前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[禁用状态 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Ruby
...日志记录、权限控制或状态管理等。 与此同时,也有技术文章从设计模式的角度重新审视Ruby单例类,将其与Java等其他语言中的同类概念进行对比分析,帮助开发者更好地理解和借鉴不同语言的设计思想,从而在跨语言项目中发挥更大作用。 综上所述,Ruby单例类这一特性不仅在理论层面提供了独特的面向对象编程思路,在实践中亦不断展现出其强大的适应性和扩展性。紧跟社区最新动态,结合经典理论与实战经验,开发者们可以更加游刃有余地驾驭Ruby单例类,为软件开发注入更多创新活力。
2023-06-08 18:42:51
104
翡翠梦境-t
Beego
ZooKeeper
...选举主节点、监控集群状态变化等功能,从而更好地协调和管理分布式环境中的各种组件。 分布式系统 , 分布式系统是由多台计算机组成的网络,这些计算机通过网络互相通信并协作完成共同的任务。在文章的语境中,ZooKeeper就是用于解决这类系统中的数据一致性、服务发现等问题的关键组件。每台计算机(或称为节点)都有可能独立运行一部分任务,并与其它节点交换信息以保持整体系统的协调一致。 元数据信息 , 元数据是关于数据的数据,它描述了数据的属性、结构、来源、格式、关系以及其他有助于理解、管理和使用原始数据的信息。在ZooKeeper的上下文中,元数据信息包括但不限于服务注册信息、配置参数、分布式锁的状态、集群节点信息等,这些数据对于维持分布式系统正常运行至关重要。 ZooKeeper集群 , ZooKeeper集群是指多个ZooKeeper服务器协同工作,共同提供服务的一个集合。它们之间通过心跳检测、数据复制、选举机制等方式保证高可用性和数据一致性。在集群配置中,每个服务器需要正确设置myid、syncLimit等参数以便与其他服务器进行识别和通信。 日志级别 , 日志级别是软件系统记录日志时采用的重要分类标准,通常包括debug、info、warn、error等不同级别。在ZooKeeper中,用户可以根据实际需求调整日志级别,如设置为INFO级别将只输出关键的运行信息,而DEBUG级别则会提供更多详细调试信息。合理配置日志级别有助于运维人员快速定位和解决问题,同时避免生成过多不必要的日志导致存储资源浪费。
2023-08-10 18:57:38
167
草原牧歌-t
Etcd
...Etcd来存储集群的状态和配置信息,如Pods、Services、ReplicaSets等资源对象的状态,以及集群的网络配置、访问控制策略等重要数据。 分布式锁 , 在分布式系统中,分布式锁是一种同步机制,用于协调多个节点对共享资源的访问权限,防止并发操作导致的数据不一致问题。Etcd提供的分布式锁服务可以确保在同一时刻,只有一个客户端能够获得并执行特定的业务逻辑,从而实现多节点间的协同工作与数据一致性。 Raft一致性算法 , Raft是一种分布式一致性协议,用于在一组机器之间复制日志并维护集群状态的一致性。在Etcd中,Raft负责管理成员节点之间的通信和数据同步,即使在部分节点失效的情况下也能确保集群的整体稳定性和数据的正确性。当新的etcd节点尝试加入集群时,会通过Raft协议进行协商和确认,以保证集群数据的完整性和一致性。
2023-08-29 20:26:10
712
寂静森林
Material UI
...编程方式来描述应用的状态变化。在搭建Material UI开发环境的过程中,React是必不可少的基础框架。 CSS-in-JS , CSS-in-JS是一种在JavaScript中编写样式表的编程范式,它将CSS样式直接内联到JavaScript代码中或作为JavaScript对象进行定义。文中提到的@emotion/react和@emotion/styled就是实现CSS-in-JS功能的库,它们被用于处理Material-UI中的样式,以实现动态、可维护性和模块化的样式管理。在Material UI中使用CSS-in-JS可以提高组件样式的可复用性和响应性,同时便于在React组件级别进行样式隔离与管理。
2023-12-19 10:31:30
243
风轻云淡
Greenplum
...,定期检查和监控连接状态,利用连接超时机制以及合理配置连接生命周期也是防止连接泄漏的重要手段。 5. 结论 配置和管理好Greenplum数据库连接池是保障系统稳定高效运行的关键一环。想要真正避免那些由于配置不当引发的资源短缺或泄露问题,就得实实在在地深入理解并时刻留意资源分配与释放的操作流程。只有这样,才能确保资源管理万无一失,妥妥的!在实际操作中,咱们得不断盯着、琢磨并灵活调整连接池的各项参数,让它们更接地气地符合咱们应用程序的真实需求和环境的变动,这样一来,才能让Greenplum火力全开,发挥出最大的效能。
