前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[Ribbon客户端负载均衡与重试策略配置]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Hadoop
...容错能力,还便于实现负载均衡。 伪分布式模式 , 这是一种特殊的Hadoop运行模式,允许用户在一个物理机器上模拟完整的Hadoop集群环境。在这种模式下,所有的Hadoop服务都在同一台机器上运行,但它们彼此独立,就像在真实的分布式环境中一样。这种方式非常适合初学者和小型项目,因为它不需要额外的硬件成本就能体验Hadoop的各项功能。通过伪分布式模式,用户可以练习文件上传、下载、查看副本分布等基本操作,为后续在真实集群环境中部署和管理Hadoop打下坚实的基础。此外,由于只需要一台机器即可完成配置,因此调试和解决问题也变得更加方便快捷。 副本策略 , HDFS中的一个重要概念,指的是如何决定文件数据块副本的存放位置。默认的副本策略考虑到了网络拓扑结构,旨在优化数据访问性能和系统稳定性。通常情况下,第一个副本会存放在与客户端最接近的节点上,这样可以减少网络延迟;第二个副本则会放到另一个机架上,以增加数据的容灾能力;第三个副本通常会放在同一个机架内的其他节点上,以便在本机架内实现快速恢复。这种策略有助于平衡数据冗余带来的存储开销与读取效率之间的关系。当然,用户也可以根据实际需求自定义副本策略,比如指定所有副本都位于同一机架内,或者按照特定规则分配副本位置,从而满足不同的业务场景需求。
2025-03-26 16:15:40
97
冬日暖阳
ZooKeeper
...式系统中的服务发现和配置管理问题。SOFARegistry通过对ZooKeeper的深度优化,大幅提升了请求处理能力,降低了CommitQueueFullException的发生概率。例如,在某电商平台的双11活动中,使用SOFARegistry后,服务调用成功率提升了近30%,同时降低了约40%的系统资源消耗。此外,腾讯云也推出了类似的解决方案,其推出的TSeer组件同样基于ZooKeeper,专注于提供低延迟的服务发现和负载均衡能力。这些新技术的出现,不仅为企业提供了更多选择,也为ZooKeeper的未来发展注入了新活力。值得注意的是,尽管这些优化方案效果显著,但在实际应用中仍需结合自身业务特点进行定制化调整。例如,某些企业可能需要进一步增强SOFARegistry的容错能力,而另一些企业则可能需要TSeer提供的更细粒度的流量控制功能。总之,随着分布式系统规模的不断扩大,如何高效利用现有工具并持续创新将成为未来发展的关键。希望这些前沿技术和最佳实践能为读者带来启发,助力企业在数字化转型中抢占先机。
2025-03-16 15:37:44
10
林中小径
转载文章
...DB数据库软件,通过配置仓库源地址,可以实现软件的一键安装、更新与卸载,简化了运维人员对系统软件的维护工作。 源码编译安装 , 源码编译安装是指从软件官方网站或开源社区下载原始代码包,然后在目标计算机上进行编译、配置及安装的过程。相较于yum安装,源码编译安装允许用户自定义软件的安装路径、功能模块以及编译参数,以满足特定环境或需求。在文章中,源码编译安装被用来对比于yum安装方式,并指出其在版本控制和功能扩展方面的灵活性。 MariaDB主从复制 , MariaDB主从复制是数据库高可用性架构的一种实现方式,它通过将主数据库(Master)的数据变化实时同步到一个或多个从数据库(Slave),从而达到数据备份、负载均衡和故障恢复的目的。在实际操作中,需要在主库上配置二进制日志记录所有更改,并在从库上设置为读取并执行这些日志文件中的变更,确保主从数据库间的数据一致性。在文中,作者详细描述了如何在Mariadb中配置主从复制环境,包括修改配置文件、授权复制权限以及查看主库状态等关键步骤。
2023-07-12 10:11:01
310
转载
转载文章
...具的使用的认可 – 客户认可,降低AWS项目实施风险 – 增加客户满意度 3.3 再认证模式 因为AWS的服务在更新,因此每两年要重新认证(证件的有效期2年),再次参加考试时,题目、时间将会更少,且认证费用更低 3.4 助理架构师认证的知识领域 四大知识域 1 设计:高可用、高效率、可容错低、可扩展的系统 2 实施和部署:强调部署操作能力 3 数据安全性:在部署操作时,始终保持数据保存和传输的安全 4 排除故障:在系统出现问题时,可以快速找到问题并解决问题 知识权重 - 设计:60%的题目 - 实施和部署:10%的题目 - 数据安全:20%的题目 - 排除故障:10%的题目 PS:考试不会按照上面的次序、考试不会注明考试题目的分类 3.5 认证过程 需要在网上注册,找到距离家里比较近的地方考试(考点) 到了现场需要携带身份证,证明自己 并不允许带手机入场 证件上必须有照片 签署NDA保证不会泄露考题 考试中心的电脑中考试(80分钟,55个考题) 考试后马上知道分数和是否通过(不会看到每道题目是否正确) 通过后的成绩、认证证书等将发到email邮箱中 3.6 考试机制 助理级别考试的重点是:单一服务和小规模的组合服务的掌握程度 所有题目都是选择题(多选或单选) 不惩罚打错,所以留白没意义,可以猜一个 55道题 可以给不确定的题目打标签,没提交前都可以回来改答案 3.7 题目示例 单选题 多选题(会告诉你有多少个答案) 汇总查看答案以及mark(标记) 4 AWS架构的7大设计原则 4.1 松耦合 松耦合是容错、运维自动扩容的基础,在设计上应该尽量减少模块间的依赖性,将不会成为未来应用调整、发展的阻碍 松耦合模式的情况 不要标示(依赖)特定对象,依赖特定对象耦合性将非常高 – 使用负载均衡器 – 域名解析 – 弹性IP – 可以动态找到配合的对象,为松耦合带来方便,为应用将来的扩展带来好处 不要依赖其他模块的正确处理或及时的处理 – 使用尽量使用异步的处理,而不是同步的(SQS可以帮到用户) 4.2 模块出错后工作不会有问题 问问某个模块出了问题,应用会怎么样? 在设计的时候,在出了问题会有影响的模块,进行处理,建立自动恢复性 4.3 实现弹性 在设计上,不要假定模块是正常的、始终不变的 – 可以配合AutoScaling、EIP和可用区AZ来满足 允许模块的失败重启 – 无状态设计比有状态设计好 – 使用ELB、云监控去检测“实例”运行状态 有引导参数的实例(实现自动配置) – 例如:加入user data在启动的时候,告知它应该做的事情 在关闭实例的时候,保存其配置和个性化 – 例如用DynamoDB保存session信息 弹性后就不会为了超配资源而浪费钱了 4.4 安全是整体的事,需要在每个层面综合考虑 基础架构层 计算/网络架构层 数据层 应用层 4.5 最小授权原则 只付于操作者完成工作的必要权限 所有用户的操作必须授权 三种类型的权限能操作AWS – 主账户 – IAM用户 – 授权服务(主要是开发的app) 5 设计:高可用、高效率、可容错、可扩展的系统 本部分的目标是设计出高可用、高效率低成本、可容错、可扩展的系统架构 - 高可用 – 了解AWS服务自身的高可靠性(例如弹性负载均衡)—-因为ELB是可以多AZ部署的 – 用好这些服务可以减少可用性的后顾之忧 - 高效率(低成本) – 了解自己的容量需求,避免超额分配 – 利用不同的价格策略,例如:使用预留实例 – 尽量使用AWS的托管服务(如SNS、SQS) - 可容错 – 了解HA和容错的区别 – 如果说HA是结果,那么容错则是保障HA的一个重要策略 – HA强调系统不要出问题,而容错是在系统出了问题后尽量不要影响业务 - 可扩展性 – 需要了解AWS哪些服务自身就可以扩展,例如SQS、ELB – 了解自动伸缩组(AS) 运用好 AWS 7大架构设计原则的:松耦合、实现弹性 6 实施和部署设计 本部分的在设计的基础上找到合适的工具来实现 对比第一部分“设计”,第一章主要针对用什么,而第二章则讨论怎么用 主要考核AWS云的核心的服务目录和核心服务,包括: 计算机和网络 – EC2、VPC 存储和内容分发 – S3、Glacier 数据库相关分类 – RDS 部署和管理服务 – CloudFormation、CloudWatch、IAM 应用服务 – SQS、SNS 7 数据安全 数据安全的基础,是AWS责任共担的安全模型模型,必须要读懂 数据安全包括4个层面:基础设施层、计算/网络层、数据层、应用层 - 基础设施层 1. 基础硬件安全 2. 授权访问、流程等 - 计算/网络层 1. 主要靠VPC保障网络(防护、路由、网络隔离、易管理) 2. 认识安全组和NACLs以及他们的差别 安全组比ACL多一点,安全组可以针对其他安全组,ACL只能针对IP 安全组只允许统一,ACL可以设置拒绝 安全组有状态!很重要(只要一条入站规则通过,那么出站也可以自动通过),ACL没有状态(必须分别指定出站、入站规则) 安全组的工作的对象是网卡(实例)、ACL工作的对象是子网 认识4种网关,以及他们的差别 共有4种网关,支撑流量进出VPC internet gatway:互联网的访问 virtual private gateway:负责VPN的访问 direct connect:负责企业直连网络的访问 vpc peering:负责VPC的peering的访问 数据层 数据传输安全 – 进入和出AWS的安全 – AWS内部传输安全 通过https访问API 链路的安全 – 通过SSL访问web – 通过IP加密访问VPN – 使用直连 – 使用OFFLINE的导入导出 数据的持久化保存 – 使用EBS – 使用S3访问 访问 – 使用IAM策略 – 使用bucket策略 – 访问控制列表 临时授权 – 使用签名的URL 加密 – 服务器端加密 – 客户端加密 应用层 主要强调的是共担风险模型 多种类型的认证鉴权 给用户在应用层的保障建议 – 选择一种认证鉴权机制(而不要不鉴权) – 用安全的密码和强安全策略 – 保护你的OS(如打开防火墙) – 用强壮的角色来控制权限(RBAC) 判断AWS和用户分担的安全中的标志是,哪些是AWS可以控制的,那些不能,能的就是AWS负责,否则就是用户(举个例子:安全组的功能由AWS负责—是否生效,但是如何使用是用户负责—自己开放所有端口跟AWS无关) AWS可以保障的 用户需要保障的 工具与服务 操作系统 物理内部流程安全 应用程序 物理基础设施 安全组 网络设施 虚拟化设施 OS防火墙 网络规则 管理账号 8 故障排除 问题经常包括的类型: - EC2实例的连接性问题 - 恢复EC2实例或EBS卷上的数据 - 服务使用限制问题 8.1 EC2实例的连接性问题 经常会有多个原因造成无法连接 外部VPC到内部VPC的实例 – 网关(IGW–internet网关、VPG–虚拟私有网关)的添加问题 – 公司网络到VPC的路由规则设置问题 – VPC各个子网间的路由表问题 – 弹性IP和公有IP的问题 – NACLs(网络访问规则) – 安全组 – OS层面的防火墙 8.2 恢复EC2实例或EBS卷上的数据 注意EBS或EC2没有任何强绑定关系 – EBS是可以从旧实例上分离的 – 如有必要尽快做 将EBS卷挂载到新的、健康的实例上 执行流程可以针对恢复没有工作的启动卷(boot volume) – 将root卷分离出来 – 像数据一样挂载到其他实例 – 修复文件 – 重新挂载到原来的实例中重新启动 8.3 服务使用限制问题 AWS有很多软性限制 – 例如AWS初始化的时候,每个类型的EBS实例最多启动20个 还有一些硬性限制例如 – 每个账号最多拥有100个S3的bucket – …… 别的服务限制了当前服务 – 例如无法启动新EC2实例,原因可能是EBS卷达到上限 – Trusted Advisor这个工具可以根据服务水平的不同给出你一些限制的参考(从免费试用,到商业试用,和企业试用的建议) 常见的软性限制 公共的限制 – 每个用户最多创建20个实例,或更少的实例类型 – 每个区域最多5个弹性ip – 每个vpc最多100个安全组 – 最多20个负载均衡 – 最多20个自动伸缩组 – 5000个EBS卷、10000个快照,4w的IOPS和总共20TB的磁盘 – …更多则需要申请了 你不需要记住限制 – 知道限制,并保持数值敏感度就好 – 日后遇到问题时可以排除掉软限制的相关的问题 9. 总结 9.1 认证的主要目标是: 确认架构师能否搜集需求,并且使用最佳实践,在AWS中构建出这个系统 是否能为应用的整个生命周期给出指导意见 9.2 希望架构师(助理或专家级)考试前的准备: 深度掌握至少1门高级别语言(c,c++,java等) 掌握AWS的三份白皮书 – aws概览 – aws安全流程 – aws风险和应对 – 云中的存储选项 – aws的架构最佳实践 按照客户需求,使用AWS组件来部署混合系统的经验 使用AWS架构中心网站了解更多信息 9.3 经验方面的建议 助理架构师 – 至少6个月的实际操作经验、在AWS中管理生产系统的经验 – 学习过AWS的基本课程 专家架构师 – 至少2年的实际操作经验、在AWS中管理多种不同种类的复杂生产系统的经验(多种服务、动态伸缩、高可用、重构或容错) – 在AWS中执行构建的能力,架构的高级概念能力 9.4 相关资源 认证学习的资源地址 - 可以自己练习,模拟考试需要付费的 接下来就去网上报名参加考试 本篇文章为转载内容。原文链接:https://blog.csdn.net/QXK2001/article/details/51292402。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-29 22:08:40
