前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[服务发现与配置中心Nacos远程访问正常...]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
ClickHouse
... 2. 内存限制配置项 (1) max_memory_usage:这是ClickHouse中最重要的内存使用限制参数,它控制单个查询能使用的最大内存量。例如: xml 10000000000 (2) max_server_memory_usage 和 max_server_memory_usage_to_ram_ratio:这两个参数用于限制整个服务器级别的内存使用量。例如: xml 20000000000 0.75 3. 调整内存分配策略 在理解了基本的内存限制参数后,我们可以根据业务需求进行精细化调整。比如,设想你面对一个需要处理大量排序任务的情况,这时候你可以选择调高那个叫做 max_bytes_before_external_sort 的参数值,这样一来,更多的排序过程就能在内存里直接完成,效率更高。反过来讲,如果你的内存资源比较紧张,像个小气鬼似的只有一点点,那你就得机智点儿,适当地把这个参数调小,这样能有效防止内存被塞爆,让程序运行更顺畅。 xml 5000000000 同时,对于join操作,max_bytes_in_join 参数可以控制JOIN操作在内存中的最大字节数。 xml 2000000000 4. 动态调整与监控 为了实时了解和调整内存使用情况,ClickHouse提供了内置的系统表 system.metrics 和 system.events,你可以通过查询这些表获取当前的内存使用状态。例如: sql SELECT FROM system.metrics WHERE metric LIKE '%memory%' OR metric = 'QueryMemoryLimitExceeded'; 这样你就能实时观测到各个内存相关指标的变化,并据此动态调整上述各项内存配置参数,实现最优的资源利用率。 5. 思考与总结 调整ClickHouse集群的内存使用并非一蹴而就的事情,需要结合具体的业务场景、数据规模以及硬件资源等因素综合考虑。在实际操作中,我们得瞪大眼睛去观察、开动脑筋去思考、动手去做实验,不断捣鼓和微调那些内存相关的配置参数。目标就是要让内存物尽其用,嗖嗖地提高查询速度,同时也要稳稳当当地保证系统的整体稳定性,两手抓,两手都要硬。同时呢,给内存设定个合理的限额,就像是给它装上了一道安全阀,既能防止那些突如其来的内存爆满状况,还能让咱的ClickHouse集群变得更为结实耐用、易于管理。这样一来,它就能更好地担当起数据分析的大任,更加给力地为我们服务啦!
2023-03-18 23:06:38
492
夜色朦胧
Datax
...ataX的基本原理与配置 首先,理解DataX的工作原理至关重要。DataX通过定义job.json配置文件,详细描述了数据源、目标源以及数据迁移的规则。每次当你运行DataX命令的时候,它就像个聪明的小家伙,会主动去翻开配置文件瞧一瞧,然后根据里边的“秘籍”来进行数据同步这个大工程。 例如,以下是一个简单的DataX同步MySQL到HDFS的job.json配置示例: json { "job": { "content": [ { "reader": { "name": "mysqlreader", "parameter": { "username": "root", "password": "your_password", "connection": [ { "jdbcUrl": ["jdbc:mysql://localhost:3306/test?useSSL=false"], "table": ["table_name"] } ] } }, "writer": { "name": "hdfswriter", "parameter": { "path": "/user/hive/warehouse/table_name", "defaultFS": "hdfs://localhost:9000", "fileType": "text", "fieldDelimiter": "\t" } } } ], "setting": { "speed": { "channel": "5" } } } } 这段代码告诉DataX从MySQL的test数据库中读取table_name表的数据,并将其写入HDFS的指定路径。 2. 数据自动更新功能的实现策略 那么,如何实现数据自动更新呢?这就需要借助定时任务调度工具(如Linux的cron job、Windows的任务计划程序或者更高级的调度系统如Airflow等)。 2.1 定义定期运行的DataX任务 假设我们希望每天凌晨1点整自动同步一次数据,可以设置一个cron job如下: bash 0 1 /usr/local/datax/bin/datax.py /path/to/your/job.json 上述命令将在每天的凌晨1点执行DataX同步任务,使用的是预先配置好的job.json文件。 2.2 增量同步而非全量同步 为了实现真正的数据自动更新,而不是每次全量复制,DataX提供了增量同步的方式。比如对于MySQL,可以通过binlog或timestamp等方式获取自上次同步后新增或修改的数据。 这里以timestamp为例,可以在reader部分添加where条件筛选出自特定时间点之后更改的数据: json "reader": { ... "parameter": { ... "querySql": [ "SELECT FROM table_name WHERE update_time > 'yyyy-MM-dd HH:mm:ss'" ] } } 每次执行前,你需要更新这个update_time条件为上一次同步完成的时间戳。 2.3 持续优化和监控 实现数据自动更新后,别忘了持续优化和监控DataX任务的执行情况,确保数据准确无误且及时同步。你完全可以瞅瞅DataX的运行日志,就像看故事书一样,能从中掌握任务执行的进度情况。或者,更酷的做法是,你可以设定一个警报系统,这样一来,一旦任务不幸“翻车”,它就会立马给你发消息提醒,让你能够第一时间发现问题并采取应对措施。 结语 综上所述,通过结合DataX的数据同步能力和外部定时任务调度工具,我们可以轻松实现数据的自动更新功能。在实际操作中,针对具体配置、数据增量同步的策略还有后期维护优化这些环节,咱们都需要根据业务的实际需求和数据的独特性,灵活机动地进行微调优化。就像是烹饪一道大餐,火候、配料乃至装盘方式,都要依据食材特性和口味需求来灵活掌握,才能确保最终的效果最佳!这不仅提升了工作效率,也为业务决策提供了实时、准确的数据支持。每一次成功实现数据同步的背后,都藏着我们技术人员对数据价值那份了如指掌的深刻理解和勇往直前的积极探索精神。就像是他们精心雕琢的一样,把每一个数据点都视若珍宝,不断挖掘其隐藏的宝藏,让数据真正跳动起来,服务于我们的工作与生活。
2023-05-21 18:47:56
482
青山绿水
SpringBoot
...? 一、引言 随着微服务架构的发展,消息队列已经成为分布式系统中的重要组件之一。RocketMQ这款消息中间件,性能超群、坚如磐石,早已成为分布式系统开发领域的“香饽饽”,被各种各样的项目团队热烈追捧并广泛应用着。这篇东西咱们要掰开了揉碎了讲讲怎么用Spring Boot给RocketMQ发生产者消息,而且还要重点聊聊万一消息发送失败,在进行重试时怎么巧妙避免再次把消息送到同一条Broker上。 二、背景介绍 在使用RocketMQ进行消息发送时,通常情况下我们会设置一个重试机制,以应对可能出现的各种网络、服务器等不可控因素导致的消息发送失败。但是,如果不加把劲儿控制一下,这种重试机制就很可能像一群疯狂的粉丝不断涌向同一个明星那样,让同一台Broker承受不住压力,这样一来,严重的性能问题也就随之爆发喽。所以呢,我们得在重试这套流程里头动点脑筋,加点策略进去。这样一来,当生产者小哥遇到状况失败了,就能尽可能地绕开那些已经闹情绪的Broker家伙,不让它们再添乱。 三、解决方案 为了解决这个问题,我们可以采用以下两种方案: 1. 设置全局的Broker列表 在创建Producer实例时,我们可以指定一个包含所有Broker地址的列表,然后在每次重试时随机选择一个Broker进行发送。这样可以有效地避免过多的请求集中在某一台Broker上,从而降低对Broker的压力。