2023-09-27 23:43:49
446
柳暗花明又一村
SeaTunnel
...point机制来保证状态一致性及ExactlyOnce语义。同时,SeaTunnel还有个很厉害的功能,就是针对那些支持事务处理的数据源,比如更新到Kafka 0.11及以上版本的,还有目标端如Kafka、能进行事务写入的HDFS,它都能联手计算引擎,确保从头到尾,数据“零丢失零重复”的精准传输,真正做到端到端的ExactlyOnce保证。就像一个超级快递员,确保你的每一份重要数据都能安全无误地送达目的地。 在配置中,开启Flink Checkpoint功能,确保在处理过程中遇到故障时可以从检查点恢复并继续处理,避免数据丢失或重复: yaml engine: type: flink checkpoint: interval: 60s mode: exactly_once 总结来说,借助SeaTunnel灵活强大的流式数据处理能力,结合支持ExactlyOnce语义的计算引擎和其他组件,我们完全可以在实际业务场景中实现高可靠、无重复的数据处理流程。在这一路的“探险”中,我们可不只是见识到了SeaTunnel那实实在在的实用性以及它强大的威力,更是亲身感受到了它给开发者们带来的那种省心省力、安心靠谱的舒爽体验。而随着技术和需求的不断演进,SeaTunnel也将在未来持续优化和完善,为广大用户提供更优质的服务。
2023-05-22 10:28:27
114
夜色朦胧
Flink
...,用于定期保存任务的状态。当你重启任务时,可以像游戏存档那样,从上次顺利完成的地方接着来,这样一来,就不容易丢失重要的数据啦。例如,我们可以使用ExecutionConfig.enableCheckpointing()方法启用checkpoint机制,并设置checkpoint间隔时间为一段时间。这样,Flink就像个贴心的小秘书,每隔一会儿就会自动保存一下任务的进度,确保在关键时刻能够迅速恢复状态,一切照常进行。 2.4 监控与报警 最后,我们还需要设置有效的监控与报警机制,及时发现并处理故障。比如,我们能够用像Prometheus这样的神器,实时盯着Flink集群的动静,一旦发现有啥不对劲的地方,立马就给相关小伙伴发警报,确保问题及时得到处理。 3. 示例代码 下面我们将通过一个简单的Flink任务示例,演示如何使用上述方法提高任务的可靠性。 java // 创建一个新的ExecutionConfig对象,并设置重试策略 ExecutionConfig executionConfig = new ExecutionConfig(); executionConfig.setRetryStrategy(new DefaultRetryStrategy(1, 0)); // 创建一个新的JobGraph对象,并添加新的ParallelSourceFunction实例 JobGraph jobGraph = new JobGraph("MyJob"); jobGraph.setExecutionConfig(executionConfig); SourceFunction sourceFunction = new SourceFunction() { @Override public void run(SourceContext ctx) throws Exception { // 模拟生产数据 for (int i = 0; i < 10; i++) { Thread.sleep(1000); ctx.collect(String.valueOf(i)); } } @Override public void cancel() {} }; DataStream inputStream = env.addSource(sourceFunction); // 对数据进行处理,并打印结果 DataStream outputStream = inputStream.map(new MapFunction() { @Override public Integer map(String value) throws Exception { return Integer.parseInt(value); } }); outputStream.print(); // 提交JobGraph到Flink集群 env.execute(jobGraph); 在上述代码中,我们首先创建了一个新的ExecutionConfig对象,并设置了重试策略为最多重试一次,且不等待前一次重试的结果。然后,我们动手捣鼓出了一个崭新的“JobGraph”小玩意儿,并且把它绑定到了我们刚新鲜出炉的“ExecutionConfig”配置上。接下来,我们添加了一个新的ParallelSourceFunction实例,模拟生产数据。然后,我们对数据进行了处理,并打印了结果。最后,我们提交了整个JobGraph到Flink集群。 通过上述代码,我们可以看到,我们不仅启用了Flink的重试机制,还设置了 checkpoint机制,从而提高了我们的任务的可靠性。另外,我们还能随心所欲地增加更多的监控和警报系统,就像是给系统的平稳运行请了个24小时贴身保镖,随时保驾护航。
