前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[Docker容器启动与运行命令详解 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
SpringCloud
...和示例。随着云原生和容器化技术的发展,服务网格(如Istio)也开始成为实现高级流量控制和安全策略的重要工具,它能够与SpringCloud配合使用,提供更细粒度的服务治理能力。 近期,Spring团队宣布了对Spring Cloud Gateway 3.0的重大更新,新版本进一步增强了API Gateway的能力,支持WebFlux反应式编程模型,并优化了路由规则配置,提升了性能表现。同时,Spring Security OAuth2也在不断演进,以适应更复杂的权限认证场景,比如集成JWT(JSON Web Tokens)进行无状态、安全的身份验证和授权管理。 此外,对于大规模微服务部署环境下的安全性问题,业界正逐步提倡采用零信任安全模型。在这种模型下,无论网络位置如何,每个请求都需要经过身份验证、授权和加密处理,这要求开发者不仅要熟悉SpringCloud的基础权限管理,还需要掌握最新的安全实践和工具,如服务间通信的mTLS( mutual TLS)等。 综上所述,深入理解和灵活运用SpringCloud的网关与权限管理机制,并结合最新技术发展动态,将有助于构建更为强大、安全且适应未来发展的微服务系统。
2023-07-15 18:06:53
435
山涧溪流_t
c++
...++中的静态局部变量详解 1. 引言 当我们深入探索C++编程语言的诸多特性时,不难发现一个令人感兴趣的角落——静态局部变量。它就像一位低调而神秘的朋友,虽然在函数内部声明,却拥有全局的生命期。今天,咱们就拿“static local variable declared but not defined”这个话题开涮,一起掀开它的神秘面纱。咱们会通过实实在在的代码例子,再加上唠嗑式的探讨方式,把这个概念掰扯得明明白白,让它不再高深莫测。 2. 静态局部变量的基本概念 在C++中,静态局部变量是一个在函数内部声明并带有static关键字修饰的变量。这里的“declared but not defined”并不意味着它没有被初始化或定义,而是强调了其独特的生命周期和初始化规则。普通的局部变量呢,就像临时工一样,一旦函数这个“工地”完工了,它们就消失得无影无踪。但是,静态局部变量可就不一样了,它更像是个有编制的员工,即使函数执行完这次任务,它也不会被“辞退”,反而会保留住自己的“岗位”和“工龄”。等到下次这个函数再次被召唤的时候,它依然坚守在那儿,继续发挥作用。 cpp void func() { static int count = 0; // 声明并初始化静态局部变量count ++count; std::cout << "This is call number: " << count << std::endl; } int main() { for (int i = 0; i < 5; ++i) { func(); // 每次调用func,count都会保留上一次的结果并递增 } return 0; } 运行上述代码,你会发现尽管func()只在每次循环迭代时被调用一次,但count的值会持续累加,这就是静态局部变量的魅力所在。 3. 静态局部变量的初始化时机 静态局部变量仅在其所在的函数首次被执行时进行初始化,并且只会初始化一次。这就像是这么一回事儿,为啥我们把这些玩意儿叫做“声明了但没定义”呢?想象一下,编译器在编译的时候,就仅仅是瞅见了它们的名字(声明),只知道有这么个东西。而真正给它们分配内存、进行初始化这些实实在在的动作,那得等到程序开始跑起来,第一次碰到并执行这个函数时才发生(定义)。这就像是你听说有个朋友要来聚会(声明),但这位朋友具体啥时候到场、坐在哪,得到聚会开始他真正走进门的那一刻(定义)才能确定。 4. 静态局部变量的应用场景 - 计数器:如上面的示例所示,静态局部变量非常适合用于实现无需全局污染的计数器功能。 - 缓存:在某些场合,我们可以利用静态局部变量保存计算结果,避免重复计算,提高效率。 cpp std::string getExpensiveString() { static std::string expensiveResult = calculateExpensiveValue(); return expensiveResult; } - 单例模式:在单例模式的实现中,也会用到静态局部变量来保证在整个程序运行期间,某个类只有一个实例。 5. 结语 静态局部变量这一特性是C++为我们提供的强大工具之一,它在提供局部作用域的同时,赋予了变量持久的生命力。知道怎么灵活运用静态局部变量,就像是给咱们编程时装上了一个秘密武器,可以让代码变得更加聪明、紧凑,从而让程序跑得更溜,写起来也更轻松愉快。不过,值得注意的是,这家伙因为有着独特的生命周期,如果我们跟它“走得太近”,比如过度依赖或者使用不当,就可能引发一些麻烦事儿,比如资源没法及时释放,或者数据竞争等问题。所以在实际开发的时候,咱们得悠着点,小心对待它。让我们带着对静态局部变量的理解,去挖掘更多的C++世界之美吧!
