channel.closeFuture().addListener((ChannelFutureListener) future -> { if (!future.isSuccess()) { log.error("Failed to close channel: {}", future.cause()); } else { log.info("Channel closed successfully."); } // ... 释放其他相关资源 }); 4. 解决方案与优化建议 针对上述可能的原因,我们可以从以下几个方面着手: - 增强网络监控与报警:当网络状况不佳时,及时调整策略或通知运维人员排查。 - 合理配置心跳机制:确保客户端与服务器之间的心跳包发送间隔、确认等待时间以及超时重连策略符合业务需求。 - 完善资源管理:在客户端程序设计时,务必确保所有网络资源(如Channel、EventLoopGroup等)都能在生命周期结束时得到正确释放,防止因资源泄露导致的连接异常。 - 错误处理与重试策略:对连接异常断开的情况制定相应的错误处理逻辑,并结合重试策略确保在一定条件下可以重新建立连接。 5. 结语 面对Netty客户端连接服务器时的异常断开问题,我们需要像侦探般抽丝剥茧,寻找背后的真实原因,通过细致的代码优化和完善的策略设计,才能确保我们的网络通信系统既稳定又健壮。在开发的这个过程里,每位开发者都该学会“把人放在首位”的思考模式,就像咱们平时处事那样,带着情感和主观感知去理解问题、解决问题。就好比在生活中,我们会积极沟通、不断尝试各种方法去维护一段友情或者亲情一样,让那些冷冰冰的技术也能充满人情味儿,更加有温度。
2023-09-11 19:24:16
220
海阔天空
Dubbo
...熔断限流等功能,有效应对了大规模微服务架构下的复杂性问题。 近期,Kubernetes作为容器编排的事实标准,其内置的服务发现机制也得到了广泛的关注和应用。Kubernetes通过Endpoints和Service资源对象,自动管理Pod的服务发现,使得服务实例能够在动态变化的集群环境中始终保持高可用性和透明的服务访问。 此外,对于服务注册与发现的容错性提升,业界也在不断探索和发展。例如,通过结合一致性算法(如Raft、Paxos等)和分布式存储系统来构建更强健、高一致性的注册中心,确保即使在网络分区或节点故障的情况下,服务信息仍能准确无误地同步和更新。 综上所述,服务注册与发现是分布式系统的核心挑战之一,而现代技术栈正不断为其提供更为高效、稳定且易于管理的解决方案,值得广大开发者和运维人员持续关注并深入学习实践。
2023-05-13 08:00:03
491
翡翠梦境-t
Apache Pig
...大数据分析领域的最新动态与发展至关重要。近年来,随着云原生技术的兴起,Kubernetes等容器编排系统开始支持大数据应用,为Pig这样的工具提供了更为灵活、弹性的运行环境。例如,Cloudera公司推出的Dataflow for Kubernetes项目,旨在实现包括Apache Pig在内的大数据工作负载在容器化环境下的无缝部署与管理。 此外,Apache Beam作为另一个开源数据处理框架,其统一模型能够跨多个执行引擎(包括Apache Flink、Spark以及Google Cloud Dataflow)运行,提供了一种与Pig Latin类似的声明式编程接口,使得开发者在面对多样的执行环境时能够保持代码的一致性与移植性。值得注意的是,Beam也支持将Pig Latin脚本转换为其SDK表示,从而在更广泛的执行环境中利用到Pig的优点。 同时,Apache Hadoop生态系统的持续演进也不容忽视,如Hadoop 3.x版本对YARN资源管理和存储层性能的改进,将进一步优化Pig在大规模集群上的并行处理效率。而诸如Apache Arrow这类内存中列式数据格式的普及,也将提升Pig与其他大数据组件间的数据交换速度,为复杂的数据分析任务带来新的可能。 总之,在当前的大数据时代背景下,Apache Pig的应用不仅限于传统的Hadoop MapReduce环境,它正在与更多新兴技术和平台整合,共同推动大数据并行处理技术的发展与创新。对于相关从业人员而言,紧跟这些趋势和技术进步,无疑能更好地发挥Pig在实际业务场景中的潜力。
2023-02-28 08:00:46
497
晚秋落叶
Kubernetes
...下几个方面: 1. 资源调度优化:AI技术可以分析历史数据,预测工作负载需求,从而优化Kubernetes的资源分配,减少资源浪费,提高服务器利用率。 2. 自动扩缩容:基于AI算法,Kubernetes可以根据实时的工作负载动态调整集群规模,确保服务的高可用性和性能。 3. 故障检测与预防:AI模型可以通过学习历史事件,识别潜在的系统故障模式,提前预警,减少宕机风险,提升系统稳定性。 4. 智能运维:借助AI,Kubernetes可以自动化执行复杂的运维任务,如自动修复错误、优化性能、更新软件等,显著减轻运维团队的工作负担。 实际案例与趋势 近年来,许多大型科技公司都在积极探索Kubernetes与AI的融合应用。例如,Google Cloud Platform(GCP)通过与AI技术的结合,为Kubernetes用户提供了更智能的管理工具和服务,如AutoML,帮助用户更高效地构建和部署机器学习模型。此外,AWS的Amazon Elastic Container Service (ECS)也通过集成AI功能,增强了其在自动化部署和运维方面的能力。 随着AI技术的不断进步和成熟,Kubernetes与AI的结合将带来更多的可能性。未来,我们或许可以看到更加智能、自动化的云平台,能够自主地进行资源管理、故障检测、服务优化等,为用户提供更加高效、稳定的云计算体验。 结语 Kubernetes与AI的融合是云计算领域的一大创新,它不仅提高了云平台的智能化水平,也为开发者提供了更多创新的空间。随着技术的持续发展,这一领域的潜力还有待进一步挖掘,未来值得期待。
2024-09-05 16:21:55
60
昨夜星辰昨夜风
Sqoop
...ion》报告中强调了资源管理和调度策略在优化数据导入导出工具(如Sqoop)性能方面的重要性。报告指出,通过结合动态资源分配、网络流量控制以及智能并发管理机制,可以有效避免网络拥塞和源数据库过载等问题,从而提升整体数据迁移效率。 此外,Apache社区也在持续改进相关组件以适应更复杂的应用场景。例如,Sqoop 2.0版本引入了更为精细的任务调度和监控功能,使得用户能够根据实时的系统负载情况灵活调整并发度,从而达到性能最优状态。 与此同时,业界也开始关注采用现代数据湖架构(如Delta Lake、Hudi等)来缓解大规模数据迁移过程中的并发压力。这些架构不仅支持更高的写入并发性,还通过元数据管理和事务处理机制,有效解决了高并发写入HDFS时可能引发的数据冲突问题。 总之,随着技术的发展与演进,针对Sqoop及类似工具的性能优化不再仅限于并发度的设置,而是涉及整个数据生态系统的全局优化,包括但不限于底层硬件升级、集群配置调优、中间件使用以及新型数据存储架构的采纳等多方面因素。只有全方位地理解和掌握这些技术和策略,才能确保在面临大规模数据迁移挑战时,实现真正意义上的高效、稳定和可靠的性能表现。
2023-06-03 23:04:14
154
半夏微凉
ActiveMQ
...pache社区正积极应对这一挑战,对ActiveMQ进行了一系列升级与优化,包括但不限于改进内存管理机制、增强线程调度效率以及优化网络传输协议等。 值得关注的是,Apache Artemis项目作为ActiveMQ的下一代产品,已经在高性能和高并发处理上展现出了显著优势。Artemis利用了现代JMS 2.0和AMQP 1.0标准,提供了更高效的存储和转发机制,并且支持多数据中心部署和大规模集群扩展,这对于构建云原生环境下的高并发、低延迟消息系统具有重大意义。 此外,业界也涌现出了诸如RabbitMQ、Kafka等在特定场景下具备优秀高并发性能的消息队列服务。这些产品的设计理念和技术实现为理解和优化ActiveMQ在高并发环境下的性能瓶颈提供了新的视角和思路。例如,通过研究Kafka如何利用其特有的分区和日志结构设计来应对高吞吐量场景,可以启发我们思考如何将相似策略应用于ActiveMQ架构的改良。 因此,在深入排查与调优ActiveMQ的同时,关注行业前沿动态和技术趋势,对比分析各类消息队列解决方案的特点与适用场景,有助于我们在实际工作中更好地运用ActiveMQ解决高并发问题,从而确保分布式系统的稳定高效运行。
2023-03-30 22:36:37
601
春暖花开
Hadoop
...投向最新的技术和行业动态。近年来,Hadoop生态系统的扩展与发展日新月异,尤其在实时流数据处理、机器学习集成以及云原生部署等方面取得了显著进展。 例如,Apache Spark作为一个与Hadoop互补的开源集群计算框架,以其内存计算和高效的DAG执行引擎,在实时分析和复杂查询场景下表现优异。Spark可以无缝地与HDFS及MapReduce协同工作,为用户提供更全面、高效的数据处理能力。 此外,随着云服务的普及,许多云服务商如Amazon AWS、Microsoft Azure和Google Cloud等都提供了托管的Hadoop服务,用户无需自建集群,即可利用云上的Hadoop及相关服务进行大规模数据处理。同时,像Kubernetes这类容器编排工具也为Hadoop的云原生部署提供了新的可能,让大数据技术更加灵活、可扩展。 另一方面,Hadoop 3.x版本引入了对YARN(Yet Another Resource Negotiator)的重要改进,提升了资源管理和调度效率,并且支持跨数据中心的联邦部署,这使得企业在多地域间的数据同步和统一管理上拥有了更强大的工具。 总之,尽管Hadoop在大数据存储与批处理方面依旧扮演着关键角色,但现代大数据处理已经演变为一个多组件协作、云端集成并不断适应新技术挑战的综合解决方案。持续关注Hadoop生态系统的发展,结合实时处理框架、云服务及先进管理工具,将成为企业应对日益增长的大数据挑战的有效途径。
2023-12-06 17:03:26
409
红尘漫步-t
Kafka
