前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[分布式系统中 ZooKeeper 服务发...]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
...nux内核升级以解决服务器宕机问题时,尤其是涉及红帽(RHEL)系统的内核bug修复,理解操作系统的更新策略与安全维护至关重要。近期,红帽企业版Linux 8.5版本发布,其内核已升级至4.18系列,并引入了大量性能优化和安全补丁,进一步增强了系统稳定性与安全性。 对于Linux内核升级的具体实践,管理员不仅需要关注如何正确安装新内核以及相关firmware包,还需要了解如何妥善管理启动项配置以应对可能的新内核故障。此外,遵循Linux社区的最佳实践,如通过订阅官方的安全公告、定期执行yum或dnf更新命令获取最新的内核版本,也是确保系统长期稳定运行的关键。 值得一提的是,随着容器技术的广泛应用,Linux内核在Kubernetes集群环境下的升级也愈发重要。例如,利用工具如kured实现自动检测并重启使用旧内核的节点,能够有效提高集群整体的安全性和一致性。 另外,对于企业级用户,红帽提供了一套完善的内核生命周期管理和技术支持体系,包括定期发布的内核增强更新和长期支持服务。这为企业用户提供了在遇到类似内核bug导致的问题时,有条不紊地进行内核升级与回滚的操作指导,从而最大限度地降低业务中断风险。 总之,无论是对单个服务器还是大规模部署的云环境,深入理解和执行合理的内核升级策略都是保持Linux系统高效、安全运行的核心要素之一。持续关注Linux内核开发动态和安全更新通知,结合专业文档及社区经验分享,将有助于运维人员更好地应对各种内核相关的挑战。
2023-09-08 16:48:38
88
转载
Apache Pig
...资源。比如,假设我们发现Pig这个活儿需要10个CPU和8GB的内存才能跑起来,但现在集群上只有5个CPU、6GB的内存,那咱们就有两个选择:一是给集群添几台服务器“增援”,二是把现有服务器的硬件设备升个级。 2. 调整Pig作业的配置 另一种解决方案是调整Pig作业的配置。我们可以灵活地调整一些设置,比如说,默认分配给Pig作业的资源数量,或者最多能用到的资源上限,这样一来就能把控好这个作业对资源的使用程度啦。这样,即使集群资源有限,也可以确保其他作业的正常运行。 五、结论 总的来说,“YARNresourceallocationerrorforPigjobs”是一个比较常见的问题,但并不是不能解决的。只要我们把问题的来龙去脉摸清楚,然后对症下药,采取有针对性的措施,就完全能够把这个问题给巧妙地避开,确保它不再找上门来。同时,咱们也得明白一个道理,合理利用资源真的太重要了,你可别小瞧这事儿。要是过度挥霍资源,那不仅会让性能像滑滑梯一样下滑,还可能把整个系统搞得摇摇晃晃、乱七八糟,就像一座没有稳固根基的大楼,随时可能崩塌。因此,我们应该在保证任务完成的前提下,尽可能地优化资源使用。
2023-03-26 22:00:44
506
桃李春风一杯酒-t
Apache Pig
...步探索当今大数据生态系统的发展动态与最新应用场景将帮助您紧跟技术前沿。近期,Apache Pig项目团队发布了新版本,针对性能优化、兼容性和易用性进行了多项改进,以更好地适应大规模数据处理需求,并实现与最新Hadoop生态系统的无缝对接。 与此同时,随着云计算服务的普及,诸如AWS EMR、Azure HDInsight等云平台已全面支持Apache Pig,使得用户无需自建集群就能便捷地在云端运行Pig脚本,极大地降低了大数据分析的入门门槛和运维成本。 此外,在实际应用层面,Apache Pig在实时流数据处理、机器学习模型训练、以及大规模日志分析等领域展现出巨大潜力。例如,结合Apache Flink或Spark Streaming,可利用Pig对实时数据进行预处理;而在数据挖掘场景中,科研人员成功借助Pig构建复杂的数据转换管道,用于训练深度学习模型,取得了显著成果。 因此,持续关注Apache Pig及其相关领域的最新进展和技术实践,对于提升个人在大数据处理与分析领域的专业技能至关重要。同时,了解并掌握如何结合其他大数据工具和框架来扩展Pig的功能边界,无疑将使您在解决现实世界复杂问题时具备更强的竞争优势。
2023-03-06 21:51:07
364
岁月静好-t
Struts2
...Struts2的核心配置文件struts.xml及其应用之后,我们发现配置文件在现代Java企业级开发中的关键地位不容忽视。事实上,随着技术的不断演进,Apache Struts团队一直在积极更新和完善框架的功能,以适应新的开发需求和安全标准。 近期,Apache Struts 2.5版本中引入了更多增强特性,如支持OGNL 3.0表达式语言,提供更强大的数据绑定和类型转换功能;同时,对配置文件的解析机制进行了优化,增强了XML配置的安全性,减少了潜在的安全漏洞。此外,Struts2社区也提倡使用 Convention over Configuration(约定优于配置)的设计理念,通过注解等方式简化配置,减轻开发者手动编写struts.xml的工作量。 然而,值得注意的是,任何框架配置都与系统安全性息息相关。近年来,Struts2框架曾因配置不当引发过重大安全事件,因此,在实际项目开发过程中,除了掌握如何编写和使用struts.xml,还应密切关注官方发布的安全更新和技术指南,确保及时修补漏洞,遵循最佳实践,以保障应用程序的安全稳定运行。同时,对于大型企业级项目,可以考虑采用Spring Boot等现代框架结合Struts2进行模块化设计和微服务架构,既能利用Struts2的优势处理复杂的MVC逻辑,又能享受到Spring Boot带来的自动配置、快速部署等便利。
