前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[应用待机群组App Standby bu...]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
AngularJS
...。想象一下,如果你的应用经常需要给每一条请求都加上特定的HTTP头部信息,那有了这个功能,就简直太省事儿、太方便啦!例如,为了实现跨域资源共享(CORS),我们可能需要设置'Access-Control-Allow-Origin'等头部信息。 javascript angular.module('myApp', []).config(['$httpProvider', function($httpProvider) { $httpProvider.defaults.headers.common['Access-Control-Allow-Origin'] = ''; }]); 2. 跨域头设置为何失败? 尽管上面的代码看似合情合理,但实际应用中你会发现,通过$httpProvider.defaults.headers来设置Access-Control-Allow-Origin这样的跨域响应头是无效的。这是因为涉及到跨域的那些个“Access-Control-Allow-Origin”、“Access-Control-Allow-Methods”这些头信息呐,它们都是服务器端的大佬掌控着,然后发送给咱们客户端浏览器的。可不是咱们前端写JavaScript(包括AngularJS)的小哥能直接设置滴。 浏览器遵循同源策略,对于跨域请求,只有接收到服务器明确允许的相应头部信息后才会放行。因此,前端试图通过$httpProvider.defaults.headers设置这些跨域响应头的行为无法产生预期效果。 3. 解决方案 服务器端配置 既然前端无法直接设置跨域响应头,那正确的做法就是去服务器端进行相应的配置。以Node.js + Express为例: javascript const express = require('express'); const app = express(); // 允许来自任何域名的跨域请求 app.use((req, res, next) => { res.header('Access-Control-Allow-Origin', ''); res.header('Access-Control-Allow-Methods', 'GET, POST, OPTIONS, PUT, DELETE'); res.header('Access-Control-Allow-Headers', 'Content-Type, Authorization, X-Requested-With'); if (req.method === 'OPTIONS') { res.send(200); } else { next(); } }); // 这里是你的路由配置... 4. 客户端注意事项 虽然前端不能设置跨域响应头,但在发起带自定义请求头的跨域请求时,仍需在$httpProvider.defaults.headers中声明这些请求头,以便让服务器知道客户端希望携带哪些头部信息: javascript angular.module('myApp').config(['$httpProvider', function ($httpProvider) { $httpProvider.defaults.headers.common['X-Custom-Header'] = 'some-value'; }]); // 在$http请求中使用 $http({ method: 'POST', url: 'https://api.example.com/data', headers: {'Content-Type': 'application/json'}, data: { / ... / } }); 总结起来,虽然我们不能通过 $httpProvider.defaults.headers 来直接解决跨域问题,但它仍然是我们定制请求头部信息不可或缺的工具。要真正搞定跨域问题,关键得先摸清楚跨域策略的来龙去脉,然后在服务器那边儿把配置给整对了才行。在我们做前端开发这事儿的时候,千万要记牢这个小秘诀,这样一来,当咱们的AngularJS应用碰到跨域问题这块绊脚石时,就能轻松应对、游刃有余啦!
2023-09-21 21:16:40
397
草原牧歌
Go Iris
...逻辑。 go app.Use(func(ctx iris.Context) { if err := ctx.Environment().Get("iris.ServerError").(error); err != nil { // do something to handle the error here... } }) 2. 自定义中间件 如果我们觉得ServerError中间件不能满足我们的需求,我们也可以自定义中间件来处理错误页面。首先,我们需要创建一个新的函数来接收错误信息: go func HandleError(err error, w http.ResponseWriter, r http.Request) { // handle the error here... } 然后,我们将这个函数注册为中间件: go app.Use(func(ctx iris.Context) { if err := ctx.Environment().Get("iris.ServerError").(error); err != nil { HandleError(err, ctx.ResponseWriter(), ctx.Request()) } }) 三、如何设计优秀的错误页面 一个优秀的错误页面需要具备以下几个特点: 1. 清晰明了 要告诉用户发生了什么问题,以及可能导致这个问题的原因。 2. 提供解决方案 尽可能给出一些解决问题的方法,让用户能够自行修复问题。 3. 友好的界面 要让用户感觉舒适,而不是让他们感到恐惧或沮丧。 四、总结 通过以上的讲解,我相信你已经掌握了在Go Iris中全局处理错误页面的方法。记住了啊,一个优秀的错误处理机制,那可是大有作用的。它不仅能让你在使用产品时有个更顺心畅快的体验,还能帮我们把你们的真实反馈收集起来,这样一来,我们就能够对产品进行更精准、更接地气的优化升级。所以,不要忽视了错误处理的重要性哦!
2023-12-19 13:33:19
410
素颜如水-t
Gradle
...ame = 'my-app' archiveClassifier = 'all' mergeServiceFiles() } 以上代码片段展示了如何应用Shadow插件并创建一个包含所有依赖的自包含.jar文件。 总结起来,要确保Gradle打包时正确包含依赖包,关键在于合理地在build.gradle中声明和管理依赖,并根据实际需求选择合适的打包策略。Gradle这个家伙的设计理念啊,就是让构建项目这件事儿变得瞅一眼就明白,摸一下就能灵活运用,甭管多复杂的依赖关系网,都能轻松玩转。这样一来,咱们就能麻溜地把项目打包工作给搞定了,高效又省心!在你亲自上手捣鼓和尝试Gradle的过程中,你会发现这玩意儿的强大程度绝对超乎你的想象,它会像个给力的小助手一样,陪你一起砍断开发道路上的各种难题荆棘,勇往直前地一路狂奔。
2023-10-25 18:00:26
454
月影清风_
Maven
...ering基础概念与应用场景 首先,让我们回顾一下Maven的Resource Filtering机制。通过在pom.xml中配置build > resources > resource标签,并设置filtering属性为true,Maven会在构建时扫描并替换资源文件中的变量。例如: xml src/main/resources true 这样一来,当资源文件如config.properties中有${version}这样的变量时,Maven会从项目或系统的属性中查找对应的值进行替换。 2. 遇到的Resource Filtering错误实例 然而,在实际应用中,我们可能会遇到如下几种典型的"Resourcefilteringerrors": 2.1 变量未定义错误 假设我们的config.properties文件中有这样一行: properties app.version=${project.version} 但如果我们没有在POM文件或其他地方定义project.version这个属性,Maven在构建时就会抛出类似“找不到对应属性值”的错误。 2.2 过滤规则冲突错误 另外一种常见问题是,由于过滤规则设置不当导致的冲突。比如,某个应该被过滤的文件意外地被设置为不进行过滤,或者反之,导致预期的内容替换未能发生。 2.3 特殊字符处理错误 在某些场景下,资源文件中可能包含特殊字符,如${}, 如果这些字符不是用来表示Maven属性占位符,但在过滤过程中却被误解析,也会引发错误。 3. 解决Resource Filtering错误的方法 对于上述提到的问题,我们可以采取以下措施来应对: 3.1 定义缺失的属性 对于变量未定义的情况,我们需要确保所有使用的属性都有相应的定义。可以在pom.xml中增加版本信息等属性,如下所示: xml 1.0.0-SNAPSHOT 3.2 正确配置过滤规则 针对过滤规则冲突,应精确指定哪些资源需要过滤,哪些不需要。例如,如果只希望对特定的资源配置过滤,可以细化资源配置: xml src/main/resources /config.properties true 3.3 特殊字符转义 对于含有非属性占位符${}的特殊字符问题,可以在资源文件中使用\进行转义,例如${literal}应写为\\${literal},以防止被Maven误解析。 4. 总结与思考 在Maven的世界里,Resource Filtering无疑是一项强大且实用的功能,它能够帮助我们实现资源文件的动态化配置,大大增强了项目的灵活性。但同时,我们也需要正确理解和合理使用这一特性,避免陷入Resource Filtering错误的困境。只有当我们把这些玩意儿的工作原理摸得门儿清,把那些可能潜伏的坑都给填平了,才能让它们真正火力全开,帮我们把开发效率往上猛提,保证每一个构建环节都顺滑无比,一点儿磕绊都没有。当你遇到问题时,就得化身成福尔摩斯那样,瞪大眼睛、开动脑筋,仔仔细细地观察、抽丝剥茧地分析。然后,再通过实实在在的代码实例去摸透、动手尝试,一步步解决这个难题。这,就是编程那让人着迷的地方,也是每一位开发者在成长道路上必定会经历的一段精彩旅程。