270
转载
转载文章
...原理) 线程池的调优策略 Spring cloud的服务注册与发现是怎么设计的? 分布式系统的全局id如何实现 分布式锁的方案,redis和zookeeper那个好,如果是集群部署,高并发情况下那个性能更好。 1.2 Java中间件二面 技术二面考察范围: 问了项目相关的技术实现细节 数据库相关:索引、索引底层实现、mysql相关的行锁、表锁等 redis相关:架构设计、数据一致性问题 容器:容器的设计原理等技术 二面题目: 参与的项目,选一个,技术难度在哪里? Collections.sort底层排序方式 负载均衡的原理设计模式与重构,谈谈你对重构的理解 谈谈redis相关的集群有哪些成熟方案? 再谈谈一致hash算法(redis)? 数据库索引,B+树的特性和建树过程 Mysql相关的行锁,表锁;乐观锁,悲观锁 谈谈多线程和并发工具的使用 谈谈redis的架构和组件 Redis的数据一致性问题(分布式多节点环境&单机环境) Docker容器 1.3 Java中间件三面 技术三面考察范围: 主要谈到了高并发的实现方案 以及中间件:redis、rocketmq、kafka等的架构设计思路 最后问了平时怎么提升技术的技术 三面题目 高并发情况下,系统是如何支撑大量的请求的? 接着上面的问题,延伸到了中间件,kafka、redis、rocketmq、mycat等设计思路和适用场景等 最近上过哪些技术网站;最近再看那些书。 工作和生活中遇见最大的挑战,怎么去克服? 未来有怎样的打算 1.4 Java中间件四面 最后,你懂的,主要就是HR走流程了,主要问了未来的职业规划。 02 头条Java后台3面 2.1 头条一面 讲讲jvm运行时数据库区 讲讲你知道的垃圾回收算法 jvm内存模型jmm 内存泄漏与内存溢出的区别 select、epool 的区别?底层的数据结构是什么? mysql数据库默认存储引擎,有什么优点 优化数据库的方法,从sql到缓存到cpu到操作系统,知道多少说多少 什么情景下做分表,什么情景下做分库 linkedList与arrayList区别 适用场景 array list是如何扩容的 volatile 关键字的作用?Java 内存模型? java lock的实现,公平锁、非公平锁 悲观锁和乐观锁,应用中的案例,mysql当中怎么实现,java中的实现 2.2 头条二面 Java 内存分配策略? 多个线程同时请求内存,如何分配? Redis 底层用到了哪些数据结构? 使用 Redis 的 set 来做过什么? Redis 使用过程中遇到什么问题? 搭建过 Redis 集群吗? 如何分析“慢查询”日志进行 SQL/索引 优化? MySQL 索引结构解释一下?(B+ 树) MySQL Hash 索引适用情况?举下例子? 2.3 头条三面 如何保证数据库与redis缓存一致的Redis 的并发竞争问题是什么? 如何解决这个问题? 了解 Redis 事务的 CAS 方案吗? 如何保证 Redis 高并发、高可用? Redis 的主从复制原理,以及Redis 的哨兵原理? 如果让你写一个消息队列,该如何进行架构设计啊?说一下你的思路。 MySQL数据库主从同步怎么实现? 秒杀模块怎么设计的,如何压测,抗压手段 03 今日头条Java后台研发三面 3.1 一面 concurrent包下面用过哪些? countdownlatch功能实现 synchronized和lock区别,重入锁thread和runnable的区别 AtomicInteger实现原理(CAS自旋) java并发sleep与wait、notify与notifyAll的区别 如何实现高效的同步链表 java都有哪些加锁方式(synchronized、ReentrantLock、共享锁、读写锁等) 设计模式(工厂模式、单例模式(几种情况)、适配器模式、装饰者模式) maven依赖树,maven的依赖传递,循环依赖 3.2 二面 synchronized和reentrantLock的区别,synchronized用在代码快、方法、静态方法时锁的都是什么? 介绍spring的IOC和AOP,分别如何实现(classloader、动态代理)JVM的内存布局以及垃圾回收原理及过程 讲一下,讲一下CMS垃圾收集器垃圾回收的流程,以及CMS的缺点 redis如何处理分布式服务器并发造成的不一致OSGi的机制spring中bean加载机制,bean生成的具体步骤,ioc注入的方式spring何时创建- applicationContextlistener是监听哪个事件? 介绍ConcurrentHashMap原理,用的是哪种锁,segment有没可能增大? 解释mysql索引、b树,为啥不用平衡二叉树、红黑树 Zookeeper如何同步配置 3.3 三面 Java线程池ThreadPoolEcecutor参数,基本参数,使用场景 MySQL的ACID讲一下,延伸到隔离级别 dubbo的实现原理,说说RPC的要点 GC停顿原因,如何降低停顿? JVM如何调优、参数怎么调? 如何用工具分析jvm状态(visualVM看堆中对象的分配,对象间的引用、是否有内存泄漏,jstack看线程状态、是否死锁等等) 描述一致性hash算法 分布式雪崩场景如何避免? 再谈谈消息队列 04 抖音Java 三面 4.1 一面: hashmap,怎么扩容,怎么处理数据冲突? 怎么高效率的实现数据迁移? Linux的共享内存如何实现,大概说了一下。 socket网络编程,说一下TCP的三次握手和四次挥手同步IO和异步IO的区别? Java GC机制?GC Roots有哪些? 红黑树讲一下,五个特性,插入删除操作,时间复杂度? 快排的时间复杂度,最坏情况呢,最好情况呢,堆排序的时间复杂度呢,建堆的复杂度是多少 4.2 二面: 自我介绍,主要讲讲做了什么和擅长什么 设计模式了解哪些? AtomicInteger怎么实现原子修改的? ConcurrentHashMap 在Java7和Java8中的区别? 为什么Java8并发效率更好?什么情况下用HashMap,什么情况用ConcurrentHashMap? redis数据结构? redis数据淘汰机制? 4.3 三面(约五十分钟): mysql实现事务的原理(MVCC) MySQL数据主从同步是如何实现的? MySQL索引的实现,innodb的索引,b+树索引是怎么实现的,为什么用b+树做索引节点,一个节点存了多少数据,怎么规定大小,与磁盘页对应。 如果Redis有1亿个key,使用keys命令是否会影响线上服务? Redis的持久化方式,aod和rdb,具体怎么实现,追加日志和备份文件,底层实现原理的话知道么? 遇到最大困难是什么?怎么克服? 未来的规划是什么? 你想问我什么? 05 百度三面 5.1 百度一面 自我介绍 Java中的多态 为什么要同时重写hashcode和equals Hashmap的原理 Hashmap如何变线程安全,每种方式的优缺点 垃圾回收机制 Jvm的参数你知道的说一下 设计模式了解的说一下啊 手撕一个单例模式 手撕算法:反转单链表 手撕算法:实现类似微博子结构的数据结构,输入一系列父子关系,输出一个类似微博评论的父子结构图 手写java多线程 手写java的soeket编程,服务端和客户端 手撕算法: 爬楼梯,写出状态转移方程 智力题:时针分针什么时候重合 5.2 百度二面(现场) 自我介绍 项目介绍 服务器如何负载均衡,有哪些算法,哪个比较好,一致性哈希原理,怎么避免DDOS攻击请求打到少数机器。 TCP连接中的三次握手和四次挥手,四次挥手的最后一个ack的作用是什么,为什么要time wait,为什么是2msl。 数据库的备份和恢复怎么实现的,主从复制怎么做的,什么时候会出现数据不一致,如何解决。 Linux查看cpu占用率高的进程 手撕算法:给定一个数字三角形,找到从顶部到底部的最小路径和。每一步可以移动到下面一行的相邻数字上。 然后继续在这个问题上扩展 求出最短那条的路径 递归求出所有的路径 设计模式讲一下熟悉的 会不会滥用设计模式 多线程条件变量为什么要在while体里 你遇到什么挫折,怎么应对和处理 5.3 百度三面(现场) 自我介绍 项目介绍 Redis的特点 Redis的持久化怎么做,aof和rdb,有什么区别,有什么优缺点。 Redis使用哨兵部署会有什么问题,我说需要扩容的话还是得集群部署。 说一下JVM内存模型把,有哪些区,分别干什么的 说一下gc算法,分代回收说下 MySQL的引擎讲一下,有什么区别,使用场景呢 分布式事务了解么 反爬虫的机制,有哪些方式 06 蚂蚁中间件团队面试题 6.1 蚂蚁中间件一面: 自我介绍 JVM垃圾回收算法和垃圾回收器有哪些,最新的JDK采用什么算法。 新生代和老年代的回收机制。 讲一下ArrayList和linkedlist的区别,ArrayList与HashMap的扩容方式。 Concurrenthashmap1.8后的改动。 Java中的多线程,以及线程池的增长策略和拒绝策略了解么。 Tomcat的类加载器了解么 Spring的ioc和aop,Springmvc的基本架构,请求流程。 HTTP协议与Tcp有什么区别,http1.0和2.0的区别。 Java的网络编程,讲讲NIO的实现方式,与BIO的区别,以及介绍常用的NIO框架。 索引什么时候会失效变成全表扫描 介绍下分布式的paxos和raft算法 6.2 蚂蚁中间件二面 你在项目中怎么用到并发的。 消息队列的使用场景,谈谈Kafka。 你说了解分布式服务,那么你怎么理解分布式服务。 Dubbo和Spring Clound的区别,以及使用场景。 讲一下docker的实现原理,以及与JVM的区别。 MongoDB、Redis和Memcached的应用场景,各自优势 MongoDB有事务吗 Redis说一下sorted set底层原理 讲讲Netty为什么并发高,相关的核心组件有哪些 6.3 蚂蚁中间件三面 完整的画一个分布式集群部署图,从负载均衡到后端数据库集群。 分布式锁的方案,Redis和Zookeeper哪个好,如果是集群部署,高并发情况下哪个性能更好。 分布式系统的全局id如何实现。 数据库万级变成亿级,你如何来解决。 常见的服务器雪崩是由什么引起的,如何来防范。 异地容灾怎么实现 常用的高并发技术解决方案有哪些,以及对应的解决步骤。 07 京东4面(Java研发) 7.1 一面(基础面:约1小时) 自我介绍,主要讲讲做了什么和擅长什么 springmvc和spring-boot区别 @Autowired的实现原理 Bean的默认作用范围是什么?其他的作用范围? 索引是什么概念有什么作用?MySQL里主要有哪些索引结构?哈希索引和B+树索引比较? Java线程池的原理?线程池有哪些?线程池工厂有哪些线程池类型,及其线程池参数是什么? hashmap原理,处理哈希冲突用的哪种方法? 还知道什么处理哈希冲突的方法? Java GC机制?GC Roots有哪些? Java怎么进行垃圾回收的?什么对象会进老年代?垃圾回收算法有哪些?