2023-09-18 16:21:05
414
雪域高原-t
Tesseract
...得图像恢复到接近原始状态的清晰度。这对于摄影师和设计师来说,无疑是一个巨大的福音。 这些最新的研究成果和技术进展,不仅展示了模糊图像识别领域的巨大潜力,也为相关行业的应用提供了更多可能性。未来,随着技术的不断成熟,我们有理由相信模糊图像识别将变得更加精准和高效。
2024-10-23 15:44:16
138
草原牧歌
转载文章
...h();//恢复原来状态(重置)DetourTransactionBegin();//拦截开始DetourUpdateThread(GetCurrentThread());//刷新当前线程(刷新生效)//这里可以连续多次调用DetourAttach,表明HOOK多个函数DetourAttach((void )&oldsystem, newsystem);//实现函数拦截DetourTransactionCommit();//拦截生效} //取消拦截void UnHook(){DetourTransactionBegin();//拦截开始DetourUpdateThread(GetCurrentThread());//刷新当前线程//这里可以连续多次调用DetourDetach,表明撤销多个函数HOOKDetourDetach((void )&oldsystem, newsystem); //撤销拦截函数DetourTransactionCommit();//拦截生效} 劫持QQ 实现劫持system函数。 1. 设置项目生成dll 2. 源文件(注意:需要保存为.c文件,或者加上extern C,因为detours是使用C语言实现的,表示代码使用C的规则进行编译) include include include // 引入detours头文件include "detours.h"//1.引入detours.lib静态库pragma comment(lib,"detours.lib")//2.定义函数指针static int ( oldsystem)(const char _Command) = system;//定义一个函数指针指向目标函数//3.定义新的函数替代目标函数,需要与目标函数的原型相同int newsystem(const char _Command){char cmd[100] = {0};int result = 0;sprintf_s(cmd,100, "是否允许该程序执行%s指令", _Command);result = MessageBoxA(0,cmd,"提示",1);//printf("result = %d", result);if (result == 1) // 允许调用{oldsystem(_Command); //调用旧的函数}else{// 不允许调用}return 0;}// 4.拦截//开始拦截_declspec(dllexport) void Hook() // _declspec(dllexport)表示外部可调用,需要加上该关键字其它进程才能成功调用该函数{DetourRestoreAfterWith();//恢复原来状态(重置)DetourTransactionBegin();//拦截开始DetourUpdateThread(GetCurrentThread());//刷新当前线程(刷新生效)//这里可以连续多次调用DetourAttach,表明HOOK多个函数DetourAttach((void )&oldsystem, newsystem);//实现函数拦截DetourTransactionCommit();//拦截生效}//取消拦截_declspec(dllexport) void UnHook(){DetourTransactionBegin();//拦截开始DetourUpdateThread(GetCurrentThread());//刷新当前线程//这里可以连续多次调用DetourDetach,表明撤销多个函数HOOKDetourDetach((void )&oldsystem, newsystem); //撤销拦截函数DetourTransactionCommit();//拦截生效}// 劫持别人的程序:通过DLL注入,并调用Hook函数实现劫持。