...也日益广泛。随着5G网络的普及,物联网设备产生的数据量呈指数级增长。如何高效地收集、存储和处理这些海量数据成为了一个亟待解决的问题。Kafka以其卓越的吞吐能力和灵活的数据复制策略,成功应对了这一挑战。最近的一项研究显示,通过采用Kafka,某大型物联网解决方案提供商不仅大幅降低了数据处理延迟,还提高了系统的整体稳定性,为企业带来了显著的经济效益。 与此同时,学术界也在持续关注Kafka技术的发展。最新一期的《计算机通信》杂志发表了一篇关于Kafka数据复制策略优化的研究论文,提出了一种基于机器学习的智能调度算法,旨在进一步提升Kafka集群的性能和可靠性。该算法通过对历史数据的学习,能够预测未来数据流量的变化趋势,并据此动态调整各副本间的同步频率,从而在保证数据一致性的同时,最大限度地减少资源消耗。这一研究成果为Kafka的未来发展提供了新的思路和方向。 综上所述,无论是金融行业还是物联网领域,Kafka凭借其独特的技术和不断优化的性能,正逐渐成为各行业数据处理的首选平台。未来,随着更多创新技术的应用,Kafka有望在更多场景下发挥更大的作用。
2024-10-19 16:26:57
56
诗和远方
Apache Solr
... 3.1 网络延迟 在排除了内部配置问题后,我开始怀疑是否有外部因素在作祟。经过一番排查,我发现网络延迟可能是罪魁祸首之一。Solr在处理查询时,得从好几个地方找信息,如果网速慢得像乌龟爬,那查询速度肯定也会变慢。我用ping命令测了一下和数据库服务器的连接,发现确实有点儿延时,挺磨人的。为了解决这个问题,我在想是不是可以在Solr服务器和数据库服务器中间加一台缓存服务器。这样就能少直接去查数据库了,效率应该能提高不少。 3.2 第三方API调用 除了网络延迟外,第三方API调用也可能是导致性能不稳定的另一个原因。Solr在处理某些查询时,可能需要调用外部服务来获取额外的数据。如果这些服务响应缓慢,整个查询过程也会变慢。我翻了一下Solr的日志,发现有些查询卡在那儿等外部服务回应,结果等超时了。为了搞定这个问题,我在Solr里加了个异步召唤的功能,这样Solr就能一边等着外部服务响应,一边还能接着处理别的查询请求了。具体代码如下: java public void handleExternalRequest() { CompletableFuture.supplyAsync(() -> { // 调用外部服务获取数据 return fetchDataFromExternalService(); }).thenAccept(result -> { // 处理返回的数据 processResult(result); }); } 4. 实践经验分享 配置波动与性能优化 4.1 动态配置管理 在实践中,我发现Solr的配置文件经常需要根据实际需求进行调整。然而,频繁地修改配置文件可能导致系统性能不稳定。为了更好地管理配置文件的变化,我建议使用动态配置管理工具,如Zookeeper。Zookeeper可帮我们在不耽误Solr正常运转的前提下更新配置,这样就不用担心因为调整设置而影响性能了。 4.2 监控与报警 最后,我强烈建议建立一套完善的监控和报警机制。通过实时盯着Solr的各种表现(比如查询速度咋样、CPU用得多不多等),我们就能赶紧发现状况,然后迅速出手解决。另外,咱们得设定好警报线,就像给系统设个底线。一旦性能掉到这线下,它就会自动给我们发警告。这样我们就能赶紧找出毛病,及时修好,不让小问题拖成大麻烦。例如,可以使用Prometheus和Grafana来搭建监控系统,代码示例如下: yaml Prometheus配置 global: scrape_interval: 15s scrape_configs: - job_name: 'solr' static_configs: - targets: ['localhost:8983'] json // Grafana仪表盘JSON配置 { "dashboard": { "panels": [ { "type": "graph", "title": "Solr查询响应时间", "targets": [ { "expr": "solr_query_response_time_seconds", "legendFormat": "{ {instance} }" } ] } ] } } 5. 结语 共勉与展望 总的来说,Solr查询性能不稳定是一个复杂的问题,可能涉及多方面的因素。咱们得从内部设置、外部依赖还有监控报警这些方面一起考虑,才能找出个靠谱的解决办法。在这个过程中,我也学到了很多,希望大家能够从中受益。未来,我将继续探索更多关于Solr优化的方法,希望能与大家共同进步! 希望这篇文章对你有所帮助,如果你有任何疑问或想法,欢迎随时交流讨论。
2025-02-08 16:04:27
36
蝶舞花间
Dubbo
...o在服务消费者宕机或网络不稳定的应对策略 一、引言(序号1) 当我们谈论分布式系统时,服务稳定性和容错能力是无法绕过的主题。嘿,伙计们,今天咱们要来聊聊那个风靡一时、性能超群的Java RPC框架——Apache Dubbo。设想一下,当我们的服务消费者突然闹脾气玩罢工,或者网络这家伙时不时抽个疯变得不稳定时,Dubbo这个小能手是怎么巧妙利用它肚子里的黑科技,确保咱们的服务调用始终保持稳如磐石、靠得住的状态呢?这就让我们一起深入探究一下吧! 1.1 现实场景痛点 想象一下,在一个依赖众多微服务协同工作的场景中,某个服务消费者突然遭遇宕机或者网络波动,这对整个系统的稳定性无疑是巨大的挑战。嘿,你知道吗?在这种情况下,Dubbo这家伙是怎么做到像侦探一样,第一时间发现那些捣蛋的问题,然后瞬间换上备胎服务提供者接着干活儿,等到一切恢复正常后,又能悄无声息地切换回去的呢?这就是我们今天要一起揭开的趣味小秘密! 二、Dubbo的容错机制(序号2) 2.1 负载均衡与集群容错 Dubbo通过集成多种负载均衡策略如随机、轮询、最少活跃调用数等,并结合集群容错模式(默认为failover),巧妙地处理了服务消费者故障问题。 java // 创建一个具有容错机制的引用 ReferenceConfig reference = new ReferenceConfig<>(); reference.setInterface(DemoService.class); // 设置集群容错模式为failover,即失败自动切换 reference.setCluster("failover"); 在failover模式下,若某台服务提供者出现故障或网络中断,Dubbo会自动将请求路由到其他健康的提供者节点,有效避免因单点故障导致的服务不可用。 2.2 超时与重试机制 此外,Dubbo还提供了超时控制和重试机制: java // 设置接口方法的超时时间和重试次数 reference.setTimeout(1000); // 1秒超时 reference.setRetries(2); // 允许重试两次 这意味着,如果服务消费者在指定时间内未收到响应,Dubbo将自动触发重试逻辑,尝试从其他提供者获取结果,从而在网络不稳定时增强系统的鲁棒性。 三、心跳检测与隔离策略(序号3) 3.1 心跳检测 Dubbo的心跳检测机制可以实时监控服务提供者的健康状态,一旦发现服务提供者宕机或网络不通,会立即将其剔除出可用列表,直到其恢复正常: java // 在服务提供端配置心跳间隔 ProviderConfig providerConfig = new ProviderConfig(); providerConfig.setHeartbeat(true); // 开启心跳检测 providerConfig.setHeartbeatInterval(60000); // 每60秒发送一次心跳 3.2 隔离策略 针对部分服务提供者可能存在的雪崩效应,Dubbo还支持sentinel等多种隔离策略,限制并发访问数量,防止资源耗尽引发更大范围的服务失效: java // 配置sentinel限流 reference.setFilter("sentinel"); // 添加sentinel过滤器 四、总结与探讨(序号4) 综上所述,Dubbo凭借其丰富的容错机制、心跳检测以及隔离策略,能够有效地应对服务消费者宕机或网络不稳定的问题。但是呢,对于我们这些开发者来说,也得把目光放在实际应用场景的优化上,比如像是给程序设定个恰到好处的超时时间啦,挑选最对胃口的负载均衡策略什么的,这样一来才能让咱的业务需求灵活应变,不断升级! 每一次对Dubbo特性的探索,都让我们对其在构建高可用分布式系统中的价值有了更深的理解。在面对这瞬息万变、充满挑战的生产环境时,Dubbo可不仅仅是个普通的小工具,它更像是我们身边一位超级给力的小伙伴,帮我们守护着服务质量的大门,让系统的稳定性蹭蹭上涨,成为我们不可或缺的好帮手。在实践中不断学习和改进,是我们共同的目标与追求。
2024-03-25 10:39:14
484
山涧溪流
RabbitMQ