以下是具体的代码实现: java List brokers = Arrays.asList("broker-a", "broker-b", "broker-c"); Set failedBrokers = new HashSet<>(); public void sendMessage(String topic, String body) { for (int i = 0; i < RETRY_TIMES; i++) { Random random = new Random(); String broker = brokers.get(random.nextInt(brokers.size())); if (!failedBrokers.contains(broker)) { try { producer.send(topic, new MessageQueue(topic, broker, 0), new DefaultMQProducer.SendResultHandler() { @Override public void onSuccess(SendResult sendResult) { System.out.println("Message send success"); } @Override public void onException(Throwable e) { System.out.println("Message send exception: " + e.getMessage()); failedBrokers.add(broker); } }); return; } catch (Exception e) { System.out.println("Message send exception: " + e.getMessage()); failedBrokers.add(broker); } } } System.out.println("Message send fail after retrying"); } 在上述代码中,我们首先定义了一个包含所有Broker地址的列表brokers,然后在每次重试时随机选择一个Broker进行发送。如果该Broker在之前已经出现过错误,则将其添加到已失败的Broker集合中。在下一次重试时,我们不再选择这个Broker。 2. 利用RocketMQ提供的重试机制 除了手动设置Broker列表之外,我们还可以利用RocketMQ自带的重试机制来达到相同的效果。简单来说,我们可以搞个“RetryMessageListener”这个小家伙来监听一下,它的任务就是专门盯着RocketMQ发出的消息。一旦消息发送失败,它就负责把这些失败的消息重新拉出来再试一次,确保消息能顺利送达。在用这个监听器的时候,我们就能知道当前的Broker是不是还在重试列表里混呢。如果发现它在的话,那咱们就麻利地把它从列表里揪出来;要是不是,那就继续让它“回炉重造”,执行重试操作呗。以下是具体的代码实现: java public class RetryMessageListener implements MQListenerMessageConsumeOrderlyCallback { private Set retryBrokers = new HashSet<>(); private List brokers = Arrays.asList("broker-a", "broker-b", "broker-c"); @Override public ConsumeConcurrentlyStatus consumeMessage(List msgs, ConsumeConcurrentlyContext context) { for (String broker : brokers) { if (retryBrokers.contains(broker)) { retryBrokers.remove(broker); } } for (String broker : retryBrokers) { try { producer.send(msgs.get(0).getTopic(), new MessageQueue(msgs.get(0).getTopic(), broker, 0),
2023-06-16 23:16:50
40
梦幻星空_t
Spark
...现在正在关注你网站的访问情况,这个Processing Time功能就能马上告诉你,现在到底有多少人在逛你的网站。 以下是使用 Processing Time 处理实时数据的一个简单示例: java val dataStream = spark.readStream.format("socket").option("host", "localhost").option("port", 9999).load() .selectExpr("CAST(text AS STRING)") .withWatermark("text", "1 second") .as[(String, Long)] val query = dataStream.writeStream .format("console") .outputMode("complete") .start() query.awaitTermination() 在这个示例中,我们创建了一个 socket 数据源,然后将其转换为字符串类型,并设置 watermark 为 1 秒。这就意味着,如果我们收到的数据上面的时间戳已经超过1秒了,那这个数据就会被我们当作是迟到了的小淘气,然后选择性地忽略掉它。 三、 Event Time 的处理方式及应用场景 Event Time 是 Spark Structured Streaming 中的另一种时间概念,它是根据事件的实际发生时间来确定的。这就意味着,就算大家在同一秒咔嚓一下按下发送键,由于网络这个大迷宫里可能会有延迟、堵车等各种状况,不同信息到达目的地的顺序可能会乱套,处理起来自然也就可能前后颠倒了。 在处理延迟数据时, Event Time 可能是一个更好的选择,因为它可以根据事件的实际发生时间来确定数据的处理顺序,从而避免丢失数据。比如,你正在处理电子邮件的时候,Event Time这个功能就相当于你的超级小助手,它能确保你按照邮件发送的时间顺序,逐一、有序地处理这些邮件,就像排队一样井然有序。 以下是使用 Event Time 处理延迟数据的一个简单示例: python from pyspark.sql import SparkSession spark = SparkSession.builder.appName("Structured Streaming").getOrCreate() data_stream = spark \ .readStream \ .format("kafka") \ .option("kafka.bootstrap.servers", "localhost:9092") \ .option("subscribe", "my-topic") \ .load() \ .selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)") query = data_stream \ .writeStream \ .format("console") \ .outputMode("append") \ .start() query.awaitTermination() 在这个示例中,我们从 kafka 主题读取数据,并设置 watermark 为 1 分钟。这就意味着,如果我们超过一分钟没收到任何新消息,那我们就会觉得这个topic已经没啥动静了,到那时咱就可以结束查询啦。 四、 结论 在 Spark Structured Streaming 中, Processing Time 和 Event Time 是两种不同的时间概念,它们分别适用于处理实时数据和处理延迟数据。理解这两种时间概念以及如何在实际场景中使用它们是非常重要的。希望这篇文章能够帮助你更好地理解和使用 Spark Structured Streaming。
2023-11-30 14:06:21
106
夜色朦胧-t
MemCache
...中缓存管理问题的研究发现,结合LFU与LRU的变种——TinyLFU算法,在兼顾空间效率与命中率方面表现出显著优势。TinyLFU通过引入“过滤器”机制来预测数据未来访问频率,从而减少了误淘汰热点数据的概率。 同时,云服务提供商如Amazon ElastiCache已在其Redis集群版中实现了多种智能淘汰策略,包括但不限于LRU、TTL以及一种称为“volatile-lru”的混合策略,该策略允许为每个键独立设置过期时间,并在缓存满载时优先淘汰最近最少使用且已过期的数据。 此外,业界对缓存技术的探索并未止步于传统内存数据库,而是开始关注新型存储介质的应用,如Intel Optane持久性内存。这种新型内存能够在断电后仍保留数据,提供了更大规模、更持久的缓存解决方案,有助于应对大数据时代下复杂业务场景带来的挑战。 综上所述,面对不断发展的应用场景和技术环境,深入理解和灵活运用各种缓存策略,适时引入先进技术和硬件支持,对于提升系统性能、降低延迟具有重要意义,也是每一位开发者和架构师持续关注和学习的方向。
2023-09-04 10:56:10
109
凌波微步
Flink
