前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[Nginx 服务器端HTTPS请求转发 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Dubbo
Dubbo在服务消费者宕机或网络不稳定的应对策略 一、引言(序号1) 当我们谈论分布式系统时,服务稳定性和容错能力是无法绕过的主题。嘿,伙计们,今天咱们要来聊聊那个风靡一时、性能超群的Java RPC框架——Apache Dubbo。设想一下,当我们的服务消费者突然闹脾气玩罢工,或者网络这家伙时不时抽个疯变得不稳定时,Dubbo这个小能手是怎么巧妙利用它肚子里的黑科技,确保咱们的服务调用始终保持稳如磐石、靠得住的状态呢?这就让我们一起深入探究一下吧! 1.1 现实场景痛点 想象一下,在一个依赖众多微服务协同工作的场景中,某个服务消费者突然遭遇宕机或者网络波动,这对整个系统的稳定性无疑是巨大的挑战。嘿,你知道吗?在这种情况下,Dubbo这家伙是怎么做到像侦探一样,第一时间发现那些捣蛋的问题,然后瞬间换上备胎服务提供者接着干活儿,等到一切恢复正常后,又能悄无声息地切换回去的呢?这就是我们今天要一起揭开的趣味小秘密! 二、Dubbo的容错机制(序号2) 2.1 负载均衡与集群容错 Dubbo通过集成多种负载均衡策略如随机、轮询、最少活跃调用数等,并结合集群容错模式(默认为failover),巧妙地处理了服务消费者故障问题。 java // 创建一个具有容错机制的引用 ReferenceConfig reference = new ReferenceConfig<>(); reference.setInterface(DemoService.class); // 设置集群容错模式为failover,即失败自动切换 reference.setCluster("failover"); 在failover模式下,若某台服务提供者出现故障或网络中断,Dubbo会自动将请求路由到其他健康的提供者节点,有效避免因单点故障导致的服务不可用。 2.2 超时与重试机制 此外,Dubbo还提供了超时控制和重试机制: java // 设置接口方法的超时时间和重试次数 reference.setTimeout(1000); // 1秒超时 reference.setRetries(2); // 允许重试两次 这意味着,如果服务消费者在指定时间内未收到响应,Dubbo将自动触发重试逻辑,尝试从其他提供者获取结果,从而在网络不稳定时增强系统的鲁棒性。 三、心跳检测与隔离策略(序号3) 3.1 心跳检测 Dubbo的心跳检测机制可以实时监控服务提供者的健康状态,一旦发现服务提供者宕机或网络不通,会立即将其剔除出可用列表,直到其恢复正常: java // 在服务提供端配置心跳间隔 ProviderConfig providerConfig = new ProviderConfig(); providerConfig.setHeartbeat(true); // 开启心跳检测 providerConfig.setHeartbeatInterval(60000); // 每60秒发送一次心跳 3.2 隔离策略 针对部分服务提供者可能存在的雪崩效应,Dubbo还支持sentinel等多种隔离策略,限制并发访问数量,防止资源耗尽引发更大范围的服务失效: java // 配置sentinel限流 reference.setFilter("sentinel"); // 添加sentinel过滤器 四、总结与探讨(序号4) 综上所述,Dubbo凭借其丰富的容错机制、心跳检测以及隔离策略,能够有效地应对服务消费者宕机或网络不稳定的问题。但是呢,对于我们这些开发者来说,也得把目光放在实际应用场景的优化上,比如像是给程序设定个恰到好处的超时时间啦,挑选最对胃口的负载均衡策略什么的,这样一来才能让咱的业务需求灵活应变,不断升级! 每一次对Dubbo特性的探索,都让我们对其在构建高可用分布式系统中的价值有了更深的理解。在面对这瞬息万变、充满挑战的生产环境时,Dubbo可不仅仅是个普通的小工具,它更像是我们身边一位超级给力的小伙伴,帮我们守护着服务质量的大门,让系统的稳定性蹭蹭上涨,成为我们不可或缺的好帮手。在实践中不断学习和改进,是我们共同的目标与追求。
2024-03-25 10:39:14
485
山涧溪流
Shell
...个例子,假设你在一个服务器上运行了多个程序,其中一个程序需要大量的内存,但是服务器的内存已经被其他程序占满了。这时候,系统可能就会甩脸子了,不给这个程序多分一点内存,还随手记一笔小日记,说这个程序又来闹事儿啦。这就是典型的进程资源分配失败场景。 --- 2. 深入 为什么会出现这种错误? 说实话,每次看到这样的日志,我都会忍不住皱眉头。为什么会出现这种错误呢?其实原因有很多,以下是我总结的一些常见原因: - 资源耗尽:最常见的原因是系统资源已经耗尽。比如内存不足、磁盘空间不够或者网络带宽被占满。 - 权限问题:有时候,进程可能没有足够的权限去申请资源。比如普通用户尝试申请超级用户才能使用的资源。 - 配置错误:系统管理员可能配置了一些错误的参数,导致资源分配失败。例如,限制了某个用户的最大文件句柄数。 - 软件bug:某些应用程序可能存在bug,导致它们请求了不合理的资源数量。 让我给大家分享一个小故事。嘿,有次我正鼓捣一个脚本呢,结果它就不停地跟我唱反调,各种报错,说什么“分配日志资源失败”啥的,气得我都想把它扔进垃圾桶了!折腾了半天才发现,原来是脚本里有段代码疯了一样想同时打开几千个文件,但系统设定的文件句柄上限才1024个,这不直接给整崩溃了嘛!修改了这个限制后,问题就解决了。真是哭笑不得啊! --- 3. 实践 如何查看和分析日志? 既然知道了问题的来源,接下来就要学会如何查看和分析这些日志了。在Linux系统里头,咱们经常会用到一些小工具,帮咱找出那些捣蛋的问题到底藏哪儿了。 3.1 查看日志文件 首先,我们需要找到存放日志的地方。一般来说,系统日志会存放在 /var/log/ 目录下。你可以通过命令 ls /var/log/ 来列出所有的日志文件。 bash $ ls /var/log/ 然后,我们可以使用 tail 命令实时监控日志文件的变化: bash $ tail -f /var/log/syslog 这段代码的意思是实时显示 /var/log/syslog 文件的内容。如果你看到类似 Failed process resource allocation logging 的字样,就可以进一步分析了。 3.2 使用 dmesg 查看内核日志 除了系统日志,内核日志也是查找问题的好地方。我们可以使用 dmesg 命令来查看内核日志: bash $ dmesg | grep "Failed process resource allocation" 这条命令会过滤出所有包含关键词 Failed process resource allocation 的日志条目。这样可以快速定位问题发生的上下文。 --- 4. 解决 动手实践解决问题 找到了问题的根源后,接下来就是解决它啦!这里我给大家提供几个实用的小技巧。 4.1 调整资源限制 如果问题是由于资源限制引起的,比如文件句柄数或内存配额不足,那么我们可以调整这些限制。例如,要增加文件句柄数,可以编辑 /etc/security/limits.conf 文件: bash soft nofile 65535 hard nofile 65535 保存后,重启系统或重新登录即可生效。 4.2 优化脚本逻辑 如果是脚本本身的问题,比如请求了过多的资源,那么就需要优化脚本逻辑了。比如,将大文件分块处理,而不是一次性加载整个文件到内存中。 bash !/bin/bash split -l 1000 large_file.txt part_ for file in part_ do 对每个小文件进行处理 echo "Processing $file" done 这段脚本将大文件分割成多个小文件,然后逐个处理,避免了内存溢出的风险。 4.3 检查硬件状态 最后,别忘了检查一下硬件的状态。有时候,内存不足可能是由于物理内存条损坏或容量不足造成的。可以用 free 命令查看当前的内存使用情况: bash $ free -h 如果发现内存确实不足,考虑升级硬件或者清理不必要的进程。 --- 5. 总结 与错误共舞 通过今天的讨论,希望大家对进程资源分配日志 Failed process resource allocation logging 有了更深入的理解。说实话,遇到这种问题确实挺让人抓狂的,但别慌!只要你搞清楚该怎么一步步排查、怎么解决,慢慢就成高手了,啥问题都难不倒你。 记住,技术的世界就像一场冒险,遇到问题并不可怕,可怕的是放弃探索。所以,下次再遇到类似的日志时,不妨静下心来,一步步分析,相信你也能找到解决问题的办法! 好了,今天的分享就到这里啦。如果你还有其他疑问,欢迎随时来找我交流哦!😄 --- 希望这篇文章对你有所帮助!如果有任何补充或建议,也欢迎留言告诉我。
2025-05-10 15:50:56
102
翡翠梦境
MySQL
...而异。嘿,有的人捣鼓服务器连接,有的人在查网络为啥出问题,还有一堆人就单纯想搞清楚自己鼓捣出来的数据库到底“住”在哪儿,就跟想知道自家小宠物被关在哪间房一样好奇!不管你到底是为了啥,能整清楚数据库的那个IP地址,这本事可真挺关键的!那么接下来,咱们就一步步来解决这个问题! --- 1. 本地MySQL数据库的IP地址 情况一:数据库运行在你的电脑上 如果你的MySQL数据库是安装在你自己的机器上,并且你只打算让它服务于本地的应用程序,那么它的IP地址通常就是localhost或者127.0.0.1。这是最常见的情况之一,也是初学者最容易遇到的场景。 如何确认? 打开命令行工具(Windows用户可以用CMD,Mac/Linux用户可以用Terminal),然后输入以下命令: sql SELECT @@hostname; 这条SQL语句会返回当前MySQL服务器所在的主机名。如果你想进一步验证是不是本地环境,可以再试试: sql SELECT @@datadir; 这段代码会显示MySQL的数据目录路径。要是文件路径里提到你的用户名,或者用的是系统盘符(像 C:\ProgramData\MySQL\MySQL Server 8.0\Data 这种),那十有八九数据库就在你自己的电脑上啦! --- 情况二:数据库运行在远程服务器上 如果你的MySQL数据库部署在一台远程服务器上,那么它的IP地址就不会是localhost了。你需要通过一些工具或者命令来获取具体的IP地址。 方法一:直接登录服务器查看 假设你有一台Linux服务器,可以通过SSH工具(比如PuTTY或终端)登录到服务器后,执行以下命令: bash ifconfig | grep "inet " 这段命令会列出服务器的所有网络接口及其对应的IP地址。如果你看到类似inet 192.168.1.100这样的输出,恭喜你,这就是MySQL数据库所在服务器的IP地址啦! 方法二:通过MySQL命令查看 如果你已经成功连接到了远程MySQL服务器,也可以在MySQL客户端中执行以下命令: sql SELECT @@hostname; 这条命令同样会返回数据库所在的主机名。不过,这里得到的通常是服务器的域名(比如myserver.example.com)。为了找到真实的IP地址,你可以使用ping命令进行测试: bash ping myserver.example.com 通过这种方式,你可以轻松地将域名解析为实际的IP地址。 --- 2. MySQL配置文件中的IP地址 有时候,数据库的IP地址并不是动态分配的,而是明确写在了配置文件里。这种情况下,我们只需要找到配置文件的位置并读取它即可。 配置文件在哪里? 不同的操作系统和安装方式可能会导致配置文件的位置有所不同。以下是常见的几个位置: - Linux/Unix系统:通常是/etc/mysql/my.cnf或者/etc/my.cnf。 - Windows系统:可能是C:\ProgramData\MySQL\MySQL Server 8.0\my.ini。 - macOS:可以尝试查找/usr/local/mysql/my.cnf。 打开配置文件后,搜索关键词bind-address。这个参数定义了MySQL服务监听的IP地址。例如: ini bind-address = 192.168.1.100 这里的192.168.1.100就是MySQL数据库的IP地址。如果该值为空,则表示MySQL监听所有可用的IP地址。 --- 3. 使用第三方工具检测数据库IP 如果你没有权限直接访问服务器或者配置文件,还可以借助一些第三方工具来探测数据库的IP地址。 工具推荐: 1. Nmap 一款强大的网络扫描工具,可以帮助你发现目标服务器上的开放端口和服务。 bash nmap -p 3306 yourdomain.com 如果MySQL服务正在运行并且监听了外部请求,那么这段命令会显示出相应的IP地址。 2. telnet 一种简单的远程连接工具,用于检查特定端口是否可达。 bash telnet yourdomain.com 3306 如果连接成功,说明MySQL服务正在指定的IP地址上运行。 --- 4. 小结与反思 经过一番折腾,我们终于找到了MySQL数据库的IP地址。虽然过程有些曲折,但我相信这些方法对大家来说都非常实用。在这个过程中,我也学到了很多新东西,比如如何解读配置文件、如何利用命令行工具解决问题等等。 最后想提醒大家一句:无论你是新手还是老鸟,在操作数据库时都要小心谨慎,尤其是在涉及网络配置的时候。毕竟,稍不留神就可能导致数据泄露或者其他严重后果。所以,动手之前一定要三思而后行哦! 好了,今天的分享就到这里啦!如果你还有什么疑问或者更好的解决方案,欢迎随时留言交流。咱们下期再见!