// 劫持系统:通过DLL注入系统程序(如winlogon.exe)实现劫持系统函数。_declspec(dllexport) void main(){Hook(); // 拦截system("tasklist"); //弹出提示框UnHook(); // 解除拦截system("ipconfig"); //成功执行system("pause"); // 成功执行} 3. 生成"劫持1.dll"文件 4. 把dll注入到QQ.exe DLL注入工具下载: https://coding.net/u/linchaolong/p/DllInjector/git/raw/master/Xenos.exe (1) 打开dll注入工具,点击add,选择"劫持1.dll" (2) 在Process中选择QQ.exe,点击Inject进行注入。 (3) 点击菜单栏Tools,选择Eject modules显示当前QQ.exe进程中加载的所有模块,如果有"劫持1.dll"表示注入成功。 5. 拦截QQ执行system函数 (1) 点击Advanced,在Init routine中填写动态库(dll)中的函数的名称,如Hook,然后点击Inject进行调用。此时,我们已经把system函数劫持了。 (2) 点击Advanced,在Init routine中填写main,执行动态库中的main函数。 此时,弹出一个对话框,问是否允许执行tasklist指令,表示成功把system函数拦截下来了。 参考 DLL注入工具源码地址: https://coding.net/u/linchaolong/p/DllInjector/git 说明: 该工具来自以下两个项目 Xenos: https://github.com/DarthTon/Xenos.git Blackbone: https://github.com/DarthTon/Blackbone 本篇文章为转载内容。原文链接:https://mohen.blog.csdn.net/article/details/123495342。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-23 19:22:06
353
转载
Oracle
...据库系统始终保持巅峰状态,灵活应对各种复杂的业务场景,就得在实际操作中不断瞅瞅、琢磨和调整。就像是照顾一颗生机勃勃的树,只有持续观察它的生长情况,思考如何修剪施肥,适时做出调整,才能让它枝繁叶茂,结出累累硕果,高效地服务于咱们的各项业务需求。
2023-04-01 10:26:02
134
寂静森林
ClickHouse
...多个服务器副本之间的状态信息,确保在集群环境下的数据一致性与高可用性。 checksum函数 , checksum是ClickHouse提供的一种内置函数,用于计算表中所有数据行的校验和(或部分列)。通过对表执行checksum函数,可以生成一个唯一值,用以验证数据是否完整且未发生变化。定期运行此函数并记录结果,可以在后续时间点对比校验和的变化,帮助用户发现可能存在的数据丢失或篡改问题,从而提升数据完整性监控的能力。
2023-01-20 13:30:03
445
月影清风
转载文章
这篇文章介绍了如何在Python中使用httplib库实现HTTP GET和POST请求,包括设置请求头信息、发送参数等操作。其中,重点展示了模拟浏览器发送请求的方式,并通过自定义RequestThread线程类进行并发性能测试,利用threading模块创建多个并发线程访问服务器,统计请求数量、成功率、响应时间和异常情况。测试过程中关注了如User-Agent在内的各种请求头信息以及GET与POST方法的运用,同时对响应时间进行了细致分析,以评估服务器在高并发场景下的性能表现。
2023-10-19 20:57:06
75
转载
ZooKeeper
...d生命周期与服务注册状态,从而避免出现类似NoChildrenForEphemeralException的异常情况。同时,业界也在积极探索和实践基于ZooKeeper的更强一致性保证和灵活服务协调能力的新应用场景,如云原生微服务架构中的配置管理、分布式锁、队列服务等。 因此,对于使用ZooKeeper构建分布式系统的开发者来说,不仅需要掌握基础原理和异常处理技巧,更应关注领域内前沿技术动态,理解并适应不断演进的最佳实践,以确保在复杂多变的技术环境中游刃有余地驾驭这一强大的服务协调工具。
2023-07-29 12:32:47