2023-08-05 23:30:09
446
秋水共长天一色
Sqoop
...可以帮助我们追踪程序运行过程中的各种细节,包括错误信息、警告信息、重要事件等。在使用Sqoop的过程中,如果日志记录不当,可能会导致以下问题: 1. 错误信息不准确 由于日志记录的不足,可能导致错误信息不够详细,甚至无法定位到具体的错误原因。 2. 日志记录过多 过多的日志记录不仅会占用大量的存储空间,而且也会增加系统的负担,影响性能。 3. 无法追踪程序运行过程 如果日志记录过于简单,可能无法追踪程序运行的具体过程,从而难以进行有效的调试。 三、如何优化Sqoop的日志记录? 针对以上问题,我们可以采取以下几种方法来优化Sqoop的日志记录: 1. 增加详细的错误信息 为了使错误信息更准确,我们可以在 Sqoop 的源代码中添加更多的异常捕获和错误处理代码。这样,咱们就能更轻松地揪出问题的根源啦,然后根据这些线索对症下药,手到病除。 下面是一段示例代码: java try { // 执行操作 } catch (Exception e) { // 记录异常信息 logger.error("Failed to execute operation", e); } 2. 减少不必要的日志记录 为了减少日志记录的数量,我们可以删除那些不必要的日志语句。这样不仅可以节省存储空间,还可以提高系统的运行速度。 下面是一段示例代码: java // 如果你确定这个操作一定会成功,那么就可以省略这个日志语句 //logger.info("Successfully executed operation"); 3. 使用日志级别控制日志输出 在 Sqoop 中,我们可以使用不同的日志级别(如 debug、info、warn、error 等)来控制日志的输出。这样一来,我们就能灵活地根据自身需求,像逛超市挑选商品那样,有选择性地查看日志信息,而不是被迫接收所有那些可能无关紧要的日志消息。 下面是一段示例代码: java // 设置日志级别为 info,这意味着只会在出现信息级别的日志消息时才会打印出来 Logger.getLogger(Sqoop.class.getName()).setLevel(Level.INFO); 四、总结 总的来说,优化 Sqoop 的日志记录可以帮助我们更好地调试程序,提高我们的工作效率。你知道吗,为了让 Sqoop 的日志记录更好使、更易懂,咱们可以采取这么几个招儿。首先,给错误信息多添点儿细节,让它说得明明白白,这样找问题时就一目了然了。其次,别啥都记,只把真正重要的内容写进日志里,减少那些不必要的“口水话”。最后,灵活运用日志级别调整输出内容,就像调节音量一样,需要详尽的时候调高点,日常运维时调低调静。这样一来,咱们就能更顺手地管理和解读 Sqoop 的日志啦。
2023-04-25 10:55:46
76
冬日暖阳-t
Apache Lucene
...可就大大影响到系统的运行效率和稳定性,就像汽车引擎不给力,整辆车都跑不快一样。这个问题的出现,可能牵涉到不少因素,比如索引文件它变得超级大、内存不够用啦、硬盘I/O速度慢得像蜗牛这些情况,都可能是罪魁祸首。 三、解决方案 接下来,我们将提供一些针对上述问题的解决方案。 1. 分布式索引 分布式索引是一种可以有效地提高索引性能的技术。它就像把一本超厚的电话簿分成了好几本,分别放在不同的架子上。这样一来,查号码的时候就不需要只在一个地方翻来翻去,减少了单一架子的压力负担。同样道理,通过把索引分散到多台服务器上,每台服务器就不用承受那么大的工作量了,这样一来,整个系统的活力和反应速度都嗖嗖地提升了,用起来更加流畅、快捷。Apache Lucene这个工具,厉害的地方在于它支持分布式索引,这就意味着我们可以根据实际情况,灵活选择最合适的部署策略,就像是在玩拼图游戏一样,根据需要把索引这块“大饼”分割、分布到不同的地方。 2. 使用缓存 在索引优化的过程中,往往需要频繁地读取磁盘数据。为了提高效率,我们可以使用缓存来存储一部分常用的数据。这样一来,咱们就不用每次都吭哧吭哧地从磁盘里头翻找数据了,大大缓解了磁盘读写的压力,让索引优化这事儿跑得嗖嗖的,速度明显提升不少。 3. 调整参数设置 在 Apache Lucene 中,有许多参数可以调整,例如:mergeFactor、maxBufferedDocs、useCompoundFile 等等。通过合理地调整这些参数,我们可以优化索引的性能。例如,如果我们发现索引优化过程卡死,那么可能是因为 mergeFactor 设置得太大了。这时,我们可以适当减小 mergeFactor 的值,从而加快索引优化的速度。 4. 使用更好的硬件设备 最后,我们可以考虑升级硬件设备来提高索引优化的速度。比如,我们可以考虑用速度飞快的 SSD 硬盘来升级,或者给电脑添点儿内存条,这样一来,系统的处理能力就能得到显著提升,就像给机器注入了强心剂一样。 四、总结 总的来说,索引优化过程卡死或耗时过长是一个比较常见的问题,但是只要我们找到合适的方法和技巧,就能够有效地解决这个问题。在未来的工作中,我们还需要不断探索和研究,以提高 Apache Lucene 的性能和稳定性。同时呢,我们特别期待能跟更多开发者朋友一起坐下来,掏心窝子地分享咱们积累的经验和心得,一块儿手拉手推动这个领域的成长和变革,让它更上一层楼。
2023-04-24 13:06:44
593
星河万里-t
Hadoop
...op的工作机制。当您运行Sqoop命令时,它会执行以下步骤: 1. 执行查询语句 Sqoop会执行一个SELECT语句来选择要导出的数据。 2. 数据预处理 Sqoop会对数据进行预处理,例如去除空格、分隔符转换等。 3. 创建临时表 Sqoop会在本地创建一个临时表来存储要导出的数据。 4. 将数据复制到HDFS Sqoop会将临时表中的数据复制到HDFS中。 5. 清理临时表 最后,Sqoop会删除本地的临时表。 四、Sqoop的应用场景 在实际的应用中,Sqoop有很多常见的应用场景,包括: 1. 数据迁移 如果您有一个传统的数据库,但是想要将其转换为大数据平台进行存档,那么您可以使用Sqoop将数据迁移到HDFS中。 2. 数据收集 如果您需要对公司的网站数据进行分析统计,或者构建用户画像等大数据应用,那么您可以使用Sqoop将业务数据同步到Hive中,然后使用分布式计算来进行分析统计和应用。 3. 数据备份和恢复 Sqoop还可以用于数据备份和恢复。您可以使用Sqoop将数据备份到HDFS中,然后再将其恢复到其他地方。 五、Sqoop的使用示例 为了更好地理解Sqoop的工作方式,我们可以看一个简单的例子。想象一下,我们手头上有一个员工信息表,就叫它“employees”吧,里边记录了各位员工的各种信息,像姓名、性别还有年龄啥的,全都有!我们可以使用以下命令将这个表的数据导出到HDFS中: bash sqoop export --connect jdbc:mysql://localhost:3306/mydatabase \ --username root \ --password password \ --table employees \ --export-dir /user/hadoop/employees \ --num-mappers 1 上述命令将会从MySQL数据库中选择"employees"表中的所有数据,并将其导出到HDFS中的"/user/hadoop/employees"目录下。"-num-mappers 1"参数表示只使用一个Map任务,这将使得导出过程更加快速。 六、结论 总的来说,Sqoop是一个非常强大且实用的工具,可以帮助我们方便快捷地将数据从关系型数据库传输到Hadoop数据仓库中。甭管是数据迁移、数据采集,还是数据备份恢复这些事儿,Sqoop这家伙可都派上了大用场,应用广泛得很哪!希望这篇文章能够帮助大家更好地理解和使用Sqoop。