...处理故障,确保任务的正常执行,并尽可能减少数据丢失。在大数据处理中,数据丢失是一个非常严重的问题。所以,对于像Flink这样的流处理工具来说,确保任务的稳定性、不出岔子,那可是头等大事儿! 2. 如何提高Flink任务的可靠性 为了提高Flink任务的可靠性,我们可以采取以下几个措施: 2.1 使用冗余节点 Flink可以通过使用冗余节点来提高任务的可靠性。要是某个节点突然罢工了,其他节点立马就能顶上,继续干活儿,这样一来,数据就不会莫名其妙地失踪啦。比如,我们可以在一个任务集群中同时开启多个任务实例运行,然后在它们跑起来的过程中,实时留意每个节点的健康状况。一旦发现有哪个小家伙闹脾气、出状况了,就立马自动把任务挪到其他正常工作的节点上继续执行。 2.2 设置重试机制 除了使用冗余节点外,我们还可以设置重试机制来提高任务的可靠性。如果某个任务不小心挂了,甭管因为啥原因,我们完全可以让Flink小哥施展它的“无限循环”大法,反复尝试这个任务,直到它顺利过关,圆满达成目标。例如,我们可以使用ExecutionConfig.setRetryStrategy()方法设置重试策略。如果设置的重试次数超过指定值,则放弃尝试。 2.3 使用 checkpoint机制 checkpoint是Flink提供的一种机制,用于定期保存任务的状态。当你重启任务时,可以像游戏存档那样,从上次顺利完成的地方接着来,这样一来,就不容易丢失重要的数据啦。例如,我们可以使用ExecutionConfig.enableCheckpointing()方法启用checkpoint机制,并设置checkpoint间隔时间为一段时间。这样,Flink就像个贴心的小秘书,每隔一会儿就会自动保存一下任务的进度,确保在关键时刻能够迅速恢复状态,一切照常进行。 2.4 监控与报警 最后,我们还需要设置有效的监控与报警机制,及时发现并处理故障。比如,我们能够用像Prometheus这样的神器,实时盯着Flink集群的动静,一旦发现有啥不对劲的地方,立马就给相关小伙伴发警报,确保问题及时得到处理。 3. 示例代码 下面我们将通过一个简单的Flink任务示例,演示如何使用上述方法提高任务的可靠性。 java // 创建一个新的ExecutionConfig对象,并设置重试策略 ExecutionConfig executionConfig = new ExecutionConfig(); executionConfig.setRetryStrategy(new DefaultRetryStrategy(1, 0)); // 创建一个新的JobGraph对象,并添加新的ParallelSourceFunction实例 JobGraph jobGraph = new JobGraph("MyJob"); jobGraph.setExecutionConfig(executionConfig); SourceFunction sourceFunction = new SourceFunction() { @Override public void run(SourceContext ctx) throws Exception { // 模拟生产数据 for (int i = 0; i < 10; i++) { Thread.sleep(1000); ctx.collect(String.valueOf(i)); } } @Override public void cancel() {} }; DataStream inputStream = env.addSource(sourceFunction); // 对数据进行处理,并打印结果 DataStream outputStream = inputStream.map(new MapFunction() { @Override public Integer map(String value) throws Exception { return Integer.parseInt(value); } }); outputStream.print(); // 提交JobGraph到Flink集群 env.execute(jobGraph); 在上述代码中,我们首先创建了一个新的ExecutionConfig对象,并设置了重试策略为最多重试一次,且不等待前一次重试的结果。然后,我们动手捣鼓出了一个崭新的“JobGraph”小玩意儿,并且把它绑定到了我们刚新鲜出炉的“ExecutionConfig”配置上。接下来,我们添加了一个新的ParallelSourceFunction实例,模拟生产数据。然后,我们对数据进行了处理,并打印了结果。最后,我们提交了整个JobGraph到Flink集群。 通过上述代码,我们可以看到,我们不仅启用了Flink的重试机制,还设置了 checkpoint机制,从而提高了我们的任务的可靠性。另外,我们还能随心所欲地增加更多的监控和警报系统,就像是给系统的平稳运行请了个24小时贴身保镖,随时保驾护航。
2023-09-18 16:21:05
414
雪域高原-t
Oracle
...例如,当Oracle发现某字段存在大量重复值时,可能选择全表扫描而非索引扫描,这就是基于统计信息做出的智能决策。 3. 数据统计信息的收集与维护 (1)自动收集 Oracle默认开启了自动统计信息收集任务,如DBMS_STATS.AUTO_STATS_JOB_ENABLED参数设定为TRUE,系统会在适当的时间自动收集统计信息。 sql -- 检查自动统计信息收集是否开启 SELECT name, value FROM v$parameter WHERE name = 'dbms_stats.auto_stats_job_enabled'; (2)手动收集 当然,你也可以根据业务需求手动收集特定表或索引的统计信息: sql -- 手动收集表EMP的统计信息 EXEC DBMS_STATS.GATHER_TABLE_STATS('SCOTT', 'EMP'); -- 收集所有用户的所有对象的统计信息 BEGIN DBMS_STATS.GATHER_DATABASE_STATS; END; / 4. 数据统计信息的解读与应用 (1)查看统计信息 获取表的统计信息,我们可以使用DBA_TAB_STATISTICS视图: sql -- 查看表EMP的统计信息 SELECT FROM dba_tab_statistics WHERE table_name = 'EMP'; (2)基于统计信息的优化 假设我们发现某个索引的基数(distinct_keys)远小于实际行数,这可能意味着该索引的选择性较差,可以考虑优化索引或者调整SQL语句以提高查询效率。 5. 进阶探讨 统计信息的影响与策略 - 影响:统计信息的准确性和及时性直接影响到SQL优化器生成执行计划的质量。过时的统计信息可能导致最优路径未被选中,进而引发性能问题。 - 策略:在高并发、大数据量环境下,我们需要合理设置统计信息的收集频率和时机,避免在业务高峰期执行统计信息收集操作,同时,对关键业务表和索引应定期或按需更新统计信息。 6. 结语 总的来说,Oracle中的数据统计信息像是数据库运行的晴雨表,它默默记录着数据的变化,引导着SQL优化器找到最高效的执行路径。对于我们这些Oracle数据库管理员和技术开发者来说,摸透并熟练运用这些统计信息进行高效管理和巧妙利用,绝对是咱们不可或缺的一项重要技能。想要让咱的数据库系统始终保持巅峰状态,灵活应对各种复杂的业务场景,就得在实际操作中不断瞅瞅、琢磨和调整。就像是照顾一颗生机勃勃的树,只有持续观察它的生长情况,思考如何修剪施肥,适时做出调整,才能让它枝繁叶茂,结出累累硕果,高效地服务于咱们的各项业务需求。
2023-04-01 10:26:02
134
寂静森林
SeaTunnel