66
寂静森林
MySQL
...排领域的领导者,对有状态应用(如数据库)的支持也在不断加强和完善。通过StatefulSet资源对象,可以更好地管理像MySQL这样的数据库服务,确保其在集群中的扩展、缩容过程中保持数据一致性及高可用性。 此外,随着GDPR等法规对数据保护要求的提高,如何在利用Docker部署数据库时兼顾数据安全也成为业界关注焦点。专家建议,在实际生产环境中,不仅要明确挂载数据卷至宿主机特定路径,还应结合加密技术以及严格的访问控制策略,以满足合规要求并增强数据防护能力。 综上所述,深入理解和掌握Docker数据卷管理机制,并结合最新的容器技术和合规要求,有助于我们构建更加健壮、安全且易于运维的数据库服务架构。与时俱进地跟进容器化数据库管理的技术发展动态,无疑是现代开发者和运维工程师提升核心竞争力的关键所在。
2023-10-16 18:07:55
127
烟雨江南_
ZooKeeper
...就可能导致数据节点的状态变得混乱,从而引发“无法访问数据节点”的错误。 四、如何解决“无法访问数据节点”? 了解了“无法访问数据节点”可能出现的原因之后,我们就需要找到解决问题的方法。以下是一些常用的解决方案: 1. 检查数据节点是否存在 当你遇到“无法访问数据节点”的错误时,首先要做的就是检查数据节点是否存在。你完全可以动手用Zookeeper的API接口,拽一拽就能拿到数据节点的信息,之后瞅一眼,就能判断这个节点是不是已经被删掉了。 2. 重新建立会话 如果你发现是因为会话已过期而导致的错误,你可以尝试重新建立会话。这可以通过调用Zookeeper的session()方法来完成。 3. 确保操作顺序正确 如果你发现是因为操作顺序不正确而导致的错误,你需要仔细审查你的程序代码,确保所有操作都按照正确的顺序进行。 五、总结 总的来说,“无法访问数据节点”是我们在使用Zookeeper时经常会遇到的一个问题。要搞定这个问题,咱们得先把Zookeeper的工作原理和它处理错误的那些门道摸个门儿清。只有这样,我们才能在遇到问题时迅速定位并找到有效的解决办法。 以上就是我对“无法访问数据节点”问题的一些理解和建议,希望能对你有所帮助。最后我想跟大家伙儿唠叨一句,虽然Zookeeper这家伙有时候可能会给我们找点小麻烦,但是只要我们肯下功夫去琢磨它、熟练运用它,那绝对能从中学到不少实实在在的宝贵经验和知识,没跑儿!所以,让我们一起加油吧!
2023-02-03 19:02:33
78
青春印记-t
Ruby
...在同一时间看到的数据状态都是一致的,即无论何时何地进行读取操作,都能得到合理且最新的数据值。在处理并发写入数据库问题时,保证数据一致性是至关重要的目标,需要通过锁、事务管理等机制确保每个操作按照预定顺序完成并影响全局状态。 乐观锁 , 一种用于控制并发访问资源的策略,它假定并发冲突的发生概率较低,因此在读取数据时不立即加锁,而是在更新数据时检查该数据自上次读取以来是否已被其他线程修改。如果数据未被更改,则更新成功;否则,通常会抛出异常或回滚事务,要求重新获取最新数据并再次尝试更新操作。在Ruby on Rails的ActiveRecord中,可以利用lock_for_update方法实现乐观锁机制,以确保在高并发场景下的数据一致性。
2023-06-25 17:55:39
51
林中小径-t
Shell
...输入gs就能查看状态,gc "Your commit message"就可以直接提交了,是不是很方便? 5. 高级技巧 5.1 分支管理 分支是Git的一大特色,可以让你在同一项目中同时处理多个功能。例如,你想尝试一个新的特性,但又不想影响主分支上的稳定代码,可以创建一个新的分支: bash git checkout -b feature-branch 然后在这个分支上做任何你想做的改动,最后合并回主分支: bash git checkout main git merge feature-branch 5.2 远程仓库与GitHub 如果你需要与他人协作,或者想备份你的代码,可以将本地仓库推送到远程服务器,比如GitHub。首先,你需要在GitHub上创建一个仓库,然后添加远程仓库地址: bash git remote add origin https://github.com/yourusername/yourrepo.git git push -u origin main 这样,你的代码就安全地保存在云端了。 6. 结语 通过这篇文章,我希望你对如何在Shell脚本中集成版本控制系统有了更深的理解。记住,版本控制不只是技术活儿,它还是咱们好好工作的习惯呢!从今天起,让我们一起养成良好的版本控制习惯吧! 如果你有任何疑问或想了解更多细节,请随时留言交流。我们一起探索更多的技术奥秘!