2023-12-23 16:02:57
265
秋水共长天一色-t
Spark
...r内存溢出(OOM)详解 1. 引言 在大数据处理的世界里,Apache Spark无疑是炙手可热的工具之一。嘿,你知道吗,在我们用Spark这家伙处理大量数据的时候,经常会遇到一个让人脑壳疼的状况。那就是Executor内存不够用,专业点说就是“内存溢出”,简称OOM,这可是个让人挺头疼的问题啊!这篇文章会带你一起手把手地把这个难题掰开了、揉碎了,通过实实在在的代码实例,抽丝剥茧找出问题背后的真相,再一起头脑风暴,研究怎么对症下药,把它优化解决掉。 2. Spark Executor内存模型概述 首先,让我们了解一下Spark的内存模型。Spark Executor在运行任务时,其内存主要分为以下几个部分: - Storage Memory:用于存储RDD、广播变量和shuffle中间结果等数据。 - Execution Memory:包括Task执行过程中的堆内存,以及栈内存、元数据空间等非堆内存。 - User Memory:留给用户自定义的算子或者其他Java对象使用的内存。 当这三个区域的内存总和超出Executor配置的最大内存时,就会出现OOM问题。 3. Executor内存溢出实例分析 例1 - Shuffle数据过大导致OOM scala val rdd = sc.textFile("huge_dataset.txt") val shuffledRdd = rdd.mapPartitions(_.map(line => (line.hashCode % 10, line))) .repartition(10) .groupByKey() 在这个例子中,我们在对大文件进行shuffle操作后,由于分区过多或者数据倾斜,可能会导致某个Executor的Storage Memory不足,从而引发OOM。 例2 - 用户自定义函数内创建大量临时对象 scala val rdd = sc.parallelize(1 to 1000000) val result = rdd.map { i => // 创建大量临时对象 val temp = List.fill(100000)(i.toString 100) // ... 进行其他计算 i 2 } 这段代码中,我们在map算子内部创建了大量的临时对象,如果这样的操作频繁且数据量巨大,Execution Memory很快就会耗尽,从而触发OOM。 4. 解决与优化策略 针对上述情况,我们可以从以下几个方面入手,避免或缓解Executor内存溢出的问题: - 合理配置内存分配:根据任务特性调整spark.executor.memory、spark.shuffle.memoryFraction等相关参数,确保各内存区域大小适中。 bash spark-submit --executor-memory 8g --conf "spark.shuffle.memoryFraction=0.3" - 减少shuffle数据量:尽量避免不必要的shuffle,或者通过repartition或coalesce合理调整分区数量,减轻单个Executor的压力。 - 优化数据结构和算法:尽量减少在用户代码中创建的大对象数量,如例2所示,可以考虑更高效的数据结构或算法来替代。 - 监控与调优:借助Spark UI等工具实时监控Executor内存使用情况,根据实际情况动态调整资源配置。 5. 结语 理解并掌握Spark Executor内存管理机制,以及面对OOM问题时的应对策略,是每个Spark开发者必备的能力。只有这样,我们才能真正地把这台强大的大数据处理引擎玩得溜起来,让它在我们的业务实战中火力全开,释放出最大的价值。记住了啊,每次跟OOM这个家伙过招,其实都是我们在Spark世界里探索和进步的一次大冒险,更是我们锻炼自己、提升数据处理本领的一次实战演练。
2023-07-26 16:22:30
115
灵动之光
转载文章
...间通信(IPC)机制详解:在Linux编程实战中,进程间的通信和同步往往是关键环节之一。深入理解管道、消息队列、共享内存、信号量等IPC机制,能够帮助您设计出更为复杂且高效的多进程应用程序。 通过以上延展阅读,读者不仅能够巩固已学知识,还能紧跟技术发展潮流,不断提升自身在Linux环境下的软件开发能力。
2023-12-26 19:04:57
100
转载
PHP
...ubernetes等容器编排平台中,可以通过设定请求超时和Pod重启策略来防止长时间运行的PHP进程占用过多资源,从而影响整个系统的稳定性。 此外,为了进一步提升脚本执行效率,开发者可以结合PHP异步编程模型如Swoole进行优化,实现多线程、协程等并发处理,从而显著缩短单个请求的响应时间,降低对超时设置的依赖。同时,持续关注PHP官方更新动态,利用新版本提供的性能改进和特性增强也是提高脚本执行效率的有效手段。 值得注意的是,除了技术层面的优化,良好的项目管理和代码规范同样有助于减少脚本超时问题的发生。例如,通过合理的任务分解与设计模式应用,避免一次性加载大量数据或执行耗时过长的操作,确保代码逻辑清晰、高效,能够适应各种复杂环境下的超时挑战。 综上所述,深入研究和实践PHP服务器超时设置不仅限于参数调整,更需结合前沿技术趋势、架构优化以及良好的开发习惯,全方位保障应用程序的稳定性和高性能运行。
2024-03-11 10:41:38
158
山涧溪流-t
MemCache
...,包括基于SETNX命令实现的基本分布式锁,以及使用Lua脚本实现的Redlock算法,这种算法通过在多个Redis节点上获取锁以提高容错性和安全性。另外,还有乐观锁(Optimistic Locking)的设计理念也被越来越多地应用于现代缓存服务中,它假设并发访问一般情况下不会发生冲突,仅在更新数据时检查是否发生并发修改,从而降低锁带来的性能开销。 此外,云原生时代的容器化与微服务架构也对缓存系统的并发控制提出了新的挑战。Kubernetes等容器编排平台上的应用实例可能随时扩缩容,这要求缓存服务不仅要处理好内部的多线程同步问题,还要适应外部动态环境的变化。因此,诸如具有更强一致性保证的CRDT(Conflict-free Replicated Data Types)数据结构的研究与应用也在不断推进,旨在提供一种更为灵活且能应对网络分区的分布式锁方案。 综上所述,理解并妥善处理Memcache乃至更多现代缓存系统中的锁机制冲突,是构建高性能、高可用分布式系统的基石,而紧跟技术发展趋势,关注相关领域的最新研究成果与实践案例,将有助于我们在实际工作中更好地解决此类问题。
2024-01-06 22:54:25
79
岁月如歌-t
转载文章