2023-11-11 14:08:13
97
月影清风-t
Netty
...超出了预期或者超过了系统设定的最大限制,这时候程序就会像扔飞盘一样把这个异常给抛出来。那么,面对这种棘手问题,我们应该如何理解和解决呢?让我们一起探讨和揭秘吧! 1. 异常理解 解密UnexpectedMessageSizeException 在使用Netty进行通信时,尤其是在处理TCP协议的数据流时,由于TCP本身是无边界的,所以需要我们在应用层去判断消息的边界。Netty这家伙有个聪明的做法,就是给每个消息设定一个合适的“大小上限”——maxMessageSize,这样一来,任何消息都不能长得没边儿。要是有哪个消息过于“膨胀”,胆敢超过这个限制值,不好意思,Netty可不会客气,直接会给你抛出一个“意料之外的消息尺寸异常”——UnexpectedMessageSizeException,以此来表明它的原则性和纪律性。 这个异常的背后,实际上是Netty对传输层安全性的保障措施,防止因恶意或错误的大数据包导致内存溢出等问题。 2. 溯源分析 引发异常的原因 下面是一个简单的代码示例,展示了未正确配置maxMessageSize可能引发此异常: java public class MyServerInitializer extends ChannelInitializer { @Override protected void initChannel(SocketChannel ch) throws Exception { ChannelPipeline pipeline = ch.pipeline(); // 假设我们没有设置任何限制 pipeline.addLast(new LengthFieldBasedFrameDecoder(Integer.MAX_VALUE, 0, 4, 0, 4)); pipeline.addLast(new StringDecoder(CharsetUtil.UTF_8)); pipeline.addLast(new ServerHandler()); } } 在上述代码中,我们未给LengthFieldBasedFrameDecoder设置最大帧长度,因此理论上它可以接受任意大小的消息,这就可能导致UnexpectedMessageSizeException。 3. 解决方案 合理设置消息大小限制 为了解决这个问题,我们需要在初始化解码器时,明确指定一个合理的maxMessageSize。例如: java public class MyServerInitializer extends ChannelInitializer { private static final int MAX_FRAME_LENGTH = 1024 1024; // 设置每条消息的最大长度为1MB @Override protected void initChannel(SocketChannel ch) throws Exception { ChannelPipeline pipeline = ch.pipeline(); // 正确设置最大帧长度 pipeline.addLast(new LengthFieldBasedFrameDecoder(MAX_FRAME_LENGTH, 0, 4, 0, 4)); pipeline.addLast(new StringDecoder(CharsetUtil.UTF_8)); pipeline.addLast(new ServerHandler()); } } 这样,如果收到的消息大小超过1MB,LengthFieldBasedFrameDecoder将不再尝试解码并会抛出异常,而不是消耗大量内存。 4. 进一步探讨 异常处理与优化策略 虽然我们已经设置了消息大小的限制,但仍然建议在实际业务场景中对接收到超大消息的情况进行适当的异常处理,比如记录日志、关闭连接等操作: java public class ServerHandler extends SimpleChannelInboundHandler { @Override public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) { if (cause instanceof TooLongFrameException || cause instanceof UnexpectedMessageSizeException) { System.out.println("Caught an oversized message, closing connection..."); ctx.close(); } else { // 其他异常处理逻辑... } } // ...其他处理器逻辑... } 最后,对于消息大小的设定,并非越大越好,而应根据具体应用场景和服务器资源状况进行权衡。另外,咱们也可以琢磨琢磨用些招儿来对付大消息这个难题,比如把消息分块传输,或者使使劲儿,用压缩算法给它“瘦身”一下。 总的来说,处理Netty中的UnexpectedMessageSizeException关键在于提前预防,合理设置消息大小上限,以及妥善处理异常情况。只有把这些技巧摸得门儿清、运用自如,咱们的Netty应用程序才能真正变得身强力壮、高效无比。在这个过程中,不断地思考、实践与优化,才是编程乐趣之所在!
