前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[Memcached touch命令更新缓...]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
...等主流框架将持续迭代更新,并加强对Web Components标准的支持。同时,TypeScript的应用将进一步普及,以提升代码质量和团队协作效率。 此外,随着PWA(Progressive Web App)和SPA(Single Page Application)模式的发展成熟,以及各大公司对混合应用和原生应用开发技术如React Native、Flutter的持续投入,前端开发者需要关注跨平台开发技术的新特性与最佳实践。例如,华为HarmonyOS近期推出的一系列针对前端开发者的优化方案和技术文档,为构建高性能、跨设备的原生应用提供了有力支持。 在架构层面,微前端、Serverless、Jamstack等概念正逐渐落地,对大前端架构师提出了新的挑战与机遇。尤其在面对高并发、大数据量场景时,如何设计和实施性能优化策略,采用何种工具链进行工程化管理,成为业界探讨的热点话题。而随着低代码/无代码平台的兴起,前端开发者也需要拓宽视野,探索如何利用这些新兴技术赋能业务创新,提高开发效率。 总之,在瞬息万变的前端世界里,紧跟行业动态,深入理解和熟练运用各类新技术,是每一位前端工程师保持竞争力的关键所在。同时,诸如千锋教育这样的专业培训机构也会持续提供与时俱进的课程体系,帮助开发者系统性地提升技能,适应市场需求。
2023-03-07 21:33:13
270
转载
SpringBoot
...企业选择将传统的单体应用迁移到分布式环境中。然而,这一过程中也暴露出一些新的挑战,特别是在数据库连接池管理和跨平台协作方面。例如,某大型电商企业在将其核心交易系统迁移至云平台时,曾因未正确配置Druid数据源而导致频繁出现“Query Timeout”问题。尽管问题最终通过增加超时时间得以缓解,但企业内部调查显示,超过半数的开发人员对Druid的高级特性了解不足,尤其是其与Oracle数据库的适配性和监控功能。 与此同时,Oracle公司最近宣布将在其即将发布的19c版本中引入一项名为“Adaptive Query Result Cache”的新特性。该功能旨在通过动态缓存热点查询结果,显著降低高并发场景下的数据库负载压力。业内专家指出,这项更新对于正在使用Oracle作为主数据库的企业而言具有重要意义,特别是在应对大规模在线交易和实时数据分析需求时,能够有效避免因资源耗尽引发的服务中断。 此外,国内开源社区也在积极跟进这一趋势。阿里云近期发布了基于Druid的增强版插件,新增了智能路由、动态扩展等功能,旨在帮助企业更好地管理复杂的分布式数据库架构。该插件已应用于多家企业的生产环境,并获得了良好的反馈。有用户表示,在启用智能路由后,数据库查询效率提升了约30%,同时大幅降低了运维成本。 从长远来看,数据库连接池管理不仅是一个技术问题,更关乎企业的数字化转型进程。如何平衡性能优化与安全稳定,将是未来一段时间内IT从业者需要重点关注的方向。建议企业在升级现有系统前,充分评估需求并制定详细的实施方案,同时加强团队培训,确保每位技术人员都能熟练掌握相关工具的使用技巧。
2025-04-21 15:34:10
40
冬日暖阳_
Mongo
...goDB 4.4版本更新与索引优化策略 随着MongoDB的持续发展,最新版本4.4不仅带来了性能优化、安全性增强,而且在索引管理方面进行了重大改进,进一步推动了数据库性能的提升。此次更新特别关注了索引构建效率和内存使用优化,为开发者和数据库管理员提供了更多灵活且高效的索引管理策略。 内存使用优化:MongoDB 4.4引入了更智能的内存管理机制,特别是在处理大量索引时,显著减少了内存占用,提高了数据库的稳定性和性能。这对于处理大数据集和高并发场景尤为重要,因为合理的内存使用有助于减少延迟,提升查询速度。 索引构建效率提升:新版MongoDB优化了索引构建算法,减少了构建过程中的资源消耗和时间成本。这意味着在创建新索引或更新现有索引时,数据库的反应速度更快,从而提高了整体系统性能。 索引策略调整:为了适应不同场景的需求,MongoDB 4.4提供了更加灵活的索引策略选择。开发人员可以根据实际应用情况,基于读写模式、数据分布和查询频率等因素,选择最适合的索引类型和结构,以达到最佳的性能表现。 安全性与合规性:在提升性能的同时,MongoDB 4.4也加强了安全性,增强了数据保护措施。这包括对敏感数据的加密存储、访问控制的细化以及对潜在安全漏洞的修补,确保了数据在存储和传输过程中的安全,符合现代数据保护法规的要求。 综上所述,MongoDB 4.4版本不仅在索引管理上取得了显著进展,还在其他多个领域实现了技术突破,为用户提供了一个更为强大、安全、高效的数据库平台。对于依赖MongoDB进行数据管理和分析的企业和开发者来说,了解并充分利用这些更新,将有助于优化业务流程,提升数据分析效率,进而驱动业务增长。 --- 通过这次“延伸阅读”,我们可以看到MongoDB作为一款广泛使用的NoSQL数据库,在持续优化其功能以满足日益增长的性能需求和安全性要求。这种不断迭代的技术进步不仅反映了MongoDB团队致力于提升用户体验和解决实际问题的决心,也为广大开发者和数据库管理员提供了更多创新的工具和策略,以应对复杂的数据管理和分析挑战。
2024-10-14 15:51:43
90
心灵驿站
Impala
...la需要足够的内存来缓存查询计划和执行状态,同时存储中间结果。内存的大小直接影响到并行度和缓存效果,进而影响查询性能。 - CPU:CPU的计算能力决定了查询执行的速度,尤其是在多线程环境下。合理的CPU分配可以显著提升查询速度。 - 网络:数据存储和计算之间的网络延迟也会影响查询性能,尤其是在分布式环境中。优化网络配置可以减少数据传输时间。 2. 实例代码 配置与优化 接下来,我们通过一段简单的代码实例,展示如何通过配置和优化来提升Impala的查询性能。 示例代码:查询性能调优配置 python 假设我们正在使用Cloudera Manager进行配置管理 调整Impala节点的内存配置 cloudera_manager.set_impala_config('memory', { 'query_mem_limit': '2GB', 根据实际需求调整查询内存限制 'coordinator_memory_limit': '16GB', 协调器的最大内存限制 'executor_memory_limit': '16GB' 执行器的最大内存限制 }) 调整CPU配额 cloudera_manager.set_impala_config('cpu', { 'max_threads_per_node': 8, 每个节点允许的最大线程数 'max_threads_per_core': 2 每个核心允许的最大线程数 }) 开启并行查询功能 cloudera_manager.set_impala_config('parallelism', { 'default_parallelism': 'auto' 自动选择最佳并行度 }) 运行查询前,确保表数据更新已同步到Impala cloudera_manager.refresh_table('your_table_name') cloudera_manager.compute_stats('your_table_name') print("配置已更新,查询性能调优已完成。") 这段代码展示了如何通过Cloudera Manager调整Impala节点的内存限制、CPU配额以及开启自动并行查询功能。通过这样的配置,我们可以针对特定的查询场景和数据集进行优化,提高查询性能。 3. 性能监控与诊断 为了确保硬件配置达到最佳状态,持续的性能监控和诊断至关重要。利用Impala自带的诊断工具,如Explain Plan和Profile,可以帮助我们深入了解查询执行的详细信息,包括但不限于执行计划、CPU和内存使用情况、I/O操作等。 Examine Plan 示例 bash 使用Explain Plan分析查询执行计划 impala-shell> EXPLAIN SELECT FROM your_table WHERE column = 'value'; 输出的结果将展示查询的执行计划,帮助识别瓶颈所在,为后续的优化提供依据。 4. 结语 Impala的查询性能与硬件配置息息相关,合理的配置不仅能提升查询效率,还能优化资源利用,降低运行成本。通过本文的探讨和示例代码的展示,希望能够激发读者对Impala性能优化的兴趣,并鼓励大家在实践中不断探索和尝试,以实现大数据分析的最佳效能。嘿,兄弟!你得明白,真正的硬仗可不只在找答案,而是在于找到那个对特定工作环境最合适的平衡点。这事儿啊,一半靠的是技巧,另一半还得靠点智慧。就像调鸡尾酒一样,你得知道加多少冰,放什么酒,才能调出那个完美的味道。所以,别急着去死记硬背那些公式和规则,多琢磨琢磨,多试试错,慢慢你会发现,找到那个平衡点,其实挺像在创作一首诗,又像是在解一道谜题。
2024-08-19 16:08:50
72
晚秋落叶
Apache Lucene
...,能够满足各种复杂的应用需求。它被广泛应用于各种规模的项目中,尤其适用于需要高性能搜索功能的应用场景。 NullPointerException , 在 Java 中,NullPointerException 是一种运行时异常,表示程序试图访问一个空对象实例的属性或调用其方法。这种异常通常发生在没有正确初始化对象或对象引用被意外设置为 null 的情况下。为了避免 NullPointerException,开发者需要在使用对象之前检查其是否为 null,或者在设计代码时采取防御性编程策略,确保所有对象在使用前都已正确初始化。 IndexWriter , IndexWriter 是 Apache Lucene 中的一个核心类,负责向索引中添加、删除或更新文档。通过 IndexWriter,开发者可以创建一个新的索引或将文档添加到现有的索引中。IndexWriter 类提供了丰富的配置选项,允许开发者指定索引的存储方式、分析器等参数。使用 IndexWriter 可以简化索引创建和管理的过程,使得开发者能够专注于搜索逻辑的设计与实现。
2024-10-16 15:36:29
89
岁月静好
转载文章
...展,Mybatis已更新至3.5.x版本,新版本引入了更多便捷的功能和优化,如支持Java 8时间API、动态SQL增强等。深入研究这些新特性将有助于开发者提升项目的性能与开发效率。 2. Spring Boot 2.X+Mybatis整合实践:Spring Boot以其简化配置、快速开发的特点广受欢迎,结合Mybatis能更高效地搭建企业级应用。阅读相关教程和案例分析,可以了解如何在Spring Boot环境中简化Mybatis的配置与集成过程。 3. Mybatis Plus:高效且强大的Mybatis工具库:作为Mybatis的增强工具,Mybatis Plus提供了众多自动化操作如CRUD、分页、性能优化等功能。关注此类资源,可帮助开发者简化繁琐工作,提高开发效率。 4. Spring Data JPA vs Mybatis:优缺点对比及适用场景探讨:在实际开发中,除了Mybatis之外,Spring Data JPA也是一个常见的持久层框架选择。通过对比两者的特性和适用场景,可以帮助开发者根据项目需求灵活选取最适合的持久层解决方案。 5. 云原生时代下的数据库服务化与ORM框架革新:随着云计算和微服务架构的普及,数据库访问方式也在不断演进。了解云数据库服务如何与ORM框架(如Mybatis)进行深度集成,以及未来可能的发展趋势,对于把握技术潮流、提升项目架构层次具有重要意义。 综上所述,通过对上述内容的学习和探索,不仅可以加深对Mybatis与Spring集成的理解和应用能力,还能紧跟技术前沿,适应不断变化的开发环境和业务需求。
