前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[分布式服务框架]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Hive
...,为企业的产品优化和服务改进提供精准的数据支撑。 总之,随着大数据技术的不断演进和业务场景的日趋复杂,深入理解和熟练运用Hive窗口函数已经成为现代数据分析师不可或缺的重要技能。持续关注相关领域的最新发展动态和技术研究,将有助于我们更好地挖掘窗口函数的潜力,解决实际工作中的各种挑战。
2023-10-19 10:52:50
472
醉卧沙场
Consul
...。简单说吧,假如你在分布式系统里用了好几个Consul集群,或者同一个集群里的不同服务之间需要复杂的网络沟通,那可能会碰到安全组规则打架的情况。这种事儿经常碰上,比如说你得限制某个服务的流量,但又不想连累别的服务,让它们也跟着受影响。 想象一下,你在管理一个大型的微服务架构,每个微服务都需要与其他几个服务通信,同时还需要对外部世界开放一些端口。嘿,要是安全组的设置搞砸了,可能会导致一些服务根本没法用,或者不小心把不该对外开放的端口给露出来了。 2. 如何识别安全组策略冲突? 识别安全组策略冲突的第一步是了解你的网络配置。大部分时候,你要是想找出奇怪的流量或者错误信息,可以翻一翻Consul的日志文件,再看看网络监控工具里的数据。这样通常能找到问题所在。比如说,你发现某个服务老是想跟另一个不该让它连的服务搞连接,这就像是在说这两个服务之间有点不对劲儿,可能是设定上出了问题。 代码示例: bash 查看Consul的日志文件 tail -f /var/log/consul/consul.log 3. 解决方案 优化安全组策略 一旦发现问题,下一步就是优化安全组策略。这里有几种方法可以考虑: - 最小权限原则:只允许必要的流量通过,减少不必要的开放端口。 - 标签化策略:为不同的服务和服务组定义明确的安全组策略,并使用Consul的标签功能来细化这些策略。 - 动态策略更新:使用Consul的API来动态调整安全组规则,这样可以根据需要快速响应变化。 代码示例: bash 使用Consul API创建一个新的安全组规则 curl --request PUT \ --data '{"Name": "service-a-to-service-b", "Rules": "allow { service \"service-b\" }"}' \ http://localhost:8500/v1/acl/create 4. 实践案例分析 假设我们有一个由三个服务组成的微服务架构:Service A、Service B 和 Service C。Service A 需要访问 Service B 的数据,而 Service C 则需要访问外部API。要是咱们不分青红皂白地把所有服务之间的通道都打开了,那可就等于给黑客们敞开了大门,安全风险肯定会蹭蹭往上涨! 通过采用上述策略,我们可以: - 仅允许 Service A 访问 Service B,并使用标签来限制访问范围。 - 为 Service C 设置独立的安全组,确保它只能访问必要的外部资源。 代码示例: bash 创建用于Service A到Service B的ACL策略 curl --request PUT \ --data '{"Name": "service-a-to-service-b", "Description": "Allow Service A to access Service B", "Rules": "service \"service-b\" { policy = \"write\" }"}' \ http://localhost:8500/v1/acl/create 5. 总结与反思 处理安全组策略冲突是一个不断学习和适应的过程。随着系统的增长和技术的发展,新的挑战会不断出现。重要的是保持灵活性,不断测试和调整你的策略,以确保系统的安全性与效率。 希望这篇文章能帮助你更好地理解和解决Consul中的安全组策略冲突问题。如果你有任何疑问或想要分享自己的经验,请随时留言讨论! --- 这就是今天的全部内容啦!希望我的分享对你有所帮助。记得,技术的世界里没有绝对正确的方法,多尝试、多实践才是王道!
2024-11-15 15:49:46
72
心灵驿站
PostgreSQL
...对数据保护和冗余,云服务商如AWS在其RDS for PostgreSQL服务中提供了自动备份、多可用区部署等功能,有效防止了因硬件故障引发的数据丢失风险。这些实例表明,在实际运维过程中,结合最新的技术动态、遵循最佳实践,并合理利用云服务特性,是保障PostgreSQL等关系型数据库高效稳定运行的关键所在。
2023-12-22 15:51:48
233
海阔天空
SpringBoot
...? 一、引言 随着微服务架构的发展,消息队列已经成为分布式系统中的重要组件之一。RocketMQ这款消息中间件,性能超群、坚如磐石,早已成为分布式系统开发领域的“香饽饽”,被各种各样的项目团队热烈追捧并广泛应用着。这篇东西咱们要掰开了揉碎了讲讲怎么用Spring Boot给RocketMQ发生产者消息,而且还要重点聊聊万一消息发送失败,在进行重试时怎么巧妙避免再次把消息送到同一条Broker上。 二、背景介绍 在使用RocketMQ进行消息发送时,通常情况下我们会设置一个重试机制,以应对可能出现的各种网络、服务器等不可控因素导致的消息发送失败。但是,如果不加把劲儿控制一下,这种重试机制就很可能像一群疯狂的粉丝不断涌向同一个明星那样,让同一台Broker承受不住压力,这样一来,严重的性能问题也就随之爆发喽。所以呢,我们得在重试这套流程里头动点脑筋,加点策略进去。这样一来,当生产者小哥遇到状况失败了,就能尽可能地绕开那些已经闹情绪的Broker家伙,不让它们再添乱。 三、解决方案 为了解决这个问题,我们可以采用以下两种方案: 1. 设置全局的Broker列表 在创建Producer实例时,我们可以指定一个包含所有Broker地址的列表,然后在每次重试时随机选择一个Broker进行发送。这样可以有效地避免过多的请求集中在某一台Broker上,从而降低对Broker的压力。