2023-11-27 15:28:29
153
林中小径
Mahout
...发,例如支持更高效的分布式计算框架以适应大规模数据集的实时处理需求。 同时,随着近年来深度学习与自动机器学习(AutoML)领域的快速发展,Apache Mahout也在积极探索与这些先进技术的融合应用。例如,项目中已经引入了部分神经网络模型实现,并不断优化其在Spark等分布式环境中的性能表现。 此外,对于确保数据预处理阶段输入参数的有效性这一关键问题,不仅限于Mahout框架内部的异常处理,更需要结合DevOps理念与工具链进行全流程的质量控制。通过集成自动化测试、持续集成/持续部署(CI/CD)流程以及监控报警机制,可以在代码上线前尽早发现并修复类似非法参数等问题,从而提高整个系统的稳定性和可靠性。 深入理解Mahout库的工作原理及应用场景的同时,广大开发者也应积极跟进相关领域的新研究和技术趋势,以便更好地应对实际业务挑战,提升大规模机器学习项目的成功率和效果。
2023-10-16 18:27:51
118
山涧溪流
PostgreSQL
...大的关系型数据库管理系统,广泛应用于各种场景中。在使用PostgreSQL时,我们常常会遇到需要通过索引来优化查询性能的需求。那么,如何创建一个可以显示值出来的索引呢?接下来,我将详细阐述这一过程,并给出一些实例代码。 创建索引 在PostgreSQL中,我们可以使用CREATE INDEX语句来创建索引。首先,咱们得先搞清楚到底要给哪个表格建索引,还有具体打算对哪些字段进行索引设置。例如,如果我们有一个名为"articles"的表,其中包含"a", "b", "c"三个字段,我们可以使用以下代码来创建一个基于"a"字段的索引: sql CREATE INDEX idx_articles_a ON articles(a); 上述代码将会在"articles"表的"a"字段上创建一个名为"idx_articles_a"的索引。嘿,你知道吗?索引名这个家伙其实可以任你自由定制!不过在大多数情况下,我们会倾向于选择一个跟字段名“沾亲带故”的命名方式,这样一来,不仅能让我们更轻松地理解索引是干嘛的,还能方便我们日后的管理和维护工作,是不是听起来更人性化、更好理解啦? 除了基本的CREATE INDEX语句外,PostgreSQL还支持一些高级的索引创建选项。例如,我们可以使用CLUSTER BY子句来指定哪些字段应该被用作聚簇键。你知道吗,聚簇键其实是个挺神奇的小东西,它就像是数据库里的超级分类员。这个特殊的索引能帮我们飞快地找到那些拥有相同数值的一堆记录,就像一个魔法师挥挥魔杖,唰的一下就把同类项全部给召唤出来一样!以下是创建一个基于"a"字段的聚簇索引的示例代码: sql CLUSTER articles USING idx_articles_a; 上述代码将会把"articles"表中的所有行按照"a"字段的值重新排列,并且在这个新的顺序下创建一个新的索引(名为"idx_articles_a")。这样一来,当我们想找带有特定"a"字段值的那些行时,就完全可以跳过翻完整个表的繁琐过程,直接在我们新建的这个索引里轻松找到啦! 显示索引 一旦我们创建了一个索引,我们可以通过EXPLAIN或EXPLAIN ANALYZE语句来查看其详细信息。这两个语句都可以用来查看查询的执行计划,包括哪些索引被使用了,以及它们的效率如何等信息。以下是使用EXPLAIN语句查看索引的示例代码: sql EXPLAIN SELECT FROM articles WHERE a = 'value'; 上述代码将会返回一个查询执行计划,其中包含了索引"idx_articles_a"的相关信息。如果索引被正确地使用了,那么查询的速度就会大大提高。 总结 总的来说,创建一个可以显示值出来的索引并不复杂,只需要使用CREATE INDEX语句指定要创建索引的表和字段即可。但是,想要构建一个恰到好处的索引真心不是个轻松活儿,这中间要考虑的因素可多了去了,像什么表的大小啊、查询的频率和复杂程度啊、数据分布的情况等等,都得琢磨透彻才行。所以在实际操作里头,咱们往往得不断试错、反复调校,才能摸清最高效的索引方法。这就像炒菜一样,不经过多次实践尝试,哪能调出最美味的佐料比例呢?同时呢,咱们也得时刻留意着索引的使用状况,一旦发现有啥苗头不对劲的地方,就得赶紧出手把它解决掉,避免出现更大的麻烦。
2023-07-04 17:44:31
346
梦幻星空_t
ClickHouse
...的选择。它是一个开源分布式列式数据库系统,专为大规模的数据分析而设计。本文将探讨如何在ClickHouse中实现高效的实时数据流处理。 二、ClickHouse简介 ClickHouse是Yandex开发的一个高性能列存储查询引擎,用于在线分析处理(OLAP)。它的最大亮点就是速度贼快,能够瞬间处理海量数据,而且超级贴心,支持多种查询语言,SQL什么的都不在话下。 三、实时数据流处理的重要性 实时数据流处理是指对实时生成的数据进行及时处理,以便于用户能够获取到最新的数据信息。这对于许多实际的业务操作而言,那可是相当关键的呢,比如咱平时的金融交易啦,还有电商平台给你推荐商品这些场景,都离不开这个重要的因素。 四、ClickHouse的实时数据流处理能力 ClickHouse能够高效地处理实时数据流,其主要原因在于以下几个方面: 1. 列式存储 ClickHouse采用列式存储方式,这意味着每一列数据都被独立存储,这样可以大大减少磁盘I/O操作,从而提高查询性能。 2. 分布式架构 ClickHouse采用分布式架构,可以在多台服务器上并行处理数据,进一步提高了处理速度。 3. 内存计算 ClickHouse支持内存计算,这意味着它可以将数据加载到内存中进行处理,避免了频繁的磁盘I/O操作。 五、如何在ClickHouse中实现高效的实时数据流处理? 下面我们将通过一些具体的示例来讲解如何在ClickHouse中实现高效的实时数据流处理。 1. 数据导入 首先,我们需要将实时数据导入到ClickHouse中。这其实可以这么办,要么直接用ClickHouse的客户端进行操作,要么选择其他你熟悉的方式实现,就像我们平常处理问题那样,灵活多变,总能找到适合自己的路径。例如,我们可以通过以下命令将CSV文件中的数据导入到ClickHouse中: sql CREATE TABLE my_table (id UInt32, name String) ENGINE = MergeTree() ORDER BY id; INSERT INTO my_table SELECT toUInt32(number), format('%.3f', number) FROM system.numbers LIMIT 1000000; 这个例子中,我们首先创建了一个名为my_table的表,然后从system.numbers表中选择了前一百万个数字,并将它们转换为整型和字符串类型,最后将这些数据插入到了my_table表中。 