... SeaTunnel配置示例 mode: batch 数据源配置 source: type: mysql jdbcUrl: "jdbc:mysql://localhost:3306/test" username: root password: password table: my_table 数据转换(这里暂时为空,但实际可以用于清洗、去重等操作) transforms: 数据目的地(备份到另一个MySQL数据库或HDFS等存储系统) sink: type: mysql jdbcUrl: "jdbc:mysql://backup-server:3306/backup_test" username: backup_root password: backup_password table: backup_my_table 2. 数据备份功能实现 对于数据备份,我们可以将SeaTunnel配置为从生产环境的数据源读取数据,并将其写入到备份存储系统。例如,从MySQL数据库中抽取数据,并存入到另一台MySQL服务器或者HDFS、S3等大数据存储服务: yaml 备份数据到另一台MySQL服务器 sink: type: mysql ... 或者备份数据到HDFS sink: type: hdfs path: /backup/data/ file_type: text 在此过程中,你可以根据业务需求设置定期备份任务,确保数据的实时性和一致性。 3. 数据恢复功能实现 当需要进行数据恢复时,SeaTunnel同样可以扮演关键角色。通过修改配置文件,将备份数据源替换为目标系统的数据源,并重新执行任务,即可完成数据的迁移和恢复。 yaml 恢复数据到原始MySQL数据库 source: type: mysql 这里的配置应指向备份数据所在的MySQL服务器及表信息 sink: type: mysql 这里的配置应指向要恢复数据的目标MySQL服务器及表信息 4. 实践中的思考与探讨 在实际使用SeaTunnel进行数据备份和恢复的过程中,我们可能会遇到一些挑战,如数据量大导致备份时间过长、网络状况影响传输效率等问题。这就需要我们根据实际情况,像变戏法一样灵活调整我们的备份策略。比如说,我们可以试试增量备份这个小妙招,只备份新增或改动的部分,就像给文件更新打个小补丁;或者采用压缩传输的方式,把数据“挤一挤”,让它们更快更高效地在网路上跑起来,这样就能让整个流程更加顺滑、更接地气儿啦。 此外,为了保证数据的一致性,在执行备份或恢复任务时,还需要考虑事务隔离、并发控制等因素,以避免因并发操作引发的数据不一致问题。在SeaTunnel这个工具里头,我们能够借助它那牛哄哄的插件系统和超赞的扩展性能,随心所欲地打造出完全符合自家业务需求的数据备份与恢复方案,就像是量体裁衣一样贴合。 总之,借助SeaTunnel,我们能够轻松实现大规模数据的备份与恢复,保障业务连续性和数据安全性。在实际操作中不断尝试、改进,我坚信你一定能亲手解锁更多SeaTunnel的隐藏实力,让这个工具变成企业数据安全的强大守护神,稳稳地护航你的数据安全。
2023-04-08 13:11:14
115
雪落无痕
DorisDB
... }' 三、配置优化以提升可扩展性 1. 负载均衡 DorisDB支持基于表分区的负载均衡策略,可以根据实际业务需求,合理规划数据分布,确保数据在各BE节点间均匀分散,从而有效利用硬件资源,提高系统整体性能。 2. 并发控制 通过调整max_query_concurrency参数可以控制并发查询的数量,防止过多的并发请求导致系统压力过大。例如,在fe.conf文件中设置: properties max_query_concurrency = 64 3. 扩容实践 随着业务增长,只需在集群中增加更多的BE节点,并通过上述API接口加入到集群中,即可轻松实现水平扩展。整个过程无需停机,对在线服务影响极小。 四、深度思考与探讨 在面对海量数据处理和实时分析场景时,选择正确的配置策略对于DorisDB集群的可扩展性至关重要。这不仅要求我们深入地了解DorisDB这座大楼的地基构造,更要灵活运用到实际业务环境里,像是一个建筑师那样,精心设计出最适合的数据分布布局方案,巧妙实现负载均衡,同时还要像交警一样,智慧地调度并发控制策略,确保一切运作流畅不“堵车”。所以呢,每次我们对集群配置进行调整,就像是在做一场精雕细琢的“微创手术”。这就要求我们得像摸着石头过河一样,充分揣摩业务发展的趋势走向,确保既能稳稳满足眼下的需求,又能提前准备好应对未来可能出现的各种挑战。 总结起来,通过巧妙地配置和管理DorisDB的分布式集群,我们不仅能显著提升系统的可扩展性,还能确保其在复杂的大数据环境下保持出色的性能表现。这就像是DorisDB在众多企业级数据库的大军中,硬是杀出一条血路的独门秘籍,更是我们在实际摸爬滚打中不断求索、打磨和提升的活力源泉。
2024-01-16 18:23:21
396
春暖花开
转载文章
...)、连接池管理和超时设置对提升系统并发能力的重要性。 此外,随着云计算和微服务架构的发展,容器化和Kubernetes等技术普及,针对服务端性能测试和压测工具也不断推陈出新。比如Apache JMeter与locust等开源工具,它们能够模拟大量并发用户访问,对API接口进行压力测试,并提供详尽的性能报告,包括响应时间分布、吞吐量和错误率分析,这对于评估基于Python构建的HTTP服务在真实场景下的表现具有重要意义。 总之,通过学习和掌握Python中处理HTTP请求的基本方法和并发策略,结合当前最新的技术和工具,开发者能更好地优化应用程序在网络通信层面的性能,以满足日益增长的高并发需求。
2023-10-19 20:57:06
75
转载
ZooKeeper
...per作为一款强大的服务协调组件,以其严谨的强一致性保证和灵活的服务注册与发现机制赢得了广泛的应用。然而,在我们平时使用ZooKeeper的临时节点这个功能时,可能会碰到一个叫"NoChildrenForEphemeralException"的小插曲。这个异常呢,大多数情况下,都是在你想给临时节点添个“小崽崽”(创建子节点)的时候蹦出来的。本文将通过深入探讨该异常的含义、产生原因,并结合实际代码示例,来分享如何有效地处理这一问题。 一、理解NoChildrenForEphemeralException(2) NoChildrenForEphemeralException是ZooKeeper客户端API抛出的一种异常类型,它明确地告诉我们一个核心原则:在ZooKeeper中,临时节点不允许拥有子节点。这是因为临时节点的存在时间是紧跟它创建者的“脚步”的,就像会话结束就等于游戏over一样。只要这个会话说“拜拜”,那个临时节点连同它的小弟——所有相关数据,都会被系统自动毫不留情地清理掉。因此,允许临时节点有子节点将会导致数据不一致性和清理困难的问题。 二、异常产生的场景分析(3) 想象一下这样的场景:我们的应用正在使用ZooKeeper进行服务注册,其中每个服务实例都以临时节点的形式存在。如果咱想在某个服务的小实例(也就是临时节点)下面整出个子节点,用来表示这个服务更多的信息,这时候可能会蹦出来一个“NoChildrenForEphemeralException”的错误提示。 java String servicePath = "/services/serviceA"; String instancePath = zk.create(servicePath, null, ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL_SEQUENTIAL); // 尝试在临时节点下创建子节点 String subNodePath = zk.create(instancePath + "/subnode", "additionalInfo".getBytes(), ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT); 上述代码段在执行zk.create()操作时,如果instancePath是一个临时节点,那么就会抛出"NoChildrenForEphemeralException"异常。 三、处理NoChildrenForEphemeralException的方法(4) 面对这个问题,我们需要重新设计数据模型,避免在临时节点下创建子节点。一个我们常会用到的办法就是在注册服务的时候,别把服务实例的相关信息设置成子节点,而是直接把它塞进临时节点的数据内容里头。就像是你往一个临时的文件夹里放信息,而不是另外再创建一个小文件夹来装它,这样更直接、更方便。 java String servicePath = "/services/serviceA"; byte[] data = "additionalInfo".getBytes(); String instancePath = zk.create(servicePath + "/instance_", data, ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL_SEQUENTIAL); 在这个例子中,我们将附加信息直接写入临时节点的数据部分,这样既满足了数据存储的需求,又遵循了ZooKeeper关于临时节点的约束规则。 四、思考与讨论(5) 处理"NoChildrenForEphemeralException"的关键在于理解和尊重ZooKeeper对临时节点的设定。这种表面上看着像是在“画地为牢”的设计,其实背后藏着一个大招,就是为了确保咱们分布式系统里的数据能够保持高度的一致性和安全性。在实际动手操作时,我们不光得把ZooKeeper API玩得贼溜,更要像侦探破案那样,抽丝剥茧地理解它背后的运行机制。这样一来,咱们才能在实际项目中把它运用得更加得心应手,解决那些可能冒出来的各种疑难杂症。 总结起来,当我们在使用ZooKeeper构建分布式系统时,对于"NoChildrenForEphemeralException"这类异常,我们应该积极地调整策略,遵循其设计规范,而非试图绕过它。只有这样,才能让ZooKeeper充分发挥其协调作用,服务于我们的分布式架构。这个过程,其实就跟咱们人类遇到挑战时的做法一样,不断反刍琢磨、摸索探寻、灵活适应,满载着各种主观情感的火花和智慧碰撞的精彩瞬间,简直不要太有魅力啊!