...实并删除相应内容。 详解Centos7升级python 2.7至Python 3.7 龙行 个人随笔 2019-6-6 3451 0评论 centos7版本默认安装的是python2.7,对于强迫症的我来说,忍受不了啊. 注意下,应为很多的依赖包基本命令什么的都是基于python2的,比如yum。所以旧版本不要删了,新旧可以共存 1.安装编译环境包(防止出现安装错误)yum install gcc-c++ gcc make cmake zlib-devel bzip2-devel openssl-devel ncurse-devel libffi-devel -y 2.在线下载Python3.7源码包进入tmp目录 cd /tmp 下载python3.7.3 wget https://www.python.org/ftp/python/3.7.3/Python-3.7.3.tar.xz 3.解压并配置解压 tar Jxvf Python-3.7.3.tar.xz 进入python3.7.3目录 cd Python-3.7.3 创建目录 mkdir -p /usr/local/python3 配置(指定安装目录) ./configure --prefix=/usr/local/python3 --enable-optimizations 4. 编译及安装make && make install 5.更换系统默认Python版本 1).备份原系统旧版本pythonmv /usr/bin/python /usr/bin/python.bak mkdir /usr/bin/pip mv /usr/bin/pip /usr/bin/pip.bak 2).配置环境变量:创建新版本Python和pip的软链接ln -s /usr/local/python3/bin/python3.7 /usr/bin/python ln -s /usr/local/python3/bin/pip3 /usr/bin/pip 3).查看Python版本python -V 6.修改yum功能 因为yum的功能依赖Pyhon2,现在更改默认Python版本后会导致yum无法正常工作,所以进行以下3处修复 第1处:vim /usr/bin/yum 把最顶部的 改成:! /usr/bin/python2.7 第2处: vim /usr/libexec/urlgrabber-ext-down 把最顶部的 改成:! /usr/bin/python2.7 /usr/sbin/firewalld /usr/bin/firewall-cmd 这两个也改下 评论一下 赞助站长 赞助站长X 版权申明:此文如未标注转载均为本站原创,自由转载请表明出处《龙行博客》。 本文网址:https://www.liaotaoo.cn/243.html 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_39974223/article/details/110081791。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-23 10:44:41
284
转载
SpringCloud
...求都扑了空,咱们就会启动一个叫“熔断器”的机制,这时候它就站出来挡驾,不让更多的请求继续“撞南墙”了。但是,这并不意味着所有的请求都会被拒绝。实际上,只有20%的请求会被拒绝,剩下的80%则会被发送到后端。这句话我们换个更接地气的说法就是:这么做是为了保证我们的系统不会因为个别服务的小故障,就让整体表现“掉链子”,确保它能一直给力地运行。 java HystrixCommand.Setter builder = HystrixCommand.Setter() .withGroupKey(HystrixCommandGroupKey.Factory.asKey("YourGroup")) .andCommandKey(HystrixCommandKey.Factory.asKey("YourCommand")) .andThreadPoolKey(HystrixThreadPoolKey.Factory.asKey("YourThreadPool")) .andExecutionIsolationStrategy(ExecutionIsolationStrategy.SEMAPHORE) .andCircuitBreakerRequestVolumeThreshold(5); // 设置阈值为5 2. 控制熔断时间 熔断器还有一个重要的参数就是熔断时间。默认情况下,熔断时间为3秒。这意味着,在熔断期间,所有新的请求都会被拒绝,直到熔断时间结束。我们可以根据实际需求调整这个参数。 java .builder() .withCircuitBreakerErrorThresholdPercentage(50) // 错误率超过50%就会熔断 .withCircuitBreakerForceOpen(true) // 强制开启熔断 .withCircuitBreakerSleepWindowInMilliseconds(5000) // 熔断持续时间为5秒 .withCircuitBreakerRequestVolumeThreshold(5) // 每秒的请求量达到5次才会开始熔断 3. 使用自定义熔断器策略 SpringCloud允许我们自定义熔断器策略。这样,我们就可以根据实际情况调整熔断器的行为。比如,假如我们发现某个服务总是在特定时间段出故障,那么咱们就可以脑洞大开,定制一个专属的熔断器策略,让它只在那个时间段内聪明地启动,起到保护作用。 java private static class CustomCircuitBreaker extends HystrixCommand.Setter { @Override public HystrixCommandKey getCommandKey() { return HystrixCommandKey.Factory.asKey("CustomCommand"); } @Override public HystrixThreadPoolKey getThreadPoolKey() { return HystrixThreadPoolKey.Factory.asKey("CustomThreadPool"); } @Override public ExecutionIsolationStrategy getExecutionIsolationStrategy() { return ExecutionIsolationStrategy.SEMAPHORE; } } 四、结论 熔断器是一个非常有用的工具,可以帮助我们在分布式系统中处理错误。你知道吗,咱们可以通过一些聪明的做法,让熔断器这个小助手更有效地保护咱的系统。首先呢,得给它设定个合理的“门槛”(阈值),就像是告诉它,一旦超过这个负载程度,你就得行动起来。然后,控制好它的“休息时间”,别让它一触发就无限期停工,得恰到好处地安排重启时机。再者,咱们还能个性定制一套熔断策略,让它更能适应咱系统的独特需求。这样一来,熔断器就能更好地为我们的系统保驾护航啦!记住啦,咱没必要一上来就啥都懂,一步登天。知识嘛,就像爬楼梯一样,得一步步来,根据实际情况慢慢学、慢慢练,自然而然就掌握了。
2023-05-11 23:23:51
76
晚秋落叶_t
Tesseract