以下是具体的代码实现: java List brokers = Arrays.asList("broker-a", "broker-b", "broker-c"); Set failedBrokers = new HashSet<>(); public void sendMessage(String topic, String body) { for (int i = 0; i < RETRY_TIMES; i++) { Random random = new Random(); String broker = brokers.get(random.nextInt(brokers.size())); if (!failedBrokers.contains(broker)) { try { producer.send(topic, new MessageQueue(topic, broker, 0), new DefaultMQProducer.SendResultHandler() { @Override public void onSuccess(SendResult sendResult) { System.out.println("Message send success"); } @Override public void onException(Throwable e) { System.out.println("Message send exception: " + e.getMessage()); failedBrokers.add(broker); } }); return; } catch (Exception e) { System.out.println("Message send exception: " + e.getMessage()); failedBrokers.add(broker); } } } System.out.println("Message send fail after retrying"); } 在上述代码中,我们首先定义了一个包含所有Broker地址的列表brokers,然后在每次重试时随机选择一个Broker进行发送。如果该Broker在之前已经出现过错误,则将其添加到已失败的Broker集合中。在下一次重试时,我们不再选择这个Broker。 2. 利用RocketMQ提供的重试机制 除了手动设置Broker列表之外,我们还可以利用RocketMQ自带的重试机制来达到相同的效果。简单来说,我们可以搞个“RetryMessageListener”这个小家伙来监听一下,它的任务就是专门盯着RocketMQ发出的消息。一旦消息发送失败,它就负责把这些失败的消息重新拉出来再试一次,确保消息能顺利送达。在用这个监听器的时候,我们就能知道当前的Broker是不是还在重试列表里混呢。如果发现它在的话,那咱们就麻利地把它从列表里揪出来;要是不是,那就继续让它“回炉重造”,执行重试操作呗。以下是具体的代码实现: java public class RetryMessageListener implements MQListenerMessageConsumeOrderlyCallback { private Set retryBrokers = new HashSet<>(); private List brokers = Arrays.asList("broker-a", "broker-b", "broker-c"); @Override public ConsumeConcurrentlyStatus consumeMessage(List msgs, ConsumeConcurrentlyContext context) { for (String broker : brokers) { if (retryBrokers.contains(broker)) { retryBrokers.remove(broker); } } for (String broker : retryBrokers) { try { producer.send(msgs.get(0).getTopic(), new MessageQueue(msgs.get(0).getTopic(), broker, 0),
2023-06-16 23:16:50
40
梦幻星空_t
ClickHouse
...lickHouse在分布式表查询中可能出现的一种错误提示。当集群配置里某个节点突然抽风,无法正常访问了,或者配置信息出了点岔子,ClickHouse在试图跟这个节点进行交流、执行查询操作时,就会毫不犹豫地抛出一个异常,就像是在说:“喂喂喂,这个节点好像有点问题,我搞不定它啦!”简而言之,这意味着ClickHouse找不到集群配置中指定的节点。 2. 原因剖析 2.1 配置问题 首先,最常见的原因是集群配置文件(如 config.xml 或者 ZooKeeper 中的配置)中的节点地址不正确或已失效。例如: xml true node1.example.com 9000 node2.wrong-address.com 9000 2.2 网络问题 其次,网络连接问题也可能导致此异常。比如,假如在刚才那个例子里面,node2.example.com 其实是在线状态的,但是呢,因为网络抽风啊,或者其他一些乱七八糟的原因,导致ClickHouse没法跟它顺利牵手,建立连接,这时候呀,就会蹦出一个“NodeNotFoundException”。 2.3 节点状态问题 此外,如果集群内的节点由于重启、故障等原因尚未完全启动,其服务并未处于可响应状态,此时进行查询同样可能抛出此异常。 3. 解决方案与实践 3.1 检查并修正配置 仔细检查集群配置文件,确保每个节点的主机名和端口号都是准确无误的。如发现问题,立即修正,并重新加载配置。 bash $ sudo service clickhouse-server restart 重启ClickHouse以应用新的配置 3.2 确保网络通畅 确认集群内各节点间的网络连接正常,可以通过简单的ping命令测试。同时,排查防火墙设置是否阻止了必要的通信。 3.3 监控节点状态 对于因节点自身问题引发的异常,可通过监控系统或日志来了解节点的状态。确保所有节点都运行稳定且可以对外提供服务。 4. 总结与思考 面对"NodeNotFoundException:节点未找到异常"这样的问题,我们需要像侦探一样,从配置、网络以及节点自身等多个维度进行细致排查。在日常的维护工作中,咱们得把一套完善的监控系统给搭建起来,这样才能够随时了解咱集群里每一个小节点的状态,这可是非常重要的一环!与此同时,对ClickHouse集群配置的理解与熟练掌握,也是避免此类问题的关键所在。毕竟,甭管啥工具多牛掰,都得靠我们在实际操作中不断摸索、学习和改进,才能让它发挥出最大的威力,达到顶呱呱的效果。
2024-01-03 10:20:08
524
桃李春风一杯酒
ZooKeeper
一、引言 在分布式系统中,ZooKeeper是一个非常重要的组件,它可以帮助我们解决诸如数据一致性、服务发现等问题。然而,在实际使用过程中,我们可能会遇到各种各样的配置问题。这些问题可能会影响我们的系统性能,甚至导致系统崩溃。这篇文章,咱们来唠唠嗑,在用ZooKeeper的过程中,经常会遇到哪些让人挠头的配置问题,还有配套的解决妙招,我都一五一十地给大家伙儿详细介绍介绍。 二、ZooKeeper的基本概念 首先,我们需要了解什么是ZooKeeper。说白了,ZooKeeper就是个超级实用的分布式开源小帮手,专门用来存储和打理各种元数据信息。它可以用来提供统一命名空间、协调分布式任务、设置全局同步点等功能。 三、常见配置问题及解决方案 1. Zookeeper服务器端口冲突 Zookeeper服务器默认监听2181端口,如果在同一台机器上启动多个Zookeeper服务器,它们将会使用同一个端口,从而引发冲突。要解决这个问题,你得动手改一下zookeeper.conf这个配置文件,把里面的clientPort参数调一调。具体来说呢,就是给每台Zookeeper服务器都分配一个独一无二的端口号,这样就不会混淆啦。 例如: ini clientPort=2182 2. Zookeeper配置文件路径错误 Zookeeper启动时需要读取zookeeper.conf配置文件,如果这个文件的位置不正确,就会导致Zookeeper无法正常启动。