2023-07-29 12:32:47
66
寂静森林
MySQL
...er仍然会为我们自动配置一个数据卷。这究竟是怎么一回事儿,为啥Docker会做出这样的选择呢?别急,本文就要带你一起揭开这个谜底,就像探险家挖掘宝藏那样,我们会通过实实在在的代码实例,一步步揭示这背后的神秘机制和它所带来的实际价值,让你恍然大悟,拍案叫绝! 1. Docker数据卷的概念与作用 首先,让我们回顾一下Docker数据卷(Data Volume)的基本概念。在Docker的天地里,数据卷可是个了不起的角色。它就像一个超长待机的移动硬盘,不随容器的生死存亡而消失,始终保持独立。也就是说,甭管你的容器是歇菜重启了,还是彻底被删掉了,这个数据卷都能稳稳地保存住里面的数据,让重要信息时刻都在,安全无忧。对于像MySQL这样的数据库服务而言,数据的持久性尤为重要,因此默认配置下,Docker会在启动MySQL容器时不经意间创建一个匿名数据卷以保证数据安全。 2. MySQL容器未显式挂载data目录时的行为 当我们在不设置任何数据卷挂载的情况下运行MySQL Docker镜像,Docker实际上会自动生成一个匿名数据卷用于存放MySQL的数据文件。这是因为Docker官方提供的MySQL镜像已经预设了数据目录(如/var/lib/mysql)为一个数据卷。例如,如果我们执行如下命令: bash docker run -d --name mysql8 -e MYSQL_ROOT_PASSWORD=your_password mysql:8.0 虽然这里没有手动指定-v或--mount选项来挂载宿主机目录,但MySQL容器内部的数据变化依旧会被持久化存储到Docker管理的一个隐藏数据卷中。 3. 查看自动创建的数据卷 若想验证这个自动创建的数据卷,可以通过以下命令查看: bash docker volume ls 运行此命令后,你会看到一个无名(匿名)卷,它就是Docker为MySQL容器创建的用来持久化存储数据的卷。 4. 明确指定数据卷挂载的优势 尽管Docker提供了这种自动创建数据卷的功能,但在实际生产环境中,我们通常更倾向于明确地将MySQL的数据目录挂载至宿主机上的特定路径,以便更好地管理和备份数据。比如: bash docker run -d \ --name mysql8 \ -v /path/to/host/data:/var/lib/mysql \ -e MYSQL_ROOT_PASSWORD=your_password \ mysql:8.0 在此示例中,我们指定了MySQL容器内的 /var/lib/mysql 目录映射到宿主机上的 /path/to/host/data。这么做的妙处在于,我们能够直接在主机上对数据库文件“动手”,不论是备份还是迁移,都不用费劲巴拉地钻进容器里面去操作了。 5. 结论与思考 Docker之所以在启动MySQL容器时不显式配置也自动创建数据卷,是为了保障数据库服务的默认数据持久化需求。不过,对于我们这些老练的开发者来说,一边摸透和掌握这个机制,一边也得明白一个道理:为了追求更高的灵活性和可控性,咱应该积极主动地去声明并管理数据卷的挂载点,就像是在自己的地盘上亲手搭建一个个储物柜一样。这样一来,我们不仅能确保数据安全稳妥地存起来,还能在各种复杂的运维环境下游刃有余,让咱们的数据库服务变得更加结实耐用、值得信赖。 总的来说,Docker在简化部署流程的同时,也在幕后默默地为我们的应用提供了一层贴心保护。每一次看似“自动”的背后,都蕴含着设计者对用户需求的深刻理解和精心考量。在我们每天的工作里,咱们得瞅准自己项目的实际需求,把这些特性玩转起来,让Docker彻底变成咱们打造微服务架构时的得力小助手,真正给力到家。
2023-10-16 18:07:55
127
烟雨江南_
转载文章
...,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 该楼层疑似违规已被系统折叠 隐藏此楼查看此楼 今天只做了一件事情,但解决了很大的问题。相信这也是令很多程序员和数据库管理员头疼的事情。 假设在一MySQL数据表中,自增的字段为id,唯一字段为abc,还有其它字段若干。 自增:AUTO_INCREMENT A、使用insert into插入数据时,若abc的值已存在,因其为唯一键,故不会插入成功。但此时,那个AUTO_INCREMENT已然+1了。 eg : insert into table set abc = '123' B、使用replace插入数据时,若abc的值已存在,则会先删除表中的那条记录,尔后插入新数据。 eg : replace into table set abc = '123' (注:上一行中的into可省略;这只是一种写法。) 这两种方法,效果都不好:A会造成id不连续,B会使得原来abc对应的id值发生改变,而这个id值会和其它表进行关联,这是更不允许的。 那么,有没有解决方案呢? 笨办法当然是有:每次插入前先查询,若表中不存在要插入的abc的值,才插入。 但这样,每次入库之前都会多一个操作,麻烦至极。 向同学请教,说用触发器。可在网上找了半天,总是有问题。可能是语法不对,或者是某些东西有限制。 其实,最终要做的,就是在每次插入数据之后,修正那个AUTO_INCREMENT值。 于是就想到,把这个最实质的SQL语句↓,合并在插入的SQL中。 PS: ALTER TABLE table AUTO_INCREMENT =1 执行之后,不一定再插入的id就是1;而是表中id最大值+1。 这是MySQL中的执行结果。其它数据库不清楚。。。。 到这里,问题就变的异常简单了:在每次插入之后都重置AUTO_INCREMENT的值。 如果插入的自定义函数或类的名称被定义成insert的话,那么就在此基础上扩展一个函数insert_continuous_id好了,其意为:保证自增主键连续的插入。 为什么不直接修改原函数呢? 这是因为,并不是所有的insert都需要修正AUTO_INCREMENT。只有在设置唯一键、且有自增主键时才有可能需要。 虽然重置不会有任何的副作用(经试验,对各种情况都无影响),但没有必要就不要额外增加这一步。 一个优秀的程序员,就是要尽量保证写出的每一个字符都有意义而不多余。 啰啰嗦嗦的说了这么多,其实只有一句话:解决MySQL中自增主键不连续的方法,就是上面PS下的那一行代码。 附: 我写的不成功的触发器的代码。 -- 触发器 CREATE TRIGGER trigger_table after insert ON table FOR EACH ROW ALTER TABLE table AUTO_INCREMENT =1; 大家有想说的,请踊跃发言。期待更好更完美的解决方案。 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_39554172/article/details/113210084。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-08-26 08:19:54
93
转载
Shell
...以给常用的Git命令设置别名。在你的~/.bashrc或~/.zshrc文件中添加如下内容: bash alias gs='git status' alias gc='git commit -m' 这样,以后只需要输入gs就能查看状态,gc "Your commit message"就可以直接提交了,是不是很方便? 5. 高级技巧 5.1 分支管理 分支是Git的一大特色,可以让你在同一项目中同时处理多个功能。例如,你想尝试一个新的特性,但又不想影响主分支上的稳定代码,可以创建一个新的分支: bash git checkout -b feature-branch 然后在这个分支上做任何你想做的改动,最后合并回主分支: bash git checkout main git merge feature-branch 5.2 远程仓库与GitHub 如果你需要与他人协作,或者想备份你的代码,可以将本地仓库推送到远程服务器,比如GitHub。首先,你需要在GitHub上创建一个仓库,然后添加远程仓库地址: bash git remote add origin https://github.com/yourusername/yourrepo.git git push -u origin main 这样,你的代码就安全地保存在云端了。 6. 结语 通过这篇文章,我希望你对如何在Shell脚本中集成版本控制系统有了更深的理解。记住,版本控制不只是技术活儿,它还是咱们好好工作的习惯呢!从今天起,让我们一起养成良好的版本控制习惯吧! 如果你有任何疑问或想了解更多细节,请随时留言交流。我们一起探索更多的技术奥秘!