2. 实时查询 接下来,我们可以使用ClickHouse的实时查询功能来处理实时数据。例如,我们可以通过以下命令来查询my_table表中的最新数据: sql SELECT FROM my_table ORDER BY id DESC LIMIT 1; 这个例子中,我们首先按照id字段降序排列my_table表中的所有数据,然后返回排名最高的那条数据。 3. 实时聚合 除了实时查询之外,我们还可以使用ClickHouse的实时聚合功能来处理实时数据。例如,我们可以通过以下命令来统计my_table表中的数据数量: sql SELECT count(), sum(id) FROM my_table GROUP BY id ORDER BY id; 这个例子中,我们首先按id字段对my_table表中的数据进行分组,然后统计每组的数量和id总和。 六、总结 通过以上的内容,我们可以看出ClickHouse在处理实时数据流方面具有很大的优势。无论是数据导入、实时查询还是实时聚合,都可以通过ClickHouse来高效地完成。如果你现在正琢磨着找一个能麻溜处理实时数据的神器,那我跟你说,ClickHouse绝对值得你考虑一下。它在处理实时数据流方面表现可圈可点,可以说是相当靠谱的一个选择!
2024-01-17 10:20:32
537
秋水共长天一色-t
ElasticSearch
...程中,可以直接在目标系统内完成数据清洗和转换工作,不仅减少了数据传输延迟,还提升了整体系统的稳定性和效率。 此外,对于大规模数据迁移项目,还需要考虑性能调优、分布式架构下的数据一致性问题以及安全性等方面的挑战。近期的一篇来自InfoQ的技术文章《Elasticsearch实战:从关系数据库迁移数据的最佳实践》深入探讨了这些话题,并结合实际案例给出了详细的解决方案和最佳实践建议。 因此,对于想要深入了解如何高效、安全地将关系数据库数据迁移至ElasticSearch的读者来说,紧跟最新的技术动态,研读相关实战经验和行业白皮书,将有助于更好地应对大数据时代下复杂的数据管理和分析需求。
2023-06-25 20:52:37
457
梦幻星空-t
Kylin
... 一个开源框架,用于分布式处理大规模数据。Hadoop生态系统包括HDFS(分布式文件系统)和MapReduce,常与Apache Hudi等工具一起用于构建数据湖和实时数据处理。 Delta Lake , 一种存储模式,它在Hadoop中实现了版本控制,使得数据可以被高效地写入、修改和查询。Delta Lake与Hudi结合,提供了实时数据湖解决方案,适用于需要频繁更新的数据场景。
2024-06-10 11:14:56
232
青山绿水
转载文章
...,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 Liunx章节笔记 第一章:初识Linux 第二章:Linux 系统目录结构 第三章:文件管理与常用命令 第四章:Vi和Vim编辑器及常用命令 第五章:用户管理与开关机 第六章:组管理和权限管理 第七章:crond(crontab)定时任务调度 第八章:Linux网络配置与信息安全 第九章:磁盘管理 第十章:Linux进程管理 第十一章:rpm与yum包管理器 第十二章:shell编程 第十三章:环境搭建 本篇文章为转载内容。原文链接:https://blog.csdn.net/du1990Luck/article/details/125693388。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-08 09:55:12
292
转载
Kubernetes
...够,路径不合拍,文件系统不认你,或者是哪个设置不小心搞错了,总之就是挂载路上遇到阻碍了。你知道吗,那个"exit status"后面的小数字就像个神秘的密码,它其实是个超级详细的错误信号灯,能帮咱们精准地找出问题出在哪儿。 三、问题分类与排查 1. 权限问题 bash kubectl logs -n | grep "Permission denied" 如果输出中有类似信息,检查PV的owner和group是否与Pod的对应设置一致,或者给予Pod适当的权限。 2. 路径冲突 yaml apiVersion: v1 kind: PersistentVolumeClaim metadata: name: pv-volume-claim spec: accessModes: [ "ReadWriteOnce" ] storageClassName: standard resources: requests: storage: 1Gi --- apiVersion: apps/v1 kind: Deployment metadata: name: my-app spec: template: metadata: name: my-pod spec: containers: - name: my-container volumeMounts: - mountPath: /data name: pv-volume subPath: 检查subPath是否指向了已存在的目录,如果有冲突,可能需要调整路径或清理。 3. 文件系统类型不兼容 yaml apiVersion: v1 kind: PersistentVolume metadata: name: pv-volume spec: storageClassName: nfs capacity: storage: 1Gi nfs: path: /export/mydata 确保PV的存储类型与Pod中期望的挂载类型匹配,如NFS、HostPath等。 四、解决方案与实践 1. 更新权限 bash kubectl exec -it -- chown : /path/to/mount 2. 调整Pod配置 如果是路径冲突,可以修改Pod的subPath,或者在创建PV时指定一个特定的挂载点。 3. 修改PV类型 yaml apiVersion: v1 kind: PersistentVolume spec: ... fsType: ext4 更改为与应用兼容的文件系统类型 五、预防措施 - 定期检查集群资源和配置,确保PV与Pod之间的映射正确。 - 使用Kubernetes的健康检查机制,监控挂载状态,早期发现问题。 - 在应用部署前,先在测试环境中验证PV的挂载。 六、结语 解决“MountVolumeSetUp failed”错误并不是一次性的任务,而是一个持续的过程,需要我们对Kubernetes有深入的理解和实践经验。通过以上步骤和实例,相信你已经在处理这类问题上更加得心应手了。记住,遇到问题不要慌张,一步步分析,代码调试,总能找到答案。Happy Kubernetesing!