2025-03-24 15:46:41
78
笑傲江湖
Go Gin
...}) } // 启动服务 r.Run(":8080") } 在这段代码里,我们先用 r.Group("/users") 创建了一个名为 /users 的路由组。然后在这个组里定义了两个接口:/register 和 /login。这样一来,所有与用户相关的接口都集中在一个地方,是不是感觉清爽多了? --- 3. 深入探讨 嵌套分组 当然啦,Group 不仅仅能用来分一级路由,还可以嵌套分组,这就像是在衣柜里再加几个小抽屉一样,分类更细致了。 示例2:嵌套分组 go package main import ( "github.com/gin-gonic/gin" "net/http" ) func main() { r := gin.Default() // 创建一个主路由组 mainGroup := r.Group("/api") { // 子路由组:用户相关 userGroup := mainGroup.Group("/users") { userGroup.GET("/", func(c gin.Context) { c.JSON(http.StatusOK, gin.H{"message": "List all users"}) }) // 获取单个用户信息 userGroup.GET("/:id", func(c gin.Context) { id := c.Param("id") c.JSON(http.StatusOK, gin.H{"message": "User info", "id": id}) }) } // 子路由组:订单相关 orderGroup := mainGroup.Group("/orders") { orderGroup.POST("/", func(c gin.Context) { c.JSON(http.StatusOK, gin.H{"message": "Order created successfully"}) }) orderGroup.GET("/", func(c gin.Context) { c.JSON(http.StatusOK, gin.H{"message": "List all orders"}) }) } } r.Run(":8080") } 在这个例子中,我们首先创建了一个 /api 的主路由组,然后在这个主组下面分别创建了 /users 和 /orders 两个子路由组。这样的结构是不是更有条理了?尤其是当你项目变得复杂时,这种分层结构会让你少走很多弯路。 --- 4. 实战技巧 动态前缀与中间件 除了分组之外,Group 还支持动态前缀和中间件绑定。哈哈,这个功能超实用啊!就像是给一帮小伙伴设了个统一的“群规”,所有成员都自动遵守。不过呢,要是哪天你想让某个小组玩点不一样的,比如换个新名字前缀啥的,也能随时调整,特别方便! 示例3:动态前缀与中间件 go package main import ( "github.com/gin-gonic/gin" "net/http" ) func main() { r := gin.Default() // 设置全局中间件 r.Use(func(c gin.Context) { c.Set("auth", "token") c.Next() }) // 创建一个用户组,并绑定中间件 userGroup := r.Group("/v1/users", func(c gin.Context) { token := c.MustGet("auth").(string) if token != "admin" { c.AbortWithStatus(http.StatusUnauthorized) return } }) // 用户注册接口 userGroup.POST("/register", func(c gin.Context) { c.JSON(http.StatusOK, gin.H{"message": "User registered successfully"}) }) // 用户登录接口 userGroup.POST("/login", func(c gin.Context) { c.JSON(http.StatusOK, gin.H{"message": "Login successful"}) }) r.Run(":8080") } 在这个例子中,我们为 /v1/users 组绑定了一个中间件,只有携带正确令牌的请求才能访问该组下的接口。这种方式特别适合处理权限控制问题,避免了重复编写相同逻辑的麻烦。 --- 5. 总结 拥抱清晰的代码 兄弟们,路由分组真的是一项非常实用的技术。它不仅能让我们的代码更加整洁,还能大大提升开发效率。试想一下,如果你接手一个没有任何分组的项目,面对成千上万行杂乱无章的代码,你会不会崩溃? 所以啊,从今天开始,不管你的项目多大,都要养成使用 Group 的好习惯。不管你是弄个小玩意儿,还是搞那种复杂得让人头大的微服务架构,只要分组分得好,就能省不少劲儿,效率蹭蹭往上涨!记住,代码不仅仅是给机器看的,更是给人看的。清晰的代码,就是对同行最大的尊重! 最后,希望这篇文章能帮到你们。如果你们还有什么疑问或者更好的实践方法,欢迎留言交流哦!一起进步,一起成长!
2025-04-10 16:19:55
43
青春印记
转载文章
...转载内容。原文链接:https://blog.csdn.net/weixin_28851659/article/details/114329359。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 mysqldump 导出要用到MySQL的mysqldump工具,基本用法是: shell> mysqldump [OPTIONS] database [tables] 如果你不给定任何表,整个数据库将被导出。 通过执行mysqldump --help,你能得到你mysqldump的版本支持的选项表。 注意,如果你运行mysqldump没有--quick或--opt选项,mysqldump将在导出结果前装载整个结果集到内存中,如果你正在导出一个大的数据库,这将可能是一个问题。 mysqldump支持下列选项: --add-locks 在每个表导出之前增加LOCK TABLES并且之后UNLOCK TABLE。(为了使得更快地插入到MySQL)。 --add-drop-table 在每个create语句之前增加一个drop table。 --allow-keywords 允许创建是关键词的列名字。这由表名前缀于每个列名做到。 -c, --complete-insert 使用完整的insert语句(用列名字)。 -C, --compress 如果客户和服务器均支持压缩,压缩两者间所有的信息。 --delayed 用INSERT DELAYED命令插入行。 -e, --extended-insert 使用全新多行INSERT语法。(给出更紧缩并且更快的插入语句) -, --debug[=option_string] 跟踪程序的使用(为了调试)。 --help 显示一条帮助消息并且退出。 --fields-terminated-by=... --fields-enclosed-by=... --fields-optionally-enclosed-by=... --fields-escaped-by=... --fields-terminated-by=... 这些选择与-T选择一起使用,并且有相应的LOAD DATA INFILE子句相同的含义。 LOAD DATA INFILE语法。 -F, --flush-logs 在开始导出前,洗掉在MySQL服务器中的日志文件。 -f, --force, 即使我们在一个表导出期间得到一个SQL错误,继续。 -h, --host=.. 从命名的主机上的MySQL服务器导出数据。缺省主机是localhost。 -l, --lock-tables. 为开始导出锁定所有表。 -t, --no-create-info 不写入表创建信息(CREATE TABLE语句) -d, --no-data 不写入表的任何行信息。如果你只想得到一个表的结构的导出,这是很有用的! --opt 同--quick --add-drop-table --add-locks --extended-insert --lock-tables。 应该给你为读入一个MySQL服务器的尽可能最快的导出。 -pyour_pass, --password[=your_pass] 与服务器连接时使用的口令。如果你不指定“=your_pass”部分,mysqldump需要来自终端的口令。 -P port_num, --port=port_num 与一台主机连接时使用的TCP/IP端口号。(这用于连接到localhost以外的主机,因为它使用 Unix套接字。) -q, --quick 不缓冲查询,直接导出至stdout;使用mysql_use_result()做它。 -S /path/to/socket, --socket=/path/to/socket 与localhost连接时(它是缺省主机)使用的套接字文件。 -T, --tab=path-to-some-directory 对于每个给定的表,创建一个table_name.sql文件,它包含SQL CREATE 命令,和一个table_name.txt文件,它包含数据。 注意:这只有在mysqldump运行在mysqld守护进程运行的同一台机器上的时候才工作。.txt文件的格式根据--fields-xxx和--lines--xxx选项来定。 -u user_name, --user=user_name 与服务器连接时,MySQL使用的用户名。缺省值是你的Unix登录名。 -O var=option, --set-variable var=option设置一个变量的值。可能的变量被列在下面。 -v, --verbose 冗长模式。打印出程序所做的更多的信息。 -V, --version 打印版本信息并且退出。 -w, --where=@where-condition@ 只导出被选择了的记录;注意引号是强制的! "--where=user=@jimf@" "-wuserid>1" "-wuserid<1" 最常见的mysqldump使用可能制作整个数据库的一个备份: mysqldump --opt database > backup-file.sql 但是它对用来自于一个数据库的信息充实另外一个MySQL数据库也是有用的: mysqldump --opt database | mysql --host=remote-host -C database 由于mysqldump导出的是完整的SQL语句,所以用mysql客户程序很容易就能把数据导入了: shell> mysqladmin create target_db_name shell> mysql target_db_name < backup-file.sql 就是 shell> mysql 库名 < 文件名 相关标签:工具 本文原创发布php中文网,转载请注明出处,感谢您的尊重! 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_28851659/article/details/114329359。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-01 23:51:06
266
转载
HessianRPC
服务异常恢复失败:与HessianRPC的一次深度对话 --- 1. 背景 服务崩溃,用户不开心 嘿,大家好!今天咱们聊聊一个让人头疼的问题——服务异常恢复失败。这个问题啊,说起来真是让人又气又无奈。嘿,作为一个整天跟代码打交道的程序员,我最近真是摊上事儿了。有个用HessianRPC搞的服务突然罢工了,死活不干活。我各种捣鼓、重启、排查,忙活了好几天,可它就像个倔强的小破孩儿一样,愣是不给我恢复正常,气得我都想给它来顿“代码大餐”了! 先简单介绍一下背景吧。HessianRPC是一个轻量级的远程调用框架,主要用于Java项目之间的通信。它用二进制的方式传数据,速度快得飞起,特别适合微服务里那些小家伙们互相聊天儿用!唉,说真的,再厉害的工具也有它的短板啊。就像这次我的服务莫名其妙挂掉了,想让它重新站起来吧,那过程简直跟做噩梦一样,折腾得我头都大了。 --- 2. 症状 服务异常的表象 服务崩溃的表现其实挺明显的。首先,客户端请求一直超时,没有任何响应。然后,服务器日志里开始出现各种错误信息,比如: java.net.SocketTimeoutException: Read timed out 或者更糟糕的: java.lang.NullPointerException 看到这些错误,我心里咯噔一下:“坏了,这可能是服务端出现了问题。”于是赶紧登录服务器查看情况。果然,服务进程已经停止运行了。更让我抓狂的是,重启服务后问题并没有解决,反而越搞越复杂。 --- 3. 原因分析 为什么恢复失败? 接下来,我们来聊聊为什么会发生这种状况。经过一番排查,我发现问题可能出在以下几个方面: 3.1 配置问题 第一个怀疑对象是配置文件。HessianRPC的配置其实很简单,但有时候细节决定成败。比如说啊,在配置文件里我给超时时间设成了5秒,结果一到高并发那场面,这时间简直不够塞牙缝的,分分钟就崩了。修改配置后,虽然有一定的改善,但问题依然存在。 java // 修改HessianRPC的超时时间 Properties properties = new Properties(); properties.setProperty("hessian.read.timeout", "10000"); // 设置为10秒 3.2 线程池耗尽 第二个怀疑对象是线程池。HessianRPC默认使用线程池来处理请求,但如果线程池配置不当,可能会导致线程耗尽,进而引发服务不可用。我检查了一下线程池参数,发现最大线程数设置得太低了。 java // 修改线程池配置 ExecutorService executor = Executors.newFixedThreadPool(50); // 将线程数增加到50 3.3 内存泄漏 第三个怀疑对象是内存泄漏。有时候服务崩溃并不是因为CPU或网络的问题,而是内存不足导致的。我用JProfiler这个工具去给服务做了一次内存“体检”,结果一查,嘿,还真揪出了几个“大块头”对象,愣是赖在那儿没走,该回收的内存也没释放掉。 java // 使用WeakReference避免内存泄漏 WeakReference weakRef = new WeakReference<>(new Object()); --- 4. 解决方案 一步步修复服务 好了,找到了问题所在,接下来就是动手解决问题了。这里分享一些具体的解决方案,希望能帮到大家。 4.1 优化配置 首先,优化配置是最直接的方式。我调整了HessianRPC的超时时间和线程池大小,让服务能够更好地应对高并发场景。 java // 配置HessianRPC客户端 HessianProxyFactory factory = new HessianProxyFactory(); factory.setOverloadEnabled(true); // 开启方法重载 factory.setConnectTimeout(5000); // 设置连接超时时间为5秒 factory.setReadTimeout(10000); // 设置读取超时时间为10秒 4.2 异常处理 其次,完善异常处理机制也很重要。我给这个服务加了不少“兜底”的代码,就像在每个关键步骤都放了个小垫子,这样就算某个地方突然“摔跤”了,整个服务也不至于直接“趴下”,还能继续撑着运行。 java try { // 执行业务逻辑 } catch (Exception e) { log.error("服务执行失败", e); } 4.3 日志监控 最后,加强日志监控也是必不可少的。嘿,我装了个ELK日志系统,就是那个 Elasticsearch、Logstash 和 Kibana 的组合拳,专门用来实时盯着服务的日志输出。只要一出问题,我马上就能找到是哪里卡住了,超方便! java // 使用Logback记录日志 logs/service.log %d{yyyy-MM-dd HH:mm:ss} [%thread] %-5level %logger{36} - %msg%n --- 5. 总结 从失败中成长 经过这次折腾,我对HessianRPC有了更深的理解,也明白了一个道理:技术不是一蹴而就的,需要不断学习和实践。虽然这次服务异常恢复失败的经历让我很沮丧,但也让我积累了宝贵的经验。 如果你也有类似的问题,不妨按照以下步骤去排查: 1. 检查配置文件,确保所有参数都合理。 2. 监控线程池状态,避免线程耗尽。 3. 使用工具检测内存泄漏,及时清理无用资源。 4. 完善异常处理机制,增强服务的健壮性。 希望这篇文章能对你有所帮助!如果还有其他问题,欢迎随时交流。我们一起进步,一起成长! --- PS:记住,技术之路虽难,但每一步都是值得的!