为什么新生代使用复制算法? HashMap的时间复杂度?HashMap中Hash冲突是怎么解决的?链表的上一级结构是什么?Java8中的HashMap有什么变化?红黑树需要比较大小才能进行插入,是依据什么进行比较的?其他Hash冲突解决方式? hash和B+树的区别?分别应用于什么场景?哪个比较好? 项目里有个数据安全的,aes和md5的区别?详细点 7.2 二面(问数据库较多) 自我介绍 为什么MyISAM查询性能好? 事务特性(acid) 隔离级别 SQL慢查询的常见优化步骤? 说下乐观锁,悲观锁(select for update),并写出sql实现 TCP协议的三次握手和四次挥手过程? 用到过哪些rpc框架 数据库连接池怎么实现 Java web过滤器的生命周期 7.3 三面(综合面;约一个小时) 自我介绍。 ConcurrentHashMap 在Java7和Java8中的区别?为什么Java8并发效率更好?什么情况下用HashMap,什么情况用ConcurrentHashMap? 加锁有什么机制? ThreadLocal?应用场景? 数据库水平切分,垂直切分的设计思路和切分顺序 Redis如何解决key冲突 soa和微服务的区别? 单机系统演变为分布式系统,会涉及到哪些技术的调整?请从前面负载到后端详细描述。 设计一个秒杀系统? 7.4 四面(HR面) 你自己最大优势和劣势是什么 平时遇见过什么样的挑战,怎么去克服的 工作中遇见了技术解决不了的问题,你的应对思路? 你的兴趣爱好? 未来的职业规划是什么? 08 美团java高级开发3面 8.1 美团一面 自我介绍 项目介绍 Redis介绍 了解redis源码么 了解redis集群么 Hashmap的原理,增删的情况后端数据结构如何位移 hashmap容量为什么是2的幂次 hashset的源码 object类你知道的方法 hashcode和equals 你重写过hashcode和equals么,要注意什么 假设现在一个学生类,有学号和姓名,我现在hashcode方法重写的时候,只将学号参与计算,会出现什么情况? 往set里面put一个学生对象,然后将这个学生对象的学号改了,再put进去,可以放进set么?并讲出为什么 Redis的持久化?有哪些方式,原理是什么? 讲一下稳定的排序算法和不稳定的排序算法 讲一下快速排序的思想 8.2 美团二面 自我介绍 讲一下数据的acid 什么是一致性 什么是隔离性 Mysql的隔离级别 每个隔离级别是如何解决 Mysql要加上nextkey锁,语句该怎么写 Java的内存模型,垃圾回收 线程池的参数 每个参数解释一遍 然后面试官设置了每个参数,给了是个线程,让描述出完整的线程池执行的流程 Nio和IO有什么区别 Nio和aio的区别 Spring的aop怎么实现 Spring的aop有哪些实现方式 动态代理的实现方式和区别 Linux了解么 怎么查看系统负载 Cpu load的参数如果为4,描述一下现在系统处于什么情况 Linux,查找磁盘上最大的文件的命令 Linux,如何查看系统日志文件 手撕算法:leeetcode原题 22,Generate Parentheses,给定 n 对括号,请- 写一个函数以将其生成新的括号组合,并返回所有组合结果。 8.3 美团三面(现场) 三面没怎么问技术,问了很多技术管理方面的问题 自我介绍 项目介绍 怎么管理项目成员 当意见不一致时,如何沟通并说服开发成员,并举个例子 怎么保证项目的进度 数据库的索引原理 非聚簇索引和聚簇索引 索引的使用注意事项 联合索引 从底层解释最左匹配原则 Mysql对联合索引有优化么?会自动调整顺序么?哪个版本开始优化? Redis的应用 Redis的持久化的方式和原理 技术选型,一个新技术和一个稳定的旧技术,你会怎么选择,选择的考虑有哪些 说你印象最深的美团点评技术团队的三篇博客 最近在学什么新技术 你是怎么去接触一门新技术的 会看哪些书 怎么选择要看的书 最后 由于篇幅限制,小编在此截出几张知识讲解的图解,有需要的程序猿(媛)可以点赞后戳这里免费领取全部资料获取哦 子 怎么保证项目的进度 数据库的索引原理 非聚簇索引和聚簇索引 索引的使用注意事项 联合索引 从底层解释最左匹配原则 Mysql对联合索引有优化么?会自动调整顺序么?哪个版本开始优化? Redis的应用 Redis的持久化的方式和原理 技术选型,一个新技术和一个稳定的旧技术,你会怎么选择,选择的考虑有哪些 说你印象最深的美团点评技术团队的三篇博客 最近在学什么新技术 你是怎么去接触一门新技术的 会看哪些书 怎么选择要看的书 最后 由于篇幅限制,小编在此截出几张知识讲解的图解,有需要的程序猿(媛)可以点赞后戳这里免费领取全部资料获取哦 [外链图片转存中…(img-SFREePIJ-1624074891834)] [外链图片转存中…(img-5kF3pkiC-1624074891834)] [外链图片转存中…(img-HDVXfOMR-1624074891835)] [外链图片转存中…(img-RyaAC5jy-1624074891836)] [外链图片转存中…(img-iV32C5Ok-1624074891837)] 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_57285325/article/details/118051767。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-13 23:43:59
85
转载
转载文章
...的防御可以从服务端和客户端两方面着手,防御效果是从服务端着手效果比较好,现在一般的 CSRF 防御也都在服务端进行。服务端的预防 CSRF 攻击的方式方法有多种,但思路上都是差不多的,主要从以下两个方面入手: 正确使用 GET,POST 请求和 cookie 在非 GET 请求中增加 token 一般而言,普通的 Web 应用都是以 GET、POST 请求为主,还有一种请求是 cookie 方式。我们一般都是按照如下规则设计应用的请求: GET 请求常用在查看,列举,展示等不需要改变资源属性的时候(数据库 query 查询的时候) POST 请求常用在 From 表单提交,改变一个资源的属性或者做其他一些事情的时候(数据库有 insert、update、delete 的时候) 当正确的使用了 GET 和 POST 请求之后,剩下的就是在非 GET 方式的请求中增加随机数,这个大概有三种方式来进行: 为每个用户生成一个唯一的 cookie token,所有表单都包含同一个伪随机值,这种方案最简单,因为攻击者不能获得第三方的 cookie(理论上),所以表单中的数据也就构造失败,但是由于用户的 cookie 很容易由于网站的 XSS 漏洞而被盗取,所以这个方案必须要在没有 XSS 的情况下才安全。 每个 POST 请求使用验证码,这个方案算是比较完美的,但是需要用户多次输入验证码,用户体验比较差,所以不适合在业务中大量运用。 渲染表单的时候,为每一个表单包含一个 csrfToken,提交表单的时候,带上 csrfToken,然后在后端做 csrfToken 验证。 CSRF 的防御可以根据应用场景的不同自行选择。CSRF 的防御工作确实会在正常业务逻辑的基础上带来很多额外的开发量,但是这种工作量是值得的,毕竟用户隐私以及财产安全是产品最基础的根本。 SQL 注入 SQL 注入漏洞(SQL Injection)是 Web 开发中最常见的一种安全漏洞。可以用它来从数据库获取敏感信息,或者利用数据库的特性执行添加用户,导出文件等一系列恶意操作,甚至有可能获取数据库乃至系统用户最高权限。 而造成 SQL 注入的原因是因为程序没有有效的转义过滤用户的输入,使攻击者成功的向服务器提交恶意的 SQL 查询代码,程序在接收后错误的将攻击者的输入作为查询语句的一部分执行,导致原始的查询逻辑被改变,额外的执行了攻击者精心构造的恶意代码。 很多 Web 开发者没有意识到 SQL 查询是可以被篡改的,从而把 SQL 查询当作可信任的命令。殊不知,SQL 查询是可以绕开访问控制,从而绕过身份验证和权限检查的。更有甚者,有可能通过 SQL 查询去运行主机系统级的命令。 SQL 注入原理 下面将通过一些真实的例子来详细讲解 SQL 注入的方式的原理。 考虑以下简单的管理员登录表单: <form action="/login" method="POST"><p>Username: <input type="text" name="username" /></p><p>Password: <input type="password" name="password" /></p><p><input type="submit" value="登陆" /></p></form> 后端的 SQL 语句可能是如下这样的: let querySQL = SELECT FROM userWHERE username='${username}'AND psw='${password}'; // 接下来就是执行 sql 语句… 目的就是来验证用户名和密码是不是正确,按理说乍一看上面的 SQL 语句也没什么毛病,确实是能够达到我们的目的,可是你只是站在用户会老老实实按照你的设计来输入的角度来看问题,如果有一个恶意攻击者输入的用户名是 zoumiaojiang’ OR 1 = 1 --,密码随意输入,就可以直接登入系统了。WFT! 冷静下来思考一下,我们之前预想的真实 SQL 语句是: SELECT FROM user WHERE username='zoumiaojiang' AND psw='mypassword' 可以恶意攻击者的奇怪用户名将你的 SQL 语句变成了如下形式: SELECT FROM user WHERE username='zoumiaojiang' OR 1 = 1 --' AND psw='xxxx' 在 SQL 中,-- 是注释后面的内容的意思,所以查询语句就变成了: SELECT FROM user WHERE username='zoumiaojiang' OR 1 = 1 这条 SQL 语句的查询条件永远为真,所以意思就是恶意攻击者不用我的密码,就可以登录进我的账号,然后可以在里面为所欲为,然而这还只是最简单的注入,牛逼的 SQL 注入高手甚至可以通过 SQL 查询去运行主机系统级的命令,将你主机里的内容一览无余,这里我也没有这个能力讲解的太深入,毕竟不是专业研究这类攻击的,但是通过以上的例子,已经了解了 SQL 注入的原理,我们基本已经能找到防御 SQL 注入的方案了。 如何预防 SQL 注入 防止 SQL 注入主要是不能允许用户输入的内容影响正常的 SQL 语句的逻辑,当用户的输入的信息将要用来拼接 SQL 语句的话,我们应该永远选择不相信,任何内容都必须进行转义过滤,当然做到这个还是不够的,下面列出防御 SQL 注入的几点注意事项: 严格限制Web应用的数据库的操作权限,给此用户提供仅仅能够满足其工作的最低权限,从而最大限度的减少注入攻击对数据库的危害 后端代码检查输入的数据是否符合预期,严格限制变量的类型,例如使用正则表达式进行一些匹配处理。 对进入数据库的特殊字符(’,",\,<,>,&,,; 等)进行转义处理,或编码转换。基本上所有的后端语言都有对字符串进行转义处理的方法,比如 lodash 的 lodash._escapehtmlchar 库。 所有的查询语句建议使用数据库提供的参数化查询接口,参数化的语句使用参数而不是将用户输入变量嵌入到 SQL 语句中,即不要直接拼接 SQL 语句。例如 Node.js 中的 mysqljs 库的 query 方法中的 ? 占位参数。 mysql.query(SELECT FROM user WHERE username = ? AND psw = ?, [username, psw]); 在应用发布之前建议使用专业的 SQL 注入检测工具进行检测,以及时修补被发现的 SQL 注入漏洞。网上有很多这方面的开源工具,例如 sqlmap、SQLninja 等。 避免网站打印出 SQL 错误信息,比如类型错误、字段不匹配等,把代码里的 SQL 语句暴露出来,以防止攻击者利用这些错误信息进行 SQL 注入。 不要过于细化返回的错误信息,如果目的是方便调试,就去使用后端日志,不要在接口上过多的暴露出错信息,毕竟真正的用户不关心太多的技术细节,只要话术合理就行。 