2023-09-05 11:56:25
114
转载
转载文章
...算、大数据分析、移动应用开发和企业级应用架构中持续发挥着关键作用。近年来,Oracle公司对Java的投入力度不减反增,不断推动Java版本更新以适应现代软件开发需求。 例如,2014年发布的Java 8引入了Lambda表达式和Stream API,极大提升了Java在函数式编程方面的表现力与效率;而2017年的Java 9则首次引入模块化系统(Jigsaw项目),使得大型软件能够更高效地组织和管理代码。最近,Java 17作为长期支持版发布,不仅提供了多项性能改进与新特性,还进一步强化了安全机制,包括ZGC垃圾回收器的增强以及密封类(sealed class)等新功能的引入,有效助力开发者应对复杂业务场景。 此外,随着Kotlin、Scala等基于JVM的语言崭露头角,Java也在积极借鉴这些语言的优点,不断提升自身的语言特性和用户体验。在开源社区,诸如Apache Hadoop、Spring框架等众多重量级项目均采用Java进行开发,证明了其在分布式计算与企业级服务端开发领域的主导地位。 值得注意的是,随着云原生技术的发展,Kubernetes、Docker等容器技术与Java结合日益紧密,使得Java应用能够更好地适应微服务架构的需求,实现快速部署和弹性伸缩。同时,Java也正在积极拥抱无服务器(Serverless)计算模式,通过与AWS Lambda、Google Cloud Functions等服务集成,为开发者提供更为便捷高效的开发体验。 综上所述,Java语言在不断发展演进中保持活力,并且在全球范围内继续影响和塑造着软件开发的趋势与格局。无论是初学者还是资深开发者,关注Java最新动态和技术进展,都将有助于把握未来编程语言的发展脉络,提升自身的技术实力与竞争力。
2023-03-25 09:18:50
85
转载
SpringBoot
...和灵活性,在构建这类应用中展现出巨大潜力。然而,面对日益复杂的数据安全挑战和用户需求多样化,如何在Spring Boot中实现既高效又安全的文件上传功能成为业界关注的焦点。 安全性增强 在实际应用中,文件上传功能往往成为黑客攻击的入口之一。因此,增强安全性显得尤为重要。除了传统的大小限制和类型检查,引入更高级的安全措施变得必要。例如,可以采用内容安全策略(CSP)防止跨站脚本攻击(XSS)和跨站请求伪造(CSRF)。同时,使用最新的加密算法保护上传文件的传输和存储过程中的数据安全,确保用户隐私得到充分保护。 性能优化与扩展性 在高并发环境下,文件上传服务的性能优化至关重要。通过负载均衡、缓存机制和异步处理机制,可以显著提升服务响应速度和处理能力。此外,利用微服务架构原则,将文件上传服务与其他服务解耦,实现服务的独立部署和水平扩展,能够有效应对突发的高流量场景。 用户体验提升 在注重功能实现的同时,提升用户体验同样不可忽视。提供直观的文件上传界面、实时进度反馈、以及友好的错误提示,都能大大增强用户的满意度。通过集成云存储服务(如Amazon S3、Google Cloud Storage),不仅可以减轻服务器压力,还能够提供更稳定、更快的上传和下载服务。 法规遵从性 随着全球数据保护法规的日益严格,确保文件上传服务符合相关法律法规要求成为企业必须面对的挑战。例如,GDPR(欧盟通用数据保护条例)、HIPAA(美国健康保险流通与责任法案)等法规对企业数据处理和保护有明确要求。在设计和实施文件上传功能时,应充分考虑这些法规的影响,确保数据的收集、存储、处理和传输均符合法律规范。 结论 综上所述,实现高效、安全的文件上传功能需要综合考虑安全性、性能、用户体验和法规遵从性等多个维度。在Spring Boot框架下,通过采用现代安全措施、优化服务性能、提升用户体验并遵循相关法规,企业可以构建出既强大又合规的文件上传系统,满足当前及未来业务发展的需求。随着技术的不断进步和行业标准的更新,持续关注最新实践和趋势,将有助于保持系统的先进性和竞争力。
2024-09-12 16:01:18
86
寂静森林
Dubbo
...巴巴集团内部持续迭代更新,还积极拥抱Kubernetes等现代容器化平台,推出了Dubbo 3.x版本,大幅提升了分布式系统的性能与可扩展性。这一系列改进让Dubbo在面对高并发、大规模服务治理时表现出色,尤其是在电商、金融等行业中得到了广泛应用。 例如,在刚刚结束的双十一购物节期间,某头部电商平台利用Dubbo实现了全链路压测与动态扩容,确保了亿级用户的访问请求能够稳定高效地被处理。该平台的技术团队表示,通过引入Dubbo的负载均衡算法优化以及服务熔断机制,他们在高峰期成功将请求延迟降低了30%以上,极大地提升了用户体验。此外,Dubbo与Spring Cloud的深度融合也为开发者提供了更加统一的微服务治理方案,使得不同技术栈的应用程序能够无缝协作。 然而,尽管Dubbo具备诸多优势,但在实际部署过程中仍需注意潜在风险。比如,部分企业在迁移至新版本时遇到了兼容性挑战,特别是对于老旧代码库而言,如何平衡创新与稳定性始终是一个难题。对此,业内专家建议,企业应优先评估现有系统的依赖关系,制定详细的升级计划,并借助Dubbo提供的灰度发布功能逐步推进改造工作,从而降低整体改造成本。 展望未来,随着Service Mesh概念的兴起,Dubbo也在积极探索与Istio等服务网格框架的合作模式,试图构建更为灵活且智能的服务管理体系。可以预见的是,Dubbo将在更广泛的业务场景下发挥重要作用,为企业数字化转型注入新的活力。与此同时,我们也期待Dubbo社区能够继续倾听用户需求,不断完善产品功能,共同推动开源生态的发展壮大。
2025-03-20 16:29:46
66
雪落无痕
Kibana
...留策略就是定义数据的生命周期。比如说,“只留最近30天的记录”,或者是“超过一年的就自动清掉”。你可以根据业务需求灵活设置这些规则。 2.2 为什么我们需要它? 想象一下,如果你是一家电商平台的数据分析师,每天都会生成大量的日志文件。这些日志里可能包含了用户的购买记录、浏览行为等重要信息。不过呢,日子一长啊,那些早期的日志就变得没啥分析的意义了,反而是白白占着磁盘空间,挺浪费的。这时候,数据保留策略就能帮你解决这个问题。 再比如,如果你是一家医院的IT管理员,医疗设备产生的监控数据可能每秒都在增加。要是不赶紧把那些旧数据清理掉,系统非但会变得越来越卡,还可能出大问题,甚至直接“翻车”!所以,合理规划数据的生命周期是非常必要的。 --- 3. 如何在Kibana中设置数据保留策略? 接下来,咱们进入正题——具体操作步骤。相信我,这并不复杂,只要跟着我的节奏走,你一定能学会! 3.1 第一步:创建索引模式 首先,我们需要确保你的数据已经被正确地存储到Elasticsearch中,并且可以通过Kibana访问。如果还没有创建索引模式,可以按照以下步骤操作: bash 登录Kibana界面 1. 点击左侧菜单栏中的“Management”。 2. 找到“Stack Management”部分,点击“Index Patterns”。 3. 点击“Create index pattern”按钮。 4. 输入你的索引名称(例如 "logstash-"),然后点击“Next step”。 5. 选择时间字段(通常是@timestamp),点击“Create index pattern”完成配置。 > 思考点:这里的关键在于选择合适的索引名称和时间字段。如果你的时间字段命名不规范,后续可能会导致数据无法正确筛选哦! 3.2 第二步:设置索引生命周期策略 接下来,我们要为索引创建生命周期策略。这是Kibana中最核心的部分,直接决定了数据的保留方式。 示例代码: javascript PUT _ilm/policy/my_policy { "policy": { "phases": { "hot": { "actions": { "rollover": { "max_size": "50gb", "max_age": "30d" } } }, "delete": { "min_age": "1y", "actions": { "delete": {} } } } } } 这段代码的意思是: - 热阶段(Hot Phase):当索引大小达到50GB或者超过30天时,触发滚动操作。 - 删除阶段(Delete Phase):超过1年后,自动删除该索引。 > 小贴士:这里的max_size和max_age可以根据你的实际需求调整。比如,如果你的服务器内存较小,可以将max_size调低一点。 3.3 第三步:将策略应用到索引 设置好生命周期策略后,我们需要将其绑定到具体的索引上。具体步骤如下: bash POST /my-index/_settings { "index.lifecycle.name": "my_policy", "index.lifecycle.rollover_alias": "my_index" } 这段代码的作用是将之前创建的my_policy策略应用到名为my-index的索引上。同时,通过rollover_alias指定滚动索引的别名。 --- 4. 实战案例 数据保留策略的实际效果 为了让大家更直观地理解数据保留策略的效果,我特意准备了一个小案例。假设你是一名电商公司的运维工程师,每天都会收到大量的订单日志,格式如下: json { "order_id": "123456789", "status": "success", "timestamp": "2023-09-01T10:00:00Z" } 现在,你想对这些日志进行生命周期管理,具体要求如下: - 最近3个月的数据需要保留。 - 超过3个月的数据自动归档到冷存储。 - 超过1年的数据完全删除。 实现方案: 1. 创建索引模式,命名为orders-。 2. 定义生命周期策略 javascript PUT _ilm/policy/orders_policy { "policy": { "phases": { "hot": { "actions": { "rollover": { "max_size": "10gb", "max_age": "3m" } } }, "warm": { "actions": { "freeze": {} } }, "delete": { "min_age": "1y", "actions": { "delete": {} } } } } } 3. 将策略绑定到索引 bash POST /orders-/_settings { "index.lifecycle.name": "orders_policy", "index.lifecycle.rollover_alias": "orders" } 运行以上代码后,你会发现: - 每隔3个月,新的订单日志会被滚动到一个新的索引中。 - 超过3个月的旧数据会被冻结,存入冷存储。 - 超过1年的数据会被彻底删除,释放存储空间。 --- 5. 总结与展望 通过今天的分享,相信大家对如何在Kibana中设置数据保留策略有了更深的理解。虽然设置过程看似繁琐,但实际上只需要几步就能搞定。而且啊,要是咱们好好用数据保留这招,不仅能让系统跑得更快、更顺畅,还能帮咱们把那些藏在数据里的宝贝疙瘩给挖出来,多好呀! 最后,我想说的是,技术学习是一个不断探索的过程。如果你在实践中遇到问题,不妨多查阅官方文档或者向社区求助。毕竟,我们每个人都是技术路上的探索者,一起努力才能走得更远! 好了,今天的分享就到这里啦!如果你觉得这篇文章有用,记得点赞支持哦~咱们下次再见!