当你启动Zookeeper时,有个小窍门可以解决这个问题,那就是通过命令行这个“神秘通道”,给它指明配置文件的具体藏身之处。就像是告诉Zookeeper:“嗨,伙计,你的‘装备清单’在那个位置,记得先去看看!” 例如: bash ./zkServer.sh start -config /path/to/zookeeper/conf/zookeeper.conf 3. Zookeeper集群配置错误 在部署Zookeeper集群时,如果没有正确地配置myid、syncLimit等参数,就可能导致Zookeeper集群无法正常工作。解决这个问题的方法是在zookeeper.conf文件中正确地配置这些参数。 例如: ini server.1=localhost:2888:3888 server.2=localhost:2889:3889 server.3=localhost:2890:3890 myid=1 syncLimit=5 4. Zookeeper日志级别配置错误 Zookeeper的日志信息可以分为debug、info、warn、error四个级别。如果我们错误地设置了日志级别,就可能无法看到有用的信息。解决这个问题的方法是在zookeeper.conf文件中正确地配置logLevel参数。 例如: ini logLevel=INFO 四、总结 总的来说,虽然Zookeeper是一款强大的工具,但在使用过程中我们也需要注意一些配置问题。只要我们掌握了Zookeeper的正确设置窍门,这些问题就能轻松绕过,这样一来,咱们就能更溜地用好Zookeeper这个工具了。当然啦,这仅仅是个入门级别的小科普,实际上还有超多其他隐藏的设置选项和实用技巧亟待我们去挖掘和掌握~
2023-08-10 18:57:38
167
草原牧歌-t
Etcd
...目的核心组件,是一个分布式的、可靠的键值存储系统,用于服务发现、配置共享及分布式锁等场景。然而,在实际操作中,我们可能会遇到“Failed to join etcd cluster because of network issues or firewall restrictions”这样的问题,本文将深入探讨这个问题及其解决之道,并通过实例代码来帮助大家理解和处理此类故障。 1. 网络问题导致Etcd集群加入失败 1.1 网络连通性问题 在尝试将一个新的节点加入到etcd集群时,首要条件是各个节点间必须保持良好的网络连接。如果由于网络延迟、丢包或者完全断开等问题,新节点无法与已有集群建立稳定通信,就会出现“Failed to join”的错误。 例如,假设有两个已经形成集群的etcd节点(node1和node2),我们尝试将node3加入: bash ETCDCTL_API=3 etcdctl --endpoints=https://node1:2379,https://node2:2379 member add node3 \ --peer-urls=https://node3:2380 如果因网络原因node3无法访问node1或node2,上述命令将失败。 1.2 解决策略 - 检查并修复基础网络设施,确保所有节点间的网络连通性。 - 验证端口开放情况,etcd通常使用2379(客户端接口)和2380(成员间通信)这两个端口,确保它们在所有节点上都是开放的。 2. 防火墙限制导致的加入失败 2.1 防火墙规则影响 防火墙可能会阻止必要的端口通信,从而导致新的节点无法成功加入etcd集群。比如,想象一下我们的防火墙没给2380端口“放行”,就算网络本身一路绿灯,畅通无阻,节点也照样无法通过这个端口和其他集群的伙伴们进行交流沟通。 2.2 解决策略 示例:临时开启防火墙端口(以Ubuntu系统为例) bash sudo ufw allow 2379/tcp sudo ufw allow 2380/tcp sudo ufw reload 以上命令分别允许了2379和2380端口的TCP流量,并重新加载了防火墙规则。 对于生产环境,请务必根据实际情况持久化这些防火墙规则,以免重启后失效。 3. 探讨与思考 在处理这类问题时,我们需要像侦探一样层层剥茧,从最基础的网络连通性检查开始,逐步排查至更具体的问题点。在这个过程中,我们要善于运用各种工具进行测试验证,比如ping、telnet、nc等,甚至可以直接查看防火墙日志以获取更精确的错误信息。 同时,我们也应认识到,任何分布式系统的稳定性都离不开对基础设施的精细化管理和维护。特别是在大规模安装部署像etcd这种关键组件的时候,咱们可得把网络环境搞得结结实实、稳稳当当的,确保它表现得既强壮又靠谱,这样才能防止一不留神的小差错引发一连串的大麻烦。 总结来说,面对"Failed to join etcd cluster because of network issues or firewall restrictions"这样的问题,我们首先要理解其背后的根本原因,然后采取相应的策略去解决。其实这一切的背后,咱们这些技术人员就像是在解谜探险一样,对那些错综复杂的系统紧追不舍,不断摸索、持续优化。我们可都是“细节控”,对每一丁点儿的环节都精打细算,用专业的素养和严谨的态度把关着每一个微小的部分。
2023-08-29 20:26:10
712
寂静森林
Nacos
...集中式管理应用配置的服务,它为分布式系统中的服务实例提供统一的配置管理、分发和更新功能。在本文语境中,Nacos就是这样一个配置中心,能够帮助开发者更方便地管理和控制微服务架构下的各种配置信息。 数据ID(dataId) , 在Nacos配置管理中,每个配置项都有一个唯一标识符,即dataId。这个名词代表了存储在配置中心的特定配置资源的身份标签,如“gatewayserver-dev-$ server.env .yaml”,其中包含了配置文件的名称以及可能的环境变量占位符,使得服务可以根据不同的运行环境加载对应的配置内容。 命名与发现解决方案 , 这是一种在分布式系统中解决服务注册与发现问题的技术方案。在Nacos中,除了作为配置中心之外,它还提供了服务注册与发现的功能,允许服务实例在启动时向Nacos注册自己的网络地址和服务元数据,同时其他服务可以通过Nacos动态查找并连接到所需的依赖服务,从而实现系统的高可用性和可扩展性。 环境变量 , 环境变量是操作系统或程序中预定义的一类变量,用于存储与特定环境相关的信息,如服务器IP、端口、运行模式等。在本文讨论的场景下,\ server.env\ 可能是一个代表当前服务运行环境的环境变量,当Nacos尝试读取配置文件时,会根据实际设置的环境变量值替换掉\ $ server.env \ 部分,加载对应环境的正确配置。
2024-01-12 08:53:35
172
夜色朦胧_t
RabbitMQ