碰到要操作的数据库的代码,一定要慎重,小心使得万年船,多找几个人多来几次 code review,将问题都暴露出来,而且要善于利用工具,操作数据库相关的代码属于机密,没事不要去各种论坛晒自家站点的 SQL 语句,万一被人盯上了呢? 命令行注入 命令行注入漏洞,指的是攻击者能够通过 HTTP 请求直接侵入主机,执行攻击者预设的 shell 命令,听起来好像匪夷所思,这往往是 Web 开发者最容易忽视但是却是最危险的一个漏洞之一,看一个实例: 假如现在需要实现一个需求:用户提交一些内容到服务器,然后在服务器执行一些系统命令去产出一个结果返回给用户,接口的部分实现如下: // 以 Node.js 为例,假如在接口中需要从 github 下载用户指定的 repoconst exec = require('mz/child_process').exec;let params = {/ 用户输入的参数 /};exec(git clone ${params.repo} /some/path); 这段代码确实能够满足业务需求,正常的用户也确实能从指定的 git repo 上下载到想要的代码,可是和 SQL 注入一样,这段代码在恶意攻击者眼中,简直就是香饽饽。 如果 params.repo 传入的是 https://github.com/zoumiaojiang/zoumiaojiang.github.io.git 当然没问题了。 可是如果 params.repo 传入的是 https://github.com/xx/xx.git && rm -rf / && 恰好你的服务是用 root 权限起的就惨了。 具体恶意攻击者能用命令行注入干什么也像 SQL 注入一样,手法是千变万化的,比如「反弹 shell 注入」等,但原理都是一样的,我们绝对有能力防止命令行注入发生。防止命令行注入需要做到以下几件事情: 后端对前端提交内容需要完全选择不相信,并且对其进行规则限制(比如正则表达式)。 在调用系统命令前对所有传入参数进行命令行参数转义过滤。 不要直接拼接命令语句,借助一些工具做拼接、转义预处理,例如 Node.js 的 shell-escape npm 包。 还是前面的例子,我们可以做到如下: const exec = require('mz/child_process').exec;// 借助 shell-escape npm 包解决参数转义过滤问题const shellescape = require('shell-escape');let params = {/ 用户输入的参数 /};// 先过滤一下参数,让参数符合预期if (!/正确的表达式/.test(params.repo)) {return;}let cmd = shellescape(['git','clone',params.repo,'/some/path']);// cmd 的值: git clone 'https://github.com/xx/xx.git && rm -rf / &&' /some/path// 这样就不会被注入成功了。exec(cmd); DDoS 攻击 DDoS 又叫分布式拒绝服务,全称 Distributed Denial of Service,其原理就是利用大量的请求造成资源过载,导致服务不可用,这个攻击应该不能算是安全问题,这应该算是一个另类的存在,因为这种攻击根本就是耍流氓的存在,「伤敌一千,自损八百」的行为。出于保护 Web App 不受攻击的攻防角度,还是介绍一下 DDoS 攻击吧,毕竟也是挺常见的。 DDoS 攻击可以理解为:「你开了一家店,隔壁家点看不惯,就雇了一大堆黑社会人员进你店里干坐着,也不消费,其他客人也进不来,导致你营业惨淡」。为啥说 DDoS 是个「伤敌一千,自损八百」的行为呢?毕竟隔壁店还是花了不少钱雇黑社会但是啥也没得到不是?DDoS 攻击的目的基本上就以下几个: 深仇大恨,就是要干死你 敲诈你,不给钱就干你 忽悠你,不买我防火墙服务就会有“人”继续干你 也许你的站点遭受过 DDoS 攻击,具体什么原因怎么解读见仁见智。DDos 攻击从层次上可分为网络层攻击与应用层攻击,从攻击手法上可分为快型流量攻击与慢型流量攻击,但其原理都是造成资源过载,导致服务不可用。 网络层 DDoS 网络层 DDos 攻击包括 SYN Flood、ACK Flood、UDP Flood、ICMP Flood 等。 SYN Flood 攻击 SYN flood 攻击主要利用了 TCP 三次握手过程中的 Bug,我们都知道 TCP 三次握手过程是要建立连接的双方发送 SYN,SYN + ACK,ACK 数据包,而当攻击方随意构造源 IP 去发送 SYN 包时,服务器返回的 SYN + ACK 就不能得到应答(因为 IP 是随意构造的),此时服务器就会尝试重新发送,并且会有至少 30s 的等待时间,导致资源饱和服务不可用,此攻击属于慢型 DDoS 攻击。 ACK Flood 攻击 ACK Flood 攻击是在 TCP 连接建立之后,所有的数据传输 TCP 报文都是带有 ACK 标志位的,主机在接收到一个带有 ACK 标志位的数据包的时候,需要检查该数据包所表示的连接四元组是否存在,如果存在则检查该数据包所表示的状态是否合法,然后再向应用层传递该数据包。如果在检查中发现该数据包不合法,例如该数据包所指向的目的端口在本机并未开放,则主机操作系统协议栈会回应 RST 包告诉对方此端口不存在。 UDP Flood 攻击 UDP flood 攻击是由于 UDP 是一种无连接的协议,因此攻击者可以伪造大量的源 IP 地址去发送 UDP 包,此种攻击属于大流量攻击。正常应用情况下,UDP 包双向流量会基本相等,因此发起这种攻击的攻击者在消耗对方资源的时候也在消耗自己的资源。 ICMP Flood 攻击 ICMP Flood 攻击属于大流量攻击,其原理就是不断发送不正常的 ICMP 包(所谓不正常就是 ICMP 包内容很大),导致目标带宽被占用,但其本身资源也会被消耗。目前很多服务器都是禁 ping 的(在防火墙在可以屏蔽 ICMP 包),因此这种攻击方式已经落伍。 网络层 DDoS 防御 网络层的 DDoS 攻击究其本质其实是无法防御的,我们能做得就是不断优化服务本身部署的网络架构,以及提升网络带宽。当然,还是做好以下几件事也是有助于缓解网络层 DDoS 攻击的冲击: 网络架构上做好优化,采用负载均衡分流。 确保服务器的系统文件是最新的版本,并及时更新系统补丁。 添加抗 DDos 设备,进行流量清洗。 限制同时打开的 SYN 半连接数目,缩短 SYN 半连接的 Timeout 时间。 限制单 IP 请求频率。 防火墙等防护设置禁止 ICMP 包等。 严格限制对外开放的服务器的向外访问。 运行端口映射程序或端口扫描程序,要认真检查特权端口和非特权端口。 关闭不必要的服务。 认真检查网络设备和主机/服务器系统的日志。只要日志出现漏洞或是时间变更,那这台机器就可能遭到了攻击。 限制在防火墙外与网络文件共享。这样会给黑客截取系统文件的机会,主机的信息暴露给黑客,无疑是给了对方入侵的机会。 加钱堆机器。。 报警。。 应用层 DDoS 应用层 DDoS 攻击不是发生在网络层,是发生在 TCP 建立握手成功之后,应用程序处理请求的时候,现在很多常见的 DDoS 攻击都是应用层攻击。应用层攻击千变万化,目的就是在网络应用层耗尽你的带宽,下面列出集中典型的攻击类型。 CC 攻击 当时绿盟为了防御 DDoS 攻击研发了一款叫做 Collapasar 的产品,能够有效的防御 SYN Flood 攻击。黑客为了挑衅,研发了一款 Challenge Collapasar 攻击工具(简称 CC)。 CC 攻击的原理,就是针对消耗资源比较大的页面不断发起不正常的请求,导致资源耗尽。因此在发送 CC 攻击前,我们需要寻找加载比较慢,消耗资源比较多的网页,比如需要查询数据库的页面、读写硬盘文件的等。通过 CC 攻击,使用爬虫对某些加载需要消耗大量资源的页面发起 HTTP 请求。 DNS Flood DNS Flood 攻击采用的方法是向被攻击的服务器发送大量的域名解析请求,通常请求解析的域名是随机生成或者是网络世界上根本不存在的域名,被攻击的DNS 服务器在接收到域名解析请求的时候首先会在服务器上查找是否有对应的缓存,如果查找不到并且该域名无法直接由服务器解析的时候,DNS 服务器会向其上层 DNS 服务器递归查询域名信息。域名解析的过程给服务器带来了很大的负载,每秒钟域名解析请求超过一定的数量就会造成 DNS 服务器解析域名超时。 根据微软的统计数据,一台 DNS 服务器所能承受的动态域名查询的上限是每秒钟 9000 个请求。而我们知道,在一台 P3 的 PC 机上可以轻易地构造出每秒钟几万个域名解析请求,足以使一台硬件配置极高的 DNS 服务器瘫痪,由此可见 DNS 服务器的脆弱性。 HTTP 慢速连接攻击 针对 HTTP 协议,先建立起 HTTP 连接,设置一个较大的 Conetnt-Length,每次只发送很少的字节,让服务器一直以为 HTTP 头部没有传输完成,这样连接一多就很快会出现连接耗尽。 应用层 DDoS 防御 判断 User-Agent 字段(不可靠,因为可以随意构造) 针对 IP + cookie,限制访问频率(由于 cookie 可以更改,IP 可以使用代理,或者肉鸡,也不可靠) 关闭服务器最大连接数等,合理配置中间件,缓解 DDoS 攻击。 请求中添加验证码,比如请求中有数据库操作的时候。 编写代码时,尽量实现优化,并合理使用缓存技术,减少数据库的读取操作。 加钱堆机器。。 报警。。 应用层的防御有时比网络层的更难,因为导致应用层被 DDoS 攻击的因素非常多,有时往往是因为程序员的失误,导致某个页面加载需要消耗大量资源,有时是因为中间件配置不当等等。而应用层 DDoS 防御的核心就是区分人与机器(爬虫),因为大量的请求不可能是人为的,肯定是机器构造的。因此如果能有效的区分人与爬虫行为,则可以很好地防御此攻击。 其他 DDoS 攻击 发起 DDoS 也是需要大量的带宽资源的,但是互联网就像森林,林子大了什么鸟都有,DDoS 攻击者也能找到其他的方式发起廉价并且极具杀伤力的 DDoS 攻击。 利用 XSS 举个例子,如果 12306 页面有一个 XSS 持久型漏洞被恶意攻击者发现,只需在春节抢票期间在这个漏洞中执行脚本使得往某一个小站点随便发点什么请求,然后随着用户访问的增多,感染用户增多,被攻击的站点自然就会迅速瘫痪了。这种 DDoS 简直就是无本万利,不用惊讶,现在大站有 XSS 漏洞的不要太多。 来自 P2P 网络攻击 大家都知道,互联网上的 P2P 用户和流量都是一个极为庞大的数字。如果他们都去一个指定的地方下载数据,成千上万的真实 IP 地址连接过来,没有哪个设备能够支撑住。拿 BT 下载来说,伪造一些热门视频的种子,发布到搜索引擎,就足以骗到许多用户和流量了,但是这只是基础攻击。 高级的 P2P 攻击,是直接欺骗资源管理服务器。如迅雷客户端会把自己发现的资源上传到资源管理服务器,然后推送给其它需要下载相同资源的用户,这样,一个链接就发布出去。通过协议逆向,攻击者伪造出大批量的热门资源信息通过资源管理中心分发出去,瞬间就可以传遍整个 P2P 网络。更为恐怖的是,这种攻击是无法停止的,即使是攻击者自身也无法停止,攻击一直持续到 P2P 官方发现问题更新服务器且下载用户重启下载软件为止。 最后总结下,DDoS 不可能防的住,就好比你的店只能容纳 50 人,黑社会有 100 人,你就换一家大店,能容纳 500 人,然后黑社会又找来了 1000 人,这种堆人头的做法就是 DDoS 本质上的攻防之道,「道高一尺,魔高一丈,魔高一尺,道高一丈」,讲真,必要的时候就答应勒索你的人的条件吧,实在不行就报警吧。 流量劫持 流量劫持应该算是黑产行业的一大经济支柱了吧?简直是让人恶心到吐,不吐槽了,还是继续谈干货吧,流量劫持基本分两种:DNS 劫持 和 HTTP 劫持,目的都是一样的,就是当用户访问 zoumiaojiang.com 的时候,给你展示的并不是或者不完全是 zoumiaojiang.com 提供的 “内容”。 DNS 劫持 DNS 劫持,也叫做域名劫持,可以这么理解,「你打了一辆车想去商场吃饭,结果你打的车是小作坊派来的,直接给你拉到小作坊去了」,DNS 的作用是把网络地址域名对应到真实的计算机能够识别的 IP 地址,以便计算机能够进一步通信,传递网址和内容等。