2025-01-26 15:38:32
51
半夏微凉
Gradle
... 3. 初步调查 发现问题所在 开始我以为是库本身有问题,于是花了大半天时间查阅官方文档和GitHub上的Issue。但最终发现,问题出在我自己的Gradle配置上。原来,这个边缘计算库版本太新,还不被当前的Gradle版本所支持。这下子我明白了,问题的关键在于版本兼容性。 groovy // 查看Gradle版本 task showGradleVersion << { println "Gradle version is ${gradle.gradleVersion}" } 4. 探索解决方法 寻找替代方案 既然问题已经定位,接下来就是想办法解决它了。我想先升级Gradle版本,不过转念一想,其他依赖的库也可能有版本冲突的问题。所以,我还是先去找个更稳当的边缘计算库试试吧。 经过一番搜索,我发现了一个较为成熟的边缘计算库,它不仅功能强大,而且已经被广泛使用。于是我把原来的依赖替换成了新的库,并更新了Gradle的版本。 groovy // 在build.gradle文件中修改依赖 dependencies { implementation 'com.stable:stable-edge-computing-lib:1.2.3' } // 更新Gradle版本到最新稳定版 plugins { id 'org.gradle.java' version '7.5' } 5. 实践验证 看看效果如何 修改完之后,我重新运行了gradle build命令。这次,项目终于成功构建了!我兴奋地打开了IDE,查看了运行日志,一切正常。虽说新库的功能跟原来计划的有点出入,但它的表现真心不错,又快又稳。这次经历让我深刻认识到,选择合适的工具和库是多么重要。 groovy // 检查构建是否成功 task checkBuildSuccess << { if (new File('build/reports').exists()) { println "Build was successful!" } else { println "Build failed, check the logs." } } 6. 总结与反思 这次经历给我的启示 通过这次经历,我学到了几个重要的教训。首先,你得注意版本兼容性这个问题。在你添新的依赖前,记得看看它的版本,还得确认它跟你的现有环境合不合得来。其次,面对问题时,保持冷静和乐观的态度非常重要。最后,多花时间研究和测试不同的解决方案,往往能找到更好的办法。 希望我的分享对你有所帮助,如果你也有类似的经历或者有更好的解决方案,欢迎留言交流。让我们一起努力,成为更好的开发者吧! --- 好了,以上就是我关于“构建脚本中使用了不支持的边缘计算库”的全部分享。希望你能从中获得一些启发和帮助。如果你有任何疑问或者建议,随时欢迎与我交流。
2025-03-07 16:26:30
74
山涧溪流
MyBatis
...在于可以直接在数据库服务器上跑,还能反复使用,这样就能省下不少网络传输的功夫,让程序跑得飞快。此外,存储过程还能增强系统的安全性,因为它可以限制用户直接访问表数据,只能通过特定的存储过程来操作数据。 2.2 存储过程的优势 存储过程在实际应用中具有很多优势,例如: - 性能优化:存储过程在数据库服务器上运行,减少了客户端与服务器之间的数据传输。 - 安全控制:通过存储过程,我们可以为不同的用户设置不同的权限,只允许他们执行特定的操作。 - 代码重用:存储过程可以被多次调用,避免了重复编写相同的SQL语句。 - 事务管理:存储过程支持事务管理,可以确保一系列数据库操作要么全部成功,要么全部失败。 三、MyBatis如何调用存储过程 3.1 配置文件中的设置 在开始编写代码之前,我们首先需要在MyBatis的配置文件(通常是mybatis-config.xml)中进行一些必要的设置。为了能够调用存储过程,我们需要开启动态SQL功能,并指定方言。例如: xml 3.2 实现代码 接下来,我们来看一下具体的代码实现。想象一下,我们有个名叫get_user_info的存储过程,就像一个魔术师,一接到你的用户ID(@user_id)和一个结果占位符(@result),就能变出这个用户的所有详细信息。下面是MyBatis的XML映射文件中对应的配置: 3.2.1 XML映射文件 xml {call get_user_info( {userId, mode=IN, jdbcType=INTEGER}, {result, mode=OUT, jdbcType=VARCHAR, javaType=String} )} 这里需要注意的是,statementType属性必须设置为CALLABLE,表示这是一个存储过程调用。{userId}和{result}分别代表输入参数和输出参数。mode属性用于指定参数的方向,jdbcType和javaType属性则用于定义参数的数据类型。 3.2.2 Java代码实现 下面是一个简单的Java代码示例,展示了如何调用上述存储过程: java public class UserService { private UserMapper userMapper; public String getUserInfo(int userId) { Map params = new HashMap<>(); params.put("userId", userId); params.put("result", null); userMapper.getUserInfo(params); return (String) params.get("result"); } } 在这段代码中,我们首先创建了一个Map对象来保存输入参数和输出结果。然后,我们调用了userMapper.getUserInfo方法,并传入了这个参数映射。最后,我们从映射中获取到输出结果并返回。 四、注意事项 在使用MyBatis调用存储过程时,有一些常见的问题需要注意: 1. 参数顺序 确保存储过程的参数顺序与MyBatis配置文件中的顺序一致。 2. 数据类型匹配 确保输入和输出参数的数据类型与存储过程中的定义相匹配。 3. 异常处理 由于存储过程可能会抛出异常,因此需要在调用时添加适当的异常处理机制。 4. 性能监控 存储过程的执行可能会影响整体系统性能,因此需要定期进行性能监控和优化。 五、总结 通过以上的介绍,我们可以看到,MyBatis调用存储过程其实并不复杂。只要咱们把MyBatis的XML映射文件配好,再按规矩写好Java代码,调用存储过程就是小菜一碟。当然,在实际开发过程中,还需要根据具体需求灵活调整配置和代码,以达到最佳效果。希望这篇文章能够帮助你在项目中更好地利用存储过程,提高开发效率和代码质量。 如果你对存储过程有任何疑问或者想了解更多细节,请随时联系我,我们一起探讨和学习!
2025-01-03 16:15:42
64
风中飘零
HessianRPC
...PC作为一种轻量级的远程过程调用协议被广泛应用。然而,在实际动手开发的时候,我们免不了会撞上一个常见的小插曲:“IllegalArgumentException”这个家伙,它跑出来告诉你:喂喂,你传的参数不达标,比如说,方法签名跟我期待的样子对不上号。这篇东西会手把手地,用详尽的步骤解析和实实在在的例子演示,让大家都能更接地气地理解,更能轻松上手解决这个问题。 1. HessianRPC简介 首先,让我们回顾一下HessianRPC的基本概念。Hessian是一种高效、紧凑的二进制RPC协议,由Caucho公司开发,特别适合于互联网传输。这个东西超级实用,它能够让Java和其他一些好兄弟语言(比如.NET、Python这些)毫无障碍地远程互相调用对方的方法,就跟在本地调用一样方便。你只需要稍微捣鼓一下配置,写点简单的代码,就能轻松实现服务端和客户端的顺畅交流啦! 2. 方法签名的重要性 在HessianRPC中,每个远程方法都有其独特的“方法签名”,它包括方法名以及参数类型列表。当客户端调用服务器端的方法时,Hessian会根据这个签名来匹配和校验参数。如果客户端传过来的参数“不按套路出牌”,跟服务器端方法要求的参数类型或数量对不上号,那可就得闹脾气了,会直接抛出一个“IllegalArgumentException”异常。 java // 服务器端接口示例 public interface MyService { String process(String input, int num); } // 客户端错误调用示例 MyService service = (MyService) hessianProxyFactory.create(MyService.class, serverUrl); String result = service.process("Hello", "World"); // 这里第二个参数应该是int类型,而非String类型,会导致IllegalArgumentException 3. “IllegalArgumentException:传入参数不合法”问题解析 上述代码中的客户端尝试以一个字符串参数代替整型参数去调用process方法,这就导致了"IllegalArgumentException"。在进行序列化和反序列化的时候,Hessian这家伙发现传过来的参数类型跟预先给定的方法签名对不上号儿,于是它就毫不客气地抛出了一个异常。 