2025-05-05 15:38:48
32
风轻云淡
HessianRPC
服务降级 , 指在系统资源紧张或服务出现故障时,为了保障核心业务的正常运行,暂时关闭或简化非关键功能的一种策略。文章中提到,当HessianRPC框架面临高负载时,若未设置合理的降级逻辑,可能导致用户无法正常使用某些功能,从而严重影响用户体验。通过实现降级机制,可以在服务不可用时提供备用方案,如返回默认数据或提示信息,确保系统整体稳定性。 熔断器模式 , 一种用于保护分布式系统免受连锁故障影响的设计模式。当某个服务连续多次请求失败时,熔断器会自动切换到备用路径,避免重复调用已知不可靠的服务。文章中提到,通过引入熔断器模式,可以有效减少因单个服务故障引发的连锁反应,降低系统负载压力。文中给出了一个基于HessianRPC的熔断器实现示例,展示如何通过计数器记录失败次数,并在超过阈值时开启断路器,直接返回备用数据。 Fallback机制 , 指在主服务不可用的情况下,系统能够自动切换至备用服务或返回默认值的处理方式。文章中提到,Fallback机制通常与服务降级配合使用,用于提供替代性的响应结果。例如,当getUserInfo()方法调用失败时,Fallback机制会返回一个预定义的默认用户信息对象,告知用户当前服务不可用,而不是让用户长时间等待或看到错误页面。Fallback机制有助于提升系统的健壮性和用户体验。
2025-05-01 15:44:28
19
半夏微凉
RabbitMQ
...泛使用的开源消息队列服务,它不仅提供了强大的消息传递功能,还支持多种消息模式和协议。不过嘛,在实际用起来的时候,因为网络不给力或者服务器罢工啥的,客户端和RabbitMQ服务器之间的连接就可能出问题了。因此,如何优雅地处理这些连接故障,成为确保系统稳定运行的关键。 1. 了解RabbitMQ的基本概念 在深入探讨如何处理连接故障之前,我们先来简单了解一下RabbitMQ的基础知识。RabbitMQ就像是一个开源的邮局,它负责在不同的程序之间传递消息,就像是给它们送信一样。你可以把消息发到一个或者多个队列里,然后消费者应用就从这些队列里面把消息取出来处理掉。RabbitMQ可真是个多才多艺的小能手,支持好几种消息传递方式,比如点对点聊天和广播式发布/订阅。这就让它变得特别灵活,不管你是要一对一私聊还是要群发消息,它都能轻松搞定。 2. 连接故障 常见原因与影响 在探讨如何处理连接故障之前,我们有必要了解连接故障通常是由哪些因素引起的,以及它们会对系统造成什么样的影响。 - 网络问题:这是最常见的原因,比如网络延迟增加、丢包等。 - 服务器问题:服务器宕机、重启或者维护时,也会导致连接中断。 - 配置错误:不正确的配置可能导致客户端无法正确连接到服务器。 - 资源限制:当服务器资源耗尽时(如内存不足),也可能导致连接失败。 这些故障不仅会打断正在进行的消息传递,还可能影响到整个系统的响应时间,严重时甚至会导致数据丢失或服务不可用。所以啊,我们要想办法让系统变得更皮实,就算碰到那些麻烦事儿,它也能稳如老狗,继续正常运转。 3. 如何优雅地处理连接故障 3.1 使用重试机制 首先,我们可以利用重试机制来应对短暂的网络波动或临时性的服务不可用。通过设置合理的重试次数和间隔时间,可以有效地提高消息传递的成功率。以下是一个简单的Python代码示例,展示了如何使用pika库连接到RabbitMQ服务器,并在连接失败时进行重试: python import pika from time import sleep def connect_to_rabbitmq(): max_retries = 5 retry_delay = 5 seconds for i in range(max_retries): try: connection = pika.BlockingConnection(pika.ConnectionParameters('localhost')) print("成功连接到RabbitMQ") return connection except Exception as e: print(f"尝试{i+1}连接失败,将在{retry_delay}秒后重试...") sleep(retry_delay) print("多次重试后仍无法连接到RabbitMQ,程序将退出") exit(1) 调用函数尝试建立连接 connection = connect_to_rabbitmq() 3.2 实施断线重连策略 除了基本的重试机制外,我们还可以实现更复杂的断线重连策略。例如,当检测到连接异常时,立即尝试重新建立连接,并记录重连日志以便后续分析。另外,我们也可以试试用指数退避算法来调整重连的时间间隔,这样就不会在短时间内反复向服务器发起连接请求,也能让服务器稍微轻松一点。 下面展示了一个基于RabbitMQ官方客户端库pika的断线重连示例: python import pika from time import sleep class ReconnectingRabbitMQClient: def __init__(self, host='localhost'): self.host = host self.connection = None self.channel = None def connect(self): while True: try: self.connection = pika.BlockingConnection(pika.ConnectionParameters(self.host)) self.channel = self.connection.channel() print("成功连接到RabbitMQ") break except Exception as e: print(f"尝试连接失败,将在{2self.retry_count}秒后重试...") self.retry_count += 1 sleep(2self.retry_count) def close(self): if self.connection: self.connection.close() def send_message(self, message): if not self.channel: self.connect() self.channel.basic_publish(exchange='', routing_key='hello', body=message) client = ReconnectingRabbitMQClient() client.send_message('Hello World!') 在这个例子中,我们创建了一个ReconnectingRabbitMQClient类,它包含了连接、关闭连接以及发送消息的方法。特别要注意的是connect方法里的那个循环,这家伙每次连接失败后都会先歇一会儿,然后再杀回来试试看。而且这休息的时间也是越来越长,越往后重试间隔就按指数往上翻。 3.3 异步处理与心跳机制 对于那些需要长时间保持连接的应用场景,我们还可以采用异步处理方式,配合心跳机制来维持连接的有效性。心跳其实就是一种简单的保活方法,就像定时给对方发个信息或者挥挥手,确认一下对方还在不在。这样就能赶紧发现并搞定那些断掉的连接,免得因为放太长时间没动静而导致连接中断的问题。 4. 总结与展望 处理RabbitMQ中的连接故障是一项复杂但至关重要的任务。通过上面提到的几种招数——比如重试机制、断线重连和心跳监测,我们的系统会变得更强壮,也更靠谱了。当然,针对不同应用场景和需求,还需要进一步定制化和优化这些方案。比如说,对于那些对延迟特别敏感的应用,你得更仔细地调整重试策略,不然用户可能会觉得卡顿或者直接闪退。至于那些需要应对海量并发连接的场景嘛,你就得上点“硬货”了,比如用更牛的技术来搞定负载均衡和集群管理,这样才能保证系统稳如老狗。总而言之,就是咱们得不停地试啊试的,然后就能慢慢弄出个既快又稳的分布式消息传递系统。 --- 以上就是关于RabbitMQ中如何处理连接故障的一些探讨。希望这些内容能帮助你在实际工作中更好地应对挑战,打造更加可靠的应用程序。如果你有任何疑问或想要分享自己的经验,请随时留言讨论!
2024-12-02 16:11:51
95
红尘漫步
转载文章
...转载内容。原文链接:https://blog.csdn.net/weixin_42686221/article/details/125478351。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 写在最前边: Dell这个牌子的一个主要特征就是兼容性极差,硬件留给你的操作空间极小,很离谱,很想跟戴尔绕着走 这个结论的出现就得从我的G15说起了:当时买的时候只有一个固态硬盘,想加装一个,然后就买了当时的PCIE4.0协议的三星980pro,后来发现硬盘口只有原厂硬盘的硬盘口支持4.0协议,这还没完。硬盘装上去之后,暂时看不出什么异常,但是电脑经常会卡死,就是屏幕亮着啥也点不动,B站也一堆改装翻车的,后来把三星980pro换到了3.0的口,问题就没在发生过了。从此Dell的不兼容性就给我留下了深深的印象。 最近,我们办公室的服务器噪音巨大,从开机键按下的一刻起就是飞机起飞状态。一看牌子:好家伙,Dell的!!!那没事了…Giao~ 还是抱有一丝希望地去网上搜了一下,果然是因为硬件设备的原因,T640无法识别3090,进而无法自适应调整风扇转速。Dell,不愧是你! 经过较为漫长的搜索调试,最后终于对风扇转速实现了较为方便的手动控制,下面对这个过程进行一下梳理。 -------------------------------------------------------------------------------------分界线------------------------------------------------------------------------------------- 1.首先是参考了这一篇文章:https://zhuanlan.zhihu.com/p/336990051 主要介绍了两种方式解决这个问题: 使用racadm温度调控,但是配置教程是Ubuntu16.04下的,过程中有些linux语句在18.04中运行报错,本身对linux就不是很熟,然后我果断放弃。 更新BIOS 和IDRAC,他2022年3月3日通过更新版本,实现了风扇转速的控制,但是我2022年6月,按照他给的下载版本,更新了,发现没用啊??!!回退版本没用,更新版本也没用,就很离谱,难道因为他是2080ti,我是3090的问题??操作步骤如下: 参考该博客对服务器IDRAC配置 https://www.dell.com/support/kbdoc/zh-cn/000177212,查看解决方案中的开机自检期间为F2进行配置 配置好后,在服务器后后面有个IDRAC的网线插口,用网线与笔记本连接,连接成功后会显示未识别网络(如果是红叉的话是没有连接成功,检查上一步,尝试关机重启等),修改IP地址,跟上一步设置的服务器IP在同一网段,不是同一IP!!,比如服务器是192.168.0.120,笔记本可以设置192.168.0.100。(https://new.qq.com/omn/20210119/20210119A01ROV00.html) IE浏览器打开192.168.0.100网址,提示不安全,然后忽略掉,输入账号密码就可以进去了 进去后在下图位置,上传更新文件进行安装。 2.后面又看到一篇博客:https://blog.csdn.net/qq_36810544/article/details/115734795这篇博客比上边那篇早,应该是有参考吧,说是更新版本就行了,然并卵啊,可能是因为他是Ubuntu20.04,我是18.04的原因? 3.最后没招了,用IPMITOOL手动调节吧,参考了博客:https://blog.51cto.com/u_15072918/4392813 这篇博客也是更新后仍然无法识别3090(实际上我下的新版本的IDRAC是可以识别出有GPU的,但是还是显示不可用哇),所以就把IDRAC的版本回退到3.30以下使用IPMITOOL进行行手动调节转速了。 具体步骤如下: 将IDRAC回退到3.30版本,下载地址:https://www.dell.com/support/home/zh-cn/drivers/driversdetails 有的版本IDRAC可能需要把IMPI取消禁用,就在笔记本访问的IP地址的网页里修改即可,应该是在IDRAC设置中,没找到的话应该是不需要操作。 下载IPMITOOLWIN版本程序后解压,终端cd进入该文件夹,然后运行ipmitool命令: 关闭自动控制:ipmitool -I lanplus -U 用户名 -P 密码 -H 服务器地址 raw 0x30 0x30 0x01 0x00 设置风扇转速:ipmitool -I lanplus -U 用户名 -P 密码 -H 192.168.0.120 raw 0x30 0x30 0x02 0xff 0x64 ,最后两位对应16进制的风扇转速。64对应100%。 3.转速现在是可以手动调节了,但是每次都要执行终端命令太麻烦了,然后我写了一个小的gui界面,可以更方便地对风扇转速进行调节。界面如下,可以通过+和-增加和降低风速,也可以设定数值进行Set。 为了防止过热,最低风扇转速设置成了30%。需要注意:这个文件中IDRAC的IP必须是192.168.0.120才可以。 本文就先写到这里了,调节软件如果有需求的话可以后续上传,我在程序中也放了IPMITOOLWIN的文件,不需要再进行下载。有更好的解决方法也欢迎评论区分享。 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_42686221/article/details/125478351。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-24 14:29:07
174
转载
转载文章
...转载内容。原文链接:https://blog.csdn.net/m0_73892801/article/details/129181633。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 Java的特点:1、面向对象;它对对象中的类、对象、继承、封装、多态、接口、包等均有很好支持。2、平台无关性;在引入虚拟机之后,Java语言在不同的平台上运行不需要重新编译。3、简单性。4、解释执行;程序在Java平台运行时会被编译成字节码文件,然后可以在有Java环境的操作系统上运行。5、支持多线程,并提供多线程之间的同步机制;6、分布式;7、健壮性;8、高性能;9、安全性。 什么是Java语言 简单地说,Java 是由 Sun Microsystems 公司于 1995 年推出的一门面向对象程序设计语言。2010 年 Oracle 公司收购 Sun Microsystems,之后由 Oracle 公司负责 Java 的维护和版本升级。 其实,Java 还是一个平台。Java 平台由 Java 虚拟机(Java Virtual Machine,JVM)和 Java 应用编程接口(Application Programming Interface,API)构成。Java 应用编程接口为此提供了一个独立于操作系统的标准接口,可分为基本部分和扩展部分。在硬件或操作系统平台上安装一个 Java 平台之后,Java 应用程序就可运行。 Java 平台已经嵌入了几乎所有的操作系统。这样 Java 程序只编译一次,就可以在各种系统中运行。Java 应用编程接口已经从 1.1x 版本发展到 1.2 版本。 Java语言的特点 Java 语言的风格很像 C 语言和 C++ 语言,是一种纯粹的面向对象语言,它继承了 C++ 语言面向对象的技术核心,但是拋弃了 C++ 的一些缺点,比如说容易引起错误的指针以及多继承等,同时也增加了垃圾回收机制,释放掉不被使用的内存空间,解决了管理内存空间的烦恼。 Java 语言是一种分布式的面向对象语言,具有面向对象、平台无关性、简单性、解释执行、多线程、安全性等很多特点,下面针对这些特点进行逐一介绍。 1. 面向对象 Java 是一种面向对象的语言,它对对象中的类、对象、继承、封装、多态、接口、包等均有很好的支持。为了简单起见,Java 只支持类之间的单继承,但是可以使用接口来实现多继承。使用 Java 语言开发程序,需要采用面向对象的思想设计程序和编写代码。 2. 平台无关性 平台无关性的具体表现在于,Java 是“一次编写,到处运行(Write Once,Run any Where)”的语言,因此采用 Java 语言编写的程序具有很好的可移植性,而保证这一点的正是 Java 的虚拟机机制。在引入虚拟机之后,Java 语言在不同的平台上运行不需要重新编译。 Java 语言使用 Java 虚拟机机制屏蔽了具体平台的相关信息,使得 Java 语言编译的程序只需生成虚拟机上的目标代码,就可以在多种平台上不加修改地运行。 3. 简单性 Java 语言的语法与 C 语言和 C++ 语言很相近,使得很多程序员学起来很容易。对 Java 来说,它舍弃了很多 C++ 中难以理解的特性,如操作符的重载和多继承等,而且 Java 语言不使用指针,加入了垃圾回收机制,解决了程序员需要管理内存的问题,使编程变得更加简单。 4. 解释执行 Java 程序在 Java 平台运行时会被编译成字节码文件,然后可以在有 Java 环境的操作系统上运行。在运行文件时,Java 的解释器对这些字节码进行解释执行,执行过程中需要加入的类在连接阶段被载入到运行环境中。 5. 多线程 Java 语言是多线程的,这也是 Java 语言的一大特性,它必须由 Thread 类和它的子类来创建。Java 支持多个线程同时执行,并提供多线程之间的同步机制。任何一个线程都有自己的 run() 方法,要执行的方法就写在 run() 方法体内。 6. 分布式 Java 语言支持 Internet 应用的开发,在 Java 的基本应用编程接口中就有一个网络应用编程接口,它提供了网络应用编程的类库,包括 URL、URLConnection、Socket 等。Java 的 RIM 机制也是开发分布式应用的重要手段。 7. 健壮性 Java 的强类型机制、异常处理、垃圾回收机制等都是 Java 健壮性的重要保证。对指针的丢弃是 Java 的一大进步。另外,Java 的异常机制也是健壮性的一大体现。 8. 高性能 Java 的高性能主要是相对其他高级脚本语言来说的,随着 JIT(Just in Time)的发展,Java 的运行速度也越来越高。 9. 安全性 Java 通常被用在网络环境中,为此,Java 提供了一个安全机制以防止恶意代码的攻击。除了 Java 语言具有许多的安全特性以外,Java 还对通过网络下载的类增加一个安全防范机制,分配不同的名字空间以防替代本地的同名类,并包含安全管理机制。 Java 语言的众多特性使其在众多的编程语言中占有较大的市场份额,Java 语言对对象的支持和强大的 API 使得编程工作变得更加容易和快捷,大大降低了程序的开发成本。Java 的“一次编写,到处执行”正是它吸引众多商家和编程人员的一大优势。 扩展知识: 按应用范围,Java 可分为 3 个体系,即 Java SE、Java EE 和 Java ME。下面简单介绍这 3 个体系。 1. Java SE Java SE(Java Platform Standard Edition,Java 平台标准版)以前称为 J2SE,它允许开发和部署在桌面、服务器、嵌入式环境和实时环境中使用的 Java 应用程序。Java SE 包含了支持 Java Web 服务开发的类,并为 Java EE 提供基础,如 Java 语言基础、JDBC 操作、I/O 操作、网络通信以及多线程等技术。图 1 所示为 Java SE 的体系结构。 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_73892801/article/details/129181633。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-25 09:18:50