...MQ采用了超级酷炫的分布式布局,这意味着它可以在多个不同的地方同时运转起来。这样一来,不仅能确保服务高度可用,即使某个节点挂了,其它节点也能接着干,而且随着业务量的增长,可以轻松扩展、不断“长大”,就像小兔子一样活力满满地奔跑在各个服务器之间。 三、RabbitMQ中的消息丢失问题 RabbitMQ中消息丢失的主要原因有两个:一是网络故障,二是应用程序错误。当网络抽风的时候,信息可能会因为线路突然断了、路由器罢工等问题,悄无声息地就给弄丢了。当应用程序出错的时候,假如消息被消费者无情拒绝了,那么这条消息就会被直接抛弃掉,就像超市里卖不出去的过期食品一样。 四、如何处理RabbitMQ中的消息丢失问题? 为了防止消息丢失,我们可以采取以下几种措施: 1. 设置持久化存储 通过设置消息的持久化属性,使得即使在RabbitMQ进程崩溃后,消息也不会丢失。不过,这同时也意味着会有额外的花费蹦出来,所以呢,咱们得根据实际情况,掂量掂量是否值得开启这项功能。 csharp // 持久化存储 channel.basicPublish(exchangeName, routingKey, properties, body); 2. 设置自动确认 在RabbitMQ中,每一条消息都会被标记为未确认。如果生产者不主动确认,那么RabbitMQ会假设消息已经被成功地消费。如果消费者出现异常,那么这些未确认的消息就会堆积起来,导致消息丢失。所以呢,我们得搞个自动确认机制,就是在收到消息那一刻立马给它确认一下。这样一来,哪怕消费者突然出了点小状况,消息也不会莫名其妙地消失啦。 java // 自动确认 channel.basicAck(deliveryTag, false); 3. 使用死信队列 死信队列是指那些长时间无人处理的消息。当咱们无法确定一条消息是否被妥妥地处理了,不妨把这条消息暂时挪到“死信队列”这个小角落里待会儿。然后,我们可以时不时地瞅瞅那个死信队列,看看这些消息现在是个啥情况,再给它们一次复活的机会,重新试着处理一下。 sql // 创建死信队列 channel.queueDeclare(queueName, true, false, false, null); // 发送消息到死信队列 channel.basicPublish(exchangeName, routingKey, new AMQP.BasicProperties.Builder() .durable(true) .build(), body); 五、结论 在实际应用中,我们应该综合考虑各种因素,选择合适的解决方案来处理RabbitMQ中的消息丢失问题。同时,我们也应该注重代码的质量,确保应用程序的健壮性和稳定性。只有这样,我们才能充分利用RabbitMQ的优势,构建出稳定、高效的分布式系统。
2023-09-12 19:28:27
169
素颜如水-t
Greenplum
...决方案,凭借其卓越的分布式处理能力广受青睐。不过在实际用起来的时候,要是数据库连接池没配置好,我们可能会遇到些头疼的问题,比如连接资源不够用啊,或者发生泄漏的情况。这不仅会严重影响系统的性能和稳定性,还可能导致无法预测的应用程序行为。这篇文咱可是要实实在在地深挖这个问题,而且我还会手把手地带你见识一下,如何巧妙地调整和优化Greenplum数据库连接池的设置,全程配合实例代码演示,包你一看就懂! 2. 数据库连接池及其重要性 数据库连接池是一种复用数据库连接的技术,以避免频繁创建和销毁连接带来的开销。在Greenplum环境下,合理的连接池设置可以有效提高并发处理能力和系统资源利用率。但是,你晓得吧,假如配置整得不合适,比方说一开始同时能连的数太少,或者限制的最大连接数设得太低,再或者没把连接关好,就很可能出问题。可能会搞得连接资源都被耗尽了,或者悄悄泄漏掉,这就麻烦大了。 3. 连接资源不足的问题及解决办法 例子1:初始连接数设置过小 java // 一个错误的初始化连接池示例,初始连接数设置为1 HikariConfig config = new HikariConfig(); config.setJdbcUrl("jdbc:postgresql://greenplum_host:port/database"); config.setUsername("username"); config.setPassword("password"); config.setMaximumPoolSize(50); // 最大连接数为50 config.setMinimumIdle(1); // 错误配置:初始连接数仅为1 HikariDataSource ds = new HikariDataSource(config); 当并发请求量较大时,初始连接数过小会导致大量线程等待获取连接,从而引发性能瓶颈。修正方法是适当增加minimumIdle参数,使之与系统并发需求匹配: java config.setMinimumIdle(10); // 更改为适当的初始连接数 例子2:最大连接数限制过低 若最大连接数设置过低,则在高并发场景下,即使有空闲连接也无法满足新的请求,导致连接资源不足。应当根据系统负载和服务器硬件条件动态调整最大连接数。 4. 连接泄漏的问题及预防策略 例子3:未正确关闭数据库连接 java try (Connection conn = ds.getConnection()) { Statement stmt = conn.createStatement(); ResultSet rs = stmt.executeQuery("SELECT FROM large_table"); // ... 处理结果集后忘记关闭rs和stmt } catch (SQLException e) { e.printStackTrace(); } 上述代码中,查询执行完毕后并未正确关闭Statement和ResultSet,这可能会导致数据库连接无法释放回连接池,进而造成连接泄漏。正确的做法是在finally块中确保所有资源均被关闭: java try (Connection conn = ds.getConnection(); Statement stmt = conn.createStatement(); ResultSet rs = stmt.executeQuery("SELECT FROM large_table")) { // ... 处理结果集 } catch (SQLException e) { e.printStackTrace(); } finally { // 在实际使用中,Java 7+的try-with-resources已经自动处理了这些关闭操作 } 此外,定期检查和监控连接状态,利用连接超时机制以及合理配置连接生命周期也是防止连接泄漏的重要手段。 5. 结论 配置和管理好Greenplum数据库连接池是保障系统稳定高效运行的关键一环。想要真正避免那些由于配置不当引发的资源短缺或泄露问题,就得实实在在地深入理解并时刻留意资源分配与释放的操作流程。只有这样,才能确保资源管理万无一失,妥妥的!在实际操作中,咱们得不断盯着、琢磨并灵活调整连接池的各项参数,让它们更接地气地符合咱们应用程序的真实需求和环境的变动,这样一来,才能让Greenplum火力全开,发挥出最大的效能。
2023-09-27 23:43:49
446
柳暗花明又一村
MemCache
...2年,一项针对大规模分布式系统中缓存管理问题的研究发现,结合LFU与LRU的变种——TinyLFU算法,在兼顾空间效率与命中率方面表现出显著优势。TinyLFU通过引入“过滤器”机制来预测数据未来访问频率,从而减少了误淘汰热点数据的概率。 同时,云服务提供商如Amazon ElastiCache已在其Redis集群版中实现了多种智能淘汰策略,包括但不限于LRU、TTL以及一种称为“volatile-lru”的混合策略,该策略允许为每个键独立设置过期时间,并在缓存满载时优先淘汰最近最少使用且已过期的数据。 此外,业界对缓存技术的探索并未止步于传统内存数据库,而是开始关注新型存储介质的应用,如Intel Optane持久性内存。这种新型内存能够在断电后仍保留数据,提供了更大规模、更持久的缓存解决方案,有助于应对大数据时代下复杂业务场景带来的挑战。 综上所述,面对不断发展的应用场景和技术环境,深入理解和灵活运用各种缓存策略,适时引入先进技术和硬件支持,对于提升系统性能、降低延迟具有重要意义,也是每一位开发者和架构师持续关注和学习的方向。