如果当用户通过某一个域名访问一个站点的时候,被篡改的 DNS 服务器返回的是一个恶意的钓鱼站点的 IP,用户就被劫持到了恶意钓鱼站点,然后继而会被钓鱼输入各种账号密码信息,泄漏隐私。 dns劫持 这类劫持,要不就是网络运营商搞的鬼,一般小的网络运营商与黑产勾结会劫持 DNS,要不就是电脑中毒,被恶意篡改了路由器的 DNS 配置,基本上做为开发者或站长却是很难察觉的,除非有用户反馈,现在升级版的 DNS 劫持还可以对特定用户、特定区域等使用了用户画像进行筛选用户劫持的办法,另外这类广告显示更加随机更小,一般站长除非用户投诉否则很难觉察到,就算觉察到了取证举报更难。无论如何,如果接到有 DNS 劫持的反馈,一定要做好以下几件事: 取证很重要,时间、地点、IP、拨号账户、截屏、URL 地址等一定要有。 可以跟劫持区域的电信运营商进行投诉反馈。 如果投诉反馈无效,直接去工信部投诉,一般来说会加白你的域名。 HTTP 劫持 HTTP 劫持您可以这么理解,「你打了一辆车想去商场吃饭,结果司机跟你一路给你递小作坊的广告」,HTTP 劫持主要是当用户访问某个站点的时候会经过运营商网络,而不法运营商和黑产勾结能够截获 HTTP 请求返回内容,并且能够篡改内容,然后再返回给用户,从而实现劫持页面,轻则插入小广告,重则直接篡改成钓鱼网站页面骗用户隐私。能够实施流量劫持的根本原因,是 HTTP 协议没有办法对通信对方的身份进行校验以及对数据完整性进行校验。如果能解决这个问题,则流量劫持将无法轻易发生。所以防止 HTTP 劫持的方法只有将内容加密,让劫持者无法破解篡改,这样就可以防止 HTTP 劫持了。 HTTPS 协议就是一种基于 SSL 协议的安全加密网络应用层协议,可以很好的防止 HTTP 劫持。这里有篇 文章 讲的不错。HTTPS 在这就不深讲了,后面有机会我会单独好好讲讲 HTTPS。如果不想站点被 HTTP 劫持,赶紧将你的站点全站改造成 HTTPS 吧。 服务器漏洞 服务器除了以上提到的那些大名鼎鼎的漏洞和臭名昭著的攻击以外,其实还有很多其他的漏洞,往往也很容易被忽视,在这个小节也稍微介绍几种。 越权操作漏洞 如果你的系统是有登录控制的,那就要格外小心了,因为很有可能你的系统越权操作漏洞,越权操作漏洞可以简单的总结为 「A 用户能看到或者操作 B 用户的隐私内容」,如果你的系统中还有权限控制就更加需要小心了。所以每一个请求都需要做 userid 的判断 以下是一段有漏洞的后端示意代码: // ctx 为请求的 context 上下文let msgId = ctx.params.msgId;mysql.query('SELECT FROM msg_table WHERE msg_id = ?',[msgId]); 以上代码是任何人都可以查询到任何用户的消息,只要有 msg_id 就可以,这就是比较典型的越权漏洞,需要如下这么改进一下: // ctx 为请求的 context 上下文let msgId = ctx.params.msgId;let userId = ctx.session.userId; // 从会话中取出当前登陆的 userIdmysql.query('SELECT FROM msg_table WHERE msg_id = ? AND user_id = ?',[msgId, userId]); 嗯,大概就是这个意思,如果有更严格的权限控制,那在每个请求中凡是涉及到数据库的操作都需要先进行严格的验证,并且在设计数据库表的时候需要考虑进 userId 的账号关联以及权限关联。 目录遍历漏洞 目录遍历漏洞指通过在 URL 或参数中构造 …/,./ 和类似的跨父目录字符串的 ASCII 编码、unicode 编码等,完成目录跳转,读取操作系统各个目录下的敏感文件,也可以称作「任意文件读取漏洞」。 目录遍历漏洞原理:程序没有充分过滤用户输入的 …/ 之类的目录跳转符,导致用户可以通过提交目录跳转来遍历服务器上的任意文件。使用多个… 符号,不断向上跳转,最终停留在根 /,通过绝对路径去读取任意文件。 目录遍历漏洞几个示例和测试,一般构造 URL 然后使用浏览器直接访问,或者使用 Web 漏洞扫描工具检测,当然也可以自写程序测试。 http://somehost.com/../../../../../../../../../etc/passwdhttp://somehost.com/some/path?file=../../Windows/system.ini 借助 %00 空字符截断是一个比较经典的攻击手法http://somehost.com/some/path?file=../../Windows/system.ini%00.js 使用了 IIS 的脚本目录来移动目录并执行指令http://somehost.com/scripts/..%5c../Windows/System32/cmd.exe?/c+dir+c:\ 防御 方法就是需要对 URL 或者参数进行 …/,./ 等字符的转义过滤。 物理路径泄漏 物理路径泄露属于低风险等级缺陷,它的危害一般被描述为「攻击者可以利用此漏洞得到信息,来对系统进一步地攻击」,通常都是系统报错 500 的错误信息直接返回到页面可见导致的漏洞。得到物理路径有些时候它能给攻击者带来一些有用的信息,比如说:可以大致了解系统的文件目录结构;可以看出系统所使用的第三方软件;也说不定会得到一个合法的用户名(因为很多人把自己的用户名作为网站的目录名)。 防止这种泄漏的方法就是做好后端程序的出错处理,定制特殊的 500 报错页面。 源码暴露漏洞 和物理路径泄露类似,就是攻击者可以通过请求直接获取到你站点的后端源代码,然后就可以对系统进一步研究攻击。那么导致源代码暴露的原因是什么呢?基本上就是发生在服务器配置上了,服务器可以设置哪些路径的文件才可以被直接访问的,这里给一个 koa 服务起的例子,正常的 koa 服务器可以通过 koa-static 中间件去指定静态资源的目录,好让静态资源可以通过路径的路由访问。比如你的系统源代码目录是这样的: |- project|- src|- static|- ...|- server.js 你想要将 static 的文件夹配成静态资源目录,你应该会在 server.js 做如下配置: const Koa = require('koa');const serve = require('koa-static');const app = new Koa();app.use(serve(__dirname + '/project/static')); 但是如果配错了静态资源的目录,可能就出大事了,比如: // ...app.use(serve(__dirname + '/project')); 这样所有的源代码都可以通过路由访问到了,所有的服务器都提供了静态资源机制,所以在通过服务器配置静态资源目录和路径的时候,一定要注意检验,不然很可能产生漏洞。 最后,希望 Web 开发者们能够管理好自己的代码隐私,注意代码安全问题,比如不要将产品的含有敏感信息的代码放到第三方外部站点或者暴露给外部用户,尤其是前端代码,私钥类似的保密性的东西不要直接输出在代码里或者页面中。也许还有很多值得注意的点,但是归根结底还是绷住安全那根弦,对待每一行代码都要多多推敲。 请关注我的订阅号 本篇文章为转载内容。原文链接:https://blog.csdn.net/MrCoderStack/article/details/88547919。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-03 14:51:12
493
转载
MySQL
...计算机处理部分数据库负载,它们之间相互协作,实现数据共享和高可用性,以此提高整个系统的处理能力和并发性能。 MySQL Proxy , MySQL Proxy是一款轻量级的中间件软件,设计用于MySQL数据库的负载均衡、读写分离以及访问控制等功能。在MySQL分布式架构中,MySQL Proxy接收客户端的所有数据库请求,根据预设策略将这些请求分发到不同的MySQL服务器上,从而实现数据库访问流量的均衡分布,保证系统整体性能和高可用性。此外,MySQL Proxy还支持复制和故障转移功能,增强了MySQL分布式环境下的稳定性和可靠性。
2023-02-25 16:35:15
123
逻辑鬼才
Nacos
...理平台,它提供了包括配置中心、命名服务、服务发现等在内的多种服务组件。其实啊,服务发现是Nacos这个家伙最核心的功能之一,它超级给力的,能帮咱们轻松解决各个服务之间“找不着北”的通信难题。 二、什么是服务发现? 服务发现是一种在分布式系统中自动发现服务实例的技术。在传统的单体应用中,我们只需要关心应用程序内部的服务调用。而在微服务架构中,我们需要关注的是服务之间的通信。这就需要我们有一个统一的方式来发现并定位其他服务的位置。这就是服务发现的作用。 三、如何在Nacos中实现服务间的通信? 接下来,我们就来看看如何在Nacos中实现服务间的通信。 首先,我们需要将我们的服务注册到Nacos的服务注册中心。这样一来,当其他客户端兄弟想要找这个服务玩的时候,就可以直接去服务注册中心翻一翻,找到这个服务的住址,然后轻松对接上。下面是代码示例: java import com.alibaba.nacos.api.NacosFactory; import com.alibaba.nacos.api.config.ConfigService; import com.alibaba.nacos.api.exception.NacosException; public class NacosClient { private static ConfigService configService; public static void main(String[] args) throws NacosException { // 创建ConfigService实例 configService = NacosFactory.createConfigService("127.0.0.1", 8848); // 注册服务 configService.publishConfig("service-name", "localhost:8080"); } } 在这个示例中,我们首先创建了一个ConfigService实例,然后使用publishConfig方法将我们的服务注册到了Nacos的服务注册中心。 然后,我们可以在其他的服务中通过Nacos的服务发现组件来发现并访问我们的服务。下面是代码示例: java import com.alibaba.nacos.api.NacosFactory; import com.alibaba.nacos.api.config.ConfigService; import com.alibaba.nacos.api.exception.NacosException; public class NacosClient { private static ConfigService configService; public static void main(String[] args) throws NacosException { // 创建ConfigService实例 configService = NacosFactory.createConfigService("127.0.0.1", 8848); // 获取服务地址 String serviceAddress = configService.getConfig("service-name", null, -1L, false); System.out.println("Service address: " + serviceAddress); } } 在这个示例中,我们首先创建了一个ConfigService实例,然后使用getConfig方法从Nacos的服务注册中心中获取到了我们的服务地址。 四、总结 通过上述步骤,我们已经成功地在Nacos中实现了服务间的通信。当然,这只是一个简单的示例。在实际动手操作的时候,咱们可能还会遇到更多需要解决的活儿,比如得定期给服务做个“体检”,确保它健康运作;再比如做负载均衡,好让各项任务均匀分摊,不至于让某个部分压力山大。但是,有了Nacos的帮助,这些问题都不再是难题。