...际用起来的时候,因为网络不给力或者服务器罢工啥的,客户端和RabbitMQ服务器之间的连接就可能出问题了。因此,如何优雅地处理这些连接故障,成为确保系统稳定运行的关键。 1. 了解RabbitMQ的基本概念 在深入探讨如何处理连接故障之前,我们先来简单了解一下RabbitMQ的基础知识。RabbitMQ就像是一个开源的邮局,它负责在不同的程序之间传递消息,就像是给它们送信一样。你可以把消息发到一个或者多个队列里,然后消费者应用就从这些队列里面把消息取出来处理掉。RabbitMQ可真是个多才多艺的小能手,支持好几种消息传递方式,比如点对点聊天和广播式发布/订阅。这就让它变得特别灵活,不管你是要一对一私聊还是要群发消息,它都能轻松搞定。 2. 连接故障 常见原因与影响 在探讨如何处理连接故障之前,我们有必要了解连接故障通常是由哪些因素引起的,以及它们会对系统造成什么样的影响。 - 网络问题:这是最常见的原因,比如网络延迟增加、丢包等。 - 服务器问题:服务器宕机、重启或者维护时,也会导致连接中断。 - 配置错误:不正确的配置可能导致客户端无法正确连接到服务器。 - 资源限制:当服务器资源耗尽时(如内存不足),也可能导致连接失败。 这些故障不仅会打断正在进行的消息传递,还可能影响到整个系统的响应时间,严重时甚至会导致数据丢失或服务不可用。所以啊,我们要想办法让系统变得更皮实,就算碰到那些麻烦事儿,它也能稳如老狗,继续正常运转。 3. 如何优雅地处理连接故障 3.1 使用重试机制 首先,我们可以利用重试机制来应对短暂的网络波动或临时性的服务不可用。通过设置合理的重试次数和间隔时间,可以有效地提高消息传递的成功率。以下是一个简单的Python代码示例,展示了如何使用pika库连接到RabbitMQ服务器,并在连接失败时进行重试: python import pika from time import sleep def connect_to_rabbitmq(): max_retries = 5 retry_delay = 5 seconds for i in range(max_retries): try: connection = pika.BlockingConnection(pika.ConnectionParameters('localhost')) print("成功连接到RabbitMQ") return connection except Exception as e: print(f"尝试{i+1}连接失败,将在{retry_delay}秒后重试...") sleep(retry_delay) print("多次重试后仍无法连接到RabbitMQ,程序将退出") exit(1) 调用函数尝试建立连接 connection = connect_to_rabbitmq() 3.2 实施断线重连策略 除了基本的重试机制外,我们还可以实现更复杂的断线重连策略。例如,当检测到连接异常时,立即尝试重新建立连接,并记录重连日志以便后续分析。另外,我们也可以试试用指数退避算法来调整重连的时间间隔,这样就不会在短时间内反复向服务器发起连接请求,也能让服务器稍微轻松一点。 下面展示了一个基于RabbitMQ官方客户端库pika的断线重连示例: python import pika from time import sleep class ReconnectingRabbitMQClient: def __init__(self, host='localhost'): self.host = host self.connection = None self.channel = None def connect(self): while True: try: self.connection = pika.BlockingConnection(pika.ConnectionParameters(self.host)) self.channel = self.connection.channel() print("成功连接到RabbitMQ") break except Exception as e: print(f"尝试连接失败,将在{2self.retry_count}秒后重试...") self.retry_count += 1 sleep(2self.retry_count) def close(self): if self.connection: self.connection.close() def send_message(self, message): if not self.channel: self.connect() self.channel.basic_publish(exchange='', routing_key='hello', body=message) client = ReconnectingRabbitMQClient() client.send_message('Hello World!') 在这个例子中,我们创建了一个ReconnectingRabbitMQClient类,它包含了连接、关闭连接以及发送消息的方法。特别要注意的是connect方法里的那个循环,这家伙每次连接失败后都会先歇一会儿,然后再杀回来试试看。而且这休息的时间也是越来越长,越往后重试间隔就按指数往上翻。 3.3 异步处理与心跳机制 对于那些需要长时间保持连接的应用场景,我们还可以采用异步处理方式,配合心跳机制来维持连接的有效性。心跳其实就是一种简单的保活方法,就像定时给对方发个信息或者挥挥手,确认一下对方还在不在。这样就能赶紧发现并搞定那些断掉的连接,免得因为放太长时间没动静而导致连接中断的问题。 4. 总结与展望 处理RabbitMQ中的连接故障是一项复杂但至关重要的任务。通过上面提到的几种招数——比如重试机制、断线重连和心跳监测,我们的系统会变得更强壮,也更靠谱了。当然,针对不同应用场景和需求,还需要进一步定制化和优化这些方案。比如说,对于那些对延迟特别敏感的应用,你得更仔细地调整重试策略,不然用户可能会觉得卡顿或者直接闪退。至于那些需要应对海量并发连接的场景嘛,你就得上点“硬货”了,比如用更牛的技术来搞定负载均衡和集群管理,这样才能保证系统稳如老狗。总而言之,就是咱们得不停地试啊试的,然后就能慢慢弄出个既快又稳的分布式消息传递系统。 --- 以上就是关于RabbitMQ中如何处理连接故障的一些探讨。希望这些内容能帮助你在实际工作中更好地应对挑战,打造更加可靠的应用程序。如果你有任何疑问或想要分享自己的经验,请随时留言讨论!
2024-12-02 16:11:51
94
红尘漫步
Kafka
...费者实例)发生故障或网络中断,该成员将停止接收新的消息。哎呀,你知道的,如果团队里的小伙伴们没能在第一时间察觉并接手这部分信息的处理任务,那可就麻烦了。就像你堆了一大堆未读邮件在收件箱里,久而久之,不光显得杂乱无章,还可能拖慢你整日的工作节奏,对不对?同样的道理,信息堆积多了,整个系统的运行效率就会变慢,稳定性也容易受到威胁。所以,大家得互相帮忙,及时分担任务,保持信息流通顺畅,这样才能让我们的工作更高效,系统也更稳定! 原因分析: 1. 成员间通信机制不足 Kafka默认不提供成员间的心跳检测机制,依赖于应用开发者自行实现。 2. 配置管理不当 如未能正确配置自动重平衡策略,可能导致成员在故障恢复后无法及时加入Group,或加入错误的Group。 3. 资源调度问题 在高并发场景下,资源调度不均可能导致部分成员承担过多的消费压力,而其他成员则处于空闲状态。 三、解决策略 1. 实现心跳检测机制 为了检测成员状态,可以实现一个简单的心跳检测机制,通过定期向Kafka集群发送心跳信号来检查成员的存活状态。如果长时间未收到某成员的心跳响应,则认为该成员可能已故障,并从Consumer Group中移除。以下是一个简单的Java示例: java import org.apache.kafka.clients.consumer.ConsumerRecord; import org.apache.kafka.clients.consumer.ConsumerRecords; public class HeartbeatConsumer extends AbstractKafkaConsumer { private static final long HEARTBEAT_INTERVAL = 60 1000; // 心跳间隔时间,单位毫秒 @Override public void onConsume() { while (true) { try { Thread.sleep(HEARTBEAT_INTERVAL); if (!isAlive()) { System.out.println("Heartbeat failure detected."); // 可以在这里添加逻辑来处理成员故障,例如重新加入组或者通知其他成员。 } } catch (InterruptedException e) { Thread.currentThread().interrupt(); } } } private boolean isAlive() { // 实现心跳检测逻辑,例如发送心跳请求并等待响应。 return true; // 假设总是返回true,需要根据实际情况调整。 } } 2. 自动重平衡策略 合理配置Kafka的自动重平衡策略,确保在成员故障或加入时能够快速、平滑地进行组内成员的重新分配。利用Kafka的API或自定义逻辑来监控成员状态,并在需要时触发重平衡操作。例如: java KafkaConsumer consumer = new KafkaConsumer<>(config); consumer.subscribe(Arrays.asList(topic)); while (true) { ConsumerRecords records = consumer.poll(Duration.ofMillis(100)); for (ConsumerRecord record : records) { // 处理消息... } // 检查组成员状态并触发重平衡 if (needRebalance()) { consumer.leaveGroup(); consumer.close(); consumer = new KafkaConsumer<>(config); consumer.subscribe(Arrays.asList(topic)); } } private boolean needRebalance() { // 根据实际情况判断是否需要重平衡,例如检查成员状态等。 return false; } 3. 资源均衡与优化 设计合理的资源分配策略,确保所有成员在消费负载上达到均衡。可以考虑动态调整成员的消费速度、优化网络路由策略等手段,以避免资源的过度集中或浪费。 四、总结 解决Consumer Group成员失散的问题,需要从基础的通信机制、配置管理、到高级的资源调度策略等多个层面综合考虑。哎呀,咱们得好好琢磨琢磨这事儿!要是咱们能按这些策略来操作,不仅能稳稳地扛住成员出了状况的难题,还能让整个系统变得更加强韧,处理问题的能力也大大提升呢!就像是给咱们的团队加了层保护罩,还能让咱们干活儿更顺畅,效率蹭蹭往上涨!哎呀,兄弟,你得明白,在真刀真枪地用上这套系统的时候,咱们可不能死板地照着书本念。得根据你的业务需求,就像给娃挑衣服一样,挑最合适的那一件。还得看咱们的系统架构,就像是厨房里的调料,少了哪一味都不行。得灵活调整,就像变魔术一样,让性能和稳定性这俩宝贝儿,一个不落地都达到最好状态。这样,咱们的系统才能像大厨做菜一样,色香味俱全,让人爱不释口!