...各种平台上游刃有余地运行。因此,它在咱们这个圈子里,那可真是名声响当当,收获了一大片的认可和赞誉呢!不过,在实际用起来的时候,由于网络抽风或者各种不靠谱的原因,有时候我们没法及时把最新的语言数据包拽下来,这可不就让Tesseract的表现力大打折扣嘛。这篇东西咱们要聊的就是这个问题,并且我还会手把手教你,用实例代码演示,在没有网络的情况下,如何聪明又妥善地管理和运用Tesseract的语言数据。 2. Tesseract与语言数据包 Tesseract支持多国语言的文本识别,但默认安装时并不包含所有语言的数据包。通常,我们需要通过命令行或API调用在线下载所需的语言数据。例如,对于简体中文的支持,我们可以运行如下命令: bash tesseract --download-chinese-simplified 但是,当面临网络故障时,这个过程显然会受阻。那么,我们该如何提前准备并合理管理这些语言数据呢? 3. 离线下载与本地安装语言数据 情景化思考:“哎呀,我正急需使用Tesseract识别一份德语文档,偏偏这时网络出了状况,我该怎么办?”别急,这里有个办法! 为了应对网络不稳定或者无网络的情况,我们可以在正常网络环境下预先下载所需的语言数据包,然后手动安装。以下载德语(deu)语言包为例,首先访问[Tesseract官方GitHub仓库](https://github.com/tesseract-ocr/tessdata)下载对应的文件tessdata/deu.traineddata,保存至本地磁盘。 接着,将该文件复制到Tesseract的tessdata目录下(假设Tesseract已安装在/usr/share/tesseract-ocr/4.00/tessdata路径下): bash cp ~/Downloads/deu.traineddata /usr/share/tesseract-ocr/4.00/tessdata/ 这样,在没有网络连接时,Tesseract依然能够识别德语文本。 4. 使用Tesseract进行离线OCR识别实战 现在,我们已经有了离线的语言数据,来看看如何在Python中使用Tesseract进行离线OCR识别: python import pytesseract from PIL import Image 设置Tesseract的data_dir参数为包含离线语言数据的目录 pytesseract.pytesseract.tesseract_cmd = '/usr/bin/tesseract' pytesseract.tesseract_data_dir = '/usr/share/tesseract-ocr/4.00' 打开一张德语文档图片 img = Image.open('german_text.png') 使用德语进行识别 text = pytesseract.image_to_string(img, lang='deu') print(text) 上述代码示例展示了即使在网络故障情况下,我们仍然可以利用预先下载好的德语数据包对图像进行有效识别。 5. 结论与探讨 面对网络故障带来的挑战,我们可以采取主动策略,提前下载并妥善管理Tesseract所需的各种语言数据包。同时呢,真正搞懂并灵活运用这种离线处理技术,可不仅仅是在特殊环境下让咱们更溜地使用Tesseract,更能让我们在平时的开发和运维工作中倍儿轻松,游刃有余,像玩儿似的。当然啦,随着技术不断升级、进步,我们也巴巴地盼着Tesseract未来能够推出更省心、更智能的离线数据管理方案。这样一来,甭管在什么环境下,开发者和用户都能毫无后顾之忧地畅享OCR技术带来的种种便捷,那感觉,就像夏天吃冰棍儿一样爽快!
2023-02-20 16:48:31
139
青山绿水
Sqoop
...ted 这个命令展示了如何从MySQL数据库导入mytable表到HDFS的/user/hadoop/mytable_imported目录下。 2. Sqoop工作原理及功能特性 (此处详细描述Sqoop的工作原理,如并行导入导出、自动生成Java类、分区导入等特性) 2.1 并行导入示例 Sqoop利用MapReduce模型实现并行数据导入,大幅提高数据迁移效率。 shell sqoop import --num-mappers 4 ... 此命令设置4个map任务并行执行数据导入操作。 3. Sqoop的基本使用 (这里详细说明Sqoop的各种命令,包括import、export、create-hive-table等,并给出实例) 3.1 Sqoop Import 实例详解 shell 示例:将Oracle表同步至Hive表 sqoop import \ --connect jdbc:oracle:thin:@//hostname:port/service_name \ --username username \ --password password \ --table source_table \ --hive-import \ --hive-table target_table 这段代码演示了如何将Oracle数据库中的source_table直接导入到Hive的target_table。 4. Sqoop高级应用与实践问题探讨 (这部分深入探讨Sqoop的一些高级用法,如增量导入、容错机制、自定义连接器等,并通过具体案例阐述) 4.1 增量导入策略 shell 使用lastmodified或incremental方式实现增量导入 sqoop import \ --connect ... \ --table source_table \ --check-column id \ --incremental lastmodified \ --last-value 这段代码展示了如何根据最后一次导入的id值进行增量导入。 5. Sqoop在实际业务场景中的应用与挑战 (在这部分,我们可以探讨Sqoop在真实业务环境下的应用场景,以及可能遇到的问题及其解决方案) 以上仅为大纲及部分内容展示,实际上每部分都需要进一步拓展、深化和情感化的表述,使读者能更好地理解Sqoop的工作机制,掌握其使用方法,并能在实际工作中灵活运用。为了达到1000字以上的要求,每个章节都需要充实详尽的解释、具体的思考过程、理解难点解析以及更多的代码实例和应用场景介绍。
2023-02-17 18:50:30
131
雪域高原
SeaTunnel
...eaTunnel会在运行时抛出异常,提示缺少表达式或结束括号。 3.2 示例二:字段名引用错误 sql -- 错误示例 SELECT unknow_column FROM table_name; -- 正确示例 SELECT known_column FROM table_name; 在这个例子中,尝试从表table_name中选取一个不存在的列unknow_column,这同样会导致SQL查询语法错误。当你在用SeaTunnel的时候,千万要记得检查一下引用的字段名是不是真的在目标表里“活生生”存在着,不然可就抓瞎啦! 3.3 示例三:JOIN操作符使用不当 sql -- 错误示例 SELECT a., b. FROM table_a a JOIN table_b b ON a.id = b.id; -- 正确示例 SELECT a., b. FROM table_a a JOIN table_b b ON a.id = b.id; 在SeaTunnel的SQL语法中,JOIN操作符后的ON关键字引导的连接条件不能直接跟在JOIN后面,需要换行显示,否则会导致语法错误。 4. 面对SQL查询语法错误的策略与思考 当我们遭遇SQL查询语法错误时,首先不要慌张,要遵循以下步骤: - 检查错误信息:SeaTunnel通常会返回详细的错误信息,包括错误类型和发生错误的具体位置,这是定位问题的关键线索。 - 回归基础:重温SQL基本语法,确保对关键词、操作符的使用符合规范,比如WHERE、JOIN、GROUP BY等。 - 逐步调试:对于复杂的SQL查询,可以尝试将其拆分成多个简单的部分,逐一测试以找出问题所在。 - 利用IDE辅助:许多现代的数据库管理工具或IDE如DBeaver、DataGrip等都具有SQL语法高亮和实时错误检测功能,这对于预防和发现SQL查询语法错误非常有帮助。 - 社区求助:如果问题仍然无法解决,不妨到SeaTunnel的官方文档或者社区论坛寻求帮助,与其他开发者交流分享可能的经验和解决方案。 总结来说,面对SeaTunnel中的SQL查询语法错误,我们需要保持耐心,通过扎实的基础知识、细致的排查和有效的工具支持,结合不断实践和学习的过程,相信每一个挑战都将变成提升技能的一次宝贵机会。说到底,“犯错误”其实就是成功的另一种伪装,它让我们更接地气地摸清了技术的底细,还逼着我们不断进步,朝着更牛掰的开发者迈进。