2024-05-03 11:29:06
131
红尘漫步
Flink
...代码揭示其背后的资源配置策略。 2. Flink on YARN部署初探 2.1 部署原理 当我们选择在YARN上运行Flink时,实质上是将Flink作为一个YARN应用来部署。YARN就像个大管家,它会专门给Flink搭建一个叫做Application Master的“指挥部”。这个“AM”呢,就负责向YARN这位资源大佬申请干活所需要的“粮草物资”,然后根据Flink作业的具体需求,派遣出一队队TaskManager“小分队”去执行实际的计算任务。 bash 启动Flink作业在YARN上的Application ./bin/flink run -m yarn-cluster -yn 2 -ys 1024 -yjm 1024 -ytm 2048 /path/to/your/job.jar 上述命令中,-yn指定了TaskManager的数量,-ys和-yjm分别设置了每个容器的内存大小和Application Master的内存大小,而-ytm则定义了每个TaskManager的内存大小。 2.2 配置详解 - -m yarn-cluster 表示在YARN集群模式下运行Flink作业。 - -yn 参数用于指定TaskManager的数量,可以根据实际需求调整以适应不同的并发负载。 - -ys、-yjm 和 -ytm 则是针对YARN资源的细致调控,确保Flink作业能在合理利用集群资源的同时,避免因资源不足而导致的性能瓶颈或OOM问题。 3. 资源管理策略揭秘 3.1 动态资源分配 Flink on YARN支持动态资源分配,即在作业执行过程中,根据当前负载情况自动调整TaskManager的数量。这种策略极大地提高了资源利用率,特别是在应对实时变化的工作负载时表现突出。 3.2 Slot分配机制 在Flink内部,资源被抽象为Slots,每个TaskManager包含一定数量的Slot,用来执行并行任务。在YARN这个大环境下,我们能够灵活掌控每个TaskManager能同时处理的任务量。具体来说,就是可以根据TaskManager内存的大小,还有咱们预先设置的slots数量,来精准调整每个TaskManager的承载能力,让它恰到好处地执行多个任务并发运行。 例如,在flink-conf.yaml中设置: yaml taskmanager.numberOfTaskSlots: 4 这意味着每个TaskManager将提供4个slot,也就是说,理论上它可以同时执行4个并发任务。 3.3 自定义资源请求 对于特殊的场景,如GPU密集型或者高CPU消耗的作业,我们还可以自定义资源请求,向YARN申请特定类型的资源。不过这需要YARN环境本身支持异构资源调度。 4. 结语 关于Flink on YARN的思考与讨论 理解并掌握Flink on YARN的部署与资源管理策略,无疑能够帮助我们在面对复杂的大数据应用场景时更加游刃有余。不过同时也要留意,实际操作时咱们得充分照顾到业务本身的特性,还有集群当前的资源状况,像玩拼图一样灵活运用这些策略。不断去微调、优化资源分配的方式,确保Flink能在YARN集群里火力全开,达到最佳效能状态。在这个过程中,我们会不断地挠头琢磨、动手尝试、努力改进,这恰恰就是大数据技术最吸引人的地方——它就像一座满是挑战的山峰,但每当你攀登上去,就会发现一片片全新的风景,充满着无限的可能性和惊喜。 通过以上的阐述和示例,希望你对Flink on YARN有了更深的理解,并在未来的工作中能更好地驾驭这一强大的工具。记住,技术的魅力在于实践,不妨现在就动手试一试吧!