2025-04-30 16:26:33
19
风轻云淡
转载文章
...doop fs 具体命令或者hdfs dfs 具体命名 命令大全 Usage: hadoop fs [generic options][-appendToFile <localsrc> ... <dst>] 追加[-cat [-ignoreCrc] <src> ...] 查看[-checksum <src> ...][-chgrp [-R] GROUP PATH...] 改组[-chmod [-R] <MODE[,MODE]... | OCTALMODE> PATH...] 改权限[-chown [-R] [OWNER][:[GROUP]] PATH...] 改所有者[-copyFromLocal [-f] [-p] [-l] [-d] [-t <thread count>] <localsrc> ... <dst>] 上传[-copyToLocal [-f] [-p] [-ignoreCrc] [-crc] <src> ... <localdst>] 下载[-count [-q] [-h] [-v] [-t [<storage type>]] [-u] [-x] [-e] <path> ...][-cp [-f] [-p | -p[topax]] [-d] <src> ... <dst>] 复制[-createSnapshot <snapshotDir> [<snapshotName>]][-deleteSnapshot <snapshotDir> <snapshotName>][-df [-h] [<path> ...]][-du [-s] [-h] [-v] [-x] <path> ...] 统计磁盘文件大小[-expunge][-find <path> ... <expression> ...][-get [-f] [-p] [-ignoreCrc] [-crc] <src> ... <localdst>] 下载[-getfacl [-R] <path>][-getfattr [-R] {-n name | -d} [-e en] <path>][-getmerge [-nl] [-skip-empty-file] <src> <localdst>][-head <file>][-help [cmd ...]][-ls [-C] [-d] [-h] [-q] [-R] [-t] [-S] [-r] [-u] [-e] [<path> ...]] 查看列表[-mkdir [-p] <path> ...] 创建[-moveFromLocal <localsrc> ... <dst>] 剪切到hdfs[-moveToLocal <src> <localdst>] 剪切到本地[-mv <src> ... <dst>] 移动[-put [-f] [-p] [-l] [-d] <localsrc> ... <dst>] 上传[-renameSnapshot <snapshotDir> <oldName> <newName>][-rm [-f] [-r|-R] [-skipTrash] [-safely] <src> ...] 删除[-rmdir [--ignore-fail-on-non-empty] <dir> ...][-setfacl [-R] [{-b|-k} {-m|-x <acl_spec>} <path>]|[--set <acl_spec> <path>]][-setfattr {-n name [-v value] | -x name} <path>][-setrep [-R] [-w] <rep> <path> ...] 设置副本数[-stat [format] <path> ...][-tail [-f] <file>][-test -[defsz] <path>][-text [-ignoreCrc] <src> ...][-touch [-a] [-m] [-t TIMESTAMP ] [-c] <path> ...][-touchz <path> ...][-truncate [-w] <length> <path> ...][-usage [cmd ...]]Generic options supported are:-conf <configuration file> specify an application configuration file-D <property=value> define a value for a given property-fs <file:///|hdfs://namenode:port> specify default filesystem URL to use, overrides 'fs.defaultFS' property from configurations.-jt <local|resourcemanager:port> specify a ResourceManager-files <file1,...> specify a comma-separated list of files to be copied to the map reduce cluster-libjars <jar1,...> specify a comma-separated list of jar files to be included in the classpath-archives <archive1,...> specify a comma-separated list of archives to be unarchived on the compute machinesThe general command line syntax is:command [genericOptions] [commandOptions] 查看详细命令 hadoop fs -help 命令(如cat) 更改hdfs的权限 vi core-site.xml <property><name>hadoop.http.staticuser.user</name><value>root</value></property> HDFS客户端API操作 Windows环境配置 将Windows依赖放到文件夹, 配置环境变量,添加HADOOP_HOME ,编辑Path添加%HADOOP_HOME%/bin 拷贝hadoop.dll和winutils.exe到C:\Windows\System32 创建java项目 配置 编辑pom.xml <dependencies><dependency><groupId>junit</groupId><artifactId>junit</artifactId><version>4.12</version></dependency><dependency><groupId>org.apache.logging.log4j</groupId><artifactId>log4j-slf4j-impl</artifactId><version>2.12.0</version></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-client</artifactId><version>3.1.3</version></dependency></dependencies> 在src/main/resources中建立log4j2.xml 打印日志到控制台 <?xml version="1.0" encoding="UTF-8"?><Configuration status="WARN"><Appenders><Console name="Console" target="SYSTEM_OUT"><PatternLayout pattern="%d{HH:mm:ss.SSS} [%t] %-5level %logger{36} - %msg%n"/></Console></Appenders><Loggers><Root level="error"><AppenderRef ref="Console"/></Root></Loggers></Configuration> 编写代码 在/src/main/java/cn.zcx.hdfs创建TestHDFS类 public class TestHDFS {// 创建全局变量private FileSystem fs;private Configuration conf;private URI uri;private String user;// 从本地上传文件@Testpublic void testUpload() throws IOException {fs.copyFromLocalFile(false,true,new Path("F:\\Download\\使用前说明.txt"),new Path("/testhdfs"));}/ @Before 方法在@Test方法执行之前执行 /@Beforepublic void init() throws IOException, InterruptedException {uri = URI.create("hdfs://master:8020");conf = new Configuration();user = "root";fs = FileSystem.get(uri,conf,user);}/ @After方法在@Test方法结束后执行 /@Afterpublic void close() throws IOException {fs.close();}@Testpublic void testHDFS() throws IOException, InterruptedException {//1. 创建文件系统对象/URI uri = URI.create("hdfs://master:8020");Configuration conf = new Configuration();String user = "root";FileSystem fs = FileSystem.get(uri,conf,user);System.out.println("fs: " + fs);/// 2. 创建一个目录boolean b = fs.mkdirs(new Path("/testhdfs"));System.out.println(b);// 3. 关闭fs.close();} } 参数优先级 xxx-default.xml < xxx-site.xml < IDEA中resource中创建xxx-site.xml < 在代码中通过更改Configuration 参数 文件下载 @Testpublic void testDownload() throws IOException {fs.copyToLocalFile(false,new Path("/testhdfs/使用前说明.txt"),new Path("F:\\Download\\"),true);} 文件更改移动 //改名or移动(路径改变就可以)@Testpublic void testRename() throws IOException {boolean b = fs.rename(new Path("/testhdfs/使用前说明.txt"),new Path("/testhdfs/zcx.txt"));System.out.println(b);} 查看文件详细信息 // 查看文件详情@Testpublic void testListFiles() throws IOException {RemoteIterator<LocatedFileStatus> listFiles = fs.listFiles(new Path("/"), true);//迭代操作while (listFiles.hasNext()){LocatedFileStatus fileStatus = listFiles.next();//获取文件详情System.out.println("文件路径:"+fileStatus.getPath());System.out.println("文件权限:"+fileStatus.getPermission());System.out.println("文件主人:"+fileStatus.getOwner());System.out.println("文件组:"+fileStatus.getGroup());System.out.println("文件大小:"+fileStatus.getLen());System.out.println("文件副本数:"+fileStatus.getReplication());System.out.println("文件块位置:"+ Arrays.toString(fileStatus.getBlockLocations()));System.out.println("===============================");} } 文件删除 第二参数,true递归删除 //文件删除@Testpublic void testDelete() throws IOException {boolean b = fs.delete(new Path("/testhdfs/"), true);System.out.println(b);} NN与2NN工作原理 本篇文章为转载内容。原文链接:https://blog.csdn.net/Python1One/article/details/108546050。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-05 22:55:20