2023-04-20 17:45:00
99
诗和远方-t
Nginx
...就像是一个超级前台,客户一来,它就负责把需求转给后面的服务器大哥,等大哥处理完,再把结果送回给客户。简单来说,就是个中转站,让客户和服务器之间的交流更顺畅。这样做的好处有很多,比如负载均衡、缓存管理等。而我们今天要关注的是它能帮助我们隐藏端口号。 3. 端口号的重要性与问题 在互联网上,每个应用服务都会绑定到特定的端口上,比如HTTP通常使用80端口,HTTPS使用443端口。不过嘛,如果我们的应用用的是非标准端口(比如8080),那用户就得在网址里加上端口号。这样挺麻烦的,还容易按错键。想让用户访问的时候不用输端口号?那就得用Nginx反向代理来帮忙啦! 4. 如何配置Nginx反向代理? 现在,让我们看看具体的配置步骤。想象一下,我们有个Web应用在后台占着8080端口,但咱们想让用户打开http://example.com就能直接看到,完全不用管什么端口号的事。以下是具体的操作步骤: 4.1 安装Nginx 首先,你需要确保已经安装了Nginx。如果你还没有安装,可以参考以下命令(以Ubuntu为例): bash sudo apt update sudo apt install nginx 4.2 编辑Nginx配置文件 接下来,编辑你的Nginx配置文件。通常情况下,该文件位于/etc/nginx/nginx.conf或/etc/nginx/sites-available/default。这里我们以默认配置文件为例进行修改。 bash sudo nano /etc/nginx/sites-available/default 4.3 添加反向代理配置 在配置文件中添加如下内容: nginx server { listen 80; server_name example.com; location / { proxy_pass http://localhost:8080; proxy_set_header Host $host; proxy_set_header X-Real-IP $remote_addr; proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for; proxy_set_header X-Forwarded-Proto $scheme; } } 这段配置做了两件事:一是监听80端口(即HTTP协议的标准端口),二是将所有请求转发到本地的8080端口。 4.4 测试并重启Nginx 配置完成后,我们需要测试配置是否正确,并重启Nginx服务: bash sudo nginx -t sudo systemctl restart nginx 4.5 验证配置 最后,打开浏览器访问http://example.com,如果一切正常,你应该能够看到你的Web应用,而不需要输入任何端口号! 5. 深入探讨 在这个过程中,我不得不感叹Nginx的强大。它不仅可以轻松地完成反向代理的任务,还能帮助我们解决很多实际问题。当然啦,Nginx 能做的可不仅仅这些呢。比如说 SSL/TLS 加密和负载均衡,这些都是挺有意思的玩意儿,值得咱们好好研究一番。 6. 结语 通过今天的分享,希望大家对如何使用Nginx反向代理来隐藏端口号有了更深入的理解。虽说配置起来得花些时间和耐心,但等你搞定后,肯定会觉得这一切都超级值!说到底,让用户体验更贴心、更简便,这可是咱们每个程序员努力的方向呢!希望你们也能在自己的项目中尝试使用Nginx,体验它带来的便利!
2025-02-07 15:35:30
111
翡翠梦境_
Kubernetes
...在实际场景中,当工作负载增加时,HPA能够自动创建更多的Pod来处理请求,反之则减少Pod数量以节省资源。 角色基础访问控制(RBAC) , 在Kubernetes环境中,角色基础访问控制是一种用于管理用户和组对集群资源访问权限的强大策略工具。通过定义不同角色及其对应的操作权限,并将这些角色绑定到用户、组或者服务账户上,RBAC可以实现细粒度的权限分配,从而加强系统的安全性,防止未经授权的访问和操作。 服务网格(Service Mesh) , 服务网格是一种现代化的微服务间通信基础设施层,如Istio和Linkerd,它专注于处理服务间的网络调用、流量管理、安全性和可观测性等问题。在Kubernetes集群中,服务网格技术能够提供统一的服务发现、负载均衡、熔断、重试等高级功能,使得微服务架构下的网络配置更为简洁且易于管理,同时提升整个系统的稳定性和可观察性。
2023-07-02 12:48:51
111
月影清风-t
Nginx
...inx的实际运用 从配置到实践 接下来,让我们看看Nginx是如何在我的实际工作中大展身手的。想象一下,我们有个小网站,放在一台服务器上跑着。结果有一天,突然涌来了一大波访客,就像大家都同时跑来参加party一样,把我们的服务器给挤爆了,差点儿喘不过气来。为了不让服务器累趴下,咱们可以用Nginx这个神器当“交通指挥官”,把访问请求合理分配一下。下面是一个简单的Nginx配置文件示例: nginx http { upstream backend { server 192.168.1.1:8080; server 192.168.1.2:8080; } server { listen 80; location / { proxy_pass http://backend; } } } 在这个配置文件中,我们定义了一个名为backend的上游服务器组,它包含两个后端服务器。然后,在server块中,我们指定了监听80端口,并将所有请求转发到backend组。这样一来,当客户端的请求找到Nginx时,Nginx就会按照负载均衡的规则,把请求派给后端的服务器们去处理。 4. Nginx的高级功能 定制化与扩展性 Nginx不仅仅是一个基本的反向代理服务器,它还提供了许多高级功能,可以满足各种复杂的需求。比如说,你可以用Nginx来搞缓存,这样就能少给后端服务器添麻烦,减轻它的负担啦。以下是一个简单的缓存配置示例: nginx location /images/ { proxy_cache my_cache; proxy_cache_valid 200 1h; proxy_pass http://backend; } 在这个配置中,我们定义了一个名为my_cache的缓存区,并设置了对200状态码的响应缓存时间为1小时。这样一来,对于那些静态资源比如图片,Nginx会先看看缓存里有没有。如果有,就直接把缓存里的东西给用户,根本不需要去后台问东问西的。 5. 总结与展望 Nginx带给我的启示 通过这段时间的学习和实践,我对Nginx有了更深入的理解。这不仅仅是个能扛事儿的Web服务器和反向代理,还是应对高并发访问的超级神器呢!在未来的项目中,我相信Nginx还会继续陪伴着我,帮助我们应对各种挑战。希望这篇分享能对你有所帮助,如果你有任何问题或想法,欢迎随时交流! --- 希望这篇文章能够帮助你更好地理解和使用Nginx。如果你有任何疑问或想要了解更多细节,请随时提问!
2025-01-17 15:34:14
70
风轻云淡
RabbitMQ
...,探讨并发访问的设计策略和潜在问题。 二、发布者/订阅者模式简介 1.1 发布者(Producer)与订阅者(Consumer)的角色 - 发布者:负责创建和发送消息到队列,通常是一个服务或者应用,如订单创建系统。 - 订阅者:从队列中接收并处理消息,可能是订单处理服务、库存更新服务等。 2.2 并发访问的挑战 - 在高并发环境下,多个发布者同时向同一个队列发送消息可能导致消息堆积,影响性能。 - 订阅者也需要处理多个消息同时到达的情况,保证处理的线程安全。 三、消息确认与并发控制 1.3 使用publisher confirms 为了确保消息的可靠传递,我们可以启用publisher confirms机制。当消息被交换机确认接收后,消费者才会真正消费该消息。Spring RabbitMQ配置示例: java @Configuration public class RabbitConfig { @Value("${rabbitmq.host}") private String host; @Value("${rabbitmq.port}") private int port; @Bean public ConnectionFactory connectionFactory() { CachingConnectionFactory factory = new CachingConnectionFactory(); factory.setHost(host); factory.setPort(port); factory.setUsername("your_username"); factory.setPassword("your_password"); factory.setPublisherConfirmations(true); // 开启publisher confirms return factory; } } 四、并发处理与消息分发 1.4 哨兵模式与任务分发 - 哨兵模式:一个特殊的消费者用于监控队列,处理来自其他消费者的错误响应(nacks),避免消息丢失。 - 任务分发:使用fanout交换机可以一次将消息广播给所有订阅者,但要确保处理并发的负载均衡和消息顺序。 java @Autowired private TaskConsumer taskConsumer; // 发布者方法 public void sendMessage(String message) { channel.basicPublish("task_queue", "", null, message.getBytes()); } 五、事务与消息重试 1.5 事务与幂等性 - 如果订阅者处理消息的业务操作支持事务,可以利用事务回滚来处理nack后的消息重试。 - 幂等性保证即使消息多次被处理,结果保持一致。 六、结论与最佳实践 2.6 总结与注意事项 - 监控和日志:密切关注队列的消费速率、延迟和确认率,确保系统稳定。 - 负载均衡:通过轮询、随机选择或者其他策略,分摊消费者之间的消息处理压力。 - 异步处理:对于耗时操作,考虑异步处理以避免阻塞队列。 在实际项目中,理解并应用这些技巧将有助于我们构建健壮、高效的发布者/订阅者架构,有效应对并发访问带来的挑战。记住了啊,每一个设计决定,其实都是为了让你用起来更顺手、系统扩展性更强。这就是RabbitMQ最吸引人的地方啦,就像是给机器装上灵活的弹簧和无限延伸的轨道,让信息传输变得轻松自如。
2024-03-03 10:52:21
89
醉卧沙场-t
SpringBoot
...生产者发送消息失败时重试发送给同一broker的问题后,我们进一步探讨消息队列领域的最新技术和实践。近期,阿里巴巴集团开源了RocketMQ 5.0版本,该版本对消息重试机制进行了重大优化和升级,引入了更加智能的动态负载均衡策略。 在新版本中,RocketMQ采用了更先进的“Fault Tolerance and Load Balance”算法,在消息发送失败进行重试时,不仅能够自动排除故障节点,还能基于实时的Broker性能指标动态调整发送目标,确保消息高效、均匀地分布到集群中的各个broker上,从而显著提升系统的稳定性和吞吐量。 此外,为了进一步增强消息传输的安全性与可靠性,RocketMQ 5.0还支持跨地域多活部署以及事务消息2.0特性,即使面临数据中心级别的故障切换,也能保证消息不丢失且严格有序地送达消费者,这对于构建高可用、高性能的分布式系统具有重要价值。 同时,随着云原生理念的普及,RocketMQ也积极拥抱Kubernetes等容器编排技术,提供云原生环境下的无缝集成方案,使得开发者能够便捷地在各类云环境或混合云场景下部署和管理RocketMQ集群,有效应对大规模分布式系统中的消息处理挑战。 因此,对于正在使用或计划采用RocketMQ作为消息中间件的开发者来说,持续关注其最新版本的功能演进和技术突破,结合实际业务场景灵活运用,无疑将助力提升整个系统的韧性和效率,实现微服务架构下的最佳实践。
2023-06-16 23:16:50
39
梦幻星空_t
Etcd