2023-09-10 12:19:35
463
诗和远方
Golang
...stgreSQL托管服务现全面支持Golang的cloud.google.com/go/sqlconnlib库,为开发者提供更便捷、高效且与云平台深度集成的数据库连接管理方案。这一更新不仅提升了Golang在企业级数据处理场景下的表现,也凸显出业界对Golang在高并发、低延迟环境下处理数据能力的认可。 同时,随着Kubernetes等容器编排技术的发展,Golang因其高效的性能及良好的并发支持,在构建云原生数据库代理(如ProxySQL)等方面崭露头角。这些中间件可以有效优化数据库访问,提升整体系统的稳定性和可扩展性。 此外,许多开源项目如BoltDB(键值存储)、CockroachDB(分布式SQL数据库)等也在利用Golang的独特优势探索新的数据持久化解决方案,持续推动着数据库技术领域的创新与发展。 因此,对于热衷于数据持久化存储技术并希望跟进行业趋势的开发者来说,持续跟踪Golang在数据库处理方面的最新进展,深入研究其实际案例与最佳实践,将有助于不断提升自身技术水平,并在实际项目中发挥更大价值。
2023-03-23 17:32:03
470
冬日暖阳-t
Struts2
...解决方案后,我们不难发现,在实际的Web开发过程中,框架的配置与资源管理是开发者需要持续关注和细致处理的关键环节。近期,Apache Struts官方团队对框架的安全性和稳定性进一步加强,发布了若干更新版本,修复了部分可能导致资源加载失败或路径解析异常的问题。因此,对于正在使用Struts2进行项目开发的团队而言,及时跟进官方发布的版本更新与安全公告至关重要。 此外,随着微服务架构和前后端分离技术的发展,现代Web应用开发越来越倾向于采用更轻量级、模块化的解决方案,如Spring Boot和React/Vue等前端框架结合使用。这些新型技术栈通过清晰的路由管理和资源加载机制,有效地避免了传统MVC框架中可能遇到的资源定位难题。尽管如此,理解并掌握像Struts2这样的老牌框架在处理请求映射及资源访问时的工作原理,不仅有助于解决现有系统中的问题,也有助于开发者更好地理解和适应不断演进的Web开发趋势,提升自身技术栈的深度与广度。同时,无论技术如何变迁,代码编写时遵循规范、细致配置以及严谨调试的原则始终不变,这也是每一位开发者在面对各类技术挑战时应当秉持的基本素养。
2024-01-24 17:26:04
170
清风徐来
MyBatis
...续演进以及云原生、微服务架构的广泛应用,MyBatis 3.5版本中引入了对Java 8日期时间API的全面支持,开发者可以直接使用LocalDate、LocalDateTime等类型,并且MyBatis内置的TypeHandler已经提供了对应的数据库类型映射。 此外,对于复杂类型如JSON或XML数据,在MyBatis中也有了更灵活的处理方式。例如,通过Jackson库或者Gson库将Java对象序列化为JSON字符串存储至数据库TEXT类型字段,同时利用MyBatis的TypeHandler进行反序列化,实现了与NoSQL数据库类似的便捷操作。 在实际项目开发中,为了提高代码可读性和维护性,推荐遵循领域驱动设计(DDD)原则,结合MyBatis的特性进行实体类的设计与映射配置。例如,可以运用自定义通用型TypeHandler来处理特定业务场景下的类型转换问题,以降低耦合度,提升系统扩展性。 另外,值得注意的是,随着JPA等规范的发展,Spring Data JPA作为基于JPA规范的持久层解决方案,提供了更为强大的自动类型映射能力,对于简化开发工作流和团队协作具有显著优势。然而,尽管如此,MyBatis因其高度的灵活性和对复杂SQL查询的强大支持,在许多大型项目中仍然保持着不可替代的地位。 综上所述,了解并掌握MyBatis的数据类型映射原理及其实战技巧,结合当下前沿技术动态,有助于我们在项目实践中更好地权衡选择,优化数据访问层的实现方案。
2023-12-18 11:45:51
120
半夏微凉-t
Tomcat
...:web.xml文件配置错误深度解析 0 1. 引言 在Java Web开发中,Apache Tomcat作为一款广泛使用的开源应用服务器,承载着运行和部署Servlet与JSP的重要职责。不过,在咱们实际动手部署的时候,经常会遇到这么个烦人的问题:“web.xml那个配置文件捣乱了,要么是格式整得不对劲儿,要么就是漏掉了些必不可少的小元件,导致应用程序没法顺利部署。”这篇东西,咱们会来个深度大揭秘,手把手带你直捣黄龙,把这个棘手的问题掰开揉碎了看透彻,并且配上一些实实在在的代码实例,保证让你和我一起把这道难题给攻克下来! 0 2. web.xml文件的重要性 在Tomcat中,web.xml 文件被称为Web应用程序的部署描述符,它是Java Web应用程序的核心配置文件,负责定义Servlet、过滤器(Filter)、监听器(Listener)以及初始化参数等关键信息。如果这个文件有格式错误或者漏掉了必不可少的东西,那就像是船长发现航海图不见了,肯定会导致我们的应用程序没法正常启动和运行,就像船只失去了方向,在大海上乱转悠一样。 0 3. 常见的web.xml文件配置错误及案例分析 (1) 格式错误 xml MyServlet com.example.MyServlet 上述代码中,根元素 是无效的,正确的应该是 。这种看似不起眼的小拼写错误,实际上却会让Tomcat彻底懵圈,连整个配置文件都解析不了! (2) 必要元素缺失 xml MyServlet com.example.MyServlet 在此例中,虽然定义了一个名为MyServlet的Servlet,但未对其进行URL映射,因此外部无法通过任何URL访问到这个Servlet。 0 4. 解决之道 细致检查与修正web.xml 面对这类问题,我们的处理方式应当是: - 逐行审查:对web.xml文件进行仔细阅读和检查,确保每个标签都符合规范且闭合正确。 - 参考文档:查阅官方文档(如Oracle Java EE 8教程)以了解web.xml文件的基本结构及其包含的必要元素。 - 使用工具辅助:利用IDE(如IntelliJ IDEA或Eclipse)自带的XML语法检查功能,能有效发现并提示潜在的格式错误。 - 补全缺失元素:例如对于上述Servlet映射缺失的情况,补充对应的servlet-mapping元素即可。 0 5. 总结与思考 在Java Web应用部署至Tomcat的过程中,遇到web.xml文件配置错误时,我们需要像侦探一样细致入微地排查每一个细节,同时结合理论知识和实践操作来解决问题。只有这样,才能确保我们的应用程序能够顺利启航,稳健运行。请记住,无论技术多么复杂,往往一个小细节就可能成为决定成败的关键,而这也是编程的魅力所在——严谨而又充满挑战!