85
转载
转载文章
...转载内容。原文链接:https://blog.csdn.net/YMPzUELX3AIAp7Q/article/details/122314407。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 联通智慧足迹技术 本项目由联通智慧足迹投递并参与“数据猿年度金猿策划活动——2021大数据产业创新技术突破榜单及奖项”评选。 数据智能产业创新服务媒体 ——聚焦数智 · 改变商业 中国联通智慧足迹开发的SSNG多源数据处理平台,是完全自研的新一代面向行为集成的位置数据处理系统。平台沉淀海量信令处理过程中的长期经验,着力解决影响数据输出质量的核心堵点,可兼容类似信令的多种LBS数据源接入并实现自动化、标准化输出数据结果。 技术说明 SSNG多源数据处理平台技术创新部分包括: 行为矩阵:将离散的驻留信息,转化为用户的时空矩阵,通过机器学习模式识别,提取出用户的LBS行为特征。 行为集成:将用户的行为矩阵,结合搜集沉淀的土地利用&地物POI数据,为用户的驻留、出行信息赋予具体的目的,便于后续的场景化分析。 人车匹配:结合车联网LBS数据,将轨迹重合度高的“人-车”用户对,通过轨迹伴随算法识别出来,可用于判断用户的车辆保有情况。 路径拟合:解决信令数据定位不连续和受限基站布设密度等问题,引入路网拓扑数据,将用户出行链还原至真实道路上,并确定流向及关键转折点,以便于判断出行方式。 出行洞察:利用信令数据、基站数据,匹配地铁网络、高铁网络,通过机器学习算法,判定用户出行时使用的出行方式。 基于SSNG多源数据处理平台,可实现的技术突破包括: 1)全国长时序人口流动监测技术 针对运营商信令数据以及spark分布式计算平台的特点,独创了处理运营商信令数据的双层计算框架,填补了分布式机器学习方法处理运营商信令数据的空白,实现了大规模高效治理运营商大数据的愿景;研发了人口流动与现代大数据技术相结合的宏观监测仿真模型。 基于以上技术构建了就业、交通、疫情、春运等一系列场景模型,并开发了响应决策平台,实现了对我国人口就业、流动及疫情影响的全域实时监测。 2)全国长时序人口流动预测技术 即人口流动的大尺度OD预测技术,研发了人口跨区域流动OD预测模型,解决了信令大数据在量化模拟大尺度人口流动中的技术难题,形成了对全国人口流动在日、周、月不同时间段和社区、乡镇、县市不同地理尺度进行预测的先进技术,实现了2020年新冠疫情后全国返城返岗和2021年全国春节期间人口流动的高精度预测。 3)实时人口监测 实时人口监测是通过对用户手机信令进行实时处理、计算和分析,得出指定区域的实时人口数量、特征和迁徙情况。包括区域人口密度、人口数量、人口结构、人口来源、人口画像、人口迁徙、职住分析、人口预测等信息。 4)超强数据处理及AI能力 引入Bitmap大数据处理算法及Pilosa数据库集群,采用实时流式计算,集成Kafka、redis、RabbitMQ等分布式大数据处理组件,搭建自有信令大数据处理平台,使用百亿计算go-kite架构,实现毫秒级响应,实时批量处理数据达500000条 /秒,每天可处理1000亿条数据。集成AI分析能力(A/B轨),有效避免了运营商数据采集及传输过程中的时延及中断情况,大幅提高数据结果的实时性。 已获专利情况: 专利名称 专利号 出行统计方法、装置、计算机设备和可读存储介质 ZL 2020 1 0908424.3 信令数据匹配方法、装置及电子设备 ZL 2019 1 1298869.8 轨道交通用户识别方法和装置 ZL 2019 1 0755903.3 公共聚集事件识别方法、装置、计算机设备及存储介质 ZL 2020 1 1191917.6 广域高铁基站识别方法、装置、服务器及存储介质 ZL 2020 1 1325543.2 相关荣誉: 2021地理信息科技进步奖一等奖、中国测绘学会科技进步奖特等奖、2021数博会领先科技成果奖、兼容系统创新应用大赛大数据专项赛优秀奖。 开发团队 ·带队负责人:陶周天 公司CTO,北京大学理学学士。长期任职于微软等世界500强企业,曾任上市公司优炫软件VP,具备丰富的IT架构、数据安全、数据分析建模、机器学习、项目管理经验。牵头组织突破多个技术难题(人地匹配、人车匹配、室内基站优化、行为集成AI等),研发一系列技术专利。 ·团队其他重要成员:刘祖军 高级算法工程师,美国爱荷华大学计算机科学本硕,曾任职于美国俄亥俄州立大学研究院。 ·隶属机构:智慧足迹 智慧足迹数据科技有限公司是中国联通控股,京东科技参股的专业大数据及智能科技公司。公司依托中国联通卓越的数据资源和5G能力,京东科技强大的人工智能、物联网等技术和“产业X科技”能力,聚焦“人口+”大数据,连接人-物-企,成为全域数据智能科技领先服务商。 公司以P·A·Dt为核心能力,面向数字政府、智慧城市、企业数字化转型广大市场主体,专注经济治理、社会治理和企业数字化服务,构建“人口+”七大多源数据主题库,提供“人口+” 就业、经济、消费、民生、城市、企业等大数据产品平台,服务支撑国家治理现代化和国家战略,推动经济社会发展。 目前,公司已服务国家二十多个部委及众多省市政府、300+城市规划、知名企业和高校等智库、国有及股份制银行等数百家头部客户,已建成全球最强大的手机信令处理平台,是中国就业、城规、统计等领域大数据领先服务商。 相关评价 新一代SSNG多源大数据处理平台,提升了手机信令数据在空间数据计算的精度,信令处理结果对室内场景更具敏锐性,在区域范围的职住人群空间分布更加接近实际情况。 ——某央企大数据部技术负责人 新一代SSNG多源大数据处理平台,可处理实时及历史信令数据,应对不同客户应用场景。并且根据长时间序列历史数据实现人口预测,为提高数据精度可对接室内基站数据,从而提供更加准确的人员定位。 ——某企业政府事业部总监 提示:了解更多相关内容,点击文末左下角“阅读原文”链接可直达该机构官网。 《2021企业数智化转型升级服务全景图/产业图谱1.0版》 《2021中国数据智能产业图谱3.0升级版》 《2021中国企业数智化转型升级发展研究报告》 《2021中国数据智能产业发展研究报告》 ❷ 创新服务企业榜 ❸ 创新服务产品榜 ❸ 最具投资价值榜 ❺ 创新技术突破榜 ☆条漫:《看过大佬们发的朋友圈之后,我相信:明天会更好!》 联系数据猿 北京区负责人:Summer 电话:18500447861(微信) 邮箱:summer@datayuan.cn 全国区负责人:Yaphet 电话:18600591561(微信) 邮箱:yaphet@datayuan.cn 本篇文章为转载内容。原文链接:https://blog.csdn.net/YMPzUELX3AIAp7Q/article/details/122314407。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-01 09:57:01
344
转载
Kotlin
...在企业级应用、Web服务、后端开发等领域找到了自己的位置。它的类型安全性有助于减少运行时错误,使得开发过程更加高效和可靠。 面对非法参数的挑战 尽管Kotlin在设计上注重类型安全,但在实际开发中,非法参数异常仍然可能因各种原因发生,如用户输入错误、配置文件解析错误、或数据传输过程中的数据类型不匹配等。这些问题不仅影响用户体验,还可能导致应用崩溃或产生不可预测的行为。 应对策略与最佳实践 1. 输入验证:在接收外部输入时,实施严格的数据验证,确保所有参数符合预期的类型和格式。使用Kotlin的类型系统和模式匹配特性,可以实现简洁而强大的验证逻辑。 2. 类型转换与异常处理:合理利用Kotlin的类型转换和异常处理机制,如as?操作符和try-catch块,优雅地处理类型不匹配或转换失败的情况。 3. 依赖注入:采用依赖注入(DI)模式可以降低组件间的耦合度,使得在不同环境中复用代码更加容易,同时也便于进行测试和调试。 4. 单元测试与集成测试:通过编写针对不同场景的单元测试和集成测试,可以在开发早期发现并修复非法参数相关的错误,提高代码质量和稳定性。 5. 代码审查与持续集成:引入代码审查流程和自动化持续集成/持续部署(CI/CD)工具,可以帮助团队成员及时发现潜在的代码问题,包括非法参数异常的处理。 结论 在面对非法参数异常等挑战时,Kotlin提供了丰富的工具和机制,帮助开发者构建健壮、可维护的应用。通过采用上述策略和最佳实践,不仅可以有效减少错误的发生,还能提升代码的可读性和可维护性。随着Kotlin在更多领域的广泛应用,未来在处理类似问题时,开发者将能够更好地利用语言特性,实现更高的开发效率和产品质量。
2024-09-18 16:04:27
113
追梦人
Apache Solr
...分布式故障,确保搜索服务的稳定性和高效性。 第一部分:理解分布式Solr的架构与挑战 在开始讨论故障处理之前,我们先简要了解一下分布式Solr的基本架构。一个典型的分布式Solr集群由多个Solr服务器组成,这些服务器通过ZooKeeper等协调服务进行通信和状态管理。哎呀,你知道的,这种设计就像是给Solr实例装上了扩音器,这样我们就能在需要的时候,把声音(也就是数据处理能力)调大了。这样做的好处呢,就是能应对海量的数据和人们越来越快的查询需求,就像饭馆里客人多了,厨师们就分工合作,一起炒菜,效率翻倍嘛!这样一来,咱们就能保证不管多少人来点菜,都能快速上桌,服务不打折! 挑战: - 网络延迟:在分布式环境中,网络延迟可能导致响应时间变长。 - 节点故障:任何节点的宕机会影响集群的整体性能。 - 数据一致性:保持集群内数据的一致性是分布式系统的一大挑战。 - 故障恢复:快速而有效地恢复故障节点是维持系统稳定的关键。 第二部分:故障检测与响应 1. 监控与警报系统 在分布式Solr集群中,监控是关键。哎呀,用Prometheus或者Grafana这些小玩意儿啊,简直太方便了!你只需要轻轻一点,就能看到咱们的Solr集群在忙啥,比如CPU是不是快扛不住了,内存是不是快要溢出来了,或者是那些宝贝索引大小咋样了。这不就跟咱家里的监控摄像头似的,随时盯着家里的动静,心里有数多了!哎呀,你得留个心眼儿啊!要是发现啥不对劲儿,比如电脑的处理器忙个不停,或者是某个索引变得特别大,那可得赶紧动手,别拖着!得立马给咱的监控系统发个信号,让它提醒咱们,好让我们能快刀斩乱麻,把问题解决掉。这样子,咱们的系统才能健健康康地跑,不出幺蛾子。 代码示例: python from prometheus_client import CollectorRegistry, Gauge, push_to_gateway registry = CollectorRegistry() gauge = Gauge('solr_cpu_usage', 'CPU usage in percent', registry=registry) gauge.set(75) push_to_gateway('localhost:9091', job='solr_monitoring', registry=registry) 这段代码展示了如何使用Prometheus将Solr CPU使用率数据推送到监控系统。 2. 故障检测与隔离 利用ZooKeeper等协调服务,可以实现节点的健康检查和自动故障检测。一旦检测到节点不可用,可以自动隔离该节点,避免其影响整个集群的性能。 第三部分:数据恢复与重建 1. 快照与恢复 在Solr中,定期创建快照是防止数据丢失的有效手段。一旦发生故障,可以从最近的快照中恢复数据。哎呀,你知道的,这个方法可是大大提高了数据恢复的速度!而且呢,它还能帮咱们守住数据,防止那些无法挽回的损失。简直就像是给咱的数据上了双保险,既快又稳,用起来超安心的! 代码示例: bash curl -X PUT 'http://localhost:8983/solr/core1/_admin/persistent?action=CREATE&name=snapshot&value=20230701' 这里通过CURL命令创建了一个快照。 2. 数据重建 在故障节点恢复后,需要重建其索引数据。Solr提供了/admin/cores?action=REBUILD接口来帮助完成这一任务。 第四部分:性能优化与容错策略 1. 负载均衡 通过合理分配索引和查询负载,可以提高系统的整体性能。使用Solr的路由策略,如query.routing,可以动态地将请求分发到不同的节点。 代码示例: xml : AND json round-robin 2. 失败重试与超时设置 在处理分布式事务时,合理的失败重试策略和超时设置至关重要。这有助于系统在面对网络延迟或短暂的节点故障时保持稳定。 结语 处理Apache Solr的分布式故障需要综合考虑监控、警报、故障检测与隔离、数据恢复与重建、性能优化以及容错策略等多个方面。哎呀,小伙伴们!要是我们按照这些招数来操作,就能让Solr集群变得超级棒,既稳定又高效,保证咱们的搜索服务能一直在线,质量杠杠的,让你用起来爽歪歪!这招真的挺实用的,值得试试看!嘿,兄弟!听好了,预防胜于治疗这句老话,在分布式系统的管理上同样适用。咱们得时刻睁大眼睛,盯着系统的一举一动,就像看护自家宝贝一样。定期给它做做小保养,检查检查,确保一切正常运转。这样,咱们就能避免大问题找上门来,让系统稳定运行,不给任何故障有机可乘的机会。
2024-08-08 16:20:18
138
风中飘零
SpringBoot
...大大小为2MB,整个请求的最大大小为10MB,并指定了上传文件的保存路径。 2. 创建Controller处理文件上传 接下来,在你的Spring Boot项目中创建一个控制器(Controller)来处理文件上传请求。下面是一个简单的例子: java import org.springframework.core.io.InputStreamResource; import org.springframework.http.MediaType; import org.springframework.http.ResponseEntity; import org.springframework.web.bind.annotation.PostMapping; import org.springframework.web.bind.annotation.RequestParam; import org.springframework.web.multipart.MultipartFile; import java.io.File; import java.io.FileOutputStream; import java.io.IOException; import java.nio.file.Files; import java.nio.file.Paths; @Controller public class FileUploadController { @PostMapping("/upload") public ResponseEntity uploadFile(@RequestParam("file") MultipartFile file) { try { // 检查文件是否存在 if (file.isEmpty()) { return ResponseEntity.badRequest().body("Failed to upload empty file."); } // 获取文件名和类型 String fileName = file.getOriginalFilename(); String contentType = file.getContentType(); // 保存文件到指定路径 File targetFile = new File(upload.path + fileName); Files.copy(file.getInputStream(), Paths.get(targetFile.getAbsolutePath())); return ResponseEntity.ok("File uploaded successfully: " + fileName); } catch (IOException e) { return ResponseEntity.internalServerError().body("Failed to upload file: " + e.getMessage()); } } } 3. 测试文件上传功能 在完成上述配置和编码后,你可以通过Postman或其他HTTP客户端向/upload端点发送一个包含文件的POST请求。确保在请求体中正确添加了文件参数,如: json { "file": "path/to/your/file" } 4. 处理异常与错误 在实际应用中,文件上传可能会遇到各种异常情况,如文件过大、文件类型不匹配、服务器存储空间不足等。在这次的案例里,我们已经用了一段 try-catch 的代码来应对一些常见的错误情况了。就像你在日常生活中遇到小问题时,会先尝试解决,如果解决不了,就会求助于他人或寻找其他方法一样。我们也是这样,先尝试执行一段代码,如果出现预料之外的问题,我们就用 catch 部分来处理这些意外状况,确保程序能继续运行下去,而不是直接崩溃。对于更复杂的场景,例如检查文件类型或大小限制,可以引入更精细的逻辑: java @PostMapping("/upload") public ResponseEntity uploadFile(@RequestParam("file") MultipartFile file) { if (!isValidFileType(file)) { return ResponseEntity.badRequest().body("Invalid file type."); } if (!isValidFileSize(file)) { return ResponseEntity.badRequest().body("File size exceeds limit."); } // ... } private boolean isValidFileType(MultipartFile file) { // Check file type logic here } private boolean isValidFileSize(MultipartFile file) { // Check file size logic here } 结语 通过以上步骤,你不仅能够实现在Spring Boot应用中进行文件上传的基本功能,还能根据具体需求进行扩展和优化。记住,良好的错误处理和用户反馈是提高用户体验的关键。希望这篇文章能帮助你更好地理解和运用Spring Boot进行文件上传操作。嘿,兄弟!你听过这样一句话吗?“实践出真知”,尤其是在咱们做项目的时候,更是得这么干!别管你是编程高手还是设计大师,多试错,多调整,才能找到最适合那个场景的那套方案。就像是做菜一样,不试试加点这个,少放点那个,怎么知道哪个味道最对路呢?所以啊,提升技能,咱们就得在实际操作中摸爬滚打,这样才能把技术玩儿到炉火纯青的地步!
2024-09-12 16:01:18
86
寂静森林
转载文章