2024-08-11 16:07:45
52
醉卧沙场
转载文章
...容器和Pod分配内存资源之后,进一步探索容器编排技术的最新进展与最佳实践显得尤为重要。最近,Kubernetes社区发布了1.23版本,引入了一系列优化内存管理的新特性,如改进的内存压力检测机制和更精细的QoS(服务质量)控制,使得集群能够更加智能地处理内存资源紧张的情况,确保系统稳定性和应用性能。 此外,在云原生计算基金会(CNCF)的一篇深度解读文章中,作者详细探讨了Kubernetes内存管理背后的原理,并结合实际场景分析了如何根据应用程序特性和业务需求合理设置内存请求和限制,以实现资源的有效利用和成本控制。同时,文中还引用了Google Borg论文中的经典研究,揭示了大规模分布式系统内存资源调度的复杂性及其解决方案在Kubernetes设计中的体现。 对于希望进一步提升Kubernetes集群资源管理能力的用户,可以关注一些业内知名的案例研究,例如Netflix如何借助Kubernetes进行大规模服务部署时的内存优化策略。这些实战经验不仅有助于理解理论知识,还能指导读者在实际环境中运用和调整内存配置,从而最大化资源使用效率,降低运维风险。 总之,随着Kubernetes生态系统的持续发展和容器技术的日臻完善,不断跟进最新的内存管理实践与研究动态,将助力企业和开发者更好地驾驭这一强大的容器编排工具,构建高效、稳定的云原生架构。
2023-12-23 12:14:07
495
转载
转载文章
...似: 快速发布。能够应对业务需求,并更快地实现软件价值 编码→测试→上线→交付的频繁迭代周期缩短,同时获得迅速反馈 高质量的软件发布标准。整个交付过程标准化、可重复、可靠 整个交付过程进度可视化,方便团队人员了解项目完成度 更先进的团队协作方式。从需求分析、产品的用户体验到交互、设计、开发、测试、运维等角色密切协作,相比于传统的瀑布式软件团队,更少浪费 持续部署 简述 持续部署 意味着:通过自动化部署的手段将软件功能频繁的进行交付 持续部署是持续交付的下一步,指的是代码通过审批以后,自动化部署到生产环境。 持续部署是持续交付的最高阶段,这意味着,所有通过了一系列的自动化测试的改动都将自动部署到生产环境。它也可以被称为“Continuous Release” 持续化部署的目标是:代码在任何时候都是可部署的,可以进入生产阶段。 持续部署的前提是能自动化完成测试、构建、部署等步骤 注:持续交付不等于持续集成 与持续交付以及持续集成相比,持续部署强调了通过 automated deployment 的手段,对新的软件功能进行集成 目标 持续部署的目标是:代码在任何时刻都是可部署的,可以进入生产阶段 有很多的业务场景里,一种业务需要等待另外的功能特征出现才能上线,这是的持续部署成为不可能。虽然使用功能切换能解决很多这样的情况,但并不是没每次都会这样。所以,持续部署是否适合你的公司是基于你们的业务需求——而不是技术限制 优点 持续部署主要的好处是:可以相对独立地部署新的功能,并能快速地收集真实用户的反馈 敏捷开发 简述 敏捷开发就是一种以人为核心、迭代循环渐进的开发方式。 在敏捷开发中,软件仙姑的构建被切分成多个子项目,各个子项目的成果都经过测试,具备集成和可运行的特征。 简单的说就是把一个大的项目分为多个相互联系,但也可以独立运行的小项目,并分别完成,在此过程中软件一直处于可使用状态 注意事项 敏捷开的就是一种面临迅速变化的需求快速开发的能力,要注意一下几点: 敏捷开发不仅仅是一个项目快速完成,而是对整个产品领域需求的高效管理 敏捷开发不仅仅是简单的快,而是短周期的不断改进、提高和调整 敏捷开发不仅仅是一个版本只做几个功能,而是突出重点、果断放弃当前的非重要点 敏捷开发不仅仅是随时增加需求,而是每个迭代周期对需求的重新审核和排序 如何进行敏捷开发 1、组织建设 也就是团队建设,建立以产品经理为主导,包含产品、设计、前后台开发和测试的team,快速进行产品迭代开发;扁平化的团队管理,大家都有共同目标,更有成就感; 2、敏捷制度 要找准适合自身的敏捷开发方式,主要是制定一个完善的效率高的设计、开发、测试、上线流程,制定固定的迭代周期,让用户更有期待; 3、需求收集 这个任何方式下都需要有,需求一定要有交互稿,评审通过后,一定要确定功能需求列表、责任人、工作量、责任人等; 4、工具建设 是指能够快速完成某项事情的辅助工具,比如开发环境的一键安装,各种底层的日志、监控等平台,发布、打包工具等; 5、系统架构 略为超前架构设计:支持良好的扩容性和可维护性;组件化基础功能模块:代码耦合度低,模块间的依赖性小;插件化业务模块:降低营销活动与业务耦合度,自升级、自维护;客户端预埋逻辑;技术预研等等; 6、数据运营与灰度发布 点击率分析、用户路径分析、渠道选择、渠道升级控制等等 原则、特点和优势 敏捷开发技术的12个原则: 1.我们最优先要做的是通过尽早的、持续的交付有价值的软件来使客户满意。 2.即使到了开发的后期,也欢迎改变需求。 3.经常性地交付可以工作的软件,交付的间隔可以从几周到几个月,交付的时间间隔越短越好。 4.在整个项目开发期间,业务人员和开发人员必须天天都在一起工作。 5.围绕被激励起来的个人来构建项目。 6.在团队内部,最具有效果并且富有效率的传递信息的方法,就是面对面的交谈。 7.工作的软件是首要的进度度量标准。 8.敏捷过程提倡可持续的开发速度。 9.不断地关注优秀的技能和好的设计会增强敏捷能力。 10.简单使未完成的工作最大化。 11.最好的构架、需求和设计出自于自组织的团队。 12.每隔一定时间,团队会在如何才能更有效地工作方面进行反省,然后相应地对自己的行为进行调整。 特点: 个体和交互胜过过程和工具 可以工作的软件胜过面面俱到的文档 客户合作胜过合同谈判 响应变化胜过遵循计划 优势总结: 敏捷开发确实是项目进入实质开发迭代阶段,用户很快可以看到一个基线架构班的产品。敏捷注重市场快速反应能力,也即具体应对能力,客户前期满意度高 适用范围: 项目团队的人不能太多 项目经常发生变更 高风险的项目实施 开发人员可以参与决策 劣势总结: 敏捷开发注重人员的沟通 忽略文档的重要性 若项目人员流动太大,维护的时候很难 项目存在新手的比较多的时候,老员工会比较累 需要项目中存在经验较强的人,要不然大项目中容易遇到瓶颈问题 Open-falcon 简述 open-falcon是小米的监控系统,是一款企业级、高可用、可扩展的开源监控解决方案 公司用open-falcon来监控调度系统各种信息,便于监控各个节点的调度信息。在服务器安装了falcon-agent自动采集各项指标,主动上报 特点 强大灵活的数据采集 (自动发现,支持falcon-agent、snmp、支持用户主动push、用户自定义插件支持、opentsdb data model like(timestamp、endpoint、metric、key-value tags) ) 水平扩展能力 (支持每个周期上亿次的数据采集、告警判定、历史数据存储和查询 ) 高效率的告警策略管理 (高效的portal、支持策略模板、模板继承和覆盖、多种告警方式、支持callback调用 ) 人性化的告警设置 (最大告警次数、告警级别、告警恢复通知、告警暂停、不同时段不同阈值、支持维护周期 ) 高效率的graph组件 (单机支撑200万metric的上报、归档、存储(周期为1分钟) ) 高效的历史数据query组件 (采用rrdtool的数据归档策略,秒级返回上百个metric一年的历史数据 ) dashboard(面向用户的查询界面,可以看到push到graph中的所有数据,并查看数据发展趋势 ) (对维度的数据展示,用户自定义Screen) 高可用 (整个系统无核心单点,易运维,易部署,可水平扩展) 开发语言 (整个系统的后端,全部golang编写,portal和dashboard使用python编写。 ) 监控范围 Open-Falcon支持系统基础监控,第三方服务监控,JVM监控,业务应用监控 基础监控指的是Linux系统的指标监控,包括CPU、load、内存、磁盘、IO、网络等, 这些指标由Openfalcon的agent节点直接支持,无需插件 第三方服务监控指的是一些常见的服务监控,包括Mysql、Redis、Nginx等 OpenFalcon官网提供了很多第三方服务的监控插件,也可以自己实现插件,定义采集指标。而采集到的指标,也是通过插件先发送给agent,再由agent发送到OpenFalcon。 JVM监控主要通过插件完成,插件通过JVM开放的JMX通信端口,获取到JVM参数指标,并推送到agent节点,再由agent发送到OpenFalcon。 业务应用监控就是监控企业自主开发的应用服务 主要通过插件完成,插件通过JVM开放的JMX通信端口,获取到JVM参数指标,并推送到agent节点,再由agent发送到OpenFalcon。 数据流向 常见的OpenFalcon包含transfer、hbs、agent、judge、graph、API几个进程 以下是各个节点的数据流向图,主数据流向是agent -> transfer -> judge/graph: SNMP 简述 SNMP:简单网络管理协议,是TCP/IP协议簇 的一个应用层协议,由于SNMP的简单性,在Internet时代得到了蓬勃的发展 ,1992年发布了SNMPv2版本,以增强SNMPv1的安全性和功能。现在,已经有了SNMPv3版本(它对网络管理最大的贡献在于其安全性。增加了对认证和密文传输的支持 )。 