2023-08-20 15:01:52
346
醉卧沙场
转载文章
...,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 JeeWx捷微V3.3版本发布——微信管家平台(支持微信公众号,微信企业号,支付窗) JeeWx捷微V3.3版本紧跟微信小程序更新,在原有多触点版本基础上,引入了更多的新亮点,支持微信公众号、微信企业号、支付宝服务窗等多触点开发,采用微服务框架实现,可插拔可集成,轻量级开发,对小程序的接入和应用进行了探索和封装。JEEWX将继续引领未来多触点模式的应用,并将拥抱小程序,是开发互联网运营推广项目的首选(微信、企业号、支付窗、微博、小程序等等)。 一、升级日志 升级spring版本4.x,解决jdk8支持问题。 用户重置密码样式问题; 升级jeewx-api 升级小程序接口; 精简maven pom的引用删掉不需要的依赖; 增加 H+页面首页风格。 升级封装的第三方平台接口 升级上传其他媒体素材接口,兼容缩略图 增加获取接口分析数据接口 增加评论相关接口 升级minidao 版本号 二、平台功能介绍 【微信公众号】 1. 微信账号管理 2. 微信菜单管理 3. 关注欢迎语 4. 关键字管理 5. 自定义菜单 6. 小程序链接 7. 文本素材管理 8. 图文素材管理 9. 微信永久素材 10. 支持多公众号 11. 微信大转盘 12. 微信刮刮乐 13. 微网站 14. 翻译 15. 天气 16. author2.0链接 17. 微信第三方平台(全网发布) 18. 长链接转短连接 19. 系统用户管理 20. 系统用户角色 21. 系统菜单管理 【微信企业号】 1. 微信企业号管理 2. 微信应用管理 3. 素材管理:文本素材 4. 素材管理:图文素材 5. 菜单管理 6. 通讯录管理 7. 用户管理 8. 用户消息管理 9. 用户消息快捷回复 10. 关键字管理 11. 关注回复管理 12. 企业号群发功能 13. 企业号群发日志 【支付宝服务窗】 1. 支付窗账号管理 2. 关键字管理 3. 素材管理:文本素材 4. 素材管理:图文素材 5. 关注回复 6. 菜单管理 7. 用户管理 8. 用户消息 9. 用户消息快捷回复 10. 支付窗群发 11. 支付窗群发记录 三、下载地址 源码下载: http://git.oschina.net/jeecg/jeewx 官方网站: www.jeewx.com QQ技术群: 287090836 体验公众号: 四、系统演示 本篇文章为转载内容。原文链接:https://blog.csdn.net/zhangdaiscott/article/details/90769252。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-08-22 14:35:00
297
转载
Sqoop
...于在Hadoop生态系统(如HDFS、Hive)和关系型数据库(如MySQL、Oracle)之间高效地传输大量数据。它利用MapReduce框架实现数据的并行处理,支持多种数据源,并可通过配置不同的连接器来满足不同的数据传输需求。 HDFS , HDFS(Hadoop Distributed File System)是Hadoop生态系统中的分布式文件系统,专门设计用于存储大规模数据集。它具有高容错性,能够提供对应用程序数据的高吞吐量访问,适用于大规模数据集的存储和处理场景。 MapReduce , MapReduce是一种编程模型,用于处理和生成大数据集。它将任务分解为两个主要阶段。
2025-01-28 16:19:24
117
诗和远方
Datax
...理。 该企业在实践中发现,单纯依赖Datax的基础功能无法满足复杂多变的数据质量问题,于是自主研发了一套基于机器学习的数据质量检测系统,能自动识别并修正异常数据,有效提升了整体数据链路的质量水平。此外,企业还引入了领域专家知识和业务规则,通过精细化配置实现对特定场景下数据逻辑一致性的深度验证。 与此同时,国内外多家大数据服务提供商也在不断优化和完善其数据质量管理解决方案,将Datax等ETL工具与先进的数据分析算法相结合,为用户提供从数据接入、处理到分析的一站式服务。例如,近期Teradata推出的全新数据验证模块,无缝集成于Datax流程中,提供了更为全面的数据正确性检验机制。 总之,在利用Datax等工具进行数据处理的同时,与时俱进地引入智能化手段和行业最佳实践,才能真正让企业的数据资产“活”起来,为企业决策提供坚实可靠的依据。
2023-05-23 08:20:57
281
柳暗花明又一村-t
Gradle