2023-03-30 22:47:35
107
草原牧歌_
转载文章
...ngle Page Apps with AngularJS Routing and Templating:https://scotch.io/tutorials/single-page-apps-with-angularjs-routing-and-templating How to Implement Safe Sign-In via OAuth:http://devcenter.kinvey.com/angular/tutorials/how-to-implement-safe-signin-via-oauth A Better Way to Learn AngularJS:https://thinkster.io/a-better-way-to-learn-angularjs $http Interceptors:https://thinkster.io/a-better-way-to-learn-angularjs/interceptors Simple AngularJS Authentication with JWT:https://thinkster.io/angularjs-jwt-authauthenticating-with-an-interceptor Implementing Authentication in Angular Applications:https://www.sitepoint.com/implementing-authentication-angular-applications/ Angularjs中的拦截器 (卧槽,好牛逼):http://www.cnblogs.com/littlemonk/p/5512253.html Interceptors in AngularJS and Useful Examples:http://www.webdeveasy.com/interceptors-in-angularjs-and-useful-examples/ angularJS 1.5.7官方文档:https://code.angularjs.org/1.5.7/docs/api 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_34150503/article/details/86337522。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-14 12:17:09
213
转载
Gradle
...的依赖。对于Java应用,使用jar任务打包时,默认并不会将依赖打进生成的jar文件中。若需将依赖包含进去,可采用如下方式: groovy task fatJar(type: Jar) { archiveBaseName = 'my-fat-app' from { configurations.runtimeClasspath.collect { it.isDirectory() ? it : zipTree(it) } } with jar } 这段代码创建了一个名为fatJar的任务,它将运行时依赖一并打包进同一个jar文件中,便于部署和运行。 总结来说,掌握Gradle依赖管理的核心在于理解其声明式依赖配置以及对依赖范围、传递性的掌控。同时,咱们在打包的时候,得瞅准实际情况,灵活选择最合适的策略把依赖项一并打包进去,这样才能保证咱们的项目构建既一步到位,又快马加鞭,准确高效没商量。在整个开发过程中,Gradle就像个超级灵活、无比顺手的工具箱,让开发者能够轻轻松松解决各种乱七八糟、错综复杂的依赖关系难题,真可谓是个得力小助手。
2023-06-09 14:26:29
408
凌波微步_
.net
...件的执行顺序,这可是优化你应用程序性能、把请求处理流程捏得死死的关键所在,可别小瞧了它的重要性!本文将深入探讨这一主题,并通过实例代码展示其具体运作机制。 2. ASP.NET Core 中间件简介 中间件就像是一个管道中的一个个处理器,每个处理器对HTTP请求进行特定操作,然后将处理权移交给下一个处理器,直至请求得到最终响应。这种链式处理模式使得开发人员能够灵活地添加、删除或修改中间件以满足不同业务需求。 csharp public void Configure(IApplicationBuilder app, IWebHostEnvironment env) { app.UseMiddleware(); app.UseMiddleware(); app.UseMiddleware(); } 如上所示,我们定义了一个中间件调用序列,FirstMiddleware、SecondMiddleware 和 ThirdMiddleware 将按照声明的顺序依次处理HTTP请求。 3. 中间件执行顺序详解 3.1 自顶向下执行 ASP.NET Core 中间件遵循“自顶向下”的执行顺序。当一个HTTP请求溜达到咱的应用程序门口时,首先会被咱们第一个挂上去的“中间人”逮个正着。这个“中间人”先施展一下自己的独门绝技,处理完手头的活儿后,它会招呼下一个哥们儿说:“喂,该你上场了。”然后通过一句“await _next.Invoke(context)”这样的暗号,把请求稳稳地传递给下一个中间件。就这样,一棒接一棒,直到最后一个“中间人”华丽丽地生成并返回最终的响应结果。 3.2 请求与响应流 这里有一个直观的例子: csharp public class FirstMiddleware { private readonly RequestDelegate _next; public FirstMiddleware(RequestDelegate next) { _next = next; } public async Task InvokeAsync(HttpContext context) { Console.WriteLine("First Middleware: Before"); await _next.Invoke(context); Console.WriteLine("First Middleware: After"); } } // SecondMiddleware and ThirdMiddleware are similar... 在这段代码中,当请求到来时,"First Middleware: Before"会被首先打印,接着请求进入下一个中间件,最后在所有中间件处理完请求之后,“First Middleware: After”会被打印。 3.3 异常处理与短路 如果某个中间件遇到异常并且没有捕获处理,则后续的中间件将不会被执行。另外,咱们还可以用一种特别的“错误处理中间件”工具来及时抓取并妥善处理这些未被消化的异常情况。这样一来,就算系统闹点小脾气、出个小差错,也能确保它给出一个合情合理的响应,不致于手足无措。 4. 探讨与思考 理解并掌握中间件的执行顺序,有助于我们在实际项目中构建更高效、更健壮的应用程序。比如,当业务运行需要的时候,我们可以灵活地把身份验证、授权这些中间件,还有日志记录什么的,像玩拼图一样放在最合适的位置上。这样一来,既能保证系统的安全性杠杠的,又不会拖慢整体速度,让性能依旧出色。 5. 结语 总之,ASP.NET Core 中间件的执行顺序是一个既基础又关键的概念,它深深地影响着应用程序的架构设计和性能表现。希望通过这篇接地气的文章和我精心准备的示例代码,你不仅能摸清它的运作门道,更能点燃你在实战中不断挖掘、尝试新玩法的热情。这样一来,ASP.NET Core就能变成你手中一把趁手好使的利器,让你用起来得心应手,游刃有余。
2023-04-27 23:22:13
471
月下独酌
Docker
...er -v /webapp:/usr/share/nginx/html nginx 上述命令中 -v /webapp:/usr/share/nginx/html 就创建了一个从宿主机 /webapp 映射到容器内 /usr/share/nginx/html 的数据卷。这样,容器内的网页文件实际上会存储在宿主机的 /webapp 目录下。 3. 修改Docker默认存储路径 Docker的默认存储路径通常位于 /var/lib/docker,如果这个位置的空间不足或者出于管理上的需求,我们可以对其进行修改: 3.1 Linux系统 在Linux系统中,可以通过修改Docker守护进程启动参数来改变数据存储路径: bash 停止Docker服务 sudo systemctl stop docker 编辑Docker配置文件(通常是/etc/docker/daemon.json) sudo nano /etc/docker/daemon.json 添加如下内容(假设新的存储路径为 /mnt/docker) { "data-root": "/mnt/docker" } 重启Docker服务并检查新路径是否生效 sudo systemctl start docker sudo docker info | grep "Root Dir" 3.2 Windows和Mac (Docker Desktop) 对于Windows和Mac用户,通过Docker Desktop可以更方便地更改Docker数据盘的位置: - 打开Docker Desktop应用 - 进入“Preferences”或“Settings” - 在“Resources”选项卡中找到“Disk image location”,点击“Move”按钮选择新的存储路径 - 点击“Apply & Restart”以应用更改 4. 多路径映射与复杂场景 在某些情况下,我们可能需要映射多个路径,甚至自定义路径模式。例如,下面的命令展示了如何映射多个宿主机目录到容器的不同路径: bash docker run -d \ --name my-app \ -v /host/path/config:/app/config \ -v /host/path/data:/app/data \ your-image-name 这里,我们把宿主机上的 /host/path/config 和 /host/path/data 分别映射到了容器的 /app/config 和 /app/data。 总结起来,理解和掌握Docker映射路径及修改存储路径的技术,不仅可以帮助我们更好地管理和利用资源,还能有效保证容器数据的安全性和持久性。在这个过程中,我们可没闲着,一直在热火朝天地摸索、捣鼓和实战Docker技术。亲身体验到它的神奇魅力,也实实在在地深化了对虚拟化和容器化技术的理解,收获颇丰!