一套完整的SNMP系统主要包括:管理信息库(MIB)、管理信息结构(SMI)和 SNMP报文协议 为什么要用SNMP 作为运维人员,我们很大一部分的工作就是为了保证我们的网络能够正常、稳定的运行。因此监控,控制,管理各种网络设备成了我们日常的工作 优点和好处 优点: 简单易懂,部署的开销成本也小 ,正因为它足够简单,所以被广泛的接受,事实上它已经成为了主要的网络管理标准。在一个网络设备上实现SNMP的管理比绝大部分其他管理方式都简单直接。 好处: 标准化的协议:SNMP是TCP/IP网络的标准网络管理协议。 广泛认可:所有主流供应商都支持SNMP。 可移植性:SNMP独立于操作系统和编程语言。 轻量级:SNMP增强对设备的管理能力的同时不会对设备的操作方式或性能产生冲击。 可扩展性:在所有SNMP管理的设备上都会支持相同的一套核心操作集。 广泛部署:SNMP是最流行的管理协议,最为受设备供应商关注,被广泛部署在各种各样的设备上。 MIB、SMI和SNMP报文 MIB 管理信息库MIB:任何一个被管理的资源都表示成一个对象,称为被管理的对象。 MIB是被管理对象的集合。 它定义了被管理对象的一系列属性:对象的名称、对象的访问权限和对象的数据类型等。 每个SNMP设备(Agent)都有自己的MIB。 MIB也可以看作是NMS(网管系统)和Agent之间的沟通桥梁。 MIB文件中的变量使用的名字取自ISO和ITU管理的对象表示符命名空间,他是一个分级数的结构 SMI SMI定义了SNNMP框架多用信息的组织、组成和标识,它还未描述MIB对象和表述协议怎么交换信息奠定了基础 SMI定义的数据类型: 简单类型(simple): Integer:整型是-2,147,483,648~2,147,483,647的有符号整数 octet string: 字符串是0~65535个字节的有序序列 OBJECT IDENTIFIER: 来自按照ASN.1规则分配的对象标识符集 简单结构类型(simple-constructed ): SEQUENCE 用于列表。这一数据类型与大多数程序设计语言中的“structure”类似。一个SEQUENCE包括0个或更多元素,每一个元素又是另一个ASN.1数据类型 SEQUENCE OF type 用于表格。这一数据类型与大多数程序设计语言中的“array”类似。一个表格包括0个或更多元素,每一个元素又是另一个ASN.1数据类型。 应用类型(application-wide): IpAddress: 以网络序表示的IP地址。因为它是一个32位的值,所以定义为4个字节; counter:计数器是一个非负的整数,它递增至最大值,而后回零。在SNMPv1中定义的计数器是32位的,即最大值为4,294,967,295; Gauge :也是一个非负整数,它可以递增或递减,但达到最大值时保持在最大值,最大值为232-1; time ticks:是一个时间单位,表示以0.01秒为单位计算的时间; SNMP报文 SNMP规定了5种协议数据单元PDU(也就是SNMP报文),用来在管理进程和代理之间的交换。 get-request操作:从代理进程处提取一个或多个参数值。 get-next-request操作:从代理进程处提取紧跟当前参数值的下一个参数值。 set-request操作:设置代理进程的一个或多个参数值。 get-response操作:返回的一个或多个参数值。这个操作是由代理进程发出的,它是前面三种操作的响应操作。 trap操作:代理进程主动发出的报文,通知管理进程有某些事情发生。 操作命令 SNMP协议之所以易于使用,这是因为它对外提供了三种用于控制MIB对象的基本操作命令。它们是:Get、Set 和 Trap。 Get:管理站读取代理者处对象的值 Set:管理站设置代理者处对象的值 Trap: 代理者主动向管理站通报重要事件 SLA 简述 SLA(服务等级协议):是关于网络服务供应商和客户之间的一份合同,其中定义了服务类型、服务质量和客户付款等术语 一个完整的SLA同时也是一个合法的文档,包括所涉及的当事人、协定条款(包含应用程序和支持的服务)、违约的处罚、费用和仲裁机构、政策、修改条款、报告形式和双方的义务等。同样服务提供商可以对用户在工作负荷和资源使用方面进行规定。 KPI 简述 KPI(关键绩效指标):是通过对组织内部流程的输入端、输出端的关键参数进行设置、取样、计算、分析,衡量流程绩效的一种目标式量化管理指标,是把企业的战略目标分解为可操作的工作目标的工具,是企业绩效管理的基础。 KPI可以是部门主管明确部门的主要责任,并以此为基础,明确部门人员的业绩衡量指标,建立明确的切实可行的KPI体系,是做好绩效管理的关键。 KPI(关键绩效指标)是用于衡量工作人员工作绩效表现的量化指标,是绩效计划的重要组成部分 转载于:https://www.cnblogs.com/woshinideyugegea/p/11242034.html 本篇文章为转载内容。原文链接:https://blog.csdn.net/anqiongsha8211/article/details/101592137。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-19 16:00:05
45
转载
转载文章
...圾回收(GC)、线程调度以及Binder,CPU,GPU方面等JVM以及FrameWork相关知识 如果能做好卡顿优化,那么也就间接证明你对Android FrameWork的理解之深。 接下来我们就来讲解下卡顿方面的知识。 什么是卡顿: 对用户来讲就是界面不流畅,滞顿。 场景如下: 1.视频加载慢,画面卡顿,卡死,黑屏 2.声音卡顿,音画不同步。 3.动画帧卡顿,交互响应慢 4.滑动不跟手,列表自动更新,滚动不流畅 5.网络响应慢,数据和画面展示慢、 6.过渡动画生硬。 7.界面不可交互,卡死,等等现象。 卡顿是如何发生的 卡顿产生的原因一般都比较复杂,如CPU内存大小,IO操作,锁操作,低效的算法等都会引起卡顿。 站在开发的角度看: 通常我们讲,屏幕刷新率是60fps,需要在16ms内完成所有的工作才不会造成卡顿。 为什么是16ms,不是17,18呢? 下面我们先来理清在UI绘制中的几个概念: SurfaceFlinger: SurfaceFlinger作用是接受多个来源的图形显示数据Surface,合成后发送到显示设备,比如我们的主界面中:可能会有statusBar,侧滑菜单,主界面,这些View都是独立Surface渲染和更新,最后提交给SF后,SF根据Zorder,透明度,大小,位置等参数,合成为一个数据buffer,传递HWComposer或者OpenGL处理,最终给显示器。 在显示过程中使用到了bufferqueue,surfaceflinger作为consumer方,比如windowmanager管理的surface作为生产方产生页面,交由surfaceflinger进行合成。 VSYNC Android系统每隔16ms发出VSYNC信号,触发对UI进行渲染,VSYNC是一种在PC上很早就有应用,可以理解为一种定时中断技术。 tearing 问题: 早期的 Android 是没有 vsync 机制的,CPU 和 GPU 的配合也比较混乱,这也造成著名的 tearing 问题,即 CPU/GPU 直接更新正在显示的屏幕 buffer 造成画面撕裂。 后续 Android 引入了双缓冲机制,但是 buffer 的切换也需要一个比较合适的时机,也就是屏幕扫描完上一帧后的时机,这也就是引入 vsync 的原因。 早先一般的屏幕刷新率是 60fps,所以每个 vsync 信号的间隔也是 16ms,不过随着技术的更迭以及厂商对于流畅性的追求,越来越多 90fps 和 120fps 的手机面世,相对应的间隔也就变成了 11ms 和 8ms。 VSYNC信号种类: 1.屏幕产生的硬件VSYNC:硬件VSYNC是一种脉冲信号,起到开关和触发某种操作的作用。 2.由SurfaceFlinger将其转成的软件VSYNC信号,经由Binder传递给Choreographer Choreographer: 编舞者,用于注册VSYNC信号并接收VSYNC信号回调,当内部接收到这个信号时最终会调用到doFrame进行帧的绘制操作。 Choreographer在系统中流程: 如何通过Choreographer计算掉帧情况:原理就是: 通过给Choreographer设置FrameCallback,在每次绘制前后看时间差是16.6ms的多少倍,即为前后掉帧率。 