4. 解决方案及预防措施 面对这种问题,我们需要从以下几个方面着手: 4.1 检查并确保参数类型正确 在编写客户端调用代码时,应仔细核对每个参数是否符合服务端方法签名的要求。比如上例中,我们需要将第二个参数修改为整型数值: java String result = service.process("Hello", 123); // 正确的调用方式 4.2 强化代码审查与测试 在项目开发过程中,建议采用自动化测试工具和单元测试,覆盖所有RPC方法调用,确保参数类型的准确无误。同时,代码审查也是防止此类问题的有效手段。 4.3 提供清晰的API文档 对于对外提供的服务接口,应该编写详尽且易于理解的API文档,明确指出每个方法的签名,包括方法名、参数类型和返回值类型,以便开发者在调用时有据可依。 4.4 利用IDE的智能提示 现代集成开发环境(IDE)如IntelliJ IDEA或Eclipse都具有强大的智能提示功能,能自动识别和匹配方法签名,利用好这些特性也能有效避免参数类型不匹配的问题。 总结起来,遭遇HessianRPC的“IllegalArgumentException:传入参数不合法”异常,本质上是对方法签名的理解和使用不到位的结果。在编程实战中,只要我们足够细心、步步为营,像侦探破案那样运用各种工具和策略,完全可以把这些潜在问题扼杀在摇篮里,让系统的运行稳如磐石。记住了啊,解决任何技术难题都得像咱们看侦探小说那样,得瞪大眼睛仔仔细细地观察,用脑子冷静地分析推理,动手实践去验证猜想,最后才能拨开层层迷雾,看到那片晴朗的蓝天。
2024-01-16 09:18:32
543
风轻云淡
Kafka
...ID或者分区副本数量设置不正确导致的。比如,假如你在设置文件里给副本节点指定的Broker ID,在当前集群里根本找不到的话,那么在新建或者更新主题的时候,系统就会抛出这个错误提示给你。 1.2 生动案例说明 假设你正在尝试创建一个名为my-topic的主题,并指定其副本列表为[0, 1, 2],但你的Kafka集群实际上只有两个broker(ID分别为0和1)。这时,当你执行以下命令: bash kafka-topics.sh --create --topic my-topic --partitions 1 --replication-factor 3 --bootstrap-server localhost:9092 --config replica_assignment=0:1:2 上述命令将会抛出UnknownReplicaAssignmentException,因为broker ID为2的节点在集群中并不存在。 2. 解决UnknownReplicaAssignmentException的方法 2.1 检查集群Broker状态 首先,你需要确认提供的所有副本broker是否都存在于当前Kafka集群中。可以通过运行如下命令查看集群中所有的broker信息: bash kafka-broker-api-versions.sh --bootstrap-server localhost:9092 确保你在分配副本时引用的broker ID都在输出结果中。 2.2 调整副本分配策略 如果发现确实有错误引用的broker ID,你需要重新调整副本分配策略。例如,修正上面的例子,将 replication-factor 改为与集群规模相匹配的值: bash kafka-topics.sh --create --topic my-topic --partitions 1 --replication-factor 2 --bootstrap-server localhost:9092 2.3 验证并修复配置文件 此外,还需检查Kafka配置文件(server.properties)中关于broker ID的设置是否正确。每个broker都应该有一个唯一的、在集群范围内有效的ID。 2.4 手动修正已存在的问题主题 若已存在因副本分配问题而引发异常的主题,可以尝试手动删除并重新创建。但务必谨慎操作,以免影响业务数据。 bash kafka-topics.sh --delete --topic my-topic --bootstrap-server localhost:9092 再次按照正确的配置创建主题 kafka-topics.sh --create ... 使用合适的参数创建主题 3. 思考与探讨 面对这类问题,除了具体的技术解决方案外,我们更应该思考如何预防此类异常的发生。比如在搭建和扩容Kafka集群这事儿上,咱们得把副本分配策略和集群大小的关系琢磨透彻;而在日常的运维过程中,别忘了定期给集群做个全面体检,查看下主题的那些副本分布是否均匀健康。同时呢,我们也在用自动化的小工具和监控系统,就像有一双随时在线的火眼金睛,能实时发现并预警那些可能会冒出来的UnknownReplicaAssignmentException等小捣蛋鬼,这样一来,咱们的Kafka服务就能更稳、更快地运转起来,像上了发条的瑞士钟表一样精准高效。 总之,虽然UnknownReplicaAssignmentException可能带来一时的困扰,但只要深入了解其背后原理,采取正确的应对措施,就能迅速将其化解,让我们的Kafka服务始终保持良好的运行状态。在这个过程中,不断学习、实践和反思,是我们提升技术能力,驾驭复杂系统的必经之路。
2023-02-04 14:29:39
436
寂静森林
Hive
...?这不仅会影响数据的正常处理,还可能对我们的生产环境造成困扰。嘿,朋友们,今天咱们就来聊聊一个超级实用的话题:Hive的日志文件为啥会突然“罢工”,还有怎么找出问题的症结并把它修好,就像医生检查身体一样精准! 二、Hive日志文件的重要性 Hive的日志文件记录了查询执行的过程,包括但不限于SQL语句、执行计划、错误信息等。这些信息在调试问题、优化性能时至关重要。例如,当我们遇到查询运行缓慢或者失败时,日志文件就是我们寻找答案的第一线线索: sql EXPLAIN EXTENDED SELECT FROM table; 查看这个命令的执行计划,可以帮助我们理解为何查询效率低下。 三、日志文件损坏的原因 1. 磁盘故障 硬件故障是最直接的原因,如硬盘损坏或RAID阵列失效。 2. 运行异常 Hive在执行过程中如果遇到内存溢出、网络中断等情况,可能导致日志文件不完整。 3. 系统崩溃 操作系统崩溃或Hive服务突然停止也可能导致日志文件未被妥善关闭。 4. 管理操作失误 误删、覆盖日志文件也是常见的情况。 四、诊断Hive日志文件损坏 1. 使用Hive CLI检查 bash hive> show metastore_db_location; 查看Metastore的数据库位置,通常位于HDFS上,检查是否存在异常或损坏的文件。 2. 检查HDFS状态 bash hdfs dfs -ls /path/to/hive/logs 如果发现文件缺失或状态异常,可能是HDFS的问题。 3. 日志审查 打开Hive的错误日志文件,如hive.log,查看是否有明显的错误信息。 五、修复策略 1. 重新创建日志文件 如果只是临时的文件损坏,可以通过重启Hive服务或重启Metastore服务来生成新的日志。 2. 数据恢复 如果是磁盘故障导致的文件丢失,可能需要借助专业的数据恢复工具,但成功的概率较低。 3. 修复HDFS 如果是HDFS的问题,可以尝试修复文件系统,或者备份并替换损坏的文件。 4. 定期备份 为了避免类似问题,定期备份Hive的日志文件和Metastore数据是必要的。 六、预防措施 - 增强硬件监控,及时发现并处理潜在的硬件问题。 - 设置合理的资源限制,避免因内存溢出导致的日志丢失。 - 建立定期备份机制,出现问题时能快速恢复。 总结 Hive日志文件损坏可能会带来不少麻烦,但只要我们理解其重要性,掌握正确的诊断和修复方法,就能在遇到问题时迅速找到解决方案。你知道吗,老话说得好,“防患于未然”,要想让Hive这个大家伙稳稳当当的,关键就在于咱们得养成勤快的保养习惯,定期检查和打理。希望这篇小文能像老朋友一样,给你点拨一二,轻松搞定Hive日志文件出问题的烦心事。
2024-06-06 11:04:27
815
风中飘零
Beego
...佳实践。近期,随着微服务架构和API优先开发策略的普及,路由的设计与管理变得更为关键。 例如,Netflix开源的Zuul项目提供了一种动态路由、过滤和监控的边缘服务解决方案,它支持高级路由规则配置,如基于权重的路由、故障切换和灰度发布等功能,这对于构建高可用和可扩展的微服务体系至关重要。此外,FastAPI等新兴框架也在路由设计上做出了创新,其通过Python类型提示系统来定义路由和参数,既提高了代码的可读性,又增强了API文档的一致性和准确性。 同时,对于RESTful API设计原则的深入理解和应用也是提升路由设计质量的关键所在。REST架构风格强调资源导向和状态转移,提倡URL的语义化设计,使API易于理解和使用。例如,遵循HTTP方法的语义(GET用于获取资源,POST用于创建,PUT用于更新,DELETE用于删除)可以简化客户端与服务器的交互逻辑,并有助于优化缓存机制。 综上所述,在掌握Beego框架下的路由定制技巧后,结合当下流行的微服务架构理念、先进的API设计模式以及对RESTful原则的深入理解,将能助您构建出更加高效、灵活且易于维护的Web应用程序。不断关注行业动态,学习并借鉴相关领域的最新研究成果和实践经验,是持续优化路由设计,提升整体项目质量的重要途径。