2023-09-10 14:02:30
541
繁华落尽_
Nginx
...境下,Web服务器的优化配置与前端项目的高效部署已成为提升用户体验、保障服务稳定性的关键环节。近期,Nginx官方发布了其最新版本,引入了更多增强功能和性能改进,对于正在使用Vue.js等现代前端框架构建应用的开发者来说,深入理解并掌握新版本Nginx的各项特性至关重要。 例如,新版本Nginx强化了HTTP/2协议支持,使得静态资源加载速度进一步提升,这对于Vue项目这类单页面应用尤其重要,能有效降低首次加载时间,提高用户交互体验。同时,新版Nginx增强了缓存策略管理,提供了更细粒度的控制,有助于实现动态内容的合理缓存,减轻后端压力。 此外,针对版本更新时的重定向问题,Nginx的新功能如map模块和return指令的灵活运用,可以更加智能地根据客户端特征(如浏览器版本、地理位置等)进行精细化的URL重写与跳转策略制定,确保用户能够无缝过渡到新版本页面,避免因访问旧版内容引发的兼容性或数据一致性问题。 因此,建议开发团队密切关注Nginx的最新动态和技术文档,并结合自身项目特点,持续优化部署方案,以满足日益增长的用户需求,提供更为流畅、稳定的线上服务。同时,学习和借鉴业界最佳实践,如Netflix开源的 Zuul 项目,以及Google在前端路由与版本控制方面的创新理念,都将为解决此类问题带来新的启示和解决方案。
2023-11-04 10:35:42
124
草原牧歌_t
HTML
...开发Electron应用时,特别是在复杂的渲染进程中,日志管理显得尤为重要。它可以帮助我们追踪代码执行过程,定位并解决问题。你知道嘛,这个叫做electron-log的小工具可厉害了,它就像是咱们在Electron主进程和渲染进程中的贴心小秘书,能轻松帮我们把各种日志消息记录得清清楚楚,然后乖乖地把它们送到文件里去,让咱管理起日志来就和玩儿似的!今天,我们将一起探讨如何在渲染进程中使用electron-log输出日志。 1. 引入与初始化 electron-log 首先,确保你已经在项目中安装了electron-log库,可以通过npm或yarn进行安装: bash npm install electron-log --save-dev 或者 yarn add electron-log -D 然后,在渲染进程中引入并初始化electron-log: javascript // 在渲染进程中(如renderer.js) const log = require('electron-log'); // 设置默认的日志级别,例如 'info' log.transports.file.level = 'info'; // 初始化,使其可以在渲染进程中工作 log.init({ showLogs: false, // 是否在控制台显示日志 electronRenderer: true, }); 2. 输出日志至文件 现在,我们可以开始在渲染进程中愉快地编写日志了! javascript // 假设在一个用户交互事件中需要记录操作日志 document.getElementById('myButton').addEventListener('click', () => { log.info('User clicked on the button!'); log.error('An unexpected error occurred during the click event!', new Error('Error details')); }); 上述代码中,我们分别用log.info()和log.error()记录了不同级别的信息。这些日志会自动乖乖地蹦进默认的日志文件里头,这个文件一般都藏在你电脑的AppData目录下,具体哪个小角落就得看你的操作系统啦。 3. 自定义日志文件路径及格式 如果你希望自定义日志文件的位置和名称,可以通过以下方式设置: javascript log.transports.file.getFile().path = path.join(app.getPath('userData'), 'custom-log.log'); 同时,electron-log也支持多种格式化选项,包括JSON、pretty-print等,可以根据需求调整: javascript log.transports.file.format = '{h}:{i}:{s} {level}: {text}'; 4. 思考与讨论 值得注意的是,虽然我们在渲染进程中直接调用了electron-log,但实际上所有的日志都通过IPC通信机制传递给主进程,再由主进程负责实际的写入文件操作。这么干,既能确保安全,防止渲染进程直接去摆弄磁盘,还能让日志管理变得简单省事儿多了。 在整个过程中,electron-log不仅充当了开发者的眼睛,洞察每一处可能的问题点,还像一本详尽的操作手册,忠实记录着应用运行的每一步足迹。这种实时、细致入微的日志系统,绝对是我们Electron应用背后的强大后盾,让我们的应用跑得既稳又强。 总的来说,通过electron-log,我们在 Electron 渲染进程中记录和输出日志变得轻松易行,大大提高了调试效率和问题定位的速度。每一个开发者都该好好利用这些工具,让咱们的应用程序像人一样“开口说话”,把它们的“心里话”都告诉我们。
2023-10-02 19:00:44
552
岁月如歌_
Go Iris
...题。这些问题可能会让应用程序运行起来变得卡卡的,严重的话,甚至会让整个系统“罢工”,直接崩溃掉。而在服务器端编程中,高并发是一种常见的挑战。 在这个背景下,今天我们来谈谈如何使用Go Iris来解决这个问题。Go Iris是一个轻量级、快速的Web框架,特别适合用于处理高并发的场景。 二、为什么选择Go Iris? 首先,Go Iris有一个非常强大的社区支持。这个社区非常活跃,经常发布新的版本和更新。这意味着你可以随时获取到最新的功能和技术。 其次,Go Iris的API设计非常简单易用。这使得我们可以快速地开发出高质量的应用程序。而且,重点是这家伙很轻便,即使在内存和CPU资源紧张的情况下也能跑得飞快。 最后,Go Iris对高并发的支持非常好。它本身就自带了一些专门为了应对超高并发场景而设计的优化小窍门,比如那个灵活聪明的goroutine调度器啦,还有那个高效给力的HTTP协程池啥的。 三、如何使用Go Iris实现高并发? 那么,如何使用Go Iris来实现高并发呢?以下是一些具体的建议: 3.1 使用goroutine Go语言的一个重要特点就是它的goroutine。一个goroutine是Go语言的一种轻量级线程。在一个应用程序里头,你完全可以同时启动多个小家伙(goroutine),它们就像一个团队一样,共同享用同一块堆栈和内存空间,相互协作,一块干活儿。 在使用Go Iris时,我们可以利用这一点来处理高并发请求。简单来说,当服务器收到一个请求时,咱可以立马生成一个新的小线程(就叫它“goroutine”吧)去专门处理这个请求,而不是傻傻地等当前的这个goroutine把所有事情干完再动手。就像是开个新窗口服务顾客,而不是让一个窗口排队等到天荒地老。 下面是一个简单的例子: go app.Get("/", func(c iris.Context) { // 处理请求 }) 在这个例子中,当服务器接收到GET /的请求时,会立即创建一个新的goroutine来处理这个请求。 3.2 使用HTTP协程池 除了使用goroutine之外,我们还可以使用HTTP协程池来进一步提高并发能力。 在Go Iris中,我们可以使用iris.ContextPool来创建一个HTTP协程池。接下来,我们可以把HTTP协程池这块好东西挂载到iris.DefaultServer上,这样一来,每当有请求飞过来的时候,它就会从这个HTTP协程池里头拽出一个协程去处理这些请求,就像小工人们排队等候工作一样。 下面是一个使用HTTP协程池的例子: go pool := iris.NewContextPool(100) server := iris.New() server.Use(pool) server.Get("/", func(c iris.Context) { // 处理请求 }) 在这个例子中,我们创建了一个包含100个goroutine的HTTP协程池,并将其添加到了iris.DefaultServer上。这样,每次接收到请求时,都会从HTTP协程池中取出一个goroutine来处理请求。 四、结论 总的来说,通过使用Go Iris,我们可以很容易地实现高并发。无论是选择用goroutine,还是决定采用HTTP协程池的方式,都能实实在在地帮我们提升并发处理的能力,让我们的程序运行更加流畅高效。不过呢,咱们也得留心一些小细节哈。比如,得保证咱们编的代码能够妥妥地应对并发问题,什么竞态条件、死锁这些幺蛾子,都得把它们稳稳拿捏住才行。 在未来,我相信Go Iris将会继续发展和完善,为我们提供更多的工具和功能来处理高并发。我们也可以期待更多的人加入到Go Iris的社区中,共同推动Go Iris的发展。
2023-06-14 16:42:11
478
素颜如水-t
转载文章
...oid开发过程中内存优化的理解,很多东西都是平常的习惯和一些细节问题,重在剖析优化的原理,养成一种良好的代码习惯。 概述 既然谈优化,就绕不开Android三个内存相关的经典问题: OOM 内存泄漏 频繁GC卡顿 导致这三个问题的原因: OOM App在启动时会从系统分配一个默认的堆内存,同时拥有一个堆内存最大值(可以动态申请这个大小),这个Max Heap Size的大小,决定了软件运行时可以申请的最大运行内存。App软件内存分配是个不断创建和GC回收的过程,就像一个水池拥有注入和排出水的通道,当注入过快,排出不足时,水池满了溢出,Out of Memory,即我们常说的OOM。 内存泄漏 当我们在代码中创建对象,会申请内存空间,同时包含一个对象的引用,当我们长时间不使用该引用时,JVM GC操作时会根据这个引用去释放内存。但是,对象的回收可能有点差错,如果这个对象A被另一个线程B所引用,当我们不再使用A,可A却处于B的hold状态,那么我们每次创建的A都得不到回收,这个时候就会发生内存泄漏了。 频繁GC卡顿 上面说了,App的堆内存有最大值,是有限的,那么如果我们频繁的创建,当运行内存不断上升,为了维持App的运行,GC回收也会频繁操作,软件运行资源有些,必然导致卡顿问题。 JAVA的GC机制,非常的复杂和精辟,不可一言概论之,在看过许多blog之后,给出一点自己的总结。 简述JVM GC 我们都知道Java语言非常的方便,不像C语言,申请和释放内存都是自己操作,java有虚拟机帮忙。Android 的每个应用程序都会使用一个专有的Dalvik虚拟机实例来运行,即使内存泄漏也只是kill当前App. Java虚拟机有一套完整的GC方案,只是简单理解的话就是,它维持着一个对象关系树,当开始GC操作时,它会从GC Roots开始扫描整个Object Tree,当发现某个无法从Tree中引用到的对象时,便将其回收。 