使用方式如下: //Application.javapublic void onCreate() {super.onCreate();//在Application中使用postFrameCallbackChoreographer.getInstance().postFrameCallback(new FPSFrameCallback(System.nanoTime()));}public class FPSFrameCallback implements Choreographer.FrameCallback {private static final String TAG = "FPS_TEST";private long mLastFrameTimeNanos = 0;private long mFrameIntervalNanos;public FPSFrameCallback(long lastFrameTimeNanos) {mLastFrameTimeNanos = lastFrameTimeNanos;mFrameIntervalNanos = (long)(1000000000 / 60.0);}@Overridepublic void doFrame(long frameTimeNanos) {//初始化时间if (mLastFrameTimeNanos == 0) {mLastFrameTimeNanos = frameTimeNanos;}final long jitterNanos = frameTimeNanos - mLastFrameTimeNanos;if (jitterNanos >= mFrameIntervalNanos) {final long skippedFrames = jitterNanos / mFrameIntervalNanos;if(skippedFrames>30){//丢帧30以上打印日志Log.i(TAG, "Skipped " + skippedFrames + " frames! "+ "The application may be doing too much work on its main thread.");} }mLastFrameTimeNanos=frameTimeNanos;//注册下一帧回调Choreographer.getInstance().postFrameCallback(this);} } UI绘制全路径分析: 有了前面几个概念,这里我们让SurfaceFlinger结合View的绘制流程用一张图来表达整个绘制流程: 生产者:APP方构建Surface的过程。 消费者:SurfaceFlinger UI绘制全路径分析卡顿原因: 接下来,我们逐个分析,看看都会有哪些原因可能造成卡顿: 1.渲染流程 1.Vsync 调度:这个是起始点,但是调度的过程会经过线程切换以及一些委派的逻辑,有可能造成卡顿,但是一般可能性比较小,我们也基本无法介入; 2.消息调度:主要是 doframe Message 的调度,这就是一个普通的 Handler 调度,如果这个调度被其他的 Message 阻塞产生了时延,会直接导致后续的所有流程不会被触发 3.input 处理:input 是一次 Vsync 调度最先执行的逻辑,主要处理 input 事件。如果有大量的事件堆积或者在事件分发逻辑中加入大量耗时业务逻辑,会造成当前帧的时长被拉大,造成卡顿,可以尝试通过事件采样的方案,减少 event 的处理 4.动画处理:主要是 animator 动画的更新,同理,动画数量过多,或者动画的更新中有比较耗时的逻辑,也会造成当前帧的渲染卡顿。对动画的降帧和降复杂度其实解决的就是这个问题; 5.view 处理:主要是接下来的三大流程,过度绘制、频繁刷新、复杂的视图效果都是此处造成卡顿的主要原因。比如我们平时所说的降低页面层级,主要解决的就是这个问题; 6.measure/layout/draw:view 渲染的三大流程,因为涉及到遍历和高频执行,所以这里涉及到的耗时问题均会被放大,比如我们会降不能在 draw 里面调用耗时函数,不能 new 对象等等; 7.DisplayList 的更新:这里主要是 canvas 和 displaylist 的映射,一般不会存在卡顿问题,反而可能存在映射失败导致的显示问题; 8.OpenGL 指令转换:这里主要是将 canvas 的命令转换为 OpenGL 的指令,一般不存在问题 9.buffer 交换:这里主要指 OpenGL 指令集交换给 GPU,这个一般和指令的复杂度有关 10.GPU 处理:顾名思义,这里是 GPU 对数据的处理,耗时主要和任务量和纹理复杂度有关。这也就是我们降低 GPU 负载有助于降低卡顿的原因; 11.layer 合成:Android P 修改了 Layer 的计算方法 , 把这部分放到了 SurfaceFlinger 主线程去执行, 如果后台 Layer 过多, 就会导致 SurfaceFlinger 在执行 rebuildLayerStacks 的时候耗时 , 导致 SurfaceFlinger 主线程执行时间过长。 可以选择降低Surface层级来优化卡顿。 12.光栅化/Display:这里暂时忽略,底层系统行为; Buffer 切换:主要是屏幕的显示,这里 buffer 的数量也会影响帧的整体延迟,不过是系统行为,不能干预。 2.系统负载 内存:内存的吃紧会直接导致 GC 的增加甚至 ANR,是造成卡顿的一个不可忽视的因素; CPU:CPU 对卡顿的影响主要在于线程调度慢、任务执行的慢和资源竞争,比如 1.降频会直接导致应用卡顿; 2.后台活动进程太多导致系统繁忙,cpu \ io \ memory 等资源都会被占用, 这时候很容易出现卡顿问题 ,这种情况比较常见,可以使用dumpsys cpuinfo查看当前设备的cpu使用情况: 3.主线程调度不到 , 处于 Runnable 状态,这种情况比较少见 4.System 锁:system_server 的 AMS 锁和 WMS 锁 , 在系统异常的情况下 , 会变得非常严重 , 如下图所示 , 许多系统的关键任务都被阻塞 , 等待锁的释放 , 这时候如果有 App 发来的 Binder 请求带锁 , 那么也会进入等待状态 , 这时候 App 就会产生性能问题 ; 如果此时做 Window 动画 , 那么 system_server 的这些锁也会导致窗口动画卡顿 GPU:GPU 的影响见渲染流程,但是其实还会间接影响到功耗和发热; 功耗/发热:功耗和发热一般是不分家的,高功耗会引起高发热,进而会引起系统保护,比如降频、热缓解等,间接的导致卡顿。 如何监控卡顿 线下监控: 我们知道卡顿问题的原因错综复杂,但最终都可以反馈到CPU使用率上来 1.使用dumpsys cpuinfo命令 这个命令可以获取当时设备cpu使用情况,我们可以在线下通过重度使用应用来检测可能存在的卡顿点 A8S:/ $ dumpsys cpuinfoLoad: 1.12 / 1.12 / 1.09CPU usage from 484321ms to 184247ms ago (2022-11-02 14:48:30.793 to 2022-11-02 14:53:30.866):2% 1053/scanserver: 0.2% user + 1.7% kernel0.6% 934/system_server: 0.4% user + 0.1% kernel / faults: 563 minor0.4% 564/signserver: 0% user + 0.4% kernel0.2% 256/ueventd: 0.1% user + 0% kernel / faults: 320 minor0.2% 474/surfaceflinger: 0.1% user + 0.1% kernel0.1% 576/vendor.sprd.hardware.gnss@2.0-service: 0.1% user + 0% kernel / faults: 54 minor0.1% 286/logd: 0% user + 0% kernel / faults: 10 minor0.1% 2821/com.allinpay.appstore: 0.1% user + 0% kernel / faults: 1312 minor0.1% 447/android.hardware.health@2.0-service: 0% user + 0% kernel / faults: 1175 minor0% 1855/com.smartpos.dataacqservice: 0% user + 0% kernel / faults: 755 minor0% 2875/com.allinpay.appstore:pushcore: 0% user + 0% kernel / faults: 744 minor0% 1191/com.android.systemui: 0% user + 0% kernel / faults: 70 minor0% 1774/com.android.nfc: 0% user + 0% kernel0% 172/kworker/1:2: 0% user + 0% kernel0% 145/irq/24-70900000: 0% user + 0% kernel0% 575/thermald: 0% user + 0% kernel / faults: 300 minor... 2.CPU Profiler 这个工具是AS自带的CPU性能检测工具,可以在PC上实时查看我们CPU使用情况。 AS提供了四种Profiling Model配置: 1.Sample Java Methods:在应用程序基于Java的代码执行过程中,频繁捕获应用程序的调用堆栈 获取有关应用程序基于Java的代码执行的时间和资源使用情况信息。 2.Trace java methods:在运行时对应用程序进行检测,以在每个方法调用的开始和结束时记录时间戳。收集时间戳并进行比较以生成方法跟踪数据,包括时序信息和CPU使用率。 请注意与检测每种方法相关的开销会影响运行时性能,并可能影响性能分析数据。对于生命周期相对较短的方法,这一点甚至更为明显。此外,如果您的应用在短时间内执行大量方法,则探查器可能会很快超过其文件大小限制,并且可能无法记录任何进一步的跟踪数据。 3.Sample C/C++ Functions:捕获应用程序本机线程的示例跟踪。要使用此配置,您必须将应用程序部署到运行Android 8.0(API级别26)或更高版本的设备。 