2023-07-13 09:35:46
622
青山绿水
转载文章
...,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 文章目录 问题表现 问题分析 问题解决 两个函数的区别 pg_cancel_backend() pg_terminate_backend() 后记 查询被锁住的表和进程 杀掉指定表指定锁的进程 问题发生并解决后,有一段时间了,所以问题和解决过程只记住了个大概… 问题表现 pgsql,删除某张表,无论是用第三方工具,还是命令,都无法删除成功。因为时间有点长了,所以报的啥错我也记不清了… 无法删除、无法访问、select 什么的都不成功。其他同事对这张表的操作一样。 百度之后,显示最多的结果是,有依赖,解决办法也很简单: DROP TABLE [table] CASCADE; 但是执行后,仍然解决不了问题。 问题分析 既然和依赖没关系,那就想其他办法。 经过百度和分析,大概率是有一个查询的sql,因为某些原因卡住了,然后一直占住这张表了,其他的操作都无法使用这张表。 问题解决 百度之后有如下办法: select from pg_class where relname='t_test' select oid from pg_class where relname='t_test' -- 将查出来的oid 填入下面select from pg_locks where relation='33635' -- 再将查出来的pid,调用下面的方法select pg_terminate_backend (17789) 因为时间过长,所以我也不确定下面的sql是干嘛的了… select ,pid,backend_start,application_name,query_start,waiting,state ,query from pg_stat_activitywhere pid = 17789order by query_start asc;SELECT FROM pg_stat_activity WHERE datname='t_test' 两个函数的区别 除了pg_terminate_backend()外,还有pg_cancel_backend()。 这里和oracle类似kill session的操作是 pg_terminate_backend() pg_cancel_backend() 只能关闭当前用户下的后台进程 向后台发送SIGINT信号,用于关闭事务,此时session还在,并且事务回滚 取消后台操作,回滚未提交事物 pg_terminate_backend() 需要superuser权限,可以关闭所有的后台进程 向后台发送SIGTERM信号,用于关闭事务、关闭Process,此时session也会被关闭,并且事务回滚 中断session,回滚未提交事物 后记 后来查了以下,出现那种删不掉,DROP TABLE [table] CASCADE也没用的情况,是因为表被锁住了。 查询被锁住的表和进程 select from pg_locks ajoin pg_class b on a.relation = b.oidjoin pg_stat_activity c on a.pid = c.pidwhere a.mode like '%ExclusiveLock%'; 这里查的是排它锁,也可以精确到行排它锁或者共享锁之类的。这里有几个重要的column:a.pid是进程id,b.relname是表名、约束名或者索引名,a.mode是锁类型。 杀掉指定表指定锁的进程 select pg_cancel_backend(a.pid) from pg_locks ajoin pg_class b on a.relation = b.oidjoin pg_stat_activity c on a.pid = c.pidwhere b.relname ilike '表名' and a.mode like '%ExclusiveLock%';--或者使用更加霸道的pg_terminate_backend():select pg_terminate_backend(a.pid) from pg_locks ajoin pg_class b on a.relation = b.oidjoin pg_stat_activity c on a.pid = c.pidwhere b.relname ilike '表名' and a.mode like '%ExclusiveLock%'; 另外需要注意的是,pg_terminate_backend()会把session也关闭,此时sessionId会失效,可能会导致系统账号退出登录,需要清除掉浏览器的缓存cookie(至少我们系统遇到的情况是这样的)。 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_42845682/article/details/116980793。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-22 09:08:45
127
转载
Saiku
...P(也就是轻量级目录访问协议)整一块儿,实现单点登录的便利功能,结果却碰到了认证失败的问题。这无疑给我们的工作带来了困扰。这篇文会采用一种边探索边唠嗑的方式,一步步把这个问题掰开了、揉碎了讲明白,并且我还会手把手地带你瞅瞅实例代码,实实在在地演示一下如何把这个棘手的问题给妥妥地解决掉。 二、理解Saiku与LDAP集成 1. LDAP基础介绍 LDAP是一种开源的、分布式的、为用户提供网络目录服务的应用协议。对企业来讲,这玩意儿就像是个超级大管家,能够把所有用户的账号信息一把抓,统一管理起来。这样一来,用户在不同系统间穿梭的时候,验证身份的流程就能变得轻松简单,再也不用像以前那样繁琐复杂了。 2. Saiku与LDAP集成原理 Saiku支持与LDAP集成,从而允许用户使用LDAP中的凭证直接登录到Saiku平台,无需单独在Saiku中创建账户。当你尝试登录Saiku的时候,它会超级贴心地把你输入的用户名和密码打包好,然后嗖的一下子送到LDAP服务器那里去“验明正身”。 三、认证失败常见原因及排查 1. 配置错误 (1)连接参数不准确:确保Saiku配置文件中关于LDAP的相关参数如URL、DN(Distinguished Name)、Base DN等设置正确无误。 properties Saiku LDAP配置示例 ldap.url=ldap://ldap.example.com:389 ldap.basedn=ou=People,dc=example,dc=com ldap.security.principal=uid=admin,ou=Admins,dc=example,dc=com ldap.security.credentials=password (2)过滤器设置不当:检查user.object.class和user.filter属性是否能够正确匹配到LDAP中的用户条目。 2. 权限问题 确保用于验证的LDAP账户有足够的权限去查询用户信息。 3. 网络问题 检查Saiku服务器与LDAP服务器之间的网络连通性。 四、实战调试与解决方案 1. 日志分析 通过查看Saiku和LDAP的日志,我们可以获取更详细的错误信息,例如连接超时、认证失败的具体原因等,从而确定问题所在。 2. 代码层面调试 在Saiku源码中找到处理LDAP认证的部分,如: java DirContext ctx = new InitialDirContext(env); Attributes attrs = ctx.getAttributes(bindDN, new String[] { "cn" }); 可以通过添加调试语句或日志输出,实时观察变量状态以及执行过程。 3. 解决方案实施 根据排查结果调整相关配置或修复代码,例如: - 如果是配置错误,修正相应配置并重启Saiku服务; - 如果是权限问题,联系LDAP管理员调整权限; - 若因网络问题,检查防火墙设置或优化网络环境。 五、总结 面对Saiku与LDAP集成认证失败的问题,我们需要从多个角度进行全面排查:从配置入手,细致核查每项参数;利用日志深入挖掘潜在问题;甚至在必要时深入源码进行调试。经过我们一步步实打实的操作,最后肯定能把这个问题妥妥地解决掉,让Saiku和LDAP这对好伙伴之间搭建起一座坚稳的安全认证桥梁。这样一来,企业用户们就能轻轻松松、顺顺利利地进行大数据分析工作了,效率绝对杠杠的!在整个过程中,不断思考、不断尝试,是我们解决问题的关键所在。
2023-10-31 16:17:34
135
雪落无痕
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
tar -czvf archive.tar.gz dir
- 创建一个gzip压缩的tar归档文件。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"