GC Roots分类举例: Class类 Alive Thread 线程stack上的对象,如方法或者局部变量 JNI活动对象 System Class Loader Java中的引用关系 java中有四种对象引用关系,分别是:强引用StrongRefernce、软引用SoftReference、弱引用WeakReference、虚引用PhantomReference,这四种引用关系分别对应的效果: StrongRefernce 通过new创建的对象,如Object obj = new Object();,强引用不会被垃圾回收器回收和销毁,即是OOM,所以这也容易造成我们接下来会分析的《非静态内部类持有对象导致的内存泄漏问题》 SoftReference 软引用可以被垃圾回收器回收,但它的生命周期要强于弱引用,但GC回收发生时,只有在内存空间不足时才会回收它 WeakReference 弱引用的生命周期短,可以被GC回收,但GC回收发生时,扫描到弱引用便会被垃圾回收和销毁掉 PhantomReference 虚引用任何时候都可以被GC回收,它不会影响对象的垃圾回收机制,它只有一个构造函数,因此只能配合ReferenceQueue一起使用,用于记录对象回收的过程 PhantomReference(T referent, ReferenceQueue<? super T> q) 关于ReferenceQueue 他的作用主要用于记录引用是否被回收,除了强引用其他的引用方式得构造函数中都包含了ReferenceQueue参数。当调用引用的get()方法返回null时,我们的对象不一定已经回收掉了,可能正在进入回收流程中,而当对象被确认回收后,它的引用会被添加到ReferenceQueue中。 Felix obj = new Felix();ReferenceQueue<Felix> rQueue = new ReferenceQueue<Felix>();WeakReference<Felix> weakR = new WeakReference<Felix>(obj,rQueue); 总结 看完Android引用和回收机制,我们对于代码中内存问题的原因也有一定认识,当时现实中内存泄漏或者溢出的问题,总是不经意间,在我之后一些列的文章中,会对不同场景的代码问题进行分析和解决,一起来关注吧! 本篇文章为转载内容。原文链接:https://blog.csdn.net/sslinp/article/details/84787843。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-10-10 11:39:05
262
转载
转载文章
... js代码 var app=angular.module('myApp',[]);app.controller('commCtrl', function($scope, $http) {var reSearch=function(postPoints){var postData={'id':goods_id, //产品id'post_points':postPoints||$scope.paginationConf.postPoints, //全部0,好评1,中评2,差评3'limit':$scope.paginationConf.itemsPerPage, //行数'page':$scope.paginationConf.currentPage //页数};$http({method: 'POST',url: '/comment',data:postData,}).then(function successCallback(response) {// 请求成功执行代码// console.log(response.data)$scope.totalNum=Math.ceil(response.data.total/$scope.paginationConf.itemsPerPage);$scope.commentlist=response.data.list;}, function errorCallback(response) {// 请求失败执行代码console.log('请求失败')});}$scope.reSearch=reSearch;$scope.paginationConf={firstPage:1, //起始页 currentPage:1, //当前页itemsPerPage:5, //每页展示的数据条数postPoints:0 // 全部0,好评1,中评2,差评3}; $scope.paging=function(evt,nType){$(evt.target).addClass("active").siblings().removeClass("active");switch(nType){case -2:$scope.paginationConf.currentPage=$scope.totalNum;break;case -1:$scope.paginationConf.currentPage++;break;case 1:$scope.paginationConf.currentPage=1;break;case 2:$scope.paginationConf.currentPage=2;break;case 3:$scope.paginationConf.currentPage=3;break;default:$scope.paginationConf.currentPage--;} $scope.reSearch(0);}$scope.hasNext=function(){if($scope.paginationConf.currentPage<$scope.totalNum){return true;}else{return false;} }$scope.hasPrev=function(){if($scope.paginationConf.currentPage>1){return true;}else{return false;} }$scope.reSearch(0);// $scope.$watch('paginationConf.currentPage + paginationConf.postPoints', reSearch(0));}) 第一次用angular分页,处理的有些简陋,还有一些疑问留着下次解答: 1.ng-controller放在排序的外层包裹内容显示不出来,也不报错,放在最外层或者body下面包裹的第一层上才显示数据 在angular的函数里面获取元素de属性值,可通过click方法传参($event.target),相当于jquery的this 更多参考:https://www.cnblogs.com/sxz2008/p/6379427.html 本篇文章为转载内容。原文链接:https://blog.csdn.net/samscat/article/details/103328461。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-10-12 14:36:16
72
转载
Hive
...询速度慢:深度解析与优化策略 1. 引言 在大数据处理的世界中,Apache Hive是一个不可或缺的角色。你知道吗,就像一个超级给力的数据管家,这家伙是基于Hadoop构建的数据仓库工具。它让我们能够用一种类似SQL的语言——HiveQL,去轻松地对海量数据进行查询和深度分析,就像翻阅一本大部头的百科全书那样方便快捷。然而,当我们和海量数据打交道的时候,时不时会碰上Hive查询跑得比蜗牛还慢的状况,这可真是给咱们的工作添了不少小麻烦呢。本文将深入探讨这一问题,并通过实例代码揭示其背后的原因及优化策略。 2. Hive查询速度慢 常见原因探析 - 大量数据扫描:Hive在执行查询时,默认情况下可能需要全表扫描,当表的数据量极大时,这就如同大海捞针,效率自然低下。 sql -- 示例:假设有一个包含数亿条记录的大表large_table SELECT FROM large_table WHERE key = 'some_value'; - 无谓的JOIN操作:不合理的JOIN操作可能导致数据集爆炸性增长,严重影响查询性能。 sql -- 示例:两个大表之间的JOIN,若关联字段没有索引或分区,则可能导致性能瓶颈 SELECT a., b. FROM large_table_a a JOIN large_table_b b ON (a.key = b.key); - 缺乏合理分区与索引:未对表进行合理分区设计或者缺失必要的索引,会导致Hive无法高效定位所需数据。 - 计算密集型操作:如GROUP BY、SORT BY等操作,如果处理的数据量过大且未优化,也会导致查询速度变慢。 3. 解决策略 从源头提升查询效率 - 减少数据扫描: - WHERE子句过滤:尽量精确地指定WHERE条件,减少无效数据的读取。 sql SELECT FROM large_table WHERE key = 'specific_value' AND date = '2022-01-01'; - 创建分区表:根据业务需求对表进行分区,使得查询可以只针对特定分区进行。 sql CREATE TABLE large_table_parted ( ... ) PARTITIONED BY (date STRING); - 优化JOIN操作: - 避免笛卡尔积:确保JOIN条件足够具体,限制JOIN后的数据规模。 - 考虑小表驱动大表:尽可能让数据量小的表作为JOIN操作的左表。 - 利用索引:虽然Hive原生支持的索引功能有限,但在某些场景下(如ORC文件格式),我们可以利用Bloom Filter索引加速查询。 sql ALTER TABLE large_table ADD INDEX idx_key ON KEY; - 分桶策略:对于GROUP BY、JOIN等操作,可尝试对相关字段进行分桶,从而分散计算负载。 sql CREATE TABLE bucketed_table (...) CLUSTERED BY (key) INTO 10 BUCKETS; 4. 总结与思考 面对Hive查询速度慢的问题,我们需要具备一种“侦探”般的洞察力,从查询语句本身出发,结合业务特点和数据特性,有针对性地进行优化。其实呢,上面提到的这些策略啊,都不是一个个单打独斗的“孤胆英雄”,而是需要咱们把它们巧妙地糅合在一起,灵活运用,最终才能编织出一套真正行之有效的整体优化方案。所以,你懂的,把这些技巧玩得贼溜,可不光是能让你查数据的速度嗖嗖提升,更关键的是,当你面对海量数据的时候,就能像切豆腐一样轻松应对,让Hive在大数据分析这片天地里,真正爆发出惊人的能量,展现它应有的威力。同时,千万记得要时刻紧跟Hive社区的最新动态,像追剧一样紧随其步伐,把那些新鲜出炉的优化技术和工具统统收入囊中。这样一来,咱们就能提前准备好充足的弹药,应对那日益棘手、复杂的数据难题啦!