...转载内容。原文链接:https://blog.csdn.net/Python1One/article/details/108546050。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 概述 分布式文件系统 适合:一次写入,多次读出,且不支持修改 文件块大小 128M HDFS的shell操作(重点) 基本语法 hadoop fs 具体命令或者hdfs dfs 具体命名 命令大全 Usage: hadoop fs [generic options][-appendToFile <localsrc> ... <dst>] 追加[-cat [-ignoreCrc] <src> ...] 查看[-checksum <src> ...][-chgrp [-R] GROUP PATH...] 改组[-chmod [-R] <MODE[,MODE]... | OCTALMODE> PATH...] 改权限[-chown [-R] [OWNER][:[GROUP]] PATH...] 改所有者[-copyFromLocal [-f] [-p] [-l] [-d] [-t <thread count>] <localsrc> ... <dst>] 上传[-copyToLocal [-f] [-p] [-ignoreCrc] [-crc] <src> ... <localdst>] 下载[-count [-q] [-h] [-v] [-t [<storage type>]] [-u] [-x] [-e] <path> ...][-cp [-f] [-p | -p[topax]] [-d] <src> ... <dst>] 复制[-createSnapshot <snapshotDir> [<snapshotName>]][-deleteSnapshot <snapshotDir> <snapshotName>][-df [-h] [<path> ...]][-du [-s] [-h] [-v] [-x] <path> ...] 统计磁盘文件大小[-expunge][-find <path> ... <expression> ...][-get [-f] [-p] [-ignoreCrc] [-crc] <src> ... <localdst>] 下载[-getfacl [-R] <path>][-getfattr [-R] {-n name | -d} [-e en] <path>][-getmerge [-nl] [-skip-empty-file] <src> <localdst>][-head <file>][-help [cmd ...]][-ls [-C] [-d] [-h] [-q] [-R] [-t] [-S] [-r] [-u] [-e] [<path> ...]] 查看列表[-mkdir [-p] <path> ...] 创建[-moveFromLocal <localsrc> ... <dst>] 剪切到hdfs[-moveToLocal <src> <localdst>] 剪切到本地[-mv <src> ... <dst>] 移动[-put [-f] [-p] [-l] [-d] <localsrc> ... <dst>] 上传[-renameSnapshot <snapshotDir> <oldName> <newName>][-rm [-f] [-r|-R] [-skipTrash] [-safely] <src> ...] 删除[-rmdir [--ignore-fail-on-non-empty] <dir> ...][-setfacl [-R] [{-b|-k} {-m|-x <acl_spec>} <path>]|[--set <acl_spec> <path>]][-setfattr {-n name [-v value] | -x name} <path>][-setrep [-R] [-w] <rep> <path> ...] 设置副本数[-stat [format] <path> ...][-tail [-f] <file>][-test -[defsz] <path>][-text [-ignoreCrc] <src> ...][-touch [-a] [-m] [-t TIMESTAMP ] [-c] <path> ...][-touchz <path> ...][-truncate [-w] <length> <path> ...][-usage [cmd ...]]Generic options supported are:-conf <configuration file> specify an application configuration file-D <property=value> define a value for a given property-fs <file:///|hdfs://namenode:port> specify default filesystem URL to use, overrides 'fs.defaultFS' property from configurations.-jt <local|resourcemanager:port> specify a ResourceManager-files <file1,...> specify a comma-separated list of files to be copied to the map reduce cluster-libjars <jar1,...> specify a comma-separated list of jar files to be included in the classpath-archives <archive1,...> specify a comma-separated list of archives to be unarchived on the compute machinesThe general command line syntax is:command [genericOptions] [commandOptions] 查看详细命令 hadoop fs -help 命令(如cat) 更改hdfs的权限 vi core-site.xml <property><name>hadoop.http.staticuser.user</name><value>root</value></property> HDFS客户端API操作 Windows环境配置 将Windows依赖放到文件夹, 配置环境变量,添加HADOOP_HOME ,编辑Path添加%HADOOP_HOME%/bin 拷贝hadoop.dll和winutils.exe到C:\Windows\System32 创建java项目 配置 编辑pom.xml <dependencies><dependency><groupId>junit</groupId><artifactId>junit</artifactId><version>4.12</version></dependency><dependency><groupId>org.apache.logging.log4j</groupId><artifactId>log4j-slf4j-impl</artifactId><version>2.12.0</version></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-client</artifactId><version>3.1.3</version></dependency></dependencies> 在src/main/resources中建立log4j2.xml 打印日志到控制台 <?xml version="1.0" encoding="UTF-8"?><Configuration status="WARN"><Appenders><Console name="Console" target="SYSTEM_OUT"><PatternLayout pattern="%d{HH:mm:ss.SSS} [%t] %-5level %logger{36} - %msg%n"/></Console></Appenders><Loggers><Root level="error"><AppenderRef ref="Console"/></Root></Loggers></Configuration> 编写代码 在/src/main/java/cn.zcx.hdfs创建TestHDFS类 public class TestHDFS {// 创建全局变量private FileSystem fs;private Configuration conf;private URI uri;private String user;// 从本地上传文件@Testpublic void testUpload() throws IOException {fs.copyFromLocalFile(false,true,new Path("F:\\Download\\使用前说明.txt"),new Path("/testhdfs"));}/ @Before 方法在@Test方法执行之前执行 /@Beforepublic void init() throws IOException, InterruptedException {uri = URI.create("hdfs://master:8020");conf = new Configuration();user = "root";fs = FileSystem.get(uri,conf,user);}/ @After方法在@Test方法结束后执行 /@Afterpublic void close() throws IOException {fs.close();}@Testpublic void testHDFS() throws IOException, InterruptedException {//1. 创建文件系统对象/URI uri = URI.create("hdfs://master:8020");Configuration conf = new Configuration();String user = "root";FileSystem fs = FileSystem.get(uri,conf,user);System.out.println("fs: " + fs);/// 2. 创建一个目录boolean b = fs.mkdirs(new Path("/testhdfs"));System.out.println(b);// 3. 关闭fs.close();} } 参数优先级 xxx-default.xml < xxx-site.xml < IDEA中resource中创建xxx-site.xml < 在代码中通过更改Configuration 参数 文件下载 @Testpublic void testDownload() throws IOException {fs.copyToLocalFile(false,new Path("/testhdfs/使用前说明.txt"),new Path("F:\\Download\\"),true);} 文件更改移动 //改名or移动(路径改变就可以)@Testpublic void testRename() throws IOException {boolean b = fs.rename(new Path("/testhdfs/使用前说明.txt"),new Path("/testhdfs/zcx.txt"));System.out.println(b);} 查看文件详细信息 // 查看文件详情@Testpublic void testListFiles() throws IOException {RemoteIterator<LocatedFileStatus> listFiles = fs.listFiles(new Path("/"), true);//迭代操作while (listFiles.hasNext()){LocatedFileStatus fileStatus = listFiles.next();//获取文件详情System.out.println("文件路径:"+fileStatus.getPath());System.out.println("文件权限:"+fileStatus.getPermission());System.out.println("文件主人:"+fileStatus.getOwner());System.out.println("文件组:"+fileStatus.getGroup());System.out.println("文件大小:"+fileStatus.getLen());System.out.println("文件副本数:"+fileStatus.getReplication());System.out.println("文件块位置:"+ Arrays.toString(fileStatus.getBlockLocations()));System.out.println("===============================");} } 文件删除 第二参数,true递归删除 //文件删除@Testpublic void testDelete() throws IOException {boolean b = fs.delete(new Path("/testhdfs/"), true);System.out.println(b);} NN与2NN工作原理 本篇文章为转载内容。原文链接:https://blog.csdn.net/Python1One/article/details/108546050。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-05 22:55:20
281
转载
MemCache
服务连接超时:MemCache中的那些“坑” 嗨,大家好!今天咱们来聊聊一个让无数开发者头疼的话题——服务连接超时,特别是在使用MemCache的时候。作为一个喜欢捣鼓技术的小程序员,我之前也被这个问题搞得头都快秃了,天天挠头叹气的。不过经过无数次的失败和摸索,总算琢磨出了一些门道!这篇文章可不只是告诉你“问题出在哪”,它还会手把手带着你,用代码例子一步一步把问题给解决了!就像有个编程小老师在旁边耐心指导一样,超贴心的!别急着离开,这可是干货满满哦! --- 1. 什么是MemCache?它为什么这么受欢迎? 先简单介绍一下MemCache吧!MemCache是一种高性能的分布式内存对象缓存系统,主要用于减轻数据库的压力,提升应用的响应速度。其实说白了就是这么个事儿——把数据都存到内存里,用的时候直接拿出来,省得每次都要跑去数据库翻箱倒柜找一遍,多麻烦啊! 举个例子,假设你正在做一个电商网站,用户点击商品详情页时,如果每次都要从数据库拉取商品信息,那服务器负载肯定爆表。但如果我们将这些数据缓存在MemCache中,用户访问时直接从内存读取,岂不是快如闪电? 不过呢,事情可没那么简单。MemCache这小子虽然挺能干的,但也不是省油的灯啊!比如说吧,你老是疯狂地去请求数据,结果服务器偏偏不给面子,连个响应都没有,那它就直接给你来个“服务连接超时”的报错,气得你直跺脚。这就像你去餐厅点菜,服务员一直不在,你说能不急吗? --- 2. 服务连接超时到底是个啥? 服务连接超时,简单来说就是你的程序试图与MemCache服务器建立连接,但因为某些原因(比如网络延迟、服务器过载等),连接请求迟迟得不到回应,最终超时失败。这种错误通常会伴随着一条令人沮丧的信息:“连接超时”。 让我分享一个小故事:有一次我在调试一个项目时,发现某个接口总是返回“服务连接超时”,我当时的第一反应是“天啊,是不是MemCache崩了?”于是我赶紧登录服务器检查日志,结果发现MemCache运行正常,只是偶尔响应慢了一点。后来我才意识到,可能是客户端配置的问题。 所以,当遇到这种错误时,不要慌!我们得冷静下来,分析一下可能的原因。 --- 2.1 可能的原因有哪些? 1. 网络问题 MemCache服务器和客户端之间的网络不稳定。 2. MemCache配置不当 比如设置了太短的超时时间。 3. 服务器负载过高 MemCache服务器被太多请求压垮。 4. 客户端代码问题 比如没有正确处理异常情况。 --- 3. 如何解决服务连接超时? 接下来,咱们就从代码层面入手,看看如何优雅地解决这个问题。我会结合实际例子,手把手教你如何避免“服务连接超时”。 --- 3.1 检查网络连接 首先,确保你的MemCache服务器和客户端之间网络通畅。你可以试试用ping命令测试一下: bash ping your-memcache-server 如果网络不通畅,那就得找运维同事帮忙优化网络环境了。不过,如果你确定网络没问题,那就继续往下看。 --- 3.2 调整超时时间 很多时候,“服务连接超时”是因为你设置的超时时间太短了。默认情况下,MemCache的超时时间可能比较保守,你需要根据实际情况调整它。 在Java中,可以这样设置超时时间: java import net.spy.memcached.AddrUtil; import net.spy.memcached.MemcachedClient; public class MemCacheExample { public static void main(String[] args) throws Exception { // 创建MemCache客户端,设置超时时间为5秒 MemcachedClient memcachedClient = new MemcachedClient(AddrUtil.getAddresses("localhost:11211"), 5000); System.out.println("成功连接到MemCache服务器!"); } } 这里的关键是5000,表示超时时间为5秒。你可以根据实际情况调整这个值,比如改成10秒或者20秒。 --- 3.3 使用重试机制 有时候,一次连接失败并不代表MemCache服务器真的挂了。在这种情况下,我们可以加入重试机制,让程序自动尝试重新连接。 下面是一个简单的Python示例: python import time from pymemcache.client.base import Client def connect_to_memcache(): attempts = 3 while attempts > 0: try: client = Client(('localhost', 11211)) print("成功连接到MemCache服务器!") return client except Exception as e: print(f"连接失败,重试中... ({attempts}次机会)") time.sleep(2) attempts -= 1 raise Exception("无法连接到MemCache服务器,请检查配置!") client = connect_to_memcache() 在这个例子中,程序会尝试三次连接MemCache服务器,每次失败后等待两秒钟再重试。如果三次都失败,就抛出异常提示用户。 --- 3.4 监控MemCache状态 最后,建议你定期监控MemCache服务器的状态。你可以通过工具(比如MemAdmin)查看服务器的健康状况,包括内存使用率、连接数等指标。 如果你发现服务器负载过高,可以考虑增加MemCache实例数量,或者优化业务逻辑减少不必要的请求。 --- 4. 总结 服务连接超时不可怕,可怕的是不去面对 好了,到这里,关于“服务连接超时”的问题基本就说完了。虽然MemCache确实容易让人踩坑,但只要我们用心去研究,总能找到解决方案。 最后想说的是,技术这条路没有捷径,遇到问题不要急躁,多思考、多实践才是王道。希望我的分享对你有所帮助,如果你还有什么疑问,欢迎随时来找我讨论!😄 祝大家编码愉快!