...系统,用于服务发现、配置共享及分布式锁等场景。然而,在实际操作中,我们可能会遇到“Failed to join etcd cluster because of network issues or firewall restrictions”这样的问题,本文将深入探讨这个问题及其解决之道,并通过实例代码来帮助大家理解和处理此类故障。 1. 网络问题导致Etcd集群加入失败 1.1 网络连通性问题 在尝试将一个新的节点加入到etcd集群时,首要条件是各个节点间必须保持良好的网络连接。如果由于网络延迟、丢包或者完全断开等问题,新节点无法与已有集群建立稳定通信,就会出现“Failed to join”的错误。 例如,假设有两个已经形成集群的etcd节点(node1和node2),我们尝试将node3加入: bash ETCDCTL_API=3 etcdctl --endpoints=https://node1:2379,https://node2:2379 member add node3 \ --peer-urls=https://node3:2380 如果因网络原因node3无法访问node1或node2,上述命令将失败。 1.2 解决策略 - 检查并修复基础网络设施,确保所有节点间的网络连通性。 - 验证端口开放情况,etcd通常使用2379(客户端接口)和2380(成员间通信)这两个端口,确保它们在所有节点上都是开放的。 2. 防火墙限制导致的加入失败 2.1 防火墙规则影响 防火墙可能会阻止必要的端口通信,从而导致新的节点无法成功加入etcd集群。比如,想象一下我们的防火墙没给2380端口“放行”,就算网络本身一路绿灯,畅通无阻,节点也照样无法通过这个端口和其他集群的伙伴们进行交流沟通。 2.2 解决策略 示例:临时开启防火墙端口(以Ubuntu系统为例) bash sudo ufw allow 2379/tcp sudo ufw allow 2380/tcp sudo ufw reload 以上命令分别允许了2379和2380端口的TCP流量,并重新加载了防火墙规则。 对于生产环境,请务必根据实际情况持久化这些防火墙规则,以免重启后失效。 3. 探讨与思考 在处理这类问题时,我们需要像侦探一样层层剥茧,从最基础的网络连通性检查开始,逐步排查至更具体的问题点。在这个过程中,我们要善于运用各种工具进行测试验证,比如ping、telnet、nc等,甚至可以直接查看防火墙日志以获取更精确的错误信息。 同时,我们也应认识到,任何分布式系统的稳定性都离不开对基础设施的精细化管理和维护。特别是在大规模安装部署像etcd这种关键组件的时候,咱们可得把网络环境搞得结结实实、稳稳当当的,确保它表现得既强壮又靠谱,这样才能防止一不留神的小差错引发一连串的大麻烦。 总结来说,面对"Failed to join etcd cluster because of network issues or firewall restrictions"这样的问题,我们首先要理解其背后的根本原因,然后采取相应的策略去解决。其实这一切的背后,咱们这些技术人员就像是在解谜探险一样,对那些错综复杂的系统紧追不舍,不断摸索、持续优化。我们可都是“细节控”,对每一丁点儿的环节都精打细算,用专业的素养和严谨的态度把关着每一个微小的部分。
2023-08-29 20:26:10
711
寂静森林
Apache Solr
...个难题。本来以为复制配置很简单,结果发现坑还挺多的。今天我想跟大家分享一下我遇到的问题和我是怎么解决的,希望对大家有点帮助。 2. 复制的基本概念 首先,咱们得知道复制是什么。简单说,就是把一个Solr服务器上的索引文件拷贝到另一个Solr服务器上,就跟把文件从这个文件夹拖到另一个文件夹那样。这样做有几个好处: - 高可用性:即使某个Solr实例宕机,其他实例仍然可以提供服务。 - 负载均衡:多个副本可以分担查询压力,提高整体性能。 - 数据备份:万一主节点数据丢失,副本可以迅速恢复。 但是,如果复制过程中出现问题,就可能导致数据不一致、服务中断等问题。我碰上的是这么个情况,开始还以为是设置不对,结果捣鼓半天才发现原来是网络的事儿。 3. 常见的复制问题 在实际操作中,我遇到了几个常见的问题,包括但不限于: - 网络延迟或断开:这是最常见的问题之一,特别是在跨数据中心的情况下。 - 配置错误:比如主从节点之间的URL配置错误,或者版本不匹配。 - 磁盘空间不足:复制需要大量的磁盘空间,如果空间不足会导致复制失败。 - 权限问题:某些情况下,权限设置不当也会导致复制失败。 4. 解决方案 针对这些问题,我整理了一些解决方案,希望能帮助大家避免类似的麻烦。 4.1 网络问题 先说说网络问题吧,这可能是最头疼的一个。我碰到的问题是主节点和从节点之间的网络有时候会断开,结果复制任务就卡住了,甚至直接失败。解决方法如下: 1. 检查网络连接 确保主节点和从节点之间网络稳定,可以通过ping命令来测试。 2. 增加重试机制 可以在Solr配置文件中设置重试次数,比如: xml 00:00:30 true 5 60 4.2 配置错误 配置错误也很常见,尤其是对于新手来说。有个小窍门,在配置文件里多加点注释,这样就能大大降低出错的几率啦!比如: xml commit schema.xml,stopwords.txt http://localhost:8983/solr/collection1/replication http://localhost:8983/solr/collection1/replication 00:00:30 4.3 磁盘空间问题 磁盘空间不足也是常见的问题,尤其是在大规模数据量的情况下。解决方法是定期清理旧的索引文件,或者增加磁盘容量。Solr提供了清理旧索引的API,可以定时调用: bash curl http://localhost:8983/solr/collection1/admin/cores?action=UNLOAD&core=collection1&deleteIndex=true&deleteDataDir=true 4.4 权限问题 权限问题通常是因为用户没有足够的权限访问Solr API。解决方法是给相关用户分配正确的角色和权限。例如,在Solr的配置文件中设置用户权限: xml etc/security.json true 然后在security.json文件中添加用户的权限信息: json { "authentication": { "class": "solr.BasicAuthPlugin", "credentials": { "admin": "hashed_password" } }, "authorization": { "class": "solr.RuleBasedAuthorizationPlugin", "permissions": [ { "name": "access-replication-handler", "role": "admin" } ], "user-role": { "admin": ["admin"] } } } 5. 总结 通过上面的分享,希望大家都能够更好地理解和处理Apache Solr中的复制问题。复制虽然重要,但也确实容易出错。但只要我们细心排查,合理配置,还是可以解决这些问题的。如果你也有类似的经历或者更好的解决方案,欢迎在评论区留言交流! 最后,我想说的是,技术这条路真的是越走越远,每一个问题都是一次成长的机会。希望大家都能在技术之路上越走越远,越走越稳!
2025-03-11 15:48:41
91
星辰大海
SeaTunnel
...用SeaTunnel配置的实例代码,实实在在地教你搞定这些问题的小妙招。 2. SFTP连接与认证原理浅析 首先,让我们理解一下SFTP的基本工作原理。SFTP(Secure File Transfer Protocol)是一种安全文件传输协议,它基于SSH协议,确保了数据在传输过程中的安全性。在咱们建立连接并开始认证这一步的时候,客户端必须拿出一些硬货,比如有效的用户名、密码这些身份通行证,还有SSH密钥这类高级验证工具,才能顺利过关,完成身份核实的过程。如果碰到网络连接老是掉线,或者认证失败这种情况,那可能是因为网络环境时好时坏、服务器设置有点问题,或者是密钥对不上号等多种原因造成的。 3. SeaTunnel对接SFTP常见问题及对策 (3.1) 连接不稳定问题 - 场景描述: 在使用SeaTunnel从SFTP读取或写入数据时,可能会遇到连接频繁断开、重连的情况。 - 原因分析: 可能是由于网络延迟、丢包、SFTP服务器超时设置过短等因素引起。 - 解决方案与代码示例: yaml 在SeaTunnel的source或sink配置中添加相关参数 sftp: host: 'your_sftp_host' port: 22 username: 'your_username' password: 'your_password' connectionTimeout: 60000 设置连接超时时间(单位毫秒) soTimeout: 60000 设置读写超时时间(单位毫秒) 这里我们通过调整connectionTimeout和soTimeout参数,为SFTP连接预留更充足的响应时间,有助于改善连接稳定性。 (3.2) 认证失败问题 - 场景描述: 提供正确的用户名、密码或密钥后,仍无法成功连接SFTP服务器。 - 原因分析: 密码错误、密钥对不匹配、权限不足等情况都可能导致认证失败。 - 解决方案与代码示例: yaml sftp: host: 'your_sftp_host' port: 22 privateKeyPath: '/path/to/your/private_key' 如果使用密钥认证,指定私钥文件路径 passphrase: 'your_passphrase' 若私钥有密码,请填写此字段 确保提供的认证信息准确无误,对于密钥认证,不仅要提供正确的私钥路径,还需确认是否需要提供对应的passphrase(如果有的话)。此外,检查SFTP服务器上对应用户的权限设置也是必要的步骤。 4. 深度探讨与实践优化 面对SFTP连接和认证问题,除了上述基础配置外,我们还需要关注: - 网络状况监控与优化: 保持良好的网络环境,减少网络抖动带来的影响。 - 日志分析与调试: 配置详细的日志输出级别,通过查看SeaTunnel运行日志来定位问题的具体原因。 - 定期健康检查: 定期检查并更新SFTP服务器的配置,包括但不限于用户权限、防火墙规则、服务器资源占用情况等。 5. 结语 在大数据时代,数据的稳定高效传输至关重要。通过合理配置SeaTunnel,我们可以更好地应对SFTP连接不稳定或认证失败的问题。在这个过程中,咱们得接地气儿,灵活运用各种招数,针对实际情况见招拆招。就像是调音师调试乐器那样,我们也得不断优化调整,最终目的是为了让数据管道顺顺当当地跑起来,一点儿不卡壳。记住了啊,每一个技术难题其实都是个学习和进步的好机会,只要我们坚持不断去摸索、去探究,总有一天会找到那个最完美的解决方案,让问题迎刃而解。
2023-12-13 18:13:39
269
秋水共长天一色
Go Gin
...Tful API,使客户端和服务端之间的数据交换更加清晰和易于理解。 JWT身份验证 , JSON Web Token(JWT)是一种轻量级的身份验证协议,用于在各方之间安全地传输信息。在Go Gin应用中,JWT常用于在API请求中验证用户身份,通过中间件处理,确保只有授权的用户才能访问特定资源。 高并发请求 , 指在短时间内有大量的客户端同时向服务器发送请求的情况。Go Gin因其高性能和并发处理能力,使得它在处理高并发场景下表现出色,能够有效地响应大量请求,保证服务的稳定和响应速度。 API速率限制器 , 一种机制,用来控制特定时间段内对API的调用频率,防止滥用或恶意攻击。在Go Gin中,通过中间件实现API速率限制,有助于保护API资源,维持服务的正常运行。 自动路由发现 , 在微服务架构中,通过注册与发现服务的方式,使得客户端能够自动找到并连接到正确的服务实例。Go Gin结合服务发现工具(如Consul、Eureka等),实现了服务间的路由自动管理。 Gin Swagger , 一种用于生成Go Gin API文档的工具,通过注解和配置,自动生成清晰、格式化的API文档,有助于开发者理解和使用API,提高开发效率。 Kubernetes , 一个开源的容器编排平台,用于自动化部署、扩展和管理容器化应用。与Go Gin结合,Kubernetes能够帮助管理微服务的生命周期和负载均衡,确保服务的高可用性。