2023-06-19 20:06:40
448
青春印记
转载文章
...显,尤其在保障云原生应用安全与资源优化配置方面起到了关键作用。近期,随着社区对安全性和稳定性需求的不断提升,新的准入控制器策略也在不断涌现和迭代。 例如,2022年3月,Kubernetes官方宣布了PodPresets Admission Controller的回归,并将其更名为SidecarSet。这一改进使得运维人员能够更方便地为多个Pod定义共享配置和容器,强化了多容器应用部署的一致性与可维护性。同时,社区还在积极讨论ServiceAccountTokenVolumeProjection Admission Controller的功能增强,以实现对服务账户令牌自动挂载的安全策略控制。 另一方面,针对集群资源滥用和无序扩张的问题,有开发者提出了一种新型的动态资源配额管理方案,通过自定义准入控制器来实时监控并调整Namespace级别的资源限额,确保了集群资源的高效利用和公平分配。这种精细化管理方式不仅提升了集群的整体性能表现,还降低了由于资源争抢引发的故障风险。 此外,Kubernetes生态中一些第三方项目也围绕准入控制器展开了深入探索,如Open Policy Agent(OPA)集成到Webhook中,提供了强大的、声明式的策略引擎,让集群管理者能更加灵活地定义和执行复杂的准入规则,从而进一步提升集群安全性及合规性。 总之,准入控制器作为Kubernetes平台的核心组件,其发展动态与创新实践值得持续关注。未来,随着云原生技术的快速发展,准入控制器将承载更多的功能与责任,成为驱动Kubernetes集群迈向更高稳定性和安全性的基石。
2023-12-25 10:44:03
336
转载
Tornado
...齐全的Tornado应用,满心欢喜准备把它搬到服务器上大展拳脚,结果却发现这小家伙死活不肯启动,真让人挠头。这很可能是因为在实际运行的生产环境里,咱们没把Tornado或者它的一些配套依赖包给装上,或者装得不太对劲儿,才出现这个问题的。 python 假设我们的tornado_app.py中导入了tornado模块 import tornado.ioloop import tornado.web class MainHandler(tornado.web.RequestHandler): 省略具体的处理逻辑... def make_app(): return tornado.web.Application([ (r"/", MainHandler), ]) if __name__ == "__main__": app = make_app() app.listen(8888) tornado.ioloop.IOLoop.current().start() 1.2 解决方案 确保在部署环境通过pip或其他包管理工具安装所有必需的依赖。例如: bash 在你的服务器上运行以下命令以安装Tornado及其依赖 pip install tornado 同时,对于项目中自定义的或者第三方的额外依赖,应在requirements.txt文件中列出并使用pip install -r requirements.txt进行安装。 2. 配置文件错误带来的困扰 2.1 问题描述 配置文件错误是另一个常见的部署问题。Tornado应用通常会读取配置文件来获取数据库连接信息、监听端口等设置。如果配置文件格式不正确或关键参数缺失,服务自然无法正常启动。 python 示例:从配置文件读取端口信息 import tornadotools.config config = tornadotools.config.load_config('my_config.json') port = config.get('server', {}).get('port', 8000) 如果配置文件中没有指定端口,将默认为8000 然后在启动应用时使用该端口 app.listen(port) 2.2 解决方案 检查配置文件是否符合预期格式且包含所有必需的参数。就像上面举的例子那样,假如你在“my_config.json”这个配置文件里头忘记给'server.port'设定端口值了,那服务就可能因为找不到合适的端口而罢工启动不了,跟你闹脾气呢。 json // 正确的配置文件示例: { "server": { "port": 8888 }, // 其他配置项... } 此外,建议在部署前先在本地环境模拟生产环境测试配置文件的有效性,避免上线后才发现问题。 3. 总结与思考 面对Tornado服务部署过程中可能出现的各种问题,我们需要保持冷静,遵循一定的排查步骤:首先确认基础环境搭建无误(包括依赖安装),然后逐一审查配置文件和其他环境变量。每次成功解决故障,那都是实实在在的经验在手心里攒着呢,而且这每回的过程,都像是咱们对技术的一次深度修炼,让理解力蹭蹭往上涨。 记住,调试的过程就像侦探破案一样,要耐心细致地查找线索,理性分析,逐步抽丝剥茧,最终解决问题。在这个过程中,不断反思和总结,你会发现自己的技术水平也在悄然提升。部署虽然繁琐,但当你看到自己亲手搭建的服务稳定运行时,那种成就感会让你觉得一切付出都是值得的!
2023-03-14 20:18:35
60
冬日暖阳
Kubernetes
...管理能力,成为了现代应用架构的基石。哎呀,随着微服务的复杂度越来越高,咱们在使用Kubernetes集群时,就像在大海里捞针一样,想要有效地监控和管理它,简直就成了一个大难题。就像是在森林里找宝藏,你得有眼力劲儿,还得有点儿冒险精神,才能找到那把开启成功之门的钥匙。这事儿,可真不是闹着玩的!这里,我们将深入探讨Kubernetes与Kiali的结合,如何通过可视化手段提升系统的可管理性与洞察力。 二、Kubernetes基础概览 Kubernetes(简称K8s)是一个开源的容器编排系统,它允许开发者和系统管理员自动部署、扩展和管理应用程序容器。Kubernetes的核心组件包括: - Pod:一组运行相同或不同应用容器的集合。 - Namespace:用于隔离资源并提供命名空间内的逻辑分组。 - Service:为Pod提供网络访问服务。 - Deployment:用于创建和更新Pod的副本集。 - StatefulSet:用于创建具有唯一身份标识的Pod集合。 - Ingress:提供外部对应用的访问入口。 三、Kiali的引入 Kiali是Kubernetes可视化监控和管理的一个重要工具,它通过图形界面提供了丰富的功能,包括服务发现、流量管理、健康检查、故障恢复策略等。哎呀,Kiali这个家伙可真能帮大忙了!它就像个超级厉害的侦探,能一眼看出你应用和服务到底是活蹦乱跳还是生病了。而且,它还有一套神奇的魔法,能把那些复杂的运维工作变得简单又快捷,就像是给你的工作流程装上了加速器,让你的效率噌噌噌往上涨。简直不能更贴心了! 四、Kubernetes与Kiali的集成 要将Kubernetes与Kiali整合,首先需要确保你的环境中已经部署了Kubernetes集群,并且安装了Kiali。接下来,通过以下步骤实现集成: 1. 配置Kiali bash kubectl apply -f https://kiali.io/install/kiali-operator.yaml 2. 验证Kiali安装 bash kubectl get pods -n kiali-system 应该能看到Kiali相关的Pod正在运行。 3. 访问Kiali UI bash kubectl port-forward svc/kiali 8080:8080 & 然后在浏览器中访问http://localhost:8080,即可进入Kiali控制台。 五、利用Kiali进行可视化监控 在Kiali中,你可以轻松地完成以下操作: - 服务发现:通过服务名或标签快速定位服务实例。 - 流量分析:查看服务之间的调用关系和流量流向。 - 健康检查:监控服务的健康状态,包括响应时间、错误率等指标。 - 故障恢复:配置故障转移策略,确保服务的高可用性。 六、案例分析 构建一个简单的微服务应用 假设我们有一个简单的微服务应用,包含一个后端服务和一个前端服务。我们将使用Kubernetes和Kiali来部署和监控这个应用。 yaml apiVersion: apps/v1 kind: Deployment metadata: name: backend-service spec: replicas: 3 selector: matchLabels: app: backend template: metadata: labels: app: backend spec: containers: - name: backend-container image: myregistry/mybackend:v1 ports: - containerPort: 8080 --- apiVersion: v1 kind: Service metadata: name: backend-service spec: selector: app: backend ports: - protocol: TCP port: 80 targetPort: 8080 在Kiali中,我们可以直观地看到这些服务是如何相互依赖的,以及它们的健康状况如何。 七、结论 Kubernetes与Kiali的结合,不仅极大地简化了Kubernetes集群的管理,还提供了丰富的可视化工具,使运维人员能够更加直观、高效地监控和操作集群。通过本文的介绍,我们了解到如何通过Kubernetes的基础配置、Kiali的安装与集成,以及实际应用的案例,实现对复杂微服务环境的有效管理和监控。随着云原生技术的不断发展,Kubernetes与Kiali的组合将继续发挥其在现代应用开发和运维中的核心作用,助力企业构建更可靠、更高效的云原生应用。