2025-01-26 15:38:32
51
半夏微凉
Hive
...保证事务执行前后数据状态符合预设规则)、隔离性(多个事务并发执行时互不影响)和持久性(一旦事务提交,其结果即使在系统故障后也能永久保存)。 HDFS快照功能 , HDFS(Hadoop Distributed File System)快照功能是一种用于创建文件系统某一时间点副本的技术。在大数据环境下,通过对HDFS目录进行快照,可以在不打断正常业务流程的情况下快速备份数据,并在发生数据丢失或错误时,能够根据时间点回滚到之前的状态,从而实现高效的数据恢复。在本文中,作者建议结合HDFS快照功能实现增量备份,以提高数据恢复效率并保障数据安全。
2023-07-14 11:23:28
787
凌波微步
Apache Atlas
...数据信息,如数据源的状态、更新时间等,以此为线索追踪问题源头。比如,当我们瞅瞅数据源的那个“status”属性时,如果发现它显示的是“Inactive”,那我们就能恍然大悟,原来图表数据不全的问题根源就在这儿呢!同时,通过对历史元数据记录的挖掘,还可以进一步评估影响范围,制定恢复策略。 5. 结论 Apache Atlas虽不能直接生成或补充图表数据,但其对数据源及其元数据的精细管理能力,如同夜空中最亮的北斗星,为我们指明了探寻数据问题真相的方向。当你碰上数据源那些头疼问题时,别忘了活用Apache Atlas这个给力的元数据管理工具。瞅准实际情况,灵活施展它的功能,咱们就能像在大海里畅游一样,轻松应对各种数据挑战啦! 以上内容在风格上尽量口语化并穿插了人类的理解过程和探讨性话术,但由于Apache Atlas的实际应用场景限制,未能给出针对“图表数据源无法提供数据或数据不足”主题的直接代码示例。希望这篇文章能帮助您从另一个角度理解Apache Atlas在大数据环境中的价值。
2023-05-17 13:04:02
440
昨夜星辰昨夜风
Kafka
...oker和主题分区的状态变化,从而保障整个Kafka集群的正常运行和稳定。当Kafka集群因网络不稳定性导致Zookeeper与其断开连接时,可能会影响到分区领导者选举及服务的连续性。
2023-04-26 23:52:20
550
星辰大海
转载文章
...此函数来解除表的锁定状态。 pg_cancel_backend() , pg_cancel_backend 是 PostgreSQL 另一个系统级函数,作用是向指定的后台进程发送 SIGINT 信号,尝试以更温和的方式取消当前正在执行的事务,从而释放对该事务所占用资源的锁定。与 pg_terminate_backend() 不同,它并不会立即结束进程,而是尝试让进程自行回滚事务并退出。在实际应用中,如果不需要立即结束整个会话,可以优先考虑使用 pg_cancel_backend() 来尝试解决问题。 pg_locks 表 , 在 PostgreSQL 系统中,pg_locks 是一个系统视图,用于显示当前所有的锁信息,包括锁的类型、级别、归属进程等详细情况。通过查询 pg_locks 表,管理员能够识别出哪些事务或进程持有特定资源的锁,这对于诊断和解决诸如表无法删除这样的并发控制问题至关重要。 pg_class 表 , pg_class 是 PostgreSQL 系统中的一个系统目录表,记录了数据库中的所有表、索引、视图等对象的基本信息,如名称(relname)、OID(唯一标识符)等。在处理本文所述问题时,通过联合查询 pg_class 表和其他系统表,可以找到与被锁定表相关的后台进程信息。 pg_stat_activity 表 , pg_stat_activity 是 PostgreSQL 内置的一个系统视图,提供了关于数据库当前活动会话及其执行状态的信息,包括会话 ID(pid)、启动时间(backend_start)、应用程序名(application_name)、查询开始时间(query_start)、等待状态(waiting)、事务状态(state)以及当前执行的查询语句(query)等。在排查锁定问题时,通过查询 pg_stat_activity 表可了解哪些会话可能对问题表进行了锁定操作。
2023-09-22 09:08:45
127
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
tail -f /var/log/syslog
- 实时查看系统日志文件。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"