2023-09-04 10:56:10
109
凌波微步
SeaTunnel
...也能提供超棒的支持和服务,让大家用起来得心应手,毫无压力。 2. 使用SeaTunnel处理流式数据 2.1 流式数据源接入 首先,我们来看如何使用SeaTunnel从Kafka获取流式数据。以下是一个配置示例: yaml source: type: kafka09 bootstrapServers: "localhost:9092" topic: "your-topic" groupId: "sea_tunnel_group" 上述代码片段定义了一个Kafka数据源,SeaTunnel会以消费者的身份订阅指定主题并持续读取流式数据。 2.2 数据处理与转换 SeaTunnel支持多种数据转换操作,例如清洗、过滤、聚合等。以下是一个简单的字段筛选和转换示例: yaml transform: - type: select fields: ["field1", "field2"] - type: expression script: "field3 = field1 + field2" 这段配置表示仅选择field1和field2字段,并进行一个简单的字段运算,生成新的field3。 2.3 数据写入目标系统 处理后的数据可以被发送到任意目标系统,比如另一个Kafka主题或HDFS: yaml sink: type: kafka09 bootstrapServers: "localhost:9092" topic: "output-topic" 或者 yaml sink: type: hdfs path: "hdfs://namenode:8020/output/path" 3. 实现 ExactlyOnce 语义 ExactlyOnce 语义是指在分布式系统中,每条消息只被精确地处理一次,即使在故障恢复后也是如此。在SeaTunnel这个工具里头,我们能够实现这个目标,靠的是把Flink或者其他那些支持“ExactlyOnce”这种严谨语义的计算引擎,与具有事务处理功能的数据源和目标巧妙地搭配起来。就像是玩拼图一样,把这些组件严丝合缝地对接起来,确保数据的精准无误传输。 例如,在与Apache Flink整合时,SeaTunnel可以利用Flink的Checkpoint机制来保证状态一致性及ExactlyOnce语义。同时,SeaTunnel还有个很厉害的功能,就是针对那些支持事务处理的数据源,比如更新到Kafka 0.11及以上版本的,还有目标端如Kafka、能进行事务写入的HDFS,它都能联手计算引擎,确保从头到尾,数据“零丢失零重复”的精准传输,真正做到端到端的ExactlyOnce保证。就像一个超级快递员,确保你的每一份重要数据都能安全无误地送达目的地。 在配置中,开启Flink Checkpoint功能,确保在处理过程中遇到故障时可以从检查点恢复并继续处理,避免数据丢失或重复: yaml engine: type: flink checkpoint: interval: 60s mode: exactly_once 总结来说,借助SeaTunnel灵活强大的流式数据处理能力,结合支持ExactlyOnce语义的计算引擎和其他组件,我们完全可以在实际业务场景中实现高可靠、无重复的数据处理流程。在这一路的“探险”中,我们可不只是见识到了SeaTunnel那实实在在的实用性以及它强大的威力,更是亲身感受到了它给开发者们带来的那种省心省力、安心靠谱的舒爽体验。而随着技术和需求的不断演进,SeaTunnel也将在未来持续优化和完善,为广大用户提供更优质的服务。
2023-05-22 10:28:27
114
夜色朦胧
Flink
...e Flink流处理框架中,任务可靠性是指系统在遇到故障、节点失效等异常情况时,能够确保数据流的正确处理和状态的一致性,通过冗余机制、故障恢复策略(如重试机制)以及checkpoint机制来防止数据丢失或重复计算,从而保证任务持续稳定执行的能力。 Checkpoint机制 , Checkpoint是Flink为实现容错和高可靠性而设计的一种分布式快照技术。它周期性地将流处理作业的状态保存到持久化存储中,当发生故障时,可以从最近一个成功的checkpoint点重新启动作业,并基于该状态继续处理数据流,以此来保证即使在出现故障的情况下,系统的状态也能得到准确恢复,进而实现 Exactly-Once 的语义处理。 重试策略(Retry Strategy) , 在Flink中,重试策略是指当任务执行失败后,系统根据预定义的规则决定是否以及如何重新执行该任务的机制。例如,通过ExecutionConfig.setRetryStrategy()方法可以设置任务的最大重试次数、重试间隔等待时间等参数,以应对网络波动、硬件故障等非预期问题导致的任务执行失败,从而增强整个流处理任务的鲁棒性和稳定性。
2023-09-18 16:21:05
414
雪域高原-t
Golang
...种并发处理模型在现代分布式系统和云计算环境中具有极高的实用价值。近期,Google Cloud团队在其开源项目中大量运用了Go的并发特性来优化服务性能与稳定性,再次验证了Go语言在处理高并发、网络密集型任务时的优势。 例如,在2022年的一项技术分享中,Google详细介绍了如何借助Go的channel机制设计微服务间的高效通信协议,通过减少不必要的锁竞争和数据复制,显著提升了系统的整体吞吐量。同时,sync.WaitGroup的应用也在大规模并行计算场景下得到体现,如在Kubernetes等容器编排系统中,WaitGroup用于确保所有Pod成功启动或结束任务后再进行下一步操作,从而保障了集群的稳定运行。 此外,学术界对Go的并发模型也有深度研究,《Communicating Sequential Processes》一书中的理论基础为Go的设计提供了灵感,其channel设计理念源自CSP(Communicating Sequential Processes)理论,强调通过通信共享内存而非通过共享内存进行通信,这一原则有效降低了并发编程的复杂度,减少了竞态条件的发生。 因此,无论是在实时应用开发、云原生架构设计还是学术研究领域,深入理解并掌握Go语言的并发特性和同步手段都显得至关重要,它们不仅有助于开发者应对日益复杂的并发挑战,更能在未来软件工程实践中发挥关键作用。
2023-01-15 09:10:13
587
海阔天空-t
Apache Lucene
...控制策略,如乐观锁、分布式锁等,确保在多线程环境下,也能正确无误地处理文档添加与更新操作。 总结起来,DocumentAlreadyExistsException在Apache Lucene中扮演着守护者角色,提醒我们在构建高效、精准的全文搜索服务的同时,也要注意维护数据的一致性与完整性。如果咱们能全面摸清这个异常状况,并且妥善应对处理,那么咱们的应用程序就会变得更皮实耐造,这样一来,用户体验也绝对会蹭蹭地往上提升,变得超赞!