2024-09-05 16:21:55
60
昨夜星辰昨夜风
Tornado
... 结合AsyncIO优化Tornado性能:深入探索与实践 在当今的高并发、高性能Web服务开发领域,Tornado以其异步非阻塞I/O模型赢得了广泛的认可。然而,你知道吗,现在Python世界里的那个AsyncIO模块可是越来越牛了,大家都在热议怎么把它和Tornado更好地搭配起来,榨干它们的性能潜力,这已经变成了开发者们茶余饭后、热烈讨论的重点话题。这篇文儿啊,咱们打算用些实实在在的代码实例,再加上抽丝剥茧般的深度解读,手把手教你如何借力AsyncIO这把利器,让你的Tornado应用跑得飞起,优化效果看得见摸得着。 1. Tornado与AsyncIO 相识相知 Tornado作为一款Python Web框架,其核心特性是基于事件驱动的异步编程模型,能够高效处理大量并发连接,特别适合构建实时Web服务。AsyncIO这个家伙,其实是Python标准库里藏着的一个超级实用的异步I/O工具箱。它就像是个厉害的角色,拥有着强大的异步任务协调本领,让咱们平时用的Python能够轻松玩转异步编程,不再受限于同步模式,变得更加灵活高效。 两者虽各有特色,但并非竞争关系,而是可以紧密结合,取长补短,共同服务于对性能有极高要求的应用场景。 2. AsyncIO在Tornado中的运用 示例1:在Tornado中直接使用AsyncIO的async/await语法编写异步处理逻辑: python import asyncio import tornado.ioloop import tornado.web class AsyncHandler(tornado.web.RequestHandler): async def get(self): 使用AsyncIO执行耗时操作 await asyncio.sleep(1) self.write("Hello, Async Tornado!") def make_app(): return tornado.web.Application([ (r"/", AsyncHandler), ]) if __name__ == "__main__": app = make_app() app.listen(8888) tornado.ioloop.IOLoop.current().start() 在这段代码中,我们创建了一个异步处理器AsyncHandler,其中的get方法使用了AsyncIO的asyncio.sleep函数模拟耗时操作。虽然Tornado自身本来就有异步功能,但是在最新版的Tornado 6.0及以上版本里,咱们能够超级顺滑地把AsyncIO的异步编程语法融入进去,这样一来,不仅让代码读起来更加通俗易懂,而且极大地简化了程序结构,变得更加清爽利落。 3. 利用AsyncIO优化Tornado网络I/O 虽然Tornado内置了异步HTTP客户端,但在某些复杂场景下,利用AsyncIO的aiohttp库或其他第三方异步库可能会带来额外的性能提升。 示例2:使用aiohttp替代Tornado HTTPClient实现异步HTTP请求: python import aiohttp import tornado.web import asyncio class AsyncHttpHandler(tornado.web.RequestHandler): async def get(self): async with aiohttp.ClientSession() as session: async with session.get('https://api.example.com/data') as response: data = await response.json() self.write(data) def make_app(): return tornado.web.Application([ (r"/fetch_data", AsyncHttpHandler), ]) if __name__ == "__main__": app = make_app() app.listen(8888) loop = asyncio.get_event_loop() tornado.platform.asyncio.AsyncIOMainLoop().install() tornado.ioloop.IOLoop.current().start() 这里我们在Tornado中引入了aiohttp库来发起异步HTTP请求。注意,为了整合AsyncIO到Tornado事件循环,我们需要安装并启动tornado.platform.asyncio.AsyncIOMainLoop。 4. 思考与讨论 结合AsyncIO优化Tornado性能的过程中,我们不仅获得了更丰富、更灵活的异步编程工具箱,而且能更好地利用操作系统级别的异步I/O机制,从而提高资源利用率和系统吞吐量。当然,具体采用何种方式优化取决于实际应用场景和需求。 总的来说,Tornado与AsyncIO的联姻,无疑为Python高性能Web服务的开发注入了新的活力。在未来的发展旅程上,我们热切期盼能看到更多新鲜、酷炫的创新和突破,让Python异步编程变得更加给力,用起来更顺手,实力也更强大。就像是给它插上翅膀,飞得更高更快,让编程小伙伴们都能轻松愉快地驾驭这门技术,享受前所未有的高效与便捷。
2023-10-30 22:07:28
139
烟雨江南
Maven
...同的平台上运行我们的应用。不管是开发时还是上线后,我们都得有个靠谱又高效的办法来搞定那些依赖和构建步骤,不然这活儿干起来可就头疼了。嘿,今天咱们来聊聊两个超级好用的工具——Maven和npm。有了它们,我们就能在各种平台上轻松部署项目啦! 1. 为什么我们需要讨论Maven和npm? 首先,让我们来聊聊为什么选择这两个工具作为讨论对象。Maven是Java世界的构建工具,而npm则是Node.js项目的包管理和构建工具。这两家伙虽然守护的生态圈不一样,但都是管理项目依赖和自动构建流程的高手,干活儿麻利得很!更重要的是,它们都在跨平台部署方面有着出色的表现。用这两种工具的优点结合起来看,我们就更能掌握怎么在各种平台上好好管个项目了。这么说吧,就像是把两个厉害的工具合并成一个超级工具,让你干活儿更顺手! 2. Maven入门 构建Java世界的桥梁 Maven是一个强大的构建工具,它通过一个名为pom.xml的文件来管理项目的配置和依赖关系。这个文件就像是Java项目的“大脑”,控制着整个构建过程。让我们先来看看一个简单的pom.xml示例: xml xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> 4.0.0 com.example my-app 1.0-SNAPSHOT junit junit 4.12 test org.apache.maven.plugins maven-compiler-plugin 3.8.1 1.8 1.8 在这个例子中,我们定义了一个简单的Java项目,它依赖于JUnit,并且指定了编译器版本为Java 8。这样一来,不管是你在自己的电脑上搞开发,还是把东西搬到服务器上去跑,我们都能确保整个项目稳稳当当,每次都能得到一样的结果。 3. npm之旅 Node.js的魔法盒 与Maven类似,npm(Node Package Manager)是Node.js生态系统中的一个核心组件,它负责管理JavaScript库和模块。npm通过package.json文件来记录项目的依赖和配置信息。下面是一个基本的package.json示例: json { "name": "my-app", "version": "1.0.0", "description": "A simple Node.js application", "main": "index.js", "scripts": { "start": "node index.js" }, "author": "Your Name", "license": "ISC", "dependencies": { "express": "^4.17.1" } } 在这个例子中,我们创建了一个使用Express框架的简单Node.js应用。用npm,我们就能超级方便地装和管这些依赖,让项目的维护变得简单多了。 4. 跨平台部署的挑战与解决方案 尽管Maven和npm各自在其领域内表现出色,但在跨平台部署时,我们仍然会遇到一些挑战。例如,不同操作系统之间的差异可能会导致构建失败。为了应对这些问题,我们可以采取以下几种策略: - 标准化构建环境:确保所有开发和生产环境都使用相同的工具版本和配置。 - 容器化技术:利用Docker等容器技术来封装整个应用及其依赖,从而实现真正的跨平台一致性。 - 持续集成/持续部署(CI/CD):通过Jenkins、GitLab CI等工具实现自动化的构建和部署流程,减少人为错误。 5. 结语 拥抱变化,享受技术带来的乐趣 在这次旅程中,我们不仅了解了Maven和npm的基本概念和使用方法,还探讨了如何利用它们进行跨平台部署。技术这东西啊,变化莫测,但只要你保持好奇心,愿意不断学习,就能一步步往前走,还能从中找到不少乐子呢!不管是搞Java的小伙伴还是喜欢Node.js的朋友,都能用上这些给力的工具,让你的项目管理技能更上一层楼!希望这篇分享能够激发你对技术的好奇心,让我们一起在编程的海洋中畅游吧! --- 通过这样的结构和内容安排,我们不仅介绍了Maven和npm的基本知识,还穿插了个人思考和实际操作的例子,力求让文章更加生动有趣。希望这样的方式能让你感受到技术背后的温度和乐趣!