2025-04-08 15:44:16
88
雪落无痕
Go Gin
...一个最简单的HTTP服务程序: go package main import ( "github.com/gin-gonic/gin" "net/http" ) func main() { r := gin.Default() r.GET("/ping", func(c gin.Context) { c.JSON(http.StatusOK, gin.H{ "message": "pong", }) }) r.Run(":8080") // 启动服务器监听8080端口 } 这段代码创建了一个Gin路由,并定义了一个GET请求路径/ping,当客户端访问这个地址时,会返回JSON格式的数据{"message": "pong"}。 个人感悟 刚接触这段代码的时候,我有点被惊到了——这么少的代码竟然能完成如此多的功能!当然,这也得益于Gin的设计理念:尽可能简化开发流程,让程序员专注于业务逻辑而不是框架细节。 --- 三、实时处理的核心 WebSocket支持 既然我们要讨论实时处理,那么就不得不提WebSocket。WebSocket就像是一个永不掉线的“聊天热线”,能让浏览器和服务器一直保持着畅通的联系。跟传统的请求-响应模式不一样,它可以让双方随时自由地“唠嗑”,想发啥就发啥,特别适合那些需要实时互动的应用,比如聊天室里你一言我一语,或者股票行情那种分分钟都在变化的东西,用它简直太合适了! Gin内置了对WebSocket的支持,我们可以直接通过中间件来实现这一功能。下面是一个完整的WebSocket示例: go package main import ( "log" "net/http" "github.com/gin-gonic/gin" "github.com/gorilla/websocket" ) var upgrader = websocket.Upgrader{ ReadBufferSize: 1024, WriteBufferSize: 1024, CheckOrigin: func(r http.Request) bool { return true // 允许跨域 }, } func handleWebSocket(c gin.Context) { ws, err := upgrader.Upgrade(c.Writer, c.Request, nil) if err != nil { log.Println("Failed to upgrade:", err) return } defer ws.Close() for { messageType, msg, err := ws.ReadMessage() if err != nil { log.Println("Error reading message:", err) break } log.Printf("Received: %s\n", string(msg)) err = ws.WriteMessage(messageType, msg) if err != nil { log.Println("Error writing message:", err) break } } } func main() { r := gin.Default() r.GET("/ws", handleWebSocket) r.Run(":8080") } 在这段代码中,我们利用gorilla/websocket包实现了WebSocket升级,并在handleWebSocket函数中处理了消息的读取与发送。你可以试着在浏览器里输入这个地址:ws://localhost:8080/ws,然后用JavaScript发个消息试试,看能不能马上收到服务器的回应。 深入探讨 说实话,刚开始写这部分代码的时候,我还担心WebSocket的兼容性问题。后来发现,只要正确设置了CheckOrigin方法,大多数现代浏览器都能正常工作。这让我更加坚定了对Gin的信心——它虽然简单,但足够强大! --- 四、进阶技巧 并发与性能优化 在实际项目中,我们可能会遇到高并发的情况。为了保证系统的稳定性,我们需要合理地管理线程池和内存分配。Gin提供了一些工具可以帮助我们做到这一点。 例如,我们可以使用sync.Pool来复用对象,减少垃圾回收的压力。下面是一个示例: go package main import ( "sync" "time" "github.com/gin-gonic/gin" ) var pool sync.Pool func init() { pool = &sync.Pool{ New: func() interface{} { return make([]byte, 1024) }, } } func handler(c gin.Context) { data := pool.Get().([]byte) defer pool.Put(data) copy(data, []byte("Hello World!")) time.Sleep(100 time.Millisecond) // 模拟耗时操作 c.String(http.StatusOK, string(data)) } func main() { r := gin.Default() r.GET("/", handler) r.Run(":8080") } 在这个例子中,我们定义了一个sync.Pool来存储临时数据。每次处理请求时,从池中获取缓冲区,处理完毕后再放回池中。这样可以避免频繁的内存分配和释放,从而提升性能。 反思与总结 其实,刚开始学习这段代码的时候,我对sync.Pool的理解还停留在表面。直到后来真正用它解决了性能瓶颈,我才意识到它的价值所在。这也让我明白,优秀的框架只是起点,关键还是要结合实际需求去探索和实践。 --- 五、未来展望 Gin与实时处理的无限可能 Gin的强大之处不仅仅在于它的易用性和灵活性,更在于它为开发者提供了广阔的想象空间。无论是构建大型分布式系统,还是打造小型实验项目,Gin都能胜任。 如果你也想尝试用Gin构建实时处理系统,不妨从一个小目标开始——比如做一个简单的在线聊天室。相信我,当你第一次看到用户实时交流的画面时,那种成就感绝对会让你欲罢不能! 最后的话 写这篇文章的过程,其实也是我自己重新审视Gin的过程。其实这个东西吧,说白了挺简单的,但让我学到了一个本事——用最利索的办法搞定事情。希望能这篇文章也能点醒你,让你在今后的开发路上,慢慢琢磨出属于自己的那套玩法!加油吧,程序员们!
2025-04-07 16:03:11
66
时光倒流
转载文章
...转载内容。原文链接:https://blog.csdn.net/weixin_39736934/article/details/112888600。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 很久都没写 Flask 代码相关了,想想也真是惭愧,然并卵,这次还是不写 Flask 相关,不服你来打我啊(就这么贱,有本事咬我啊 这次我来写一下 Python 一个很重要的东西,即 Descriptor (描述符) 初识描述符 老规矩, Talk is cheap,Show me the code. 我们先来看看一段代码classPerson(object): """""" ---------------------------------------------------------------------- def__init__(self, first_name, last_name): """Constructor""" self.first_name = first_name self.last_name = last_name ---------------------------------------------------------------------- @property deffull_name(self): """ Return the full name """ return"%s %s"% (self.first_name, self.last_name) if__name__=="__main__": person = Person("Mike","Driscoll") print(person.full_name) 'Mike Driscoll' print(person.first_name) 'Mike' 这段代大家肯定很熟悉,恩, property 嘛,谁不知道呢,但是 property 的实现机制大家清楚么?什么不清楚?那还学个毛的 Python 啊。。。开个玩笑,我们看下面一段代码classProperty(object): "Emulate PyProperty_Type() in Objects/descrobject.c" def__init__(self, fget=None, fset=None, fdel=None, doc=None): self.fget = fget self.fset = fset self.fdel = fdel ifdocisNoneandfgetisnotNone: doc = fget.__doc__ self.__doc__ = doc def__get__(self, obj, objtype=None): ifobjisNone: returnself ifself.fgetisNone: raiseAttributeError("unreadable attribute") returnself.fget(obj) def__set__(self, obj, value): ifself.fsetisNone: raiseAttributeError("can't set attribute") self.fset(obj, value) def__delete__(self, obj): ifself.fdelisNone: raiseAttributeError("can't delete attribute") self.fdel(obj) defgetter(self, fget): returntype(self)(fget, self.fset, self.fdel, self.__doc__) defsetter(self, fset): returntype(self)(self.fget, fset, self.fdel, self.__doc__) defdeleter(self, fdel): returntype(self)(self.fget, self.fset, fdel, self.__doc__) 看起来是不是很复杂,没事,我们来一步步的看。不过这里我们首先给出一个结论: Descriptors 是一种特殊 的对象,这种对象实现了 __get__ , __set__ , __delete__ 这三个特殊方法。 详解描述符 说说 Property 在上文,我们给出了 Propery 实现代码,现在让我们来详细说说这个classPerson(object): """""" ---------------------------------------------------------------------- def__init__(self, first_name, last_name): """Constructor""" self.first_name = first_name self.last_name = last_name ---------------------------------------------------------------------- @Property deffull_name(self): """ Return the full name """ return"%s %s"% (self.first_name, self.last_name) if__name__=="__main__": person = Person("Mike","Driscoll") print(person.full_name) 'Mike Driscoll' print(person.first_name) 'Mike' 首先,如果你对装饰器不了解的话,你可能要去看看这篇文章,简而言之,在我们正式运行代码之前,我们的解释器就会对我们的代码进行一次扫描,对涉及装饰器的部分进行替换。类装饰器同理。在上文中,这段代码@Property deffull_name(self): """ Return the full name """ return"%s %s"% (self.first_name, self.last_name) 会触发这样一个过程,即 full_name=Property(full_name) 。然后在我们后面所实例化对象之后我们调用 person.full_name 这样一个过程其实等价于 person.full_name.__get__(person) 然后进而触发 __get__() 方法里所写的 return self.fget(obj) 即原本上我们所编写的 def full_name 内的执行代码。 这个时候,同志们可以去思考下 getter() , setter() ,以及 deleter() 的具体运行机制了=。=如果还是有问题,欢迎在评论里进行讨论。 关于描述符 还记得之前我们所提到的一个定义么: Descriptors 是一种特殊的对象,这种对象实现了 __get__ , __set__ , __delete__ 这三个特殊方法 。然后在 Python 官方文档的说明中,为了体现描述符的重要性,有这样一段话:“They are the mechanism behind properties, methods, static methods, class methods, and super(). They are used throughout Python itself to implement the new style classes introduced in version 2.2. ” 简而言之就是 先有描述符后有天,秒天秒地秒空气 。恩,在新式类中,属性,方法调用,静态方法,类方法等都是基于描述符的特定使用。 OK,你可能想问,为什么描述符是这么重要呢?别急,我们接着看 使用描述符 首先请看下一段代码 classA(object):注:在 Python 3.x 版本中,对于 new class 的使用不需要显式的指定从 object 类进行继承,如果在 Python 2.X(x>2)的版本中则需要defa(self): pass if__name__=="__main__": a=A() a.a() 大家都注意到了我们存在着这样一个语句 a.a() ,好的,现在请大家思考下,我们在调用这个方法的时候发生了什么? OK?想出来了么?没有?好的我们继续 首先我们调用一个属性的时候,不管是成员还是方法,我们都会触发这样一个方法用于调用属性 __getattribute__() ,在我们的 __getattribute__() 方法中,如果我们尝试调用的属性实现了我们的描述符协议,那么会产生这样一个调用过程 type(a).__dict__['a'].__get__(b,type(b)) 。好的这里我们又要给出一个结论了:“在这样一个调用过程中,有这样一个优先级顺序,如果我们所尝试调用属性是一个 data descriptors ,那么不管这个属性是否存在我们的实例的 __dict__ 字典中,优先调用我们描述符里的 __get__ 方法,如果我们所尝试调用属性是一个 non data descriptors ,那么我们优先调用我们实例里的 __dict__ 里的存在的属性,如果不存在,则依照相应原则往上查找我们类,父类中的 __dict__ 中所包含的属性,一旦属性存在,则调用 __get__ 方法,如果不存在则调用 __getattr__() 方法”。理解起来有点抽象?没事,我们马上会讲,不过在这里,我们先要解释下 data descriptors 与 non data descriptors ,再来看一个例子。什么是 data descriptors 与 non data descriptors 呢?其实很简单,在描述符中同时实现了 __get__ 与 __set__ 协议的描述符是 data descriptors ,如果只实现了 __get__ 协议的则是 non data descriptors 。好了我们现在来看个例子:importmath classlazyproperty: def__init__(self, func): self.func = func def__get__(self, instance, owner): ifinstanceisNone: returnself else: value = self.func(instance) setattr(instance, self.func.__name__, value) returnvalue classCircle: def__init__(self, radius): self.radius = radius pass @lazyproperty defarea(self): print("Com") returnmath.pi self.radius 2 deftest(self): pass if__name__=='__main__': c=Circle(4) print(c.area) 好的,让我们仔细来看看这段代码,首先类描述符 @lazyproperty 的替换过程,前面已经说了,我们不在重复。接着,在我们第一次调用 c.area 的时候,我们首先查询实例 c 的 __dict__ 中是否存在着 area 描述符,然后发现在 c 中既不存在描述符,也不存在这样一个属性,接着我们向上查询 Circle 中的 __dict__ ,然后查找到名为 area 的属性,同时这是一个 non data descriptors ,由于我们的实例字典内并不存在 area 属性,那么我们便调用类字典中的 area 的 __get__ 方法,并在 __get__ 方法中通过调用 setattr 方法为实例字典注册属性 area 。