279
转载
转载文章
...源的。现有的CUDA应用、Fortran应用、OpenCL应用都可以用不同方式很方便地迁移到DPC++当中。 下图显示了原来使用不同架构的HPC开发人员的一些推荐的转换方法。 编译和运行DPC++程序 编译和运行DPC++程序主要包括三步: 初始化环境变量 编译DPC++源代码 运行程序 例如本地运行,在本地系统上安装英特尔基础工具套件,使用以下命令编译和运行DPC++程序。 source /opt/intel/inteloneapi/setvars.shdpcpp simple.cpp -o simple./simple 编程实例 实现矢量加法 以下实例描述了使用DPC++实现矢量加法的过程和源代码。 queue类 queue类用来提交给SYCL执行的命令组,是将作业提交到运算设备的一种机制,多个queue可以映射到同一个设备。 Parallel kernel Parallel kernel允许代码并行执行,对于一个不具有相关性的循环数据操作,可以用Parallel kernel并行实现 在C++代码中的循环实现 for(int i=0; i < 1024; i++){a[i] = b[i] + c[i];}); 在Parallel kernel中的并行实现 h.parallel_for(range<1>(1024), [=](id<1> i){A[i] = B[i] + C[i];}); 通用的并行编程模板 h.parallel_for(range<1>(1024), [=](id<1> i){// CODE THAT RUNS ON DEVICE }); range用来生成一个迭代序列,1为步长,在循环体中,i表示索引。 Host Accessor Host Accessor是使用主机缓冲区访问目标的访问器,它使访问的数据可以在主机上使用。通过构建Host Accessor可以将数据同步回主机,除此之外还可以通过销毁缓冲区将数据同步回主机。 buf是存储数据的缓冲区。 host_accessor b(buf,read_only); 除此之外还可以将buf设置为局部变量,当系统超出buf生存期,buf被销毁,数据也将转移到主机中。 矢量相加源代码 根据上面的知识,这里展示了利用DPC++实现矢量相加的代码。 //第一行在jupyter中指明了该cpp文件的保存位置%%writefile lab/vector_add.cppinclude <CL/sycl.hpp>using namespace sycl;int main() {const int N = 256;// 初始化两个队列并打印std::vector<int> vector1(N, 10);std::cout<<"\nInput Vector1: "; for (int i = 0; i < N; i++) std::cout << vector1[i] << " ";std::vector<int> vector2(N, 20);std::cout<<"\nInput Vector2: "; for (int i = 0; i < N; i++) std::cout << vector2[i] << " ";// 创建缓存区buffer vector1_buffer(vector1);buffer vector2_buffer(vector2);// 提交矢量相加任务queue q;q.submit([&](handler &h) {// 为缓存区创建访问器accessor vector1_accessor (vector1_buffer,h);accessor vector2_accessor (vector2_buffer,h);h.parallel_for(range<1>(N), [=](id<1> index) {vector1_accessor[index] += vector2_accessor[index];});});// 创建主机访问器将设备中数据拷贝到主机当中host_accessor h_a(vector1_buffer,read_only);std::cout<<"\nOutput Values: ";for (int i = 0; i < N; i++) std::cout<< vector1[i] << " ";std::cout<<"\n";return 0;} 运行结果 统一共享内存 (Unified Shared Memory USM) 统一共享内存是一种基于指针的方法,是将CPU内存和GPU内存进行统一的虚拟化方法,对于C++来说,指针操作内存是很常规的方式,USM也可以最大限度的减少C++移植到DPC++的代价。 下图显示了非USM(左)和USM(右)的程序员开发视角。 类型 函数调用 说明 在主机上可访问 在设备上可访问 设备 malloc_device 在设备上分配(显式) 否 是 主机 malloc_host 在主机上分配(隐式) 是 是 共享 malloc_shared 分配可以在主机和设备之间迁移(隐式) 是 是 USM语法 初始化: int data = malloc_shared<int>(N, q); int data = static_cast<int >(malloc_shared(N sizeof(int), q)); 释放 free(data,q); 使用共享内存之后,程序将自动在主机和运算设备之间隐式移动数据。 数据依赖 使用USM时,要注意数据之间的依赖关系以及事件之间的依赖关系,如果两个线程同时修改同一个内存区,将产生不可预测的结果。 我们可以使用不同的选项管理数据依赖关系: 内核任务中的 wait() 使用 depends_on 方法 使用 in_queue 队列属性 wait() q.submit([&](handler &h) {h.parallel_for(range<1>(N), [=](id<1> i) { data[i] += 2; });}).wait(); // <--- wait() will make sure that task is complete before continuingq.submit([&](handler &h) {h.parallel_for(range<1>(N), [=](id<1> i) { data[i] += 3; });}); depends_on auto e = q.submit([&](handler &h) { // <--- e is event for kernel taskh.parallel_for(range<1>(N), [=](id<1> i) { data[i] += 2; });});q.submit([&](handler &h) {h.depends_on(e); // <--- waits until event e is completeh.parallel_for(range<1>(N), [=](id<1> i) { data[i] += 3; });}); in_order queue property queue q(property_list{property::queue::in_order()}); // <--- this will make sure all the task with q are executed sequentially 练习1:事件依赖 以下代码使用 USM,并有三个提交到设备的内核。每个内核修改相同的数据阵列。三个队列之间没有数据依赖关系 为每个队列提交添加 wait() 在第二个和第三个内核任务中实施 depends_on() 方法 使用 in_order 队列属性,而非常规队列: queue q{property::queue::in_order()}; %%writefile lab/usm_data.cppinclude <CL/sycl.hpp>using namespace sycl;static const int N = 256;int main() {queue q{property::queue::in_order()};//用队列限制执行顺序std::cout << "Device : " << q.get_device().get_info<info::device::name>() << "\n";int data = static_cast<int >(malloc_shared(N sizeof(int), q));for (int i = 0; i < N; i++) data[i] = 10;q.parallel_for(range<1>(N), [=](id<1> i) { data[i] += 2; });q.parallel_for(range<1>(N), [=](id<1> i) { data[i] += 3; });q.parallel_for(range<1>(N), [=](id<1> i) { data[i] += 5; });q.wait();//wait阻塞进程for (int i = 0; i < N; i++) std::cout << data[i] << " ";std::cout << "\n";free(data, q);return 0;} 执行结果 练习2:事件依赖 以下代码使用 USM,并有三个提交到设备的内核。前两个内核修改了两个不同的内存对象,第三个内核对前两个内核具有依赖性。三个队列之间没有数据依赖关系 %%writefile lab/usm_data2.cppinclude <CL/sycl.hpp>using namespace sycl;static const int N = 1024;int main() {queue q;std::cout << "Device : " << q.get_device().get_info<info::device::name>() << "\n";//设备选择int data1 = malloc_shared<int>(N, q);int data2 = malloc_shared<int>(N, q);for (int i = 0; i < N; i++) {data1[i] = 10;data2[i] = 10;}auto e1 = q.parallel_for(range<1>(N), [=](id<1> i) { data1[i] += 2; });auto e2 = q.parallel_for(range<1>(N), [=](id<1> i) { data2[i] += 3; });//e1,e2指向两个事件内核q.parallel_for(range<1>(N),{e1,e2}, [=](id<1> i) { data1[i] += data2[i]; }).wait();//depend on e1,e2for (int i = 0; i < N; i++) std::cout << data1[i] << " ";std::cout << "\n";free(data1, q);free(data2, q);return 0;} 运行结果 UMS实验 在主机中初始化两个vector,初始数据为25和49,在设备中初始化两个vector,将主机中的数据拷贝到设备当中,在设备当中并行计算原始数据的根号值,然后将data1_device和data2_device的数值相加,最后将数据拷贝回主机当中,检验最后相加的和是否是12,程序结束前将内存释放。 %%writefile lab/usm_lab.cppinclude <CL/sycl.hpp>include <cmath>using namespace sycl;static const int N = 1024;int main() {queue q;std::cout << "Device : " << q.get_device().get_info<info::device::name>() << "\n";//intialize 2 arrays on hostint data1 = static_cast<int >(malloc(N sizeof(int)));int data2 = static_cast<int >(malloc(N sizeof(int)));for (int i = 0; i < N; i++) {data1[i] = 25;data2[i] = 49;}// STEP 1 : Create USM device allocation for data1 and data2int data1_device = static_cast<int >(malloc_device(N sizeof(int),q));int data2_device = static_cast<int >(malloc_device(N sizeof(int),q));// STEP 2 : Copy data1 and data2 to USM device allocationq.memcpy(data1_device, data1, sizeof(int) N).wait();q.memcpy(data2_device, data2, sizeof(int) N).wait();// STEP 3 : Write kernel code to update data1 on device with sqrt of valueauto e1 = q.parallel_for(range<1>(N), [=](id<1> i) { data1_device[i] = std::sqrt(25); });auto e2 = q.parallel_for(range<1>(N), [=](id<1> i) { data2_device[i] = std::sqrt(49); });// STEP 5 : Write kernel code to add data2 on device to data1q.parallel_for(range<1>(N),{e1,e2}, [=](id<1> i) { data1_device[i] += data2_device[i]; }).wait();// STEP 6 : Copy data1 on device to hostq.memcpy(data1, data1_device, sizeof(int) N).wait();q.memcpy(data2, data2_device, sizeof(int) N).wait();// verify resultsint fail = 0;for (int i = 0; i < N; i++) if(data1[i] != 12) {fail = 1; break;}if(fail == 1) std::cout << " FAIL"; else std::cout << " PASS";std::cout << "\n";// STEP 7 : Free USM device allocationsfree(data1_device, q);free(data1);free(data2_device, q);free(data2);// STEP 8 : Add event based kernel dependency for the Steps 2 - 6return 0;} 运行结果 本篇文章为转载内容。原文链接:https://blog.csdn.net/MCKZX/article/details/127630566。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-22 10:28:50
322
转载
Apache Solr
...词一 , 大型互联网应用。 解释 , 在文中指那些在互联网上广泛使用的、功能复杂且用户基数庞大的应用程序。这些应用通常涉及多种服务和技术堆栈,能够处理高并发请求和大量数据,支持全球范围内的用户访问。它们往往依赖于外部服务来补充功能,如调用API、访问数据库或其他微服务,因此优化这些依赖关系对于保证应用的性能和稳定性至关重要。 行业名词二 , 微服务架构。 解释 , 一种软件架构风格,将单一应用程序构建为一组小的服务,每个服务运行在其自己的进程中,并通过轻量级机制如HTTP API进行通信。微服务架构允许独立部署、扩展和更新各个服务,提高了系统的灵活性和可维护性。在文中提到的依赖外部服务场景下,微服务可以作为一个组成部分,与Apache Solr协同工作,共同提供所需功能,而外部服务的优化则直接影响到整体应用的性能。 行业名词三 , 云计算。 解释 , 一种通过互联网提供计算资源(如服务器、存储、数据库、网络等)的模式,用户无需直接管理和维护底层硬件设施。云计算提供了一种按需付费的方式,可以根据应用的需求灵活地分配和释放资源。文中提到的公有云平台如AWS、Azure和Google Cloud,为开发者提供了丰富的API接口,方便集成外部服务,如数据存储、计算能力和机器学习模型,从而优化网络连接和提高应用性能。云计算的弹性扩展特性也能够应对突发的流量或服务需求,确保系统的稳定运行。
2024-09-21 16:30:17
40
风轻云淡
Hadoop
...来,它们在数据存储、更新和查询方面提供了更高的效率和更低的成本。与此同时,Kubernetes作为容器编排的事实标准,也正在改变传统Hadoop集群的管理模式。越来越多的企业开始尝试将Hadoop与Kubernetes结合,通过容器化部署来简化运维工作,提高资源利用率。 此外,隐私保护法规的变化也为Hadoop的应用带来了新挑战。随着《个人信息保护法》等法律法规在全球范围内的实施,企业在处理敏感数据时必须更加谨慎。在这种背景下,如何在保证数据安全的同时实现高效的大数据分析成为了一个亟待解决的问题。一些公司正在探索使用加密技术和联邦学习等方法,以确保数据在传输和处理过程中不被泄露。 另一方面,尽管Hadoop本身仍在持续迭代更新,但社区的关注点已经开始向边缘计算转移。边缘计算能够有效缓解中心化数据中心的压力,特别是在物联网设备数量激增的情况下。通过在靠近数据源的地方进行预处理,不仅可以降低延迟,还能减少带宽消耗。这为Hadoop未来的发展指明了一条新的路径。 总之,虽然Hadoop面临诸多挑战,但凭借其成熟的技术体系和广泛的应用基础,它仍然是许多企业和组织不可或缺的选择。未来,Hadoop可能会与其他新兴技术深度融合,共同推动大数据产业的进步。
2025-03-26 16:15:40
98
冬日暖阳
Docker
...器化技术,可以让你的应用程序及其依赖项打包成一个独立的“容器”,然后轻松地运行在任何支持Docker的环境中。 举个例子吧,假如你想在一个全新的服务器上安装WordPress,传统方法可能是手动下载PHP、MySQL、Nginx等一堆软件,再逐一配置。而如果你用Docker,只需要一条命令就能搞定: bash docker run --name wordpress -d -p 80:80 \ -v /path/to/wordpress:/var/www/html \ -e WORDPRESS_DB_HOST=db \ -e WORDPRESS_DB_USER=root \ -e WORDPRESS_DB_PASSWORD=yourpassword \ wordpress 这段代码的意思是:启动一个名为wordpress的容器,并将本地目录/path/to/wordpress挂载到容器内的/var/www/html路径下,同时设置数据库连接信息。是不是比传统的安装方式简洁多了? 不过,单独使用Docker虽然强大,但对于不熟悉命令行的人来说还是有点门槛。这时候就需要一些辅助工具来帮助我们更好地管理和调度容器了。 --- 3. Portainer 可视化管理Docker的好帮手 Portainer绝对是我最近发现的一颗“宝藏”。它的界面非常直观,几乎不需要学习成本。不管是想看看现有的容器啥情况,还是想启动新的容器,甚至连网络和卷的管理,都只需要动动鼠标拖一拖、点一点就行啦! 比如,如果你想快速创建一个新的MySQL容器,只需要打开Portainer的Web界面,点击“Add Container”,然后填写几个基本信息即可: yaml image: mysql:5.7 name: my-mysql ports: - "3306:3306" volumes: - /data/mysql:/var/lib/mysql environment: MYSQL_ROOT_PASSWORD: rootpassword 这段YAML配置文件描述了一个MySQL容器的基本参数。Portainer会自动帮你解析并生成对应的Docker命令。是不是超方便? 另外,Portainer还有一个特别棒的功能——实时监控。你打开页面就能看到每个“小房子”(就是容器)里用掉的CPU和内存情况,而且还能像穿越空间一样,去访问别的机器上跑着的那些“小房子”(Docker实例)。这种功能对于运维人员来说简直是福音! --- 4. Rancher 企业级的容器编排利器 如果你是一个团队协作的开发者,或者正在运营一个大规模的服务集群,那么Rancher可能是你的最佳选择。它不仅仅是一个Docker管理工具,更是一个完整的容器编排平台。 Rancher的核心优势在于它的“多集群管理”能力。想象一下,你的公司有好几台服务器,分别放在地球上的不同角落,有的在美国,有的在欧洲,还有的在中国。每台服务器上都跑着各种各样的服务,比如网站、数据库啥的。这时候,Rancher就派上用场了!它就像一个超级贴心的小管家,让你不用到处切换界面,在一个地方就能轻松搞定所有服务器和服务的管理工作,省时又省力! 举个例子,如果你想在Rancher中添加一个新的节点,只需要几步操作即可完成: 1. 登录Rancher控制台。 2. 点击“Add Cluster”按钮。 3. 输入目标节点的信息(IP地址、SSH密钥等)。 4. 等待几分钟,Rancher会自动为你安装必要的组件。 一旦节点加入成功,你就可以直接在这个界面上部署应用了。比如,用Kubernetes部署一个Redis集群: bash kubectl create deployment redis --image=redis:alpine kubectl expose deployment redis --type=LoadBalancer --port=6379 虽然这条命令看起来很简单,但它背后实际上涉及到了复杂的调度逻辑和网络配置。而Rancher把这些复杂的事情封装得很好,让我们可以专注于业务本身。 --- 5. Traefik 反向代理与负载均衡的最佳拍档 最后要介绍的是Traefik,这是一个轻量级的反向代理工具,专门用来处理HTTP请求的转发和负载均衡。它最厉害的地方啊,就是能跟Docker完美地融为一体,还能根据容器上的标签,自动调整路由规则呢! 比如说,你有两个服务分别监听在8080和8081端口,现在想通过一个域名访问它们。只需要给这两个容器加上相应的标签: yaml labels: - "traefik.enable=true" - "traefik.http.routers.service1.rule=Host(service1.example.com)" - "traefik.http.services.service1.loadbalancer.server.port=8080" - "traefik.http.routers.service2.rule=Host(service2.example.com)" - "traefik.http.services.service2.loadbalancer.server.port=8081" 这样一来,当用户访问service1.example.com时,Traefik会自动将请求转发到监听8080端口的容器;而访问service2.example.com则会指向8081端口。这种方式不仅高效,还极大地减少了配置的工作量。 --- 6. 总结 找到最适合自己的工具 好了,到这里咱们已经聊了不少关于服务器管理工具的话题。从Docker到Portainer,再到Rancher和Traefik,每一种工具都有其独特的优势和适用场景。 我的建议是,先根据自己的需求确定重点。要是你只想弄个小玩意儿,图个省事儿快点搞起来,那用Docker配个Portainer就完全够用了。但要是你们团队一起干活儿,或者要做大范围的部署,那Rancher这种专业的“老司机工具”就得安排上啦! 当然啦,技术的世界永远没有绝对的答案。其实啊,很多时候你会发现,最适合你的工具不一定是最火的那个,而是那个最合你心意、用起来最顺手的。就像穿鞋一样,别人觉得好看的根本不合脚,而那双不起眼的小众款却让你走得又稳又舒服!所以啊,在用这些工具的时候,别光顾着看,得多动手试试,边用边记下自己的感受和想法,这样你才能真的搞懂它们到底有啥门道! 好了,今天的分享就到这里啦!如果你还有什么问题或者想法,欢迎随时留言交流哦~咱们下次再见啦!