2024-04-12 11:12:32
501
梦幻星空
SpringCloud
...的能力,如服务发现、配置管理、负载均衡、熔断器等。在本文中,SpringCloud是用于简化微服务开发并实现服务治理的核心框架,其组件OpenFeign则充当了便捷的REST客户端工具。 OpenFeign , OpenFeign是SpringCloud的一个子项目,它提供了一种声明式的HTTP客户端编程模型,使得开发者能够以接口注解的方式定义远程服务调用,从而简化了微服务之间的交互过程。在实际使用中,通过在接口上添加@FeignClient注解,并结合path参数等属性设置,开发者可以像调用本地方法一样调用远程服务接口,大大降低了RESTful API调用的复杂性。
2023-07-03 19:58:09
89
寂静森林_t
ZooKeeper
...oKeeper的节点负载均衡策略:深入理解与实战示例 在分布式系统中,ZooKeeper作为一种高可用、高性能且分布式的协调服务,为集群节点间的负载均衡提供了强大的支持。嘿,伙计,这篇东西啊,咱们要从理论的高山一步一步下到实战的平原,带你深入探访ZooKeeper节点负载均衡策略的那个神秘又精彩的领域。而且,咱还会掏出实例代码给你现场展示,让你亲身体验,实实在在地感受到这个策略有多大的魔力! 1. ZooKeeper基础及其在负载均衡中的作用 (1)首先,我们简要回顾一下ZooKeeper的基本概念。ZooKeeper,这个家伙可厉害了,它是个开源的分布式应用程序协调小能手。想象一下,你在管理一大群分布式应用程序时,就像在动物园里指挥各种动物协同完成任务一样,这时候ZooKeeper就扮演了那个神奇的驯兽师角色。它提供了一些超级实用的一致性小工具,比如分布式锁呀、队列呀、选举机制什么的,这样一来,甭管你的分布式环境多复杂,都能让这些程序宝宝们高效又稳定地一起愉快玩耍、共同工作啦! (2)在负载均衡场景下,ZooKeeper扮演了至关重要的角色。它能够像个小管家一样,时刻保管并更新集群里每个小节点的状态信息,确保这些数据都是鲜活、热乎的。客户端能够通过ZooKeeper这个小帮手,实时掌握各个节点的最新负载状况。这样一来,它就能像一个聪明的调度员,火眼金睛地做出最佳的服务请求转发方案,确保不同节点之间的活儿分配得均匀,实现工作负载的完美均衡。 2. ZooKeeper节点负载均衡策略详解 (1)数据节点(ZNode)管理 在ZooKeeper中,每个服务节点可以注册为一个ZNode,同时附带该节点的负载信息。例如,我们可以创建一个持久化的ZNode /services/serviceName/nodes/nodeId,并在其数据部分存储节点负载量。 java // 创建ZNode并设置节点负载数据 String path = "/services/serviceName/nodes/nodeId"; byte[] data = String.valueOf(nodeLoad).getBytes(StandardCharsets.UTF_8); zk.create(path, data, ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT); (2.)监听器(Watcher) 客户端可以通过在特定ZNode上设置Watcher,实时感知到节点负载信息的变化。一旦某个服务节点的负载发生变化,ZooKeeper会通知所有关注此节点的客户端。 java // 设置监听器,监控节点负载变化 Stat stat = new Stat(); byte[] data = zk.getData("/services/serviceName/nodes/nodeId", new Watcher() { @Override public void process(WatchedEvent event) { // 在这里处理节点负载变化事件 } }, stat); (3)选择最佳服务节点 基于ZooKeeper提供的最新节点负载数据,客户端可以根据预设的负载均衡算法(如轮询、最小连接数、权重分配等)来选择当前最合适的服务节点进行请求转发。 java List children = zk.getChildren("/services/serviceName/nodes", false); children.sort((node1, node2) -> { // 这里根据节点负载数据进行排序,选择最优节点 }); String bestNode = children.get(0); 3. 探讨与思考 运用ZooKeeper实现节点负载均衡的过程中,我们能够感受到它的灵活性与强大性。不过,到了实际用起来的时候,有几个挑战咱们也得留心一下。比如,怎么捣鼓出一个既聪明又给力的负载均衡算法,可不是件轻松事儿;再者,网络延迟这个磨人的小妖精怎么驯服,也够头疼的;还有啊,在大规模集群里头保持稳定运行,这更是个大大的考验。这就意味着我们得不断动手尝试、灵活应变,对策略进行微调和升级,确保把ZooKeeper这个分布式协调服务的大能耐,彻彻底底地发挥出来。 总结来说,ZooKeeper在节点负载均衡策略上的应用,既体现了其作为一个通用分布式协调框架的价值,又展示了其实现复杂分布式任务的能力。利用ZooKeeper那个相当聪明的数据模型和监听功能,咱们完全可以捣鼓出一个既能让业务跑得溜溜的,又能稳如磐石、始终保持高可用性的分布式系统架构。就像是用乐高积木搭建一座既美观又结实的大厦一样,我们借助ZooKeeper这块宝,来创建咱所需要的高性能系统。所以,在我们实实在在做开发的时候,要是能摸透并熟练运用ZooKeeper这家伙的节点负载均衡策略,那可是对提升我们系统的整体表现力有着大大的好处,这一点儿毋庸置疑。
2024-01-21 23:46:49
122
秋水共长天一色
Netty
Netty客户端在连接服务器时频繁异常断开现象的深度剖析与解决方案 1. 引言 在实际开发过程中,我们经常会遇到Netty作为高性能网络通信框架,在实现客户端与服务器之间的稳定、高效连接时,出现客户端频繁异常断开的问题。这种情况犹如人际交往中的“突然冷场”,令人困扰且急需解决。这篇文会拽着你一起,像侦探破案那样挖掘这个问题背后可能藏着的“元凶”,并且咱们还会通过实实在在的代码实例,把它掰开揉碎了,好好研究探讨一番。 2. 问题描述及常见场景 首先,让我们描绘一下这个现象:在使用Netty构建的客户端应用中,客户端与服务器建立连接后,连接状态并未保持稳定,而是频繁地出现异常断开的情况。这可能导致数据传输中断,影响整个系统的稳定性与可靠性。 3. 可能的原因分析 (1) 网络环境不稳定:就像我们在拨打电话时会受到信号干扰一样,网络环境的质量直接影响到TCP连接的稳定性。例如,Wi-Fi信号波动、网络拥塞等都可能导致连接异常断开。 java EventLoopGroup workerGroup = new NioEventLoopGroup(); Bootstrap b = new Bootstrap(); b.group(workerGroup); b.channel(NioSocketChannel.class); b.option(ChannelOption.SO_KEEPALIVE, true); // 开启TCP保活机制以应对网络波动 (2) 心跳机制未配置或配置不合理:Netty支持心跳机制(如TCP KeepAlive)来检测连接是否存活,若未正确配置,可能导致连接被误判为已断开。 java b.option(ChannelOption.CONNECT_TIMEOUT_MILLIS, 30000); // 设置连接超时时间 b.handler(new ChannelInitializer() { @Override protected void initChannel(SocketChannel ch) throws Exception { ChannelPipeline p = ch.pipeline(); p.addLast(new IdleStateHandler(60, 0, 0)); // 配置读空闲超时时间为60秒,触发心跳检查 // ... 其他处理器添加 } }); (3) 资源未正确释放:在客户端程序执行过程中,如果未能妥善处理关闭逻辑,如Channel关闭不彻底,可能会导致新连接无法正常建立,从而表现为频繁断开。 java channel.closeFuture().addListener((ChannelFutureListener) future -> { if (!future.isSuccess()) { log.error("Failed to close channel: {}", future.cause()); } else { log.info("Channel closed successfully."); } // ... 释放其他相关资源 }); 4. 解决方案与优化建议 针对上述可能的原因,我们可以从以下几个方面着手: - 增强网络监控与报警:当网络状况不佳时,及时调整策略或通知运维人员排查。 - 合理配置心跳机制:确保客户端与服务器之间的心跳包发送间隔、确认等待时间以及超时重连策略符合业务需求。 - 完善资源管理:在客户端程序设计时,务必确保所有网络资源(如Channel、EventLoopGroup等)都能在生命周期结束时得到正确释放,防止因资源泄露导致的连接异常。 - 错误处理与重试策略:对连接异常断开的情况制定相应的错误处理逻辑,并结合重试策略确保在一定条件下可以重新建立连接。 5. 结语 面对Netty客户端连接服务器时的异常断开问题,我们需要像侦探般抽丝剥茧,寻找背后的真实原因,通过细致的代码优化和完善的策略设计,才能确保我们的网络通信系统既稳定又健壮。在开发的这个过程里,每位开发者都该学会“把人放在首位”的思考模式,就像咱们平时处事那样,带着情感和主观感知去理解问题、解决问题。就好比在生活中,我们会积极沟通、不断尝试各种方法去维护一段友情或者亲情一样,让那些冷冰冰的技术也能充满人情味儿,更加有温度。
2023-09-11 19:24:16
220
海阔天空
Nginx
...分离项目时,需要合理配置Nginx以正确转发和处理前端页面和后端API请求。 Docker容器化技术 , Docker是一种开源的应用容器引擎,通过容器化技术为开发者和系统管理员提供了一种标准化的打包、分发和运行应用的方式。在文中,Docker用于将前后端应用分别封装成独立的容器,每个容器包含了运行应用所需的所有依赖环境,使得应用可以在任何安装了Docker的主机上快速部署且运行效果一致。 Nginx反向代理服务器 , Nginx是一个高性能的HTTP和反向代理服务器,同时支持TCP/UDP代理、邮件代理、负载均衡等功能。在部署前后端分离项目的情境中,Nginx作为反向代理服务器,接收来自客户端的HTTP请求,并根据配置规则将请求转发至相应的服务。例如,它可以将静态资源请求直接指向存放前端文件的本地目录,将/api开头的请求转发给后端Docker容器中的服务处理,从而实现前后端之间的通信和信息传递。
2023-07-29 10:16:00
55
时光倒流_
HessianRPC
...点动态变化;如何结合负载均衡策略提高整体系统的可用性;如何借助熔断器、降级策略来保证在异常情况下服务的稳定性等。 4. 异常处理最佳实践:除了HessianURLException之外,实际开发中还可能会遇到其他各种类型的异常。理解并掌握一套完善的异常处理机制和策略,如采用责任链模式进行异常统一处理、通过日志记录及监控预警机制快速定位问题,都是提升系统健壮性的关键手段。 总之,在分布式系统开发领域,对HessianRPC的深入理解和灵活运用是构建高性能服务的基础,而紧跟行业发展趋势,不断吸取新的技术和经验,则是保持技术竞争力的重要途径。
2023-10-16 10:44:02
531
柳暗花明又一村
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
timeout duration command
- 执行命令并在指定时间后终止它。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"