4.Trace System Calls:捕获细粒度的详细信息,使您可以检查应用程序与系统资源的交互方式 您可以检查线程状态的确切时间和持续时间,可视化CPU瓶颈在所有内核中的位置,并添加自定义跟踪事件进行分析。在对性能问题进行故障排除时,此类信息可能至关重要。要使用此配置,您必须将应用程序部署到运行Android 7.0(API级别24)或更高版本的设备。 使用方式: Debug.startMethodTracing("");// 需要检测的代码片段...Debug.stopMethodTracing(); 优点:有比较全面的调用栈以及图像化方法时间显示,包含所有线程的情况 缺点:本身也会带来一点的性能开销,可能会带偏优化方向 火焰图:可以显示当前应用的方法堆栈: 3.Systrace Systrace在前面一篇分析启动优化的文章讲解过 这里我们简单来复习下: Systrace用来记录当前应用的系统以及应用(使用Trace类打点)的各阶段耗时信息包括绘制信息以及CPU信息等。 使用方式: Trace.beginSection("MyApp.onCreate_1");alt(200);Trace.endSection(); 在命令行中: python systrace.py -t 5 sched gfx view wm am app webview -a "com.chinaebipay.thirdcall" -o D:\trac1.html 记录的方法以及CPU中的耗时情况: 优点: 1.轻量级,开销小,CPU使用率可以直观反映 2.右侧的Alerts能够根据我们应用的问题给出具体的建议,比如说,它会告诉我们App界面的绘制比较慢或者GC比较频繁。 4.StrictModel StrictModel是Android提供的一种运行时检测机制,用来帮助开发者自动检测代码中不规范的地方。 主要和两部分相关: 1.线程相关 2.虚拟机相关 基础代码: private void initStrictMode() {// 1、设置Debug标志位,仅仅在线下环境才使用StrictModeif (DEV_MODE) {// 2、设置线程策略StrictMode.setThreadPolicy(new StrictMode.ThreadPolicy.Builder().detectCustomSlowCalls() //API等级11,使用StrictMode.noteSlowCode.detectDiskReads().detectDiskWrites().detectNetwork() // or .detectAll() for all detectable problems.penaltyLog() //在Logcat 中打印违规异常信息// .penaltyDialog() //也可以直接跳出警报dialog// .penaltyDeath() //或者直接崩溃.build());// 3、设置虚拟机策略StrictMode.setVmPolicy(new StrictMode.VmPolicy.Builder().detectLeakedSqlLiteObjects()// 给NewsItem对象的实例数量限制为1.setClassInstanceLimit(NewsItem.class, 1).detectLeakedClosableObjects() //API等级11.penaltyLog().build());} } 线上监控: 线上需要自动化的卡顿检测方案来定位卡顿,它能记录卡顿发生时的场景。 自动化监控原理: 采用拦截消息调度流程,在消息执行前埋点计时,当耗时超过阈值时,则认为是一次卡顿,会进行堆栈抓取和上报工作 首先,我们看下Looper用于执行消息循环的loop()方法,关键代码如下所示: / Run the message queue in this thread. Be sure to call {@link quit()} to end the loop./public static void loop() {...for (;;) {Message msg = queue.next(); // might blockif (msg == null) {// No message indicates that the message queue is quitting.return;// This must be in a local variable, in case a UI event sets the loggerfinal Printer logging = me.mLogging;if (logging != null) {// 1logging.println(">>>>> Dispatching to " + msg.target + " " +msg.callback + ": " + msg.what);}...try {// 2 msg.target.dispatchMessage(msg);dispatchEnd = needEndTime ? SystemClock.uptimeMillis() : 0;} finally {if (traceTag != 0) {Trace.traceEnd(traceTag);} }...if (logging != null) {// 3logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);} 在Looper的loop()方法中,在其执行每一个消息(注释2处)的前后都由logging进行了一次打印输出。可以看到,在执行消息前是输出的">>>>> Dispatching to “,在执行消息后是输出的”<<<<< Finished to ",它们打印的日志是不一样的,我们就可以由此来判断消息执行的前后时间点。 具体的实现可以归纳为如下步骤: 1、首先,我们需要使用Looper.getMainLooper().setMessageLogging()去设置我们自己的Printer实现类去打印输出logging。这样,在每个message执行的之前和之后都会调用我们设置的这个Printer实现类。 2、如果我们匹配到">>>>> Dispatching to "之后,我们就可以执行一行代码:也就是在指定的时间阈值之后,我们在子线程去执行一个任务,这个任务就是去获取当前主线程的堆栈信息以及当前的一些场景信息,比如:内存大小、电脑、网络状态等。 3、如果在指定的阈值之内匹配到了"<<<<< Finished to ",那么说明message就被执行完成了,则表明此时没有产生我们认为的卡顿效果,那我们就可以将这个子线程任务取消掉。 这里我们使用blockcanary来做测试: BlockCanary APM是一个非侵入式的性能监控组件,可以通过通知的形式弹出卡顿信息。它的原理就是我们刚刚讲述到的卡顿监控的实现原理。 使用方式: 1.导入依赖 implementation 'com.github.markzhai:blockcanary-android:1.5.0' Application的onCreate方法中开启卡顿监控 // 注意在主进程初始化调用BlockCanary.install(this, new AppBlockCanaryContext()).start(); 3.继承BlockCanaryContext类去实现自己的监控配置上下文类 public class AppBlockCanaryContext extends BlockCanaryContext {....../ 指定判定为卡顿的阈值threshold (in millis), 你可以根据不同设备的性能去指定不同的阈值 @return threshold in mills/public int provideBlockThreshold() {return 1000;}....} 4.在Activity的onCreate方法中执行一个耗时操作 try {Thread.sleep(4000);} catch (InterruptedException e) {e.printStackTrace();} 5.结果: 可以看到一个和LeakCanary一样效果的阻塞可视化堆栈图 那有了BlockCanary的方法耗时监控方式是不是就可以解百愁了呢,呵呵。有那么容易就好了 根据原理:我们拿到的是msg执行前后的时间和堆栈信息,如果msg中有几百上千个方法,就无法确认到底是哪个方法导致的耗时,也有可能是多个方法堆积导致。 这就导致我们无法准确定位哪个方法是最耗时的。如图中:堆栈信息是T2的,而发生耗时的方法可能是T1到T2中任何一个方法甚至是堆积导致。 那如何优化这块? 这里我们采用字节跳动给我们提供的一个方案:基于 Sliver trace 的卡顿监控体系 Sliver trace 整体流程图: 主要包含两个方面: 检测方案: 在监控卡顿时,首先需要打开 Sliver 的 trace 记录能力,Sliver 采样记录 trace 执行信息,对抓取到的堆栈进行 diff 聚合和缓存。 同时基于我们的需要设置相应的卡顿阈值,以 Message 的执行耗时为衡量。对主线程消息调度流程进行拦截,在消息开始分发执行时埋点,在消息执行结束时计算消息执行耗时,当消息执行耗时超过阈值,则认为产生了一次卡顿。 堆栈聚合策略: 当卡顿发生时,我们需要为此次卡顿准备数据,这部分工作是在端上子线程中完成的,主要是 dump trace 到文件以及过滤聚合要上报的堆栈。分为以下几步: 1.拿到缓存的主线程 trace 信息并 dump 到文件中。 2.