2023-05-06 13:31:12
145
翡翠梦境
SpringBoot
... 云原生是一种构建和运行应用程序的方法,它充分利用云计算的优势来实现敏捷开发、持续交付和高效运维。在本文语境下,RocketMQ积极拥抱云原生理念,通过与Kubernetes等容器编排技术集成,使得RocketMQ集群可以在云环境中得到更便捷的部署和管理,适应大规模分布式系统的复杂需求。
2023-06-16 23:16:50
40
梦幻星空_t
Spark
...e 代表了程序从开始运行到处理数据所花费的时间。 在处理实时数据时, Processing Time 可能是一个很好的选择,因为它可以让您立即看到新的数据并进行相应的操作。比如,假如你现在正在关注你网站的访问情况,这个Processing Time功能就能马上告诉你,现在到底有多少人在逛你的网站。 以下是使用 Processing Time 处理实时数据的一个简单示例: java val dataStream = spark.readStream.format("socket").option("host", "localhost").option("port", 9999).load() .selectExpr("CAST(text AS STRING)") .withWatermark("text", "1 second") .as[(String, Long)] val query = dataStream.writeStream .format("console") .outputMode("complete") .start() query.awaitTermination() 在这个示例中,我们创建了一个 socket 数据源,然后将其转换为字符串类型,并设置 watermark 为 1 秒。这就意味着,如果我们收到的数据上面的时间戳已经超过1秒了,那这个数据就会被我们当作是迟到了的小淘气,然后选择性地忽略掉它。 三、 Event Time 的处理方式及应用场景 Event Time 是 Spark Structured Streaming 中的另一种时间概念,它是根据事件的实际发生时间来确定的。这就意味着,就算大家在同一秒咔嚓一下按下发送键,由于网络这个大迷宫里可能会有延迟、堵车等各种状况,不同信息到达目的地的顺序可能会乱套,处理起来自然也就可能前后颠倒了。 在处理延迟数据时, Event Time 可能是一个更好的选择,因为它可以根据事件的实际发生时间来确定数据的处理顺序,从而避免丢失数据。比如,你正在处理电子邮件的时候,Event Time这个功能就相当于你的超级小助手,它能确保你按照邮件发送的时间顺序,逐一、有序地处理这些邮件,就像排队一样井然有序。 以下是使用 Event Time 处理延迟数据的一个简单示例: python from pyspark.sql import SparkSession spark = SparkSession.builder.appName("Structured Streaming").getOrCreate() data_stream = spark \ .readStream \ .format("kafka") \ .option("kafka.bootstrap.servers", "localhost:9092") \ .option("subscribe", "my-topic") \ .load() \ .selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)") query = data_stream \ .writeStream \ .format("console") \ .outputMode("append") \ .start() query.awaitTermination() 在这个示例中,我们从 kafka 主题读取数据,并设置 watermark 为 1 分钟。这就意味着,如果我们超过一分钟没收到任何新消息,那我们就会觉得这个topic已经没啥动静了,到那时咱就可以结束查询啦。 四、 结论 在 Spark Structured Streaming 中, Processing Time 和 Event Time 是两种不同的时间概念,它们分别适用于处理实时数据和处理延迟数据。理解这两种时间概念以及如何在实际场景中使用它们是非常重要的。希望这篇文章能够帮助你更好地理解和使用 Spark Structured Streaming。
2023-11-30 14:06:21
106
夜色朦胧-t
Mongo
...,就好比给系统的稳定运行上了保险锁,这可是至关重要的一步。不过呢,有时候咱们也会碰上些小插曲,比如性能测试工具突然罢工了,或者干脆耍赖不干活儿,这时候就有点尴尬啦。这篇文章打算手把手地带大家,通过实实在在的代码实例和接地气的探讨方式,让大家明白在这样的情况下,如何照样把MongoDB的性能测试和调优工作做得溜溜的。 2. MongoDB性能测试工具概述 通常,我们会利用如mongo-perf、JMeter、YCSB(Yahoo! Cloud Serving Benchmark)等专业工具对MongoDB进行压力测试和性能评估。然而,要是这些工具突然闹脾气,因为版本不兼容啦、配置没整对地儿啊,或者干脆是软件自带的小bug在作祟,没法正常干活了,我们该怎么办呢?这时候啊,就得让我们回归原始,用上MongoDB自家提供的命令行工具和编程接口,亲手摸一摸,测一测,才能找到问题的症结所在。 3. 手动性能测试实战 案例一:基于mongo shell的基本操作 javascript // 假设我们有一个名为"users"的集合,下面是一个插入大量数据的例子: for (var i = 0; i < 10000; i++) { db.users.insert({name: 'User' + i, email: 'user' + i + '@example.com'}); } // 对于读取性能的测试,我们可以计时查询所有用户: var start = new Date(); db.users.find().toArray(); var end = new Date(); print('查询用时:', end - start, '毫秒'); 案例二:使用Bulk Operations提升写入性能 javascript // 使用bulk operations批量插入数据以提高效率 var bulk = db.users.initializeUnorderedBulkOp(); for (var i = 0; i < 10000; i++) { bulk.insert({name: 'User' + i, email: 'user' + i + '@example.com'}); } bulk.execute(); // 同样,也可以通过计时来评估批量插入的性能 var startTime = new Date(); // 上述批量插入操作... var endTime = new Date(); print('批量插入用时:', endTime - startTime, '毫秒'); 4. 