紧接着,我们在后续调用 c.area 的时候,我们能在实例字典中找到 area 属性的存在,且类字典中的 area 是一个 non data descriptors ,于是我们不会触发代码里所实现的 __get__ 方法,而是直接从实例的字典中直接获取属性值。 描述符的使用 描述符的使用面很广,不过其主要的目的在于让我们的调用过程变得可控。因此我们在一些需要对我们调用过程实行精细控制的时候,使用描述符,比如我们之前提到的这个例子classlazyproperty: def__init__(self, func): self.func = func def__get__(self, instance, owner): ifinstanceisNone: returnself else: value = self.func(instance) setattr(instance, self.func.__name__, value) returnvalue def__set__(self, instance, value=0): pass importmath classCircle: def__init__(self, radius): self.radius = radius pass @lazyproperty defarea(self, value=0): print("Com") ifvalue ==0andself.radius ==0: raiseTypeError("Something went wring") returnmath.pi value 2ifvalue !=0elsemath.pi self.radius 2 deftest(self): pass 利用描述符的特性实现懒加载,再比如,我们可以控制属性赋值的值classProperty(object): "Emulate PyProperty_Type() in Objects/descrobject.c" def__init__(self, fget=None, fset=None, fdel=None, doc=None): self.fget = fget self.fset = fset self.fdel = fdel ifdocisNoneandfgetisnotNone: doc = fget.__doc__ self.__doc__ = doc def__get__(self, obj, objtype=None): ifobjisNone: returnself ifself.fgetisNone: raiseAttributeError("unreadable attribute") returnself.fget(obj) def__set__(self, obj, value=None): ifvalueisNone: raiseTypeError("You cant to set value as None") ifself.fsetisNone: raiseAttributeError("can't set attribute") self.fset(obj, value) def__delete__(self, obj): ifself.fdelisNone: raiseAttributeError("can't delete attribute") self.fdel(obj) defgetter(self, fget): returntype(self)(fget, self.fset, self.fdel, self.__doc__) defsetter(self, fset): returntype(self)(self.fget, fset, self.fdel, self.__doc__) defdeleter(self, fdel): returntype(self)(self.fget, self.fset, fdel, self.__doc__) classtest(): def__init__(self, value): self.value = value @Property defValue(self): returnself.value @Value.setter deftest(self, x): self.value = x 如上面的例子所描述的一样,我们可以判断所传入的值是否有效等等。 以上就是Python 描述符(Descriptor)入门,更多相关文章请关注PHP中文网(www.gxlcms.com)! 本条技术文章来源于互联网,如果无意侵犯您的权益请点击此处反馈版权投诉 本文系统来源:php中文网 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_39736934/article/details/112888600。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-05-07 19:03:49
95
转载
Kafka
...机制确保数据不会因为服务器宕机而丢失。简单来说,就是把消息写入磁盘而不是内存。 java Properties props = new Properties(); props.put("bootstrap.servers", "localhost:9092"); props.put("acks", "all"); props.put("retries", 0); props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer"); props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer"); Producer producer = new KafkaProducer<>(props); producer.send(new ProducerRecord<>("my-topic", "my-key", "my-value")); producer.close(); 这段代码展示了如何发送一条消息到Kafka主题。其中acks="all"参数表示生产者会等待所有副本确认收到消息后才认为发送成功。 2.2 分区与副本机制 Kafka通过分区(Partition)来分摊负载,同时通过副本(Replica)机制来提高可用性和容错性。每个分区可以有多个副本,其中一个为主副本,其余为从副本。 java AdminClient adminClient = AdminClient.create(props); ListTopicsOptions options = new ListTopicsOptions(); options.listInternal(true); Set topics = adminClient.listTopics(options).names().get(); System.out.println("Topics: " + topics); 这段代码用于列出Kafka集群中的所有主题及其副本信息。通过这种方式,你可以检查每个主题的副本分布情况。 3. 生产者端的可靠性保障 作为生产者,我们需要确保发送出去的消息能够安全到达Kafka集群。这涉及到一些关键配置: - acks:控制生产者的确认级别。设置为"all"时,意味着必须等待所有副本确认。 - retries:指定重试次数。如果网络抖动导致消息未送达,Kafka会自动重试。 - linger.ms:控制批量发送的时间间隔。默认值为0毫秒,即立即发送。 java Properties props = new Properties(); props.put("bootstrap.servers", "localhost:9092"); props.put("acks", "all"); props.put("retries", 3); props.put("linger.ms", 5); props.put("batch.size", 16384); Producer producer = new KafkaProducer<>(props); for (int i = 0; i < 100; i++) { producer.send(new ProducerRecord<>("my-topic", Integer.toString(i), Integer.toString(i))); } producer.close(); 在这个例子中,我们设置了retries=3和linger.ms=5,这意味着即使遇到短暂的网络问题,Kafka也会尝试最多三次重试,并且会在5毫秒内累积多条消息一起发送。 4. 消费者端的可靠性保障 消费者端同样需要关注可靠性问题。Kafka 有两种消费模式,一个叫 earliest,一个叫 latest。简单来说,earliest 就是从头开始补作业,把之前没看过的消息全都读一遍;而 latest 则是直接从最新的消息开始看,相当于跳过之前的存档,直接进入直播频道。 java Properties props = new Properties(); props.put("bootstrap.servers", "localhost:9092"); props.put("group.id", "test-group"); props.put("enable.auto.commit", "true"); props.put("auto.commit.interval.ms", "1000"); props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); KafkaConsumer consumer = new KafkaConsumer<>(props); consumer.subscribe(Arrays.asList("my-topic")); while (true) { ConsumerRecords records = consumer.poll(Duration.ofMillis(100)); for (ConsumerRecord record : records) { System.out.printf("offset = %d, key = %s, value = %s%n", record.offset(), record.key(), record.value()); } } 这段代码展示了如何订阅一个主题并持续拉取消息。注意这里启用了自动提交功能,这样就不需要手动管理偏移量了。 5. 总结与反思 通过今天的讨论,我相信大家对Kafka的消息可靠性有了更深的理解。Kafka能从一堆消息队列系统里脱颖而出,靠的就是它在设计的时候就脑补了各种“灾难片”场景,比如数据爆炸、服务器宕机啥的,然后还给配齐了神器,专门对付这些麻烦事儿。 然而,正如任何技术一样,Kafka也不是万能的。在实际应用中,我们还需要结合具体的业务需求来调整配置参数。比如说啊,在那种超级忙、好多请求同时涌过来的场景下,就得调整一下每次处理的任务量,别一下子搞太多,慢慢来可能更稳。但要是你干的事特别讲究速度,晚一秒钟都不行的那种,那就得想办法把发东西的时间间隔调短点,越快越好! 总之,Kafka的强大之处在于它允许我们灵活地调整策略以适应不同的工作负载。希望这篇文章能帮助你在实践中更好地利用Kafka的优势!如果你有任何疑问或想法,欢迎随时交流哦~
2025-04-11 16:10:34
96
幽谷听泉
转载文章
...转载内容。原文链接:https://blog.csdn.net/gzh0222/article/details/8549202。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 Nagios的灵魂与之精华. 全在配置文件,如果只是将服务搭建起来,那和不搭有什么区别呢. Nagios的配置文件非常多,只要其中一个配置文件出现错误,就会导致Nagios 无法正常工作。也很灵活,但只要掌握了其中的规律,就很简单了 了解Nagios 的各个配置文件 1.主配置文件nagios.cfg nagios默认的配置文件比较少,并且将很主机,主机组,服务,服务组写在同一个文件中. 这样做的好处是配置文件管理比较方便,但是数据量大了之后,很难整理.所以建议将这些配置分开 cfg_file=/usr/local/nagios/etc/objects/commands.cfg cfg_file=/usr/local/nagios/etc/objects/contacts.cfg cfg_file=/usr/local/nagios/etc/objects/timeperiods.cfg cfg_file=/usr/local/nagios/etc/objects/templates.cfg cfg_file=/usr/local/nagios/etc/objects/contactgroups.cfg cfg_file=/usr/local/nagios/etc/objects/hosts.cfg cfg_file=/usr/local/nagios/etc/objects/hostgroups.cfg cfg_file=/usr/local/nagios/etc/objects/services.cfg cfg_file=/usr/local/nagios/etc/objects/servicegroups.cfg 改check_external_commands=0为check_external_commands=1.这行的作用是允许在web 界面下执行重启nagios、停止主机/服务检查等操作。 把command_check_interval的值从默认的1 改成command_check_interval=15s(根据自己的情况定这个命令检查时间间隔,不要太长也不要太短)。 2.资源配置文件resource.cfg 资源文件可以保存用户自定义的宏.资源文件的一个主要用处是用于保存一些敏感的配置信息,如系统口令等不能让CGIs 程序模块获取到的东西 3.CGI配置文件cgi.cfg CGI 配置文件包含了一系列的设置,它们会影响CGIs程序模块.还有一些保存在主配置文件之中,因此CGI 程序会知道你是如何配置的Nagios并且在哪里保存了对象定义.最实际的例子就是,如果你想建立一个只有查看报警权限的用户,或者只有查看其中一些服务 器或者服务状态的权限,通过修改cfi.cfg可以灵活的控制web访问端的权限. 4.主机定义文件 定义你要监控的对象,这里定义的“host_name”被应用到其它的所有配置文件中,这个是我们配置Nagios 必须修改的配置文件. [root@test objects] vim hosts.cfg define host{ host_name Nagios-Server ; 设置主机的名字,该名字会出现在hostgroups.cfg 和services.cfg 中。注意,这个名字可以不是该服务器的主机名。 alias Nagios服务器 ; 别名 address 192.168.81.128 ; 主机的IP 地址 check_command check-host-alive ; 检查使用的命令,需要在命令定义文件定义,默认是定义好的。 check_interval 1 ; 检测的时间间隔 retry_interval 1 ; 检测失败后重试的时间间隔 max_check_attempts 3 ; 最大重试次数 check_period 24x7 ; 检测的时段 process_perf_data 0 retain_nonstatus_information 0 contact_groups sagroup ; 需要通知的联系组 notification_interval 30 ; 通知的时间间隔 notification_period 24x7 ; 通知的时间段 notification_options d,u,r ; 通知的选项 w—报警(warning),u—未知(unkown) c—严重(critical),r—从异常情况恢复正常 } define host{ host_name Nagios-Client alias Nagios客户端 address 192.168.81.129 check_command check-host-alive check_interval 1 retry_interval 1 max_check_attempts 3 check_period 24x7 process_perf_data 0 retain_nonstatus_information 0 contact_groups sagroup notification_interval 30 notification_period 24x7 notification_options d,u,r } 5.主机组定义文件 主机组定义文件,可以方便的将相同功能或者在应用上相同的服务器添加到一个主机组里,在WEB 界面可以通过HOST Group 方便的查看该组主机的状态信息. 将刚才定义的两个主机加入到主机组中,针对生产环境就像把所有的MySQL 服务器加到一个MySQL主机组里,将Oracle 服务器加到一个Oracle 主机组里,方便管理和查看,可以配置多个组. [root@test objects] vim hostgroups.cfg define hostgroup { hostgroup_name Nagios-Example ; 主机组名字 alias Nagios 主机组 ; 主机组别名 members Nagios-Server,Nagios-Client ; 主机组成员,用逗号隔开 } 6.