2023-01-30 18:34:51
458
昨夜星辰昨夜风
Impala
...够直接与Hadoop分布式文件系统(HDFS)交互,同时也支持从其他数据源如CSV、Parquet、ORC等进行数据导入。以下是使用Impala导入CSV文件的一个示例: sql -- 假设我们有一个名为mydata.csv的文件在HDFS上 CREATE TABLE my_table ( id INT, name STRING, value FLOAT ) ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' STORED AS TEXTFILE; -- 使用Impala导入CSV数据 LOAD DATA INPATH '/user/hadoop/mydata.csv' INTO TABLE my_table; 这个命令会创建一个新表,并从指定路径读取CSV数据,将其结构映射到表的定义上。 三、 2. 数据导出 灵活格式与定制输出Impala提供了多种方式来导出查询结果,包括CSV、JSON、AVRO等常见格式。例如,下面的代码展示了如何导出查询结果到CSV文件: sql -- 查询结果导出到CSV SELECT FROM my_table INTO OUTFILE '/tmp/output.csv' LINES TERMINATED BY '\n'; 这个命令将当前查询的所有结果写入到本地文件/tmp/output.csv,每一行数据以换行符分隔。 四、 3. 性能优化 数据压缩与分区为了提高数据导入和导出的效率,Impala支持压缩数据和使用分区。比如,我们可以使用ADD FILEFORMAT和ADD PARTITION来优化存储: sql -- 创建一个压缩的Parquet表 CREATE EXTERNAL TABLE compressed_table ( ... ) PARTITIONED BY (date DATE, region STRING) STORED AS PARQUET COMPRESSION 'SNAPPY'; -- 分区数据导入 LOAD DATA INPATH '/user/hadoop/mydata.parquet' INTO TABLE compressed_table PARTITION (date='2022-01-01', region='US'); 这样,Impala在读取和写入时会利用压缩减少I/O开销,同时通过分区可以按需处理特定部分的数据,提升性能。 五、4. 结合Power Pivot Excel中的数据魔法 对于需要将Impala数据快速引入Excel的场景,Power Pivot是一个便捷的选择。首先,确保你有Impala的连接权限,然后在Excel中使用Power Query(原名Microsoft Query)来连接: 1. 新建Power Query工作表 -> 获取数据 -> 选择“From Other Sources” -> “From Impala” 2. 输入Impala服务器地址、数据库和查询,点击“Connect” 这将允许用户在Excel中直接操作Impala数据,进行数据分析和可视化,而无需将数据下载到本地。 六、结论 总的来说,Impala以其高效的性能和易于使用的接口,使得数据的导入和导出变得轻而易举。数据分析师啊,他们就像是烹饪大厨,把数据这个大锅铲得溜溜转。他们巧妙地运用那些像配方一样的数据存储格式和分区技巧,把这些数字玩得服服帖帖。然后,他们就能一心一意去挖掘那些能让人眼前一亮的业务秘密,而不是整天跟Excel这种工具磨磨唧唧的搞技术活儿。你知道吗,不同的工具就像超能力一样,各有各的绝活儿。要想工作起来得心应手,关键就在于你得清楚它们的个性,然后灵活地用起来,就像打游戏一样,选对技能才能大杀四方,提高效率!