2024-12-07 16:20:37
30
青春印记
转载文章
...(2) ifdef APPSAPPDS = ${wildcard ${foreach DIR, $(APPDIRS), ${addprefix $(DIR)/, $(APPS)} }} \${wildcard ${addprefix $(CONTIKI)/apps/, $(APPS)} \${addprefix $(CONTIKI)/platform/$(TARGET)/apps/, $(APPS)} \$(APPS)}APPINCLUDES = ${foreach APP, $(APPS), ${wildcard ${foreach DIR, $(APPDS), $(DIR)/Makefile.$(APP)} }}-include $(APPINCLUDES)APP_SOURCES = ${foreach APP, $(APPS), $($(APP)_src)}DSC_SOURCES = ${foreach APP, $(APPS), $($(APP)_dsc)}CONTIKI_SOURCEFILES += $(APP_SOURCES) $(DSC_SOURCES)endif The project's makefile can also define in the APPS variable a list of applications from the apps/ directory that should be included in the Contiki system. hello-world这个例子没有定义APPS变量,故这段不会执行。 我们假设定义了APPS变量,其值为APPS += antelope unit-test。 相关知识点: wildcard函数: 返回所有符合pattern的文件名,以空格隔开。 $(wildcard pattern) The argument pattern is a file name pattern, typically containing wildcard characters (as in shell file name patterns). The result of wildcard is a space-separated list of the names of existing files that match the pattern. foreach函数: The syntax of the foreach function is: $(foreach var,list,text) The first two arguments, var and list, are expanded before anything else is done; note that the last argument, text, is not expanded at the same time. Then for each word of the expanded value of list, the variable named by the expanded value of var is set to that word, and text is expanded. Presumably text contains references to that variable, so its expansion will be different each time. The result is that text is expanded as many times as there are whitespace-separated words in list. The multiple expansions of text are concatenated, with spaces between them, to make the result of foreach. 每次从list中取出一个词(空格分隔),赋给var变量,然后text(一般有var变量)被拓展开来。 只要list中还有空格分隔符就会一直循环下去,每一次text返回的结果都会以空格分隔开。 ${wildcard ${foreach DIR, $(APPDIRS), ${addprefix $(DIR)/, $(APPS)} }} 先分析${foreach DIR, $(APPDIRS), ${addprefix $(DIR)/, $(APPS)} } 其中DIR是变量(var),$(APPDIRS)是列表(list),这个例子中没有定义APPDIRS这个变量,估计是用于定义除了$CONTIKI/apps/之外的apps目录。 ${addprefix $(DIR)/, $(APPS)}是text。我们假设定义了APPDIRS为a b。 那么第一次:DIR 会被赋值为a,${addprefix $(DIR)/, $(APPS)},又我们假定APPS为antelope unit-test,所以最终会被拓展为a/antelope a/unit-test。 DIR 会被赋值为b,${addprefix $(DIR)/, $(APPS)},又我们假定APPS为antelope unit-test,所以最终会被拓展为b/antelope b/unit-test。 最终这两次结果会以空格分隔开,即a/antelope a/unit-test b/antelope b/unit-test ${wildcard a/antelope a/unit-test b/antelope b/unit-test} 返回空,因为找不到符合这样的目录。 所以最终这句语句,实现的功能是,返回$APPDIRS目录中,所有符合$APPS的目录。 ${wildcard ${addprefix $(CONTIKI)/apps/, $(APPS)} 这句语句返回$(CONTIKI)/apps/目录下所有符合$APPS的目录,即contiki-release-2-7/apps/antelope contiki-release-2-7/apps/unit-test ${addprefix $(CONTIKI)/platform/$(TARGET)/apps/, $(APPS)} 这句语句返回$(CONTIKI)/platform/$(TARGET)/apps/目录下所有$APPS的目录,即contiki-release-2-7/platform/native/apps/antelope contiki-release-2-7/platform/native/apps/unit-test。 在contiki-release-2-7/platform/native目录下,并没有apps目录,后边有差错处理机制。 $(APPS) 在当前目录下的所有$APPS目录,即antelope unit-test。 在hello-world例子中,并没有这些目录。 所以APPDS变量是包含所有与$APPS有关的目录。 APPINCLUDES变量是所有需要导入的APP Makefile文件。 在所有APPDS目录下,所有Makefile.$(APPS)文件。 在我们的假设条件APPS = antelope unit-test, APPDIRS = 只会导入contiki-release-2-7/apps/antelope/Makefile.antelope contiki-release-2-7/apps/unit-test/Makefile.unit-test 其余的均不存在,所以在include指令前要有符号-,即出错继续执行后续指令。 contiki-release-2-7/apps/antelope/Makefile.antelope: 分别定义了两个变量,antelope_src用于保存antelope这个app的src文件,antelope_dsc用于保存antelope这个app的dsc文件。 contiki-release-2-7/apps/unit-test/Makefile.unit-test: 分别定义了两个变量,unit-test_src用于保存unit-test这个app的src文件,unit-tes_dsc用于保存unit-test这个app的dsc文件。 变量APP_SOURCES APP_SOURCES = ${foreach APP, $(APPS), $($(APP)_src)} 取出所有APPS中的src文件变量,这个例子是$(antelope_src) 和$(unit-test_src) 变量APP_SOURCES DSC_SOURCES = ${foreach APP, $(APPS), $($(APP)_dsc)} 取出所有APPS中的dsc文件变量,这个例子是$(antelope_dsc) 和$(unit-test_dsc) CONTIKI_SOURCEFILES += $(APP_SOURCES) $(DSC_SOURCES) 这段话的最终目的: 将$APPS相关的所有源文件添加进CONTIKI_SOURCEFILES变量中。 (3) target_makefile := $(wildcard $(CONTIKI)/platform/$(TARGET)/Makefile.$(TARGET) ${foreach TDIR, $(TARGETDIRS), $(TDIR)/$(TARGET)/Makefile.$(TARGET)}) Check if the target makefile exists, and create the object directory if necessary.ifeq ($(strip $(target_makefile)),)${error The target platform "$(TARGET)" does not exist (maybe it was misspelled?)}elseifneq (1, ${words $(target_makefile)})${error More than one TARGET Makefile found: $(target_makefile)}endifinclude $(target_makefile)endif 这断代码主要做的就是,找到在所有TAGET目录下找到符合的Makefile.$(TARGET)文件,放到target_makefile变量中。 再检查是否存在或者重复。并做相应的错误提示信息。 ${error The target platform "$(TARGET)" does not exist (maybe it was misspelled?)} ${error More than one TARGET Makefile found: $(target_makefile)} 我们这个例子中 TARGET = native 并且 TARGETDIRS为空 所以最后会导入$(CONTIKI)/platform/native/Makefile.native 接下去要开始分析target和cpu的makefile文件了。 转载于:https://www.cnblogs.com/songdechiu/p/6012718.html 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_34399060/article/details/94095820。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-28 09:49:23