性能瓶颈分析与调优探讨 手动性能测试虽然原始,但却能够更直观地让我们了解MongoDB在实际操作中的表现。比如,通过瞅瞅插入数据和查询的速度,咱们就能大概摸清楚,是不是存在索引不够用、内存分配不太合理,或者是磁盘读写速度成了瓶颈这些小状况。在此基础上,我们可以针对性地调整索引策略、优化查询语句、合理分配硬件资源等。 5. 结论与思考 当标准性能测试工具失效时,我们应充分利用MongoDB内置的功能和API进行自定义测试,这不仅能锻炼我们深入理解数据库底层运作机制的能力,也能在一定程度上确保系统的稳定性与高效性。同时呢,这也告诉我们,在日常的开发工作中,千万不能忽视各种工具的使用场合和它们各自的“软肋”,只有这样,才能在关键时刻眼疾手快,灵活应对,迅速找到那个最完美的解决方案! 在未来的实践中,希望大家都能积极面对挑战,正如MongoDB性能测试工具暂时失效的情况一样,始终保持敏锐的洞察力和探索精神,让技术服务于业务,真正实现数据库性能优化的目标。
2023-01-05 13:16:09
135
百转千回
Greenplum
...池是保障系统稳定高效运行的关键一环。想要真正避免那些由于配置不当引发的资源短缺或泄露问题,就得实实在在地深入理解并时刻留意资源分配与释放的操作流程。只有这样,才能确保资源管理万无一失,妥妥的!在实际操作中,咱们得不断盯着、琢磨并灵活调整连接池的各项参数,让它们更接地气地符合咱们应用程序的真实需求和环境的变动,这样一来,才能让Greenplum火力全开,发挥出最大的效能。
2023-09-27 23:43:49
446
柳暗花明又一村
Flink
...同时开启多个任务实例运行,然后在它们跑起来的过程中,实时留意每个节点的健康状况。一旦发现有哪个小家伙闹脾气、出状况了,就立马自动把任务挪到其他正常工作的节点上继续执行。 2.2 设置重试机制 除了使用冗余节点外,我们还可以设置重试机制来提高任务的可靠性。如果某个任务不小心挂了,甭管因为啥原因,我们完全可以让Flink小哥施展它的“无限循环”大法,反复尝试这个任务,直到它顺利过关,圆满达成目标。例如,我们可以使用ExecutionConfig.setRetryStrategy()方法设置重试策略。如果设置的重试次数超过指定值,则放弃尝试。 2.3 使用 checkpoint机制 checkpoint是Flink提供的一种机制,用于定期保存任务的状态。当你重启任务时,可以像游戏存档那样,从上次顺利完成的地方接着来,这样一来,就不容易丢失重要的数据啦。例如,我们可以使用ExecutionConfig.enableCheckpointing()方法启用checkpoint机制,并设置checkpoint间隔时间为一段时间。这样,Flink就像个贴心的小秘书,每隔一会儿就会自动保存一下任务的进度,确保在关键时刻能够迅速恢复状态,一切照常进行。 2.4 监控与报警 最后,我们还需要设置有效的监控与报警机制,及时发现并处理故障。比如,我们能够用像Prometheus这样的神器,实时盯着Flink集群的动静,一旦发现有啥不对劲的地方,立马就给相关小伙伴发警报,确保问题及时得到处理。 3. 示例代码 下面我们将通过一个简单的Flink任务示例,演示如何使用上述方法提高任务的可靠性。 java // 创建一个新的ExecutionConfig对象,并设置重试策略 ExecutionConfig executionConfig = new ExecutionConfig(); executionConfig.setRetryStrategy(new DefaultRetryStrategy(1, 0)); // 创建一个新的JobGraph对象,并添加新的ParallelSourceFunction实例 JobGraph jobGraph = new JobGraph("MyJob"); jobGraph.setExecutionConfig(executionConfig); SourceFunction sourceFunction = new SourceFunction() { @Override public void run(SourceContext ctx) throws Exception { // 模拟生产数据 for (int i = 0; i < 10; i++) { Thread.sleep(1000); ctx.collect(String.valueOf(i)); } } @Override public void cancel() {} }; DataStream inputStream = env.addSource(sourceFunction); // 对数据进行处理,并打印结果 DataStream outputStream = inputStream.map(new MapFunction() { @Override public Integer map(String value) throws Exception { return Integer.parseInt(value); } }); outputStream.print(); // 提交JobGraph到Flink集群 env.execute(jobGraph); 在上述代码中,我们首先创建了一个新的ExecutionConfig对象,并设置了重试策略为最多重试一次,且不等待前一次重试的结果。然后,我们动手捣鼓出了一个崭新的“JobGraph”小玩意儿,并且把它绑定到了我们刚新鲜出炉的“ExecutionConfig”配置上。接下来,我们添加了一个新的ParallelSourceFunction实例,模拟生产数据。然后,我们对数据进行了处理,并打印了结果。最后,我们提交了整个JobGraph到Flink集群。 通过上述代码,我们可以看到,我们不仅启用了Flink的重试机制,还设置了 checkpoint机制,从而提高了我们的任务的可靠性。另外,我们还能随心所欲地增加更多的监控和警报系统,就像是给系统的平稳运行请了个24小时贴身保镖,随时保驾护航。
2023-09-18 16:21:05
414
雪域高原-t
Apache Lucene
...个异常情况,就会自动启动文档内容合并流程,或者更贴心地告诉你,哎呀,这份文档已经存在了,需要你提供一个新的文档编号。 此外,对于高并发环境下的索引更新,除了利用Lucene提供的API外,还需要引入适当的并发控制策略,如乐观锁、分布式锁等,确保在多线程环境下,也能正确无误地处理文档添加与更新操作。 总结起来,DocumentAlreadyExistsException在Apache Lucene中扮演着守护者角色,提醒我们在构建高效、精准的全文搜索服务的同时,也要注意维护数据的一致性与完整性。如果咱们能全面摸清这个异常状况,并且妥善应对处理,那么咱们的应用程序就会变得更皮实耐造,这样一来,用户体验也绝对会蹭蹭地往上提升,变得超赞!