2024-04-02 10:35:23
417
百转千回
SeaTunnel
...准确性。 大数据存储服务 , 大数据存储服务是一种针对大规模数据集设计的高效、可靠、可扩展的存储解决方案,如文中提到的HDFS(Hadoop Distributed File System)和云服务商提供的对象存储服务(如AWS S3、阿里云OSS等)。这类服务通常具备分布式架构,支持PB级数据存储、高并发访问及容错能力,适用于大数据分析、备份恢复等多种场景,能有效满足企业对海量数据的存储需求。
2023-04-08 13:11:14
115
雪落无痕
RocketMQ
...消息速度优化探讨 在分布式系统中,消息队列作为解耦、异步处理的重要组件,其性能表现直接影响到整个系统的稳定性和效率。RocketMQ,这款阿里倾力打造并慷慨开源的高性能、高可用的消息中间件,已经在各种各样的业务场景里遍地开花,被大家伙儿广泛使使劲儿,实实在在派上了大用场。不过,有时候咱们可能会碰上这么个情况:RocketMQ这家伙生产消息的速度突然就慢下来了。这篇东西呢,咱就打算围着这个话题热热闹闹地聊一聊。咱们会手把手,用实实在在的代码实例,再配上深度解读,一起研究下如何把RocketMQ生产者的发送速度给它提上去。 1. 理解问题 为何RocketMQ生产者发送消息会变慢? 首先,我们要明确一点,RocketMQ本身具备较高的吞吐量与低延迟特性,但在实际使用过程中,生产者发送消息速度慢可能由多方面原因导致: - 系统资源瓶颈:如CPU、内存或网络带宽等硬件资源不足,限制了消息的生产和传输速度。 - 并发度设置不合理:RocketMQ生产者默认的线程池大小和消息发送并发数可能不适合当前业务负载,从而影响发送效率。 - 消息批量发送策略不当:未充分利用RocketMQ提供的批量发送功能,导致大量小消息频繁发送,增加网络开销和MQ服务器压力。 - 其他因素:例如消息大小过大、Broker节点响应时间过长、事务消息处理耗时较长等。 2. 优化实践 从代码层面提高生产者发送速率 2.1 调整并发度设置 java DefaultMQProducer producer = new DefaultMQProducer("ProducerGroupName"); // 设置并行发送消息的最大线程数,默认为DefaultThreadPoolExecutor.CORE_POOL_SIZE(即CPU核心数) producer.setSendMsgThreadNums(20); // 启动生产者 producer.start(); 通过调整setSendMsgThreadNums方法可以增大并发发送消息的线程数,以适应更高的负载需求,但要注意避免过度并发造成系统资源紧张。 2.2 利用批量发送 java List messages = new ArrayList<>(); for (int i = 0; i < 1000; i++) { Message msg = new Message("TopicTest", "TagA", ("Hello RocketMQ " + i).getBytes(RemotingHelper.DEFAULT_CHARSET)); messages.add(msg); } SendResult sendResult = producer.send(messages); 批量发送消息可以显著减少网络交互次数,降低RTT(Round Trip Time)延迟,提高消息发送速率。上例展示了如何构建一个包含多个消息的列表并一次性发送。 2 3. 控制消息大小与优化编码方式 确保消息体大小适中,并选择高效的序列化方式,比如JSON、Hessian2或Protobuf等,可有效减少网络传输时间和RocketMQ存储空间占用,间接提升消息发送速度。 2.4 分区策略与负载均衡 根据业务场景合理设计消息的Topic分区策略,并利用RocketMQ的负载均衡机制,使得生产者能更均匀地将消息分布到不同的Broker节点,避免单一节点成为性能瓶颈。 3. 思考与总结 解决RocketMQ生产者发送消息速度慢的问题,不仅需要从代码层面进行调优,还要关注整体架构的设计,包括但不限于硬件资源配置、消息模型选择、MQ集群部署策略等。同时,实时盯着RocketMQ的各项性能数据,像心跳一样持续监测并深入分析,这可是让消息队列始终保持高效运转的不可或缺的重要步骤。所以呢,咱们来琢磨一下优化RocketMQ生产者发送速度这件事儿,其实就跟给系统做一次全方位、深度的大体检和精密调养一样,每一个小细节都值得咱们好好琢磨研究一番。
2023-03-04 09:40:48
113
林中小径
DorisDB
...研究一下如何捣鼓它的分布式集群,让它能够灵活、高效地像搭积木一样实现横向扩展。本文将通过实际操作与代码示例,带你一步步走进DorisDB集群的世界。 二、DorisDB分布式集群基础架构 1. 节点角色 在DorisDB的分布式架构中,主要包含FE(Frontend)节点和BE(Backend)节点。FE节点负责元数据管理和SQL解析执行,而BE节点则存储实际的数据块并进行计算任务。 2. 集群搭建 首先,我们需要启动至少一个FE节点和多个BE节点,形成初步的集群架构。例如,以下是如何启动一个FE节点的基本命令: bash 启动FE节点 sh doris_fe start FE_HOST FE_PORT 3. 添加BE节点 为了提高系统的可扩展性,我们可以动态地向集群中添加BE节点。以下是添加新BE节点的命令: bash 在已运行的FE节点上添加新的BE节点 curl -X POST http://FE_HOST:FE_PORT/api/{cluster}/backends -d '{ "host": "NEW_BE_HOST", "heartbeatPort": BE_HEARTBEAT_PORT, "bePort": BE_DATA_PORT, "httpPort": BE_HTTP_PORT }' 三、配置优化以提升可扩展性 1. 负载均衡 DorisDB支持基于表分区的负载均衡策略,可以根据实际业务需求,合理规划数据分布,确保数据在各BE节点间均匀分散,从而有效利用硬件资源,提高系统整体性能。 2. 并发控制 通过调整max_query_concurrency参数可以控制并发查询的数量,防止过多的并发请求导致系统压力过大。例如,在fe.conf文件中设置: properties max_query_concurrency = 64 3. 扩容实践 随着业务增长,只需在集群中增加更多的BE节点,并通过上述API接口加入到集群中,即可轻松实现水平扩展。整个过程无需停机,对在线服务影响极小。 四、深度思考与探讨 在面对海量数据处理和实时分析场景时,选择正确的配置策略对于DorisDB集群的可扩展性至关重要。这不仅要求我们深入地了解DorisDB这座大楼的地基构造,更要灵活运用到实际业务环境里,像是一个建筑师那样,精心设计出最适合的数据分布布局方案,巧妙实现负载均衡,同时还要像交警一样,智慧地调度并发控制策略,确保一切运作流畅不“堵车”。所以呢,每次我们对集群配置进行调整,就像是在做一场精雕细琢的“微创手术”。这就要求我们得像摸着石头过河一样,充分揣摩业务发展的趋势走向,确保既能稳稳满足眼下的需求,又能提前准备好应对未来可能出现的各种挑战。 总结起来,通过巧妙地配置和管理DorisDB的分布式集群,我们不仅能显著提升系统的可扩展性,还能确保其在复杂的大数据环境下保持出色的性能表现。这就像是DorisDB在众多企业级数据库的大军中,硬是杀出一条血路的独门秘籍,更是我们在实际摸爬滚打中不断求索、打磨和提升的活力源泉。