2025-04-16 16:05:13
98
月影清风_
Redis
...构的普及,分布式锁的应用场景愈发广泛。特别是在双十一这样的高并发购物节期间,各大电商平台频繁面临库存超卖、重复下单等问题。例如,今年某知名电商平台在促销活动中因未妥善处理分布式锁机制,导致部分商品短时间内被恶意刷单,造成了数百万的经济损失。这一事件再次提醒我们,分布式锁不仅仅是理论上的技术难题,更是直接影响业务成败的关键环节。 从技术角度来看,Redis作为一种轻量级的分布式缓存解决方案,其性能优势毋庸置疑,但同时也存在一些潜在风险。例如,文章中提到的Lua脚本虽然能够保障原子性,但如果脚本编写不当,可能会引发意外行为。此外,过期时间的设置也需要权衡,过短可能导致频繁重试,增加系统负担;过长则可能造成死锁隐患。这些问题在实际生产环境中往往需要结合具体的业务场景进行调优。 值得注意的是,近年来分布式事务技术逐渐兴起,如Seata框架便试图从更高层次解决跨服务一致性问题。相比传统的分布式锁,这种方案减少了对单一存储引擎的依赖,同时提高了系统的容错能力。然而,它也带来了额外的学习成本和技术复杂度。因此,企业在选择技术方案时,应综合考虑团队技术水平、项目规模以及预算等因素。 此外,随着云原生理念深入人心,越来越多的企业开始采用Kubernetes等容器编排平台来管理分布式应用。在这种背景下,分布式锁的实现方式也迎来了新机遇。例如,可以通过CRD(Custom Resource Definition)自定义资源,将锁的状态信息存储于Etcd等分布式存储系统中,从而实现更灵活、更高效的锁管理。这类创新实践不仅提升了系统的可用性,也为开发者提供了更大的自由度。 总而言之,分布式锁作为分布式系统中的基石技术,其重要性不容忽视。无论是从技术选型还是架构设计的角度出发,我们都应保持敏锐的洞察力,紧跟行业趋势,不断优化现有方案,以适应快速变化的市场需求。
2025-04-22 16:00:29
59
寂静森林
转载文章
...文章上下文中,DDL命令如CREATE DATABASE用于创建新数据库,ALTER TABLE用于修改已有表结构,而DROP DATABASE或DROP TABLE则用来删除数据库或表。 数据操纵语言 (DML) , 数据操纵语言是SQL中负责对数据库中的数据进行添加、删除、更新等操作的部分。在本文中,通过INSERT INTO插入新的记录,UPDATE来更改现有记录的数据,以及DELETE FROM删除指定记录的操作均属于DML范畴。 字符集 (Charset) , 在计算机编程和数据库管理中,字符集是指一个系统支持的一组字符及其编码规则。在MySQL中,创建数据库或表时可以指定默认的字符集,例如“utf8”,确保数据库能够正确存储和处理不同语言环境下的文本信息,避免乱码问题出现。 事务控制语言 (TCL) , 事务控制语言是SQL的一个子集,主要用于管理和控制数据库事务的开始、提交、回滚等操作。在文章提到的MySQL操作中,虽然没有直接给出TCL相关的具体命令,但指出TCL包括了如COMMIT(提交事务)、ROLLBACK(回滚事务)等指令,这些指令对于维护数据库的原子性和一致性至关重要。 数据查询语言 (DQL) , 数据查询语言主要关注从数据库中检索数据,并可能对检索结果进行排序、筛选或分组等操作。在本文示例中,使用SELECT语句实现数据查询即为DQL的具体应用,它可以按照用户指定的条件从数据库表中提取所需数据,并且可以通过JOIN、WHERE、GROUP BY、ORDER BY等子句丰富查询功能。
2024-02-16 12:44:07
545
转载
转载文章
...acle中的一种高级应用,每个版本都在不断的加强,使用DBMS_AQ系统包进行相应的操作,是Oracle的默认组件,只要安装了Oracle数据库就可以使用。使用AQ可以在多个Oracle数据库、Oracle与Java、C等系统中进行数据传输。 下面分步骤说明如何创建Oracle AQ 1. 创建消息负荷payload Oracle AQ中传递的消息被称为有效负荷(payloads),格式可以是用户自定义对象或XMLType或ANYDATA。本例中我们创建一个简单的对象类型用于传递消息。 create type demo_queue_payload_type as object (message varchar2(4000)); 2. 创建队列表 队列表用于存储消息,在入队时自动存入表中,出队时自动删除。使用DBMS_AQADM包进行数据表的创建,只需要写表名,同时设置相应的属性。对于队列需要设置multiple_consumers为false,如果使用发布/订阅模式需要设置为true。 begin dbms_aqadm.create_queue_table( queue_table => 'demo_queue_table', queue_payload_type => 'demo_queue_payload_type', multiple_consumers => false ); end; 执行完后可以查看oracle表中自动生成了demo_queue_table表,可以查看影响子段(含义比较清晰)。 3. 创建队列并启动 创建队列并启动队列: begin dbms_aqadm.create_queue ( queue_name => 'demo_queue', queue_table => 'demo_queue_table' ); dbms_aqadm.start_queue( queue_name => 'demo_queue' ); end; 至此,我们已经创建了队列有效负荷,队列表和队列。可以查看以下系统创建了哪些相关的对象: SELECT object_name, object_type FROM user_objects WHERE object_name != 'DEMO_QUEUE_PAYLOAD_TYPE'; OBJECT_NAME OBJECT_TYPE ------------------------------ --------------- DEMO_QUEUE_TABLE TABLE SYS_C009392 INDEX SYS_LOB0000060502C00030$$ LOB AQ$_DEMO_QUEUE_TABLE_T INDEX AQ$_DEMO_QUEUE_TABLE_I INDEX AQ$_DEMO_QUEUE_TABLE_E QUEUE AQ$DEMO_QUEUE_TABLE VIEW DEMO_QUEUE QUEUE 我们看到一个队列带出了一系列自动生成对象,有些是被后面直接用到的。不过有趣的是,创建了第二个队列。这就是所谓的异常队列(exception queue)。如果AQ无法从我们的队列接收消息,将记录在该异常队列中。 消息多次处理出错等情况会自动转移到异常的队列,对于异常队列如何处理目前笔者还没有找到相应的写法,因为我使用的场景并不要求消息必须一对一的被处理,只要起到通知的作用即可。所以如果消息转移到异常队列,可以执行清空队列表中的数据 delete from demo_queue_table; 4. 队列的停止和删除 如果需要删除或重建可以使用下面的方法进行操作: BEGIN DBMS_AQADM.STOP_QUEUE( queue_name => 'demo_queue' ); DBMS_AQADM.DROP_QUEUE( queue_name => 'demo_queue' ); DBMS_AQADM.DROP_QUEUE_TABLE( queue_table => 'demo_queue_table' ); END; 5. 入队消息 入列操作是一个基本的事务操作(就像往队列表Insert),因此我们需要提交。 declare r_enqueue_options DBMS_AQ.ENQUEUE_OPTIONS_T; r_message_properties DBMS_AQ.MESSAGE_PROPERTIES_T; v_message_handle RAW(16); o_payload demo_queue_payload_type; begin o_payload := demo_queue_payload_type('what is you name ?'); dbms_aq.enqueue( queue_name => 'demo_queue', enqueue_options => r_enqueue_options, message_properties => r_message_properties, payload => o_payload, msgid => v_message_handle ); commit; end; 通过SQL语句查看消息是否正常入队: select from aq$demo_queue_table; select user_data from aq$demo_queue_table; 6. 出队消息 使用Oracle进行出队操作,我没有实验成功(不确定是否和DBMS_OUTPUT的执行权限有关),代码如下,读者可以进行调试: declare r_dequeue_options DBMS_AQ.DEQUEUE_OPTIONS_T; r_message_properties DBMS_AQ.MESSAGE_PROPERTIES_T; v_message_handle RAW(16); o_payload demo_queue_payload_type; begin DBMS_AQ.DEQUEUE( queue_name => 'demo_queue', dequeue_options => r_dequeue_options, message_properties => r_message_properties, payload => o_payload, msgid => v_message_handle ); DBMS_OUTPUT.PUT_LINE( ' Browse message is [' || o_payload.message || ']' ); end; 二、Java使用JMS监听并处理Oracle AQ队列 Java使用JMS进行相应的处理,需要使用Oracle提供的jar,在Oracle安装目录可以找到:在linux中可以使用find命令进行查找,例如 find pwd -name 'jmscommon.jar' 需要的jar为: app/oracle/product/12.1.0/dbhome_1/rdbms/jlib/jmscommon.jar app/oracle/product/12.1.0/dbhome_1/jdbc/lib/ojdbc7.jar app/oracle/product/12.1.0/dbhome_1/jlib/orai18n.jar app/oracle/product/12.1.0/dbhome_1/jlib/jta.jar app/oracle/product/12.1.0/dbhome_1/rdbms/jlib/aqapi_g.jar 1. 创建连接参数类 实际使用时可以把参数信息配置在properties文件中,使用Spring进行注入。 package org.kevin.jms; / @author 李文锴 连接参数信息 / public class JmsConfig { public String username = "ckevin"; public String password = "a111111111"; public String jdbcUrl = "jdbc:oracle:thin:@127.0.0.1:1521:orcl"; public String queueName = "demo_queue"; } 2. 创建消息转换类 因为消息载荷是Oracle数据类型,需要提供一个转换工厂类将Oracle类型转换为Java类型。 package org.kevin.jms; import java.sql.SQLException; import oracle.jdbc.driver.OracleConnection; import oracle.jdbc.internal.OracleTypes; import oracle.jpub.runtime.MutableStruct; import oracle.sql.CustomDatum; import oracle.sql.CustomDatumFactory; import oracle.sql.Datum; import oracle.sql.STRUCT; / @author 李文锴 数据类型转换类 / @SuppressWarnings("deprecation") public class QUEUE_MESSAGE_TYPE implements CustomDatum, CustomDatumFactory { public static final String _SQL_NAME = "QUEUE_MESSAGE_TYPE"; public static final int _SQL_TYPECODE = OracleTypes.STRUCT; MutableStruct _struct; // 12表示字符串 static int[] _sqlType = { 12 }; static CustomDatumFactory[] _factory = new CustomDatumFactory[1]; static final QUEUE_MESSAGE_TYPE _MessageFactory = new QUEUE_MESSAGE_TYPE(); public static CustomDatumFactory getFactory() { return _MessageFactory; } public QUEUE_MESSAGE_TYPE() { _struct = new MutableStruct(new Object[1], _sqlType, _factory); } public Datum toDatum(OracleConnection c) throws SQLException { return _struct.toDatum(c, _SQL_NAME); } public CustomDatum create(Datum d, int sqlType) throws SQLException { if (d == null) return null; QUEUE_MESSAGE_TYPE o = new QUEUE_MESSAGE_TYPE(); o._struct = new MutableStruct((STRUCT) d, _sqlType, _factory); return o; } public String getContent() throws SQLException { return (String) _struct.getAttribute(0); } } 3. 