服务定义文件 服务定义文件定义你需要监控的对象的服务,比如本例为检测主机是否存活,在后面会讲到如何监控其它服务,比如服务器负载、内存、磁盘等. [root@test objects] vim services.cfg define service { host_name Nagios-Server ; hosts.cfg 定义的主机名称 service_description check-host-alive ; 服务描述 check_period 24x7 ; 检测的时间段 max_check_attempts 3 ; 最大检测次数 normal_check_interval 3 retry_check_interval 2 contact_groups sagroup ; 发生故障通知的联系人组 notification_interval 10 notification_period 24x7 ; 通知的时间段 notification_options w,u,c,r check_command check-host-alive } define service { host_name Nagios-Client service_description check-host-alive check_period 24x7 max_check_attempts 3 normal_check_interval 3 retry_check_interval 2 contact_groups sagroup notification_interval 10 notification_period 24x7 notification_options w,u,c,r check_command check-host-alive } 7.服务组定义文件 和主机组一样,我们可以按需将相同的服务放入一个服务组,这样有规律的分类,便于我们在WEB端查看. [root@test objects] vim servicegroups.cfg define servicegroup{ servicegroup_name Host-Alive ; 组名 alias Host Alive ; 别名设置 members Nagios-Server,check-host-alive,Nagios-Client,check-host-alive } 8.联系人定义文件 定义发生故障时,需要通知的联系人信息.默认安装完成后,该配置文件已经存在,而且该文件不仅定义了联系人,也定义了联系人组,为了条理化的规划,我们把联系人定义放在contacts.cfg文件里,把联系人组放在contactgroups.cfg文件中. [root@test objects] mv contacts.cfg contacts.cfg.bak [root@test objects] vim contacts.cfg define contact{ contact_name maoxian ; 联系人的名字 alias maoxian ; 别名 service_notification_period 24x7 ; 服务报警的时间段 host_notification_period 24x7 ; 主机报警的时间段 service_notification_options w,u,c,r ; 就是在这四种情况下报警。 host_notification_options d,u,r ;同上。 服务报警发消息的命令,在command.cfg 中定义。 service_notification_commands notify-service-by-email 服务报警发消息的命令,在command.cfg 中定义。 host_notification_commands notify-host-by-email email wangyx088@gmail.com ; 定义邮件地址,也就是接收报警邮件地址。 } 9.联系人组定义文件 联系人组定义文件在实际应用中很有好处,我们可以把报警信息分级别,报联系人分级别存放在联系人组里面.例如:当发生一些警告信息的情况下,只发邮件给系统工程师联系人组即可,但是当发生重大问题,比如主机宕机了,可以发给领导联系人组. [root@test objects] vim contactgroups.cfg define contactgroup{ contactgroup_name sagroup ; 组名 alias Nagios Administrators ; 别名 members maoxian ; 联系人组成员 } 10.命令定义文件 commands.cfg 命令定义文件是Nagios中很重要的配置文件,所有在hosts.cfg还是services.cfg使用的命令都必须在命令定义文件中定义才能使用.默认情况下,范例配置文件已经配置好了日常需要使用的命令,所以一般不做修改. 11.时间段定义文件 timeperiods.cfg 我们在检测、通知、报警的时候都需要定义时间段,默认都是使用7x24,这也是默认配置文件里配置好的,如果你需要周六日不做检测,或者在制定的维护时间不做检测,都可以在该时间段定义文件定义好,这样固定维护的时候,就不会为大量的报警邮件或者短信烦恼 [root@test objects] cat timeperiods.cfg |grep -v "^" |grep -v "^$" 可以根据业务需求来更改 12.启动Nagios 1> 修改配置文件所有者 [root@test objects] chown -R nagios:nagios /usr/local/nagios/etc/objects/ 2> 检测配置是否正确 [root@test objects] /usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg 如果配置错误,会给出相应的报错信息,可以根据信息查找,注意,如果配置文件中有不可见字符也可以导致配置错误 3> 重载Nagios [root@test objects] service nagios restart 本文出自 “毛线的linux之路” 博客,请务必保留此出处http://maoxian.blog.51cto.com/4227070/756516 本篇文章为转载内容。原文链接:https://blog.csdn.net/gzh0222/article/details/8549202。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-16 20:48:42
484
转载
NodeJS
...ode.js程序,在服务器上跑却报错。哎呀,这可能是你的服务器上装的软件版本不一样,或者是系统设置没调成一个样儿,所以才出问题啦!Docker可厉害了,它把整个运行环境——比如Node.js、各种依赖库,还有配置文件啥的——全都打包成一个“镜像”,就像是给你的应用做一个完整的备份。这样,无论你什么时候部署,都像是复制了一份一模一样的东西,绝不会出岔子! - 高效部署:传统的部署方式可能是手动上传文件到服务器再启动服务,不仅费时还容易出错。而Docker只需要推送镜像,然后在目标机器上拉取并运行即可,省去了很多麻烦。 当然,这些优点的背后离不开Docker的核心概念——镜像、容器和仓库。简单来说啊,镜像就像是做菜的菜谱,容器就是按照这个菜谱写出来的菜,仓库呢,就是放这些菜谱的地方,想做菜的时候随时拿出来用就行啦!听起来是不是有点抽象?没关系,接下来我们会一步步实践! --- 3. 准备工作 搭建Node.js项目 既然要学怎么用Docker部署Node.js应用,那我们得先有个项目吧?这里我假设你已经会用npm初始化一个Node.js项目了。如果没有的话,可以按照以下步骤操作: bash mkdir my-node-app cd my-node-app npm init -y 这会在当前目录下生成一个package.json文件,用于管理项目的依赖。接下来,我们随便写点代码让这个项目动起来。比如新建一个index.js文件,内容如下: javascript // index.js const http = require('http'); const hostname = '127.0.0.1'; const port = 3000; const server = http.createServer((req, res) => { res.statusCode = 200; res.setHeader('Content-Type', 'text/plain'); res.end('Hello World\n'); }); server.listen(port, hostname, () => { console.log(Server running at http://${hostname}:${port}/); }); 现在你可以直接运行它看看效果: bash node index.js 打开浏览器访问http://127.0.0.1:3000/,你会看到“Hello World”。不错,我们的基础项目已经搭建好了! --- 4. 第一步 编写Dockerfile 接下来我们要做的就是给这个项目添加Docker的支持。为此,我们需要创建一个特殊的文件叫Dockerfile。这个名字是固定的,不能改哦。 进入项目根目录,创建一个空文件名为Dockerfile,然后在里面输入以下内容: dockerfile 使用官方的Node.js镜像作为基础镜像 FROM node:16-alpine 设置工作目录 WORKDIR /app 将当前目录下的所有文件复制到容器中的/app目录 COPY . /app 安装项目依赖 RUN npm install 暴露端口 EXPOSE 3000 启动应用 CMD ["node", "index.js"] 这段代码看起来有点复杂,但其实逻辑很简单: 1. FROM node:16-alpine 告诉Docker从官方的Node.js 16版本的Alpine镜像开始构建。 2. WORKDIR /app 指定容器内的工作目录为/app。 3. COPY . /app 把当前项目的文件拷贝到容器的/app目录下。 4. RUN npm install 在容器内执行npm install命令,安装项目的依赖。 5. EXPOSE 3000 声明应用监听的端口号。 6. CMD ["node", "index.js"]:定义容器启动时默认执行的命令。 保存完Dockerfile后,我们可以试着构建镜像了。 --- 5. 构建并运行Docker镜像 在项目根目录下运行以下命令来构建镜像: bash docker build -t my-node-app . 这里的. 表示当前目录,my-node-app是我们给镜像起的名字。构建完成后,可以用以下命令查看是否成功生成了镜像: bash docker images 输出应该类似这样: REPOSITORY TAG IMAGE ID CREATED SIZE my-node-app latest abcdef123456 2 minutes ago 150MB 接着,我们可以启动容器试试看: bash docker run -d -p 3000:3000 my-node-app 参数解释: - -d:以后台模式运行容器。 - -p 3000:3000:将主机的3000端口映射到容器的3000端口。 - my-node-app:使用的镜像名称。 启动成功后,访问http://localhost:3000/,你会发现依然可以看到“Hello World”!这说明我们的Docker化部署已经初步完成了。 --- 6. 进阶 多阶段构建优化镜像大小 虽然上面的方法可行,但生成的镜像体积有点大(大约150MB左右)。有没有办法让它更小呢?答案是有!这就是Docker的“多阶段构建”。 修改后的Dockerfile如下: dockerfile 第一阶段:构建阶段 FROM node:16-alpine AS builder WORKDIR /app COPY package.json ./ RUN npm install COPY . . RUN npm run build 假设你有一个build脚本 第二阶段:运行阶段 FROM node:16-alpine WORKDIR /app COPY --from=builder /app/dist ./dist 假设build后的文件存放在dist目录下 COPY package.json ./ RUN npm install --production EXPOSE 3000 CMD ["node", "dist/index.js"] 这里的关键在于“--from=builder”,它允许我们在第二个阶段复用第一个阶段的结果。这样就能让开发工具和测试依赖 stays 在它们该待的地方,而不是一股脑全塞进最终的镜像里,这样一来镜像就能瘦成一道闪电啦! --- 7. 总结与展望 写到这里,我相信你已经对如何用Docker部署Node.js应用有了基本的认识。虽然过程中可能会遇到各种问题,但每一次尝试都是成长的机会。记得多查阅官方文档,多动手实践,这样才能真正掌握这项技能。 未来,随着云计算和微服务架构的普及,容器化将成为每个开发者必备的技能之一。所以,别犹豫啦,赶紧去试试呗!要是你有什么不懂的,或者想聊聊自己的经历,就尽管来找我聊天,咱们一起唠唠~咱们一起进步! 最后,祝大家都能早日成为Docker高手!😄
2025-05-03 16:15:16
41
海阔天空
转载文章
...转载内容。原文链接:https://blog.csdn.net/m0_65485112/article/details/122007938。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 《C primer plus》专为零基础读者撰写,历经30余年,成为C语言学习的翘楚。众多新手通过自学,已在各大技术公司担任要职。这本书无论是技术细节,还是技术广度、深度,以及讲解方式,都是针对自学用户设计的,所以敬请放心大胆地拿起这本书来自学成才吧。书名中Primer这个单词,就是“启蒙读本”“入门书”的意思。 非常经典的教材,与国内的那些不入流的教材相比,具有了更灵活的方法,更系统的介绍,更详细的讲解。每一个知识点都深入到位,完全解开了C的面纱……如果想学好C,成为真正的C程序员,这本书就非看不可。 三、Python编程从入门到实践 《Python编程从入门到实践》书如其名,本书简明清晰地讲解了入门Python所需学习的基本知识,同时在讲解过程中穿插实战演练,使读者对Python有更加深刻的理解,是一本入门Python的难得好书,推荐给大家学习。 我想说,Python是否值得学,已经不再是值得怀疑的问题了。但是,如何能高效学会Python,永远是个值得思考的重要问题。这个问题的答案,是绕不开本书的。 四、Java编程思想 《Java编程思想(第4版)》赢得了全球程序员的广泛赞誉,即使是最晦涩的概念,在Bruce Eckel的文字亲和力和小而直接的编程示例面前也会化解于无形。从Java的基础语法到最高级特性(深入的面向对象概念、多线程、自动项目构建、单元测试和调试等),《Java编程思想(第4版)》都能逐步指导你轻松掌握。从java编程思想这本书获得的各项大奖以及来自世界各地的读者评论中,不难看出这是一本经典之作。 五、算法导论 《算法导论》提供了对当代计算机算法研究的一个全面、综合性的介绍。全书共八部分,内容涵盖基础知识、排序和顺序统计量、数据结构、高级设计和分析技术、高级数据结构、图算法、算法问题选编,以及数学基础知识。书中深入浅出地介绍了大量的算法及相关的数据结构,以及用于解决一些复杂计算问题的高级策略(如动态规划、贪心算法、摊还分析等),重点在于算法的分析与设计。对于每一个专题,作者都试图提供目前最新的研究成果及样例解答,并通过清晰的图示来说明算法的执行过程。 六、深入理解计算机系统 《深入理解计算机系统》是将计算机软件和硬件理论结合讲述的经典教程,内容覆盖计算机导论、体系结构和处理器设计等多门课程。本书的大优点是为程序员描述计算机系统的实现细节,通过描述程序是如何映射到系统上,以及程序是如何执行的,使读者更好地理解程序的行为为什么是这样的,以及造成效率低下的原因。 七、鸟哥的Linux私房菜 《鸟哥的Linux私房菜基础学习篇》全面而详细地介绍了Linux操作系统。着重说明计算机的基础知识、Linux的学习方法,如何规划和安装Linux主机以及CentOS 7.x的安装、登录与求助方法;介绍Linux的文件系统、文件、目录与磁盘的管理;文字模式接口shell和管理系统的好帮手shell脚本,另外还介绍了文字编辑器vi和vim的使用方法;对于系统安全非常重要的Linux账号的管理、磁盘配额、高级文件系统管理、计划任务以及进程管理,系统管理员(root)的管理事项。 本书内容丰富全面,基本概念的讲解非常细致,深入浅出。各种功能和命令的介绍,都配以大量的实例操作和详尽的解析。本书是初学者学习Linux不可多得的一本入门好书。 八、计算机网络自顶向下方法 《计算机网络自顶向下方法》是经典的计算机网络教材,采用作者独创的自顶向下方法来讲授计算机网络的原理及其协议,自第1版出版以来已经被数百所大学和学院选作教材,被译为14种语言。 新版保持了以前版本的特色,继续关注因特网和计算机网络的现代处理方式,注重原理和实践,为计算机网络教学提供一种新颖和与时俱进的方法。同时,第7版进行了相当多的修订和更新,首次改变了各章的组织结构,将网络层分成两章(第4章关注网络层的数据平面,第5章关注网络层的控制平面) 九、MySQL是怎样运行的 《MySQL是怎样运行的》采用诙谐幽默、通俗易懂的写作风格,针对上面这些问题给出了相应的解答方案。尽管本书的表达方式与司空见惯的学术派、理论派IT图书有显著区别,但本书的确是相当正经的专业技术图书,内容涵盖了使用MySQL的同学在求职面试和工作中常见的一些核心概念。无论是身居MySQL专家身份的技术人员,还是技术有待进一步提升的DBA,甚至是刚投身于数据库行业的“萌新”人员,本书都是他们彻底了解MySQL运行原理的优秀图书。 十、编程珠玑 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_65485112/article/details/122007938。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-11 11:49:14
121
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
uniq file.txt
- 移除连续重复行。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"