... Gradle与CI服务器集成 在实际的持续集成流程中,Gradle常与Jenkins、Travis CI、CircleCI等CI服务器无缝集成。比如在Jenkins中,我们可以配置一个Job来执行Gradle的特定构建任务: bash Jenkins Job 配置示例 Invoke Gradle script: gradle clean build 当代码提交后,Jenkins会自动触发此Job,执行Gradle命令完成项目的清理、编译、测试等一系列构建过程。 5. 结论与思考 Gradle凭借其强大的构建能力和出色的灵活性,在持续集成实践中展现出显著优势。无论是把构建流程化繁为简,让依赖管理变得更溜,还是能同时hold住多个项目的构建,都实实在在地让持续集成工作跑得更欢、掌控起来更有底气。随着项目越做越大,复杂度越来越高,要想玩转持续集成,Gradle这门手艺可就得成为每位开发者包包里的必备神器了。理解它,掌握它,就像解锁了一个开发新大陆,让你在构建和部署的道路上走得更稳更快。不过呢,咱们也得把注意力转到提升构建速度、优化缓存策略这些点上,这样才能让持续集成的效果和效率更上一层楼。毕竟,让Gradle在CI中“跑得更快”,才能更好地赋能我们的软件开发生命周期。
2023-07-06 14:28:07
440
人生如戏
PostgreSQL
问题概述 系统日志文件过大或无法写入是一个常见的问题,它可能会导致系统性能下降,甚至完全无法运行。这些问题通常发生在处理大量数据或者长时间运行的系统中。 什么是PostgreSQL? PostgreSQL是一款强大的开源关系型数据库管理系统(RDBMS)。这个家伙能够应对各种刁钻复杂的查询,而且它的内功深厚,对数据完整性检查那是一把好手,存储能力也是杠杠的,绝对能给你稳稳的安全感。然而,你知道吗,就像其他那些软件一样,PostgreSQL这小家伙有时候也会闹点小脾气,比如可能会出现系统日志文件长得像个大胖子,或者直接耍起小性子、拒绝写入新内容的情况。 系统日志文件过大或无法写入的原因 系统日志文件过大通常是由于以下原因: 1. 日志级别设置过高 如果日志级别被设置为DEBUG或TRACE,那么每次执行操作时都会生成一条日志记录,这将迅速增加日志文件的大小。 2. 没有定期清理旧的日志文件 如果没有定期删除旧的日志文件,新的日志记录就会不断地追加到现有的日志文件中,使得日志文件越来越大。 3. 数据库服务器内存不足 如果数据库服务器的内存不足,那么操作系统可能会选择将部分数据写入磁盘而不是内存,这就可能导致日志文件增大。 系统日志文件无法写入通常是由于以下原因: 1. 磁盘空间不足 如果磁盘空间不足,那么新的日志记录将无法被写入磁盘,从而导致无法写入日志文件。 2. 文件权限错误 如果系统的用户没有足够的权限来写入日志文件,那么也无法写入日志文件。 3. 文件系统错误 如果文件系统出现错误,那么也可能会导致无法写入日志文件。 如何解决系统日志文件过大或无法写入的问题 解决系统日志文件过大的问题 要解决系统日志文件过大的问题,我们可以采取以下步骤: 1. 降低日志级别 我们可以通过修改配置文件来降低日志级别,只记录重要的日志信息,减少不必要的日志记录。 2. 定期清理旧的日志文件 我们可以编写脚本,定期删除旧的日志文件,释放磁盘空间。 3. 增加数据库服务器的内存 如果可能的话,我们可以增加数据库服务器的内存,以便能够更好地管理日志文件。 以下是一个使用PostgreSQL的示例代码,用于降低日志级别: sql ALTER LOGGING lc_messages TO WARNING; 以上命令会将日志级别从DEBUG降低到WARNING,这意味着只有在发生重要错误或警告时才会生成日志记录。 以下是一个使用PostgreSQL的示例代码,用于删除旧的日志文件: bash !/bin/bash 获取当前日期 today=$(date +%Y%m%d) 删除所有昨天及以前的日志文件 find /var/log/postgresql/ -type f -name "postgresql-.log" -mtime +1 -exec rm {} \; 以上脚本会在每天凌晨执行一次,查找并删除所有的昨天及以前的日志文件。 解决系统日志文件无法写入的问题 要解决系统日志文件无法写入的问题,我们可以采取以下步骤: 1. 增加磁盘空间 我们需要确保有足够的磁盘空间来保存日志文件。 2. 更改文件权限 我们需要确保系统的用户有足够的权限来写入日志文件。 3. 检查和修复文件系统 我们需要检查和修复文件系统中的错误。 以下是一个使用PostgreSQL的示例代码,用于检查和修复文件系统: bash sudo fsck -y / 以上命令会检查根目录下的文件系统,并尝试修复任何发现的错误。 结论 总的来说,系统日志文件过大或无法写入是一个常见的问题,但是只要我们采取适当的措施,就可以很容易地解决这个问题。咱们得养成定期检查系统日志文件的习惯,这样一来,一旦有啥小状况冒出来,咱们就能第一时间发现,及时对症下药,拿出应对措施。同时呢,咱们也得留个心眼儿,好好保护咱的系统日志文件,别一不留神手滑给删了,或者因为其他啥情况把那些重要的日志记录给弄丢喽。
2023-02-17 15:52:19
232
凌波微步_t
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
tar -cvzf archive.tar.gz file_or_directory
- 创建gzip压缩格式的tar归档包。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"