然后从文件中读取 trace 信息,按照数据格式,从最近的方法栈向上追溯,找到当前 Message 包含的全部 trace 信息,并将当前 Message 的完整 trace 写入到待上传的 trace 文件中,删除其余 trace 信息。 3.遍历当前 Message trace,按照(Method 执行耗时 > Method 耗时阈值 & Method 耗时为该层堆栈中最耗时)为条件过滤出每一层函数调用堆栈的最长耗时函数,构成最后要上报的堆栈链路,这样特征堆栈中的每一步都是最耗时的,且最底层 Method 为最后的耗时大于阈值的 Method。 之后,将 trace 文件和堆栈一同上报,这样的特征堆栈提取策略保证了堆栈聚合的可靠性和准确性,保证了上报到平台后堆栈的正确合理聚合,同时提供了进一步分析问题的 trace 文件。 可以看到字节给的是一整套监控方案,和前面BlockCanary不同之处就在于,其是定时存储堆栈,缓存,然后使用diff去重的方式,并上传到服务器,可以最大限度的监控到可能发生比较耗时的方法。 开发中哪些习惯会影响卡顿的发生 1.布局太乱,层级太深。 1.1:通过减少冗余或者嵌套布局来降低视图层次结构。比如使用约束布局代替线性布局和相对布局。 1.2:用 ViewStub 替代在启动过程中不需要显示的 UI 控件。 1.3:使用自定义 View 替代复杂的 View 叠加。 2.主线程耗时操作 2.1:主线程中不要直接操作数据库,数据库的操作应该放在数据库线程中完成。 2.2:sharepreference尽量使用apply,少使用commit,可以使用MMKV框架来代替sharepreference。 2.3:网络请求回来的数据解析尽量放在子线程中,不要在主线程中进行复制的数据解析操作。 2.4:不要在activity的onResume和onCreate中进行耗时操作,比如大量的计算等。 2.5:不要在 draw 里面调用耗时函数,不能 new 对象 3.过度绘制 过度绘制是同一个像素点上被多次绘制,减少过度绘制一般减少布局背景叠加等方式,如下图所示右边是过度绘制的图片。 4.列表 RecyclerView使用优化,使用DiffUtil和notifyItemDataSetChanged进行局部更新等。 5.对象分配和回收优化 自从Android引入 ART 并且在Android 5.0上成为默认的运行时之后,对象分配和垃圾回收(GC)造成的卡顿已经显著降低了,但是由于对象分配和GC有额外的开销,它依然又可能使线程负载过重。 在一个调用不频繁的地方(比如按钮点击)分配对象是没有问题的,但如果在在一个被频繁调用的紧密的循环里,就需要避免对象分配来降低GC的压力。 减少小对象的频繁分配和回收操作。 好了,关于卡顿优化的问题就讲到这里,下篇文章会对卡顿中的ANR情况的处理,这里做个铺垫。 如果喜欢我的文章,欢迎关注我的公众号。 点击这看原文链接: 参考 Android卡顿检测及优化 一文读懂直播卡顿优化那些事儿 “终于懂了” 系列:Android屏幕刷新机制—VSync、Choreographer 全面理解! 深入探索Android卡顿优化(上) 西瓜卡顿 & ANR 优化治理及监控体系建设 5376)] 参考 Android卡顿检测及优化 一文读懂直播卡顿优化那些事儿 “终于懂了” 系列:Android屏幕刷新机制—VSync、Choreographer 全面理解! 深入探索Android卡顿优化(上) 西瓜卡顿 & ANR 优化治理及监控体系建设 本篇文章为转载内容。原文链接:https://blog.csdn.net/yuhaibing111/article/details/127682399。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-26 08:05:57
214
转载
Spark
.... 引言 最近在使用Spark进行大数据处理时,遇到了一个让我抓狂的问题:“Lost task 00 in stage 00 TID 0, localhost, executor driver: java.lang.RuntimeException”。这个问题不仅耽误了我很多时间,还让我一度怀疑自己的代码水平。不过,经过一番研究和尝试,我发现了解决这个问题的一些有效方法。接下来,我会分享我的经验,希望能帮助遇到相同问题的小伙伴们。 2. 问题背景 在使用Spark处理数据的过程中,我们经常会遇到各种各样的错误。这个错误信息一般意味着有个任务在运行时出了岔子,最后没能顺利完成。在这个案例中,具体是task 00在stage 00中的TID 0执行失败了,而且异常发生在executor driver上。这看起来像是一个简单的错误,但背后可能隐藏着一些复杂的原因。 3. 分析原因 首先,我们需要分析一下这个错误的根本原因。在Spark里,如果一个任务运行时出了问题抛了异常,系统就会把它标成“丢失”状态,而且不会自动重新来过。这事儿可能是因为好几个原因,比如内存不够用、代码写得不太对劲,或者是有个外部的东西不给力。 - 内存不足:Spark任务可能会因为内存不足而失败。我们可以检查executor和driver的内存配置是否合理。 - 代码逻辑错误:代码中可能存在逻辑错误,导致某些操作无法正确执行。 - 外部依赖问题:如果任务依赖于外部资源(如数据库连接、文件系统等),这些资源可能存在问题。 4. 解决方案 在找到问题原因后,我们需要采取相应的措施来解决问题。这里列出了一些常见的解决方案: 4.1 检查内存配置 内存不足是导致任务失败的一个常见原因。咱们可以调节一下executor和driver的内存设置,让它们手头宽裕点,好顺利完成任务。 scala val spark = SparkSession.builder() .appName("ExampleApp") .config("spark.executor.memory", "4g") // 设置executor内存为4GB .config("spark.driver.memory", "2g") // 设置driver内存为2GB .getOrCreate() 4.2 优化代码逻辑 代码中的逻辑错误也可能导致任务失败。我们需要仔细检查代码,确保所有的操作都能正常执行。 scala val data = spark.read.text("input.txt") val words = data.flatMap(line => line.split("\\s+")) val wordCounts = words.groupBy($"value").count() wordCounts.show() // 显示结果 4.3 处理外部依赖 如果任务依赖于外部资源,我们需要确保这些资源是可用的。例如,如果任务需要访问数据库,我们需要检查数据库连接是否正常。 scala val jdbcDF = spark.read .format("jdbc") .option("url", "jdbc:mysql://localhost:3306/database_name") .option("dbtable", "table_name") .option("user", "username") .option("password", "password") .load() jdbcDF.show() 4.4 日志分析 最后,我们可以通过查看日志来获取更多的信息。日志中可能会包含更详细的错误信息,帮助我们更好地定位问题。 bash spark-submit --class com.example.MyJob --master local[] my-job.jar 5. 总结 通过以上步骤,我成功解决了这个令人头疼的问题。虽然过程中遇到了不少困难,但最终还是找到了合适的解决方案。希望我的经验能对大家有所帮助。如果还有其他问题,欢迎随时交流讨论! --- 这篇文章涵盖了从问题背景到具体解决方案的全过程,希望对你有所帮助。如果你在实际操作中遇到其他问题,不妨多查阅官方文档或者向社区求助,相信总能找到答案。
2025-03-02 15:38:28
95
林中小径
Spark
分布式缓存 , 在Spark中,分布式缓存是一种将数据存储在集群节点内存中的机制,旨在减少重复计算并提升任务执行效率。当数据被标记为缓存后,Spark会在后续操作中优先从内存中读取该数据,而非重新计算或从磁盘加载,从而节省时间和资源。然而,若数据量超出单节点内存容量,则可能引发磁盘溢写,导致性能下降。因此,合理评估数据规模与内存资源是使用分布式缓存的关键。 序列化 , 序列化是将对象转换为字节流的过程,以便在网络上传输或存储到磁盘中。在Spark中,序列化用于将数据对象转换为紧凑的二进制格式,以减少内存占用并加快数据传输速度。文章提到两种常见的序列化方式。 缓存时机 , 缓存时机是指决定何时将数据加载到内存中的策略。文章指出,缓存时机的选择直接影响内存利用率和任务执行效率。如果在任务启动初期盲目缓存数据,可能导致内存资源浪费或后期真正需要缓存的数据无法获得足够空间。合理的缓存时机应该根据任务需求动态调整,例如在某阶段即将开始前再调用.cache()方法,确保数据能及时加载到内存中。正确把握缓存时机能够最大化分布式缓存的优势,同时避免不必要的性能损失。
2025-05-02 15:46:14
81
素颜如水
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
!!
- 重新执行上一条命令。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"