282
转载
Hadoop
...地带,被大家伙儿广泛应用着。在实际处理数据的时候,咱们常常得干一些额外的活儿,比如给数据“洗洗澡”,变个身,再把它们装进系统里边去。这会儿,ETL工具就派上大用场啦!这次,咱就拿Hadoop和ETL工具的亲密合作当个例子,来说说Apache NiFi和Apache Beam这两个在数据圈里炙手可热的ETL小能手。我不仅会给你详细介绍它们的功能特点,还会通过实实在在的代码实例,手把手带你瞧瞧怎么让它们跟Hadoop成功牵手,一起愉快地干活儿。 一、Apache NiFi简介 Apache NiFi是一个基于Java的流数据处理器,它可以接收、路由、处理和传输数据。这个东西最棒的地方在于,你可以毫不费力地搭建和管控那些超级复杂的实时数据流管道,并且它还很贴心地支持各种各样的数据来源和目的地,相当给力!由于它具有高度可配置性和灵活性,因此可以用于各种数据处理场景。 二、Hadoop与Apache NiFi集成 为了使Hadoop与Apache NiFi进行集成,我们需要安装Apache NiFi并将其添加到Hadoop集群中。具体步骤如下: 1. 安装Apache NiFi 我们可以从Apache NiFi的官方网站下载最新的稳定版本,并按照官方提供的指导手册进行安装。在安装这个东西的时候,我们得先调整几个基础配置,就好比NiFi的端口号码啦,还有它怎么进行身份验证这些小细节。 2. 将Apache NiFi添加到Hadoop集群中 为了让Apache NiFi能够访问Hadoop集群中的数据,我们需要配置NiFi的环境变量。首先,我们需要确定Hadoop集群的位置,然后在NiFi的环境中添加以下参数: javascript export HADOOP_CONF_DIR=/path/to/hadoop/conf export HADOOP_HOME=/path/to/hadoop 3. 配置NiFi数据源 接下来,我们需要配置NiFi的数据源,使其能够连接到Hadoop集群中的HDFS文件系统。在NiFi的用户界面里,我们可以亲自操刀,动手新建一个数据源,而且,你可以酷炫地选择“HDFS”作为这个新数据源的小马甲,也就是它的类型啦!然后,我们需要输入HDFS的地址、用户名、密码等信息。 4. 创建数据处理流程 最后,我们可以创建一个新的数据处理流程,使Apache NiFi能够读取HDFS中的数据,并对其进行处理和转发。我们可以在NiFi的UI界面中创建新的流程节点,并将它们连接起来。例如,我们可以使用“GetFile”节点来读取HDFS中的数据,使用“TransformJSON”节点来处理数据,使用“PutFile”节点来将处理后的数据保存到其他位置。 三、Apache Beam简介 Apache Beam是一个开源的统一编程模型,它可以用于构建批处理和实时数据处理应用程序。这个东西的好处在于,你可以在各种不同的数据平台上跑同一套代码,这样一来,开发者们就能把更多的精力放在数据处理的核心逻辑上,而不是纠结于那些底层的繁琐细节啦。 四、Hadoop与Apache Beam集成 为了使Hadoop与Apache Beam进行集成,我们需要使用Apache Beam SDK,并将其添加到Hadoop集群中。具体步骤如下: 1. 安装Apache Beam SDK 我们可以从Apache Beam的官方网站下载最新的稳定版本,并按照官方提供的指导手册进行安装。在安装这玩意儿的时候,我们得先调好几个基础配置,就好比Beam的通讯端口、验证登录的方式这些小细节。 2. 将Apache Beam SDK添加到Hadoop集群中 为了让Apache Beam能够访问Hadoop集群中的数据,我们需要配置Beam的环境变量。首先,我们需要确定Hadoop集群的位置,然后在Beam的环境中添加以下参数: javascript export HADOOP_CONF_DIR=/path/to/hadoop/conf export HADOOP_HOME=/path/to/hadoop 3. 编写数据处理代码 接下来,我们可以编写数据处理代码,并使用Apache Beam SDK来运行它。以下是使用Apache Beam SDK处理HDFS中的数据的一个简单示例: java public class HadoopWordCount { public static void main(String[] args) throws Exception { Pipeline p = Pipeline.create(); String input = "gs://dataflow-samples/shakespeare/kinglear.txt"; TextIO.Read read = TextIO.read().from(input); PCollection words = p | read; PCollection> wordCounts = words.apply( MapElements.into(TypeDescriptors.KVs(TypeDescriptors.strings(), TypeDescriptors.longs())) .via((String element) -> KV.of(element, 1)) ); wordCounts.apply(Write.to("gs://my-bucket/output")); p.run(); } } 在这个示例中,我们首先创建了一个名为“p”的Pipeline对象,并指定要处理的数据源。然后,我们使用“TextIO.Read”方法从数据源中读取数据,并将其转换为PCollection类型。接下来,我们要用一个叫“KV.of”的小技巧,把每一条数据都变个身,变成一个个键值对。这个键呢,就是咱们平常说的单词,而对应的值呢,就是一个简简单单的1。就像是给每个单词贴上了一个标记“已出现,记1次”。最后,我们将处理后的数据保存到Google Cloud Storage中的指定位置。 五、结论 总的来说,Hadoop与Apache NiFi和Apache Beam的集成都是非常容易的。只需要按照上述步骤进行操作,并编写相应的数据处理代码即可。而且,你知道吗,Apache NiFi和Apache Beam都超级贴心地提供了灵活度爆棚的API接口,这就意味着我们完全可以按照自己的小心思,随心所欲定制咱们的数据处理流程,就像DIY一样自由自在!相信过不了多久,Hadoop和ETL工具的牵手合作将会在大数据处理圈儿掀起一股强劲风潮,成为大伙儿公认的关键趋势。
2023-06-17 13:12:22
582
繁华落尽-t
Beego
... 引言 在构建Web应用时,服务不可用(Service Unavailable)错误是一种常见的问题,它可能由各种原因引起,如服务器超载、资源耗尽、网络故障等。本文将围绕Beego框架,深入探讨如何识别、诊断和解决服务不可用的问题,提供实用的策略和代码示例。 一、认识服务不可用错误 服务不可用错误通常在HTTP响应中表现为503状态码,表示由于服务器当前无法处理请求,请求被暂时拒绝。这可能是由于服务器过载、正在进行维护或者资源不足等原因导致的。 二、Beego框架简介 Beego是一个基于Golang的轻量级Web框架,旨在简化Web应用的开发流程。其简洁的API和强大的功能使其成为快速构建Web应用的理想选择。在处理服务不可用错误时,Beego提供了丰富的工具和机制来帮助开发者进行诊断和修复。 三、识别与诊断服务不可用 在Beego应用中,识别服务不可用错误通常通过HTTP响应的状态码来进行。当应用返回503状态码时,说明服务当前无法处理请求。哎呀,兄弟!想要更清晰地找出问题所在,咱们得好好利用Beego自带的日志系统啊。它能帮咱们记录下一大堆有用的信息,比如啥时候出的错、用户是咋操作的、到底哪一步出了问题。有了这些详细资料,咱们在后面分析问题、找解决方案的时候就方便多了,不是吗? 示例代码: go // 在启动Beego应用时设置日志级别和格式 log.SetLevel(log.DEBUG) log.SetOutput(os.Stdout) func main() { // 初始化并启动Beego应用 app := new(beego.AppConfig) app.Run(":8080") } 在上述代码中,通过log.SetLevel(log.DEBUG)设置日志级别为DEBUG,确保在发生错误时能够获取到足够的信息进行诊断。 四、处理服务不可用错误 当检测到服务不可用错误时,Beego允许开发者通过自定义中间件来响应这些异常情况。通过创建一个中间件函数,可以优雅地处理503错误,并向用户呈现友好的提示信息,例如重试机制、缓存策略或简单的等待页面。 示例代码: go // 定义一个中间件函数处理503错误 func errorMiddleware(c beego.Context) { if c.Ctx.Input.StatusCode() == 503 { c.Data["Status"] = "503 Service Unavailable" c.Data["Message"] = "Sorry, our service is currently unavailable. Please try again later." c.ServeContent("error.html", http.StatusOK) } else { c.Next() } } // 注册中间件 func init() { beego.GlobalControllerInterceptors = append(beego.GlobalControllerInterceptors, new(errorMiddleware)) } 这段代码展示了如何在Beego应用中注册一个全局中间件,用于捕获并处理503状态码。哎呀,你遇到服务挂了的情况了吧?别急,这个中间件挺贴心的,它会给你弹出个温馨的小提示,告诉你:“嘿,稍等一下,我们正忙着处理一些事情呢。”然后,它还会给你展示一个等待页面,上面可能有好看的动画或者有趣的图片,让你在等待的时候也不觉得无聊。这样,你就不会因为服务暂时不可用了而感到烦躁了,体验感大大提升! 五、优化与预防服务不可用 预防服务不可用的关键在于资源管理、负载均衡以及监控系统的建立。Beego虽然本身不直接涉及这些问题,但可以通过集成第三方库或服务来实现。 - 资源管理:合理分配和监控CPU、内存、磁盘空间等资源,避免过度消耗导致服务不可用。 - 负载均衡:利用Nginx、HAProxy等工具对流量进行分发,减轻单点压力。 - 监控系统:使用Prometheus、Grafana等工具实时监控应用性能和资源使用情况,及时发现潜在问题。 六、结论 服务不可用是Web应用中不可避免的一部分,但通过使用Beego框架的特性,结合适当的策略和实践,可以有效地识别、诊断和解决这类问题。嘿,兄弟!想做个靠谱的Web应用吗?那可得注意了,你得时刻盯着点,别让你的应用出岔子。得给资源好好规划规划,别让服务器喘不过气来。还有,万一哪天程序出错了,你得有个应对的机制,别让小问题搞大了。这三样,监控、资源管理和错误处理,可是你稳定可靠的三大法宝!别忘了它们,你的应用才能健健康康地跑起来!
2024-10-10 16:02:03
102
月影清风
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
netstat -tulpn
- 查看网络连接状态、监听的TCP/UDP端口及其对应进程信息。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"