2024-01-16 18:23:21
396
春暖花开
转载文章
...细探讨了如何在大规模分布式系统中优化Python的HTTP客户端性能,其中不仅介绍了标准库的用法,还推荐了第三方库如requests、grequests等在实际项目中的最佳实践,并强调了合理设计请求头(如User-Agent)、连接池管理和超时设置对提升系统并发能力的重要性。 此外,随着云计算和微服务架构的发展,容器化和Kubernetes等技术普及,针对服务端性能测试和压测工具也不断推陈出新。比如Apache JMeter与locust等开源工具,它们能够模拟大量并发用户访问,对API接口进行压力测试,并提供详尽的性能报告,包括响应时间分布、吞吐量和错误率分析,这对于评估基于Python构建的HTTP服务在真实场景下的表现具有重要意义。 总之,通过学习和掌握Python中处理HTTP请求的基本方法和并发策略,结合当前最新的技术和工具,开发者能更好地优化应用程序在网络通信层面的性能,以满足日益增长的高并发需求。
2023-10-19 20:57:06
74
转载
ClickHouse
...功能。例如,创建一个分布式且具有复制特性的表: sql CREATE TABLE replicated_table ( ... ) ENGINE = ReplicatedMergeTree('/clickhouse/tables/{database}/{table}', 'replica1') PARTITION BY ... ORDER BY ... 这里,/clickhouse/tables/{database}/{table}是一个 ZooKeeper 路径,用于协调多个副本之间的数据同步;'replica1'则是当前副本标识符。 2.2 数据自动同步与容灾 一旦某台服务器上的数据出现异常,其他拥有相同Replicated表的服务器仍保留完整的数据。当有新的服务器小弟加入集群大家庭,或者主节点大哥不幸挂掉的时候,Replication机制这个超级替补队员就会立马出动,自动把数据同步得妥妥的,确保所有数据都能保持一致性、完整性,一个字都不会少。 3. 数据一致性检查与修复 3.1 使用checksum函数 ClickHouse提供checksum函数来计算表数据的校验和,可用于验证数据是否完整: sql SELECT checksum() FROM table_name; 定期执行此操作并记录结果,以便在后续时间点对比校验和的变化,从而发现可能的数据丢失问题。 3.2 表维护及修复 若发现数据不一致,可以尝试使用OPTIMIZE TABLE命令进行表维护和修复: sql OPTIMIZE TABLE table_name FINAL; 该命令会重新整理表数据,并尝试修复任何可能存在的数据损坏问题。 4. 实践思考与探讨 尽管我们可以通过上述方法来减少和应对ClickHouse中的数据丢失风险,但防患于未然总是最优策略。在搭建和运用ClickHouse系统的时候,千万记得要考虑让它“坚如磐石”,也就是要设计出高可用性方案。比如说,我们可以采用多副本这种方式,就像备份多个小帮手一样,让数据安全无忧;再者,跨地域冗余存储也是一招妙计,想象一下,即使地球另一边的机房挂了,这边的数据也能照常运作,这样就大大提升了系统的稳健性和可靠性啦!同时,建立一个完善、接地气的数据监控系统,能够灵敏捕捉并及时解决那些可能冒头的小问题,这绝对是一个无比关键的步骤。 总结起来,面对ClickHouse数据丢失问题,我们需采取主动防御和被动恢复相结合的方式,既要做好日常的数据备份和Replication配置,也要学会在问题发生后如何快速有效地恢复数据,同时结合数据一致性检查以及表维护等手段,全面提升数据的安全性和稳定性。在实践中不断优化和完善,才能真正发挥出ClickHouse在海量数据分析领域的强大威力。
2023-01-20 13:30:03
445
月影清风
转载文章
...,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 该楼层疑似违规已被系统折叠 隐藏此楼查看此楼 今天只做了一件事情,但解决了很大的问题。相信这也是令很多程序员和数据库管理员头疼的事情。 假设在一MySQL数据表中,自增的字段为id,唯一字段为abc,还有其它字段若干。 自增:AUTO_INCREMENT A、使用insert into插入数据时,若abc的值已存在,因其为唯一键,故不会插入成功。但此时,那个AUTO_INCREMENT已然+1了。 eg : insert into table set abc = '123' B、使用replace插入数据时,若abc的值已存在,则会先删除表中的那条记录,尔后插入新数据。 eg : replace into table set abc = '123' (注:上一行中的into可省略;这只是一种写法。) 这两种方法,效果都不好:A会造成id不连续,B会使得原来abc对应的id值发生改变,而这个id值会和其它表进行关联,这是更不允许的。 那么,有没有解决方案呢? 笨办法当然是有:每次插入前先查询,若表中不存在要插入的abc的值,才插入。 但这样,每次入库之前都会多一个操作,麻烦至极。 向同学请教,说用触发器。可在网上找了半天,总是有问题。可能是语法不对,或者是某些东西有限制。 其实,最终要做的,就是在每次插入数据之后,修正那个AUTO_INCREMENT值。 于是就想到,把这个最实质的SQL语句↓,合并在插入的SQL中。 PS: ALTER TABLE table AUTO_INCREMENT =1 执行之后,不一定再插入的id就是1;而是表中id最大值+1。 这是MySQL中的执行结果。其它数据库不清楚。。。。 到这里,问题就变的异常简单了:在每次插入之后都重置AUTO_INCREMENT的值。 如果插入的自定义函数或类的名称被定义成insert的话,那么就在此基础上扩展一个函数insert_continuous_id好了,其意为:保证自增主键连续的插入。 为什么不直接修改原函数呢? 这是因为,并不是所有的insert都需要修正AUTO_INCREMENT。只有在设置唯一键、且有自增主键时才有可能需要。 虽然重置不会有任何的副作用(经试验,对各种情况都无影响),但没有必要就不要额外增加这一步。 一个优秀的程序员,就是要尽量保证写出的每一个字符都有意义而不多余。 啰啰嗦嗦的说了这么多,其实只有一句话:解决MySQL中自增主键不连续的方法,就是上面PS下的那一行代码。 附: 我写的不成功的触发器的代码。 -- 触发器 CREATE TRIGGER trigger_table after insert ON table FOR EACH ROW ALTER TABLE table AUTO_INCREMENT =1; 大家有想说的,请踊跃发言。期待更好更完美的解决方案。 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_39554172/article/details/113210084。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-08-26 08:19:54
93
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
lastlog
- 显示所有用户的最后登录时间及相关信息。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"