2023-01-30 18:34:51
458
昨夜星辰昨夜风
Netty
...ubernetes等容器编排系统中,服务间的高效通信和资源调度对底层网络库的要求极高,而Netty凭借其异步非阻塞I/O模型以及高度可定制化的特性,成为众多分布式系统的首选。 此外,随着HTTP/3协议的逐渐普及,Netty已迅速跟进支持这一基于QUIC协议的新一代HTTP标准,从而确保在新的网络环境下仍能保持卓越性能。开发者不仅可以利用Netty进行高效的TCP/UDP通信,还可以在最新的互联网传输协议上构建高速、安全的应用服务。 同时,业界也涌现了不少关于Netty深度优化实践的文章与案例,如某知名互联网公司在大规模并发场景下如何调整线程模型以提升服务器响应速度,或是在特定业务场景下如何通过精细化配置Netty参数来节省内存占用、降低延迟。这些实战经验为开发人员提供了宝贵的参考,帮助他们在实际项目中更好地发挥Netty的优势,实现更优的网络性能表现。
2023-12-21 12:40:26
142
红尘漫步-t
转载文章
...) 打开VS2012命令行工具,进入src目录。 (2) 使用nmake(linux下是make)命令编译生成静态库。 (3) 在lib.x86目录下的.lib文件是win32平台下的静态库文件 (4) 在include目录下的是Detours工程的头文件 3. 把静态库和头文件引入工程 // 引入detours头文件include "detours.h"// 引入detours.lib静态库pragma comment(lib,"detours.lib") 4. 函数指针与函数的定义 (1) 定义一个函数指针指向目标函数,这里目标函数是system 例如: detour在realse模式生效(因为VS在Debug模式下已经把程序中的函数劫持了) static int ( oldsystem)(const char _Command) = system;//定义一个函数指针指向目标函数 (2) 定义与目标函数原型相同的函数替代目标函数 例如: //3.定义新的函数替代目标函数,需要与目标函数的原型相同int newsystem(const char _Command){int result = MessageBoxA(0,"是否允许该程序调用system命令","提示",1);//printf("result = %d", result);if (result == 1){oldsystem(_Command); //调用旧的函数}else{MessageBoxA(0,"终止调用system命令","提示",0);}return 0;} 5.拦截 //开始拦截void Hook(){DetourRestoreAfterWith();//恢复原来状态(重置)DetourTransactionBegin();//拦截开始DetourUpdateThread(GetCurrentThread());//刷新当前线程(刷新生效)//这里可以连续多次调用DetourAttach,表明HOOK多个函数DetourAttach((void )&oldsystem, newsystem);//实现函数拦截DetourTransactionCommit();//拦截生效} //取消拦截void UnHook(){DetourTransactionBegin();//拦截开始DetourUpdateThread(GetCurrentThread());//刷新当前线程//这里可以连续多次调用DetourDetach,表明撤销多个函数HOOKDetourDetach((void )&oldsystem, newsystem); //撤销拦截函数DetourTransactionCommit();//拦截生效} 劫持QQ 实现劫持system函数。 1. 设置项目生成dll 2. 源文件(注意:需要保存为.c文件,或者加上extern C,因为detours是使用C语言实现的,表示代码使用C的规则进行编译) include include include // 引入detours头文件include "detours.h"//1.引入detours.lib静态库pragma comment(lib,"detours.lib")//2.定义函数指针static int ( oldsystem)(const char _Command) = system;//定义一个函数指针指向目标函数//3.定义新的函数替代目标函数,需要与目标函数的原型相同int newsystem(const char _Command){char cmd[100] = {0};int result = 0;sprintf_s(cmd,100, "是否允许该程序执行%s指令", _Command);result = MessageBoxA(0,cmd,"提示",1);//printf("result = %d", result);if (result == 1) // 允许调用{oldsystem(_Command); //调用旧的函数}else{// 不允许调用}return 0;}// 4.拦截//开始拦截_declspec(dllexport) void Hook() // _declspec(dllexport)表示外部可调用,需要加上该关键字其它进程才能成功调用该函数{DetourRestoreAfterWith();//恢复原来状态(重置)DetourTransactionBegin();//拦截开始DetourUpdateThread(GetCurrentThread());//刷新当前线程(刷新生效)//这里可以连续多次调用DetourAttach,表明HOOK多个函数DetourAttach((void )&oldsystem, newsystem);//实现函数拦截DetourTransactionCommit();//拦截生效}//取消拦截_declspec(dllexport) void UnHook(){DetourTransactionBegin();//拦截开始DetourUpdateThread(GetCurrentThread());//刷新当前线程//这里可以连续多次调用DetourDetach,表明撤销多个函数HOOKDetourDetach((void )&oldsystem, newsystem); //撤销拦截函数DetourTransactionCommit();//拦截生效}// 劫持别人的程序:通过DLL注入,并调用Hook函数实现劫持。// 劫持系统:通过DLL注入系统程序(如winlogon.exe)实现劫持系统函数。_declspec(dllexport) void main(){Hook(); // 拦截system("tasklist"); //弹出提示框UnHook(); // 解除拦截system("ipconfig"); //成功执行system("pause"); // 成功执行} 3. 生成"劫持1.dll"文件 4. 把dll注入到QQ.exe DLL注入工具下载: https://coding.net/u/linchaolong/p/DllInjector/git/raw/master/Xenos.exe (1) 打开dll注入工具,点击add,选择"劫持1.dll" (2) 在Process中选择QQ.exe,点击Inject进行注入。 (3) 点击菜单栏Tools,选择Eject modules显示当前QQ.exe进程中加载的所有模块,如果有"劫持1.dll"表示注入成功。 5. 拦截QQ执行system函数 (1) 点击Advanced,在Init routine中填写动态库(dll)中的函数的名称,如Hook,然后点击Inject进行调用。此时,我们已经把system函数劫持了。 (2) 点击Advanced,在Init routine中填写main,执行动态库中的main函数。 此时,弹出一个对话框,问是否允许执行tasklist指令,表示成功把system函数拦截下来了。 参考 DLL注入工具源码地址: https://coding.net/u/linchaolong/p/DllInjector/git 说明: 该工具来自以下两个项目 Xenos: https://github.com/DarthTon/Xenos.git Blackbone: https://github.com/DarthTon/Blackbone 本篇文章为转载内容。原文链接:https://mohen.blog.csdn.net/article/details/123495342。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-23 19:22:06
352
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
scp local_file user@remote_host:destination_path
- 安全复制文件到远程主机。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"