主类进行消息处理 package org.kevin.jms; import java.util.Properties; import javax.jms.Message; import javax.jms.MessageConsumer; import javax.jms.MessageListener; import javax.jms.Queue; import javax.jms.QueueConnection; import javax.jms.QueueConnectionFactory; import javax.jms.Session; import oracle.jms.AQjmsAdtMessage; import oracle.jms.AQjmsDestination; import oracle.jms.AQjmsFactory; import oracle.jms.AQjmsSession; / @author 李文锴 消息处理类 / public class Main { public static void main(String[] args) throws Exception { JmsConfig config = new JmsConfig(); QueueConnectionFactory queueConnectionFactory = AQjmsFactory.getQueueConnectionFactory(config.jdbcUrl, new Properties()); QueueConnection conn = queueConnectionFactory.createQueueConnection(config.username, config.password); AQjmsSession session = (AQjmsSession) conn.createQueueSession(false, Session.AUTO_ACKNOWLEDGE); conn.start(); Queue queue = (AQjmsDestination) session.getQueue(config.username, config.queueName); MessageConsumer consumer = session.createConsumer(queue, null, QUEUE_MESSAGE_TYPE.getFactory(), null, false); consumer.setMessageListener(new MessageListener() { @Override public void onMessage(Message message) { System.out.println("ok"); AQjmsAdtMessage adtMessage = (AQjmsAdtMessage) message; try { QUEUE_MESSAGE_TYPE payload = (QUEUE_MESSAGE_TYPE) adtMessage.getAdtPayload(); System.out.println(payload.getContent()); } catch (Exception e) { e.printStackTrace(); } } }); Thread.sleep(1000000); } } 使用Oracle程序块进行入队操作,在没有启动Java时看到队列表中存在数据。启动Java后,控制台正确的输出的消息;通过Oracle程序块再次写入消息,发现控制台正确处理消息。Java的JMS监听不是立刻进行处理,可能存在几秒中的时间差,时间不等。 三、监控表记录变化通知Java 下面的例子创建一个数据表,然后在表中添加触发器,当数据变化后触发器调用存储过程给Oracle AQ发送消息,然后使用Java JMS对消息进行处理。 1. 创建表 创建student表,包含username和age两个子段,其中username时varchar2类型,age时number类型。 2. 创建存储过程 创建send_aq_msg存储过程,因为存储过程中调用dbms数据包,系统包在存储过程中执行需要进行授权(使用sys用户进行授权): grant execute on dbms_aq to ckevin; 注意存储过程中包含commit语句。 create or replace PROCEDURE send_aq_msg (info IN VARCHAR2) as r_enqueue_options DBMS_AQ.ENQUEUE_OPTIONS_T; r_message_properties DBMS_AQ.MESSAGE_PROPERTIES_T; v_message_handle RAW(16); o_payload demo_queue_payload_type; begin o_payload := demo_queue_payload_type(info); dbms_aq.enqueue( queue_name => 'demo_queue', enqueue_options => r_enqueue_options, message_properties => r_message_properties, payload => o_payload, msgid => v_message_handle ); commit; end send_aq_msg; 3. 创建触发器 在student表中创建触发器,当数据写入或更新时,如果age=18,则进行入队操作。需要调用存储过程发送消息,但触发器中不能包含事物提交语句,因此需要使用pragma autonomous_transaction;声明自由事物: CREATE OR REPLACE TRIGGER STUDENT_TR AFTER INSERT OR UPDATE OF AGE ON STUDENT FOR EACH ROW DECLARE pragma autonomous_transaction; BEGIN if :new.age = 18 then send_aq_msg(:new.username); end if; END; 创建完触发器后向执行插入或更新操作: insert into student (username,age) values ('jack.lee.3k', 18); update student set age=18 where username='jack003'; Java JMS可以正确的处理消息。 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_42309178/article/details/115241521。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-17 14:22:22
140
转载
转载文章
...领域最新的发展动态与应用实践。 近日,随着Web技术的持续创新,诸如Resumable.js、Tus等开源项目在大文件分段上传方面取得了显著进展。Resumable.js充分利用了HTML5的Blob和File API,允许用户在断点续传的基础上上传大文件,并支持跨域请求。而Tus协议作为一项开放标准,为实现可靠的大文件传输提供了规范化的解决方案,它允许多个片段同时上传且能自动处理网络中断后的续传。 此外,对于企业级应用场景,阿里云、腾讯云等国内外大型云服务商也纷纷推出了基于HTTP/3和QUIC协议优化的大文件上传服务。这些服务不仅提升了上传速度,还通过灵活的分块策略确保了数据安全性和完整性,使开发者能够轻松应对大规模数据迁移或备份的需求。 同时,在前端性能优化方面,Webpack 5等现代构建工具引入了更精细的模块分割功能,结合HTTP/2服务器推送技术,可以在一定程度上改善大资源如视频、音频等文件的加载体验,间接影响着用户上传大文件时的整体流畅度。 总之,无论是前端脚本库的不断迭代更新,还是云服务提供商对大文件上传功能的深度优化,都表明在这个数据爆炸的时代,高效稳定地上传大容量文件已成为互联网基础设施建设的重要一环,值得广大开发者持续关注并深入研究。
2023-12-19 09:43:46
128
转载
Spark
...术的快速发展,分布式缓存技术的应用场景愈发广泛。除了Spark之外,Redis、Memcached等工具也在企业级应用中占据了重要地位。最近的一项研究表明,全球分布式缓存市场预计将在未来五年内以超过15%的年复合增长率扩张,这表明越来越多的企业开始意识到数据高效管理的重要性。 例如,亚马逊AWS最近推出了全新的DynamoDB Accelerator(DAX)服务,这是一种托管的缓存解决方案,专为高吞吐量、低延迟的数据库查询设计。DAX能够将响应时间缩短至毫秒级别,这对于实时数据分析和大规模用户交互场景至关重要。这一举措不仅展示了云服务商在提升数据处理效率上的持续投入,也为开发者提供了更多灵活的选择。 与此同时,国内互联网巨头阿里巴巴也宣布对其自主研发的Tair缓存系统进行全面升级。新版Tair支持更高的并发能力,并引入了更先进的冷热数据分离机制,大幅降低了内存占用率。这一改进尤其适用于电商促销活动期间的流量洪峰场景,有效缓解了服务器的压力。 此外,学术界对于分布式缓存的研究也在不断深入。一篇发表于《IEEE Transactions on Parallel and Distributed Systems》的论文提出了一种基于机器学习的缓存预取算法,可以根据历史访问模式预测未来的请求热点,从而提前将数据加载到缓存中。这种方法理论上可以进一步降低查询延迟,但实际部署仍面临模型训练成本高昂等问题。 值得注意的是,尽管分布式缓存带来了诸多便利,但它并非没有挑战。隐私保护、数据一致性以及跨地域同步等问题仍然是业界亟待解决的难题。随着GDPR等法规的出台,企业在使用缓存技术时还需格外注意合规性,确保用户数据的安全与合法使用。在未来,我们或许可以看到更多结合区块链技术的去中心化缓存解决方案,为用户提供更加透明和安全的服务体验。
2025-05-02 15:46:14
82
素颜如水
转载文章
...tvm所需的环境依赖更新到当前虚拟环境中: conda env update -f conda/build-environment.yaml conda env update -n tvmenv -f conda/build-environment.yaml 设置完之后需要重新deactivate/activate对环境进行激活 如果上述命令执行较慢,可以将conda换成国内源(建议使用北京外国语大学的开源镜像站):参考连接 然后修改conda/build-environment.yaml文件: channels:- defaults - anaconda - conda-forge 安装python依赖库: pip install decorator tornado psutil 'xgboost<1.6.0' cloudpickle -i https://pypi.tuna.tsinghua.edu.cn/simple 如果使用onnx或者pytorch作为原始模型,则还需要安装相应的依赖库pip install onnx onnxruntime -i https://pypi.tuna.tsinghua.edu.cn/simplepip install torch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 -i https://pypi.tuna.tsinghua.edu.cn/simple 在当前虚拟环境中添加用于tvm debug的环境变量: conda env config vars set TVM_LOG_DEBUG="ir/transform.cc=1,relay/ir/transform.cc=1" conda env config vars set TVM_LOG_DEBUG="ir/transform.cc=1,relay/ir/transform.cc=1" -n tvmenv 设置完之后需要重新deactivate/activate对环境进行激活是环境变量生效 使用这种方式设置环境变量的好处是:只有当前环境被激活(conda activate)时,自定义设置的环境变量才起作用,当conda deactivate后自定义的环境变量会自动清除。 当然,也可以更简单粗暴一些: export TVM_LOG_DEBUG="ir/transform.cc=1,relay/ir/transform.cc=1" 在当前虚拟环境中添加用于tvm python的环境变量: export TVM_HOME=your tvm pathexport PYTHONPATH=$TVM_HOME/python:${PYTHONPATH} 1.3 编译TVM源码 如果linux上没有安装C/C++的编译环境,需要进行安装: 更新软件apt-get update 安装apt-get install build-essential 安装cmakeapt-get install cmake 在tvm目录下创建build文件夹,并将cmake/config.cmake文件复制到此文件夹中: mkdir buildcp cmake/config.cmake build/ 编辑build/config.cmake进行相关配置: 本次是在cpu上进行测试,因此没有配置cudaset(USE_LLVM ON) line 136set(USE_RELAY_DEBUG ON) line 285(建议先 OFF) 在末尾添加一个cmake的编译宏,确保编译出来的是debug版本set(CMAKE_BUILD_TYPE Debug) 编译tvm,这里开启了16个线程: cd buildcmake ..make -j 16 建议开多个线程,否则编译速度很慢哦 大约5分钟,即可生成我们需要的两个共享链接库:libtvm.so 和 libtvm_runtime.so 1.4 验证安装是否成功 tvm版本验证: import tvmprint(tvm.__version__) pytorch模型验证: from_pytorch.py https://tvm.apache.org/docs/how_to/compile_models/from_pytorch.html ps: TVM supports PyTorch 1.7 and 1.4. Other versions may be unstable.import tvmfrom tvm import relayfrom tvm.contrib.download import download_testdataimport numpy as np PyTorch importsimport torchimport torchvision Load a pretrained PyTorch model -------------------------------model_name = "resnet18"model = getattr(torchvision.models, model_name)(pretrained=True) or model = torchvision.models.resnet18(pretrained=True) or pth_file = 'resnet18-f37072fd.pth' model = torchvision.models.resnet18() ckpt = torch.load(pth_file) model.load_state_dict(ckpt)model = model.eval() We grab the TorchScripted model via tracinginput_shape = [1, 3, 224, 224]input_data = torch.randn(input_shape)scripted_model = torch.jit.trace(model, input_data).eval() Load a test image ----------------- Classic cat example!from PIL import Image img_url = "https://github.com/dmlc/mxnet.js/blob/main/data/cat.png?raw=true" img_path = download_testdata(img_url, "cat.png", module="data")img_path = 'cat.png'img = Image.open(img_path).resize((224, 224)) Preprocess the image and convert to tensorfrom torchvision import transformsmy_preprocess = transforms.Compose([transforms.Resize(256),transforms.CenterCrop(224),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),])img = my_preprocess(img)img = np.expand_dims(img, 0) Import the graph to Relay ------------------------- Convert PyTorch graph to Relay graph. The input name can be arbitrary.input_name = "input0"shape_list = [(input_name, img.shape)]mod, params = relay.frontend.from_pytorch(scripted_model, shape_list) Relay Build ----------- Compile the graph to llvm target with given input specification.target = tvm.target.Target("llvm", host="llvm")dev = tvm.cpu(0)with tvm.transform.PassContext(opt_level=3):lib = relay.build(mod, target=target, params=params) Execute the portable graph on TVM --------------------------------- Now we can try deploying the compiled model on target.from tvm.contrib import graph_executordtype = "float32"m = graph_executor.GraphModule(lib["default"](dev)) Set inputsm.set_input(input_name, tvm.nd.array(img.astype(dtype))) Executem.run() Get outputstvm_output = m.get_output(0) Look up synset name ------------------- Look up prediction top 1 index in 1000 class synset. synset_url = "".join( [ "https://raw.githubusercontent.com/Cadene/", "pretrained-models.pytorch/master/data/", "imagenet_synsets.txt", ] ) synset_name = "imagenet_synsets.txt" synset_path = download_testdata(synset_url, synset_name, module="data") https://raw.githubusercontent.com/Cadene/pretrained-models.pytorch/master/data/imagenet_synsets.txtsynset_path = 'imagenet_synsets.txt'with open(synset_path) as f:synsets = f.readlines()synsets = [x.strip() for x in synsets]splits = [line.split(" ") for line in synsets]key_to_classname = {spl[0]: " ".join(spl[1:]) for spl in splits} class_url = "".join( [ "https://raw.githubusercontent.com/Cadene/", "pretrained-models.pytorch/master/data/", "imagenet_classes.txt", ] ) class_name = "imagenet_classes.txt" class_path = download_testdata(class_url, class_name, module="data") https://raw.githubusercontent.com/Cadene/pretrained-models.pytorch/master/data/imagenet_classes.txtclass_path = 'imagenet_classes.txt'with open(class_path) as f:class_id_to_key = f.readlines()class_id_to_key = [x.strip() for x in class_id_to_key] Get top-1 result for TVMtop1_tvm = np.argmax(tvm_output.numpy()[0])tvm_class_key = class_id_to_key[top1_tvm] Convert input to PyTorch variable and get PyTorch result for comparisonwith torch.no_grad():torch_img = torch.from_numpy(img)output = model(torch_img) Get top-1 result for PyTorchtop1_torch = np.argmax(output.numpy())torch_class_key = class_id_to_key[top1_torch]print("Relay top-1 id: {}, class name: {}".format(top1_tvm, key_to_classname[tvm_class_key]))print("Torch top-1 id: {}, class name: {}".format(top1_torch, key_to_classname[torch_class_key])) 2. 配置vscode 安装两个vscode远程连接所需的两个插件,具体如下图所示: 安装完成之后,在左侧工具栏会出现一个图标,点击图标进行ssh配置: ssh yourname@yourip -A 然后右键选择在当前窗口进行连接: 除此之外,还可以设置免费登录,具体可参考这篇文章。 当然,也可以使用windows本地的WSL2,vscode连接WSL还需要安装WSL和Dev Containers这两个插件。 在服务器端执行code .会自动安装vscode server,安装位置在用户的根目录下: 3. 安装FFI Navigator 由于TVM是由Python和C++混合开发,且大多数的IDE仅支持在同一种语言中查找函数定义,因此对于跨语言的FFI 调用,即Python跳转到C++或者C++跳转到Python,vscode是做不到的。虽然解决这个问题在技术上可能非常具有挑战性,但我们可以通过构建一个与FFI注册码模式匹配并恢复必要信息的项目特定分析器来解决这个问题,FFI Navigator就这样诞生了,作者仍然是陈天奇博士。 安装方式如下: 建议使用源码安装git clone https://github.com/tqchen/ffi-navigator.git 安装python依赖cd ffi-navigator/pythonpython setyp.py install vscode需要安装FFI Navigator插件,直接搜索安装即可(安装到服务器端)。 最后需要在.vscode/setting.json进行配置,内容如下: {"python.analysis.extraPaths": ["${workspaceFolder}/python"], // 添加额外导入路径, 告诉pylance自定义的python库在哪里"ffi_navigator.pythonpath": "/home/liyanpeng/anaconda3/envs/tvmenv/bin/python", // 配置FFI Navigator"python.defaultInterpreterPath": "/home/liyanpeng/anaconda3/envs/tvmenv/bin/python","files.associations": {"type_traits": "cpp","fstream": "cpp","thread": "cpp",".tcc": "cpp"} } 更详细内容可以参考项目链接。 结束语 对于vscode的使用技巧及C/C++相关的配置,这里不再详细的介绍了,感兴趣的小伙伴们可以了解下。 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_42730750/article/details/126723224。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-12 20:04:26
88
转载
Kafka
...为分布式消息中间件的应用场景愈发广泛。特别是在微服务架构日益普及的背景下,Kafka因其高吞吐量、低延迟的特点,成为了企业级数据流处理的首选方案。然而,这也带来了新的挑战。例如,国内某大型电商企业在双十一促销活动中,由于订单峰值激增,其基于Kafka构建的实时交易系统一度面临消息堆积的问题。经过紧急排查,发现主要是由于分区数量不足导致的负载不均。为此,该企业迅速调整了分区策略,并优化了消息生产和消费逻辑,最终顺利应对了高峰流量。 与此同时,国外科技巨头也对Kafka进行了持续改进。近日,Confluent公司宣布推出Kafka 3.6版本,该版本引入了多项新特性,包括增强型事务API、更高效的压缩算法以及对多租户环境的支持。这些更新旨在帮助企业更好地满足复杂业务场景的需求,同时也反映了Kafka社区对于技术创新的不懈追求。 此外,关于Kafka与ZooKeeper的关系,业界普遍关注其未来的演进方向。尽管Confluent正在推动KRaft(Kafka Raft-based Controller)项目,试图完全摆脱ZooKeeper的依赖,但在短期内,ZooKeeper仍将在许多传统部署环境中占据主导地位。因此,对于正在使用Kafka的企业而言,如何平衡现有基础设施与新技术之间的过渡,成为了一个值得深思的问题。 从长远来看,Kafka的成功离不开开源社区的支持。正如Apache软件基金会所倡导的理念,“开放、协作、共享”始终是推动技术创新的核心动力。在未来,随着更多企业和开发者加入到Kafka生态中,我们有理由相信,这一技术将继续保持旺盛的生命力,并在更多领域发挥重要作用。
2025-04-05 15:38:52
96
彩虹之上
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
journalctl -u service_name
- 查看特定服务的日志。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"