前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[StringBuilder在Java中优...]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
...占位符。? 代表一个字符, 代表 0 个或者多个字符。 消费端 1,关注运动信息: psubscribe sport 消费端 2,关注所有新闻: psubscribe news 消费端 3,关注天气新闻: psubscribe news-weather 生产者,发布 3 条信息 publish news-sport yaoming publish news-music jaychou publish news-weather rain 2、Redis 事务 2.1 为什么要用事务 我们知道 Redis 的单个命令是原子性的(比如 get set mget mset),如果涉及到多个命令的时候,需要把多个命令作为一个不可分割的处理序列,就需要用到事务。 例如我们之前说的用 setnx 实现分布式锁,我们先 set,然后设置对 key 设置 expire, 防止 del 发生异常的时候锁不会被释放,业务处理完了以后再 del,这三个动作我们就希望它们作为一组命令执行。 Redis 的事务有两个特点: 1、按进入队列的顺序执行。 2、不会受到其他客户端的请求的影响。 Redis 的事务涉及到四个命令:multi(开启事务),exec(执行事务),discard (取消事务),watch(监视) 2.2 事务的用法 案例场景:tom 和 mic 各有 1000 元,tom 需要向 mic 转账 100 元。tom 的账户余额减少 100 元,mic 的账户余额增加 100 元。 通过 multi 的命令开启事务。事务不能嵌套,多个 multi 命令效果一样。 multi 执行后,客户端可以继续向服务器发送任意多条命令,这些命令不会立即被执行,而是被放到一个队列中,当 exec 命令被调用时,所有队列中的命令才会被执行。 通过 exec 的命令执行事务。如果没有执行 exec,所有的命令都不会被执行。如果中途不想执行事务了,怎么办? 可以调用 discard 可以清空事务队列,放弃执行。 2.3 watch命令 在 Redis 中还提供了一个 watch 命令。 它可以为 Redis 事务提供 CAS 乐观锁行为(Check and Set / Compare and Swap),也就是多个线程更新变量的时候,会跟原值做比较,只有它没有被其他线程修改的情况下,才更新成新的值。 我们可以用 watch 监视一个或者多个 key,如果开启事务之后,至少有一个被监视 key 键在 exec 执行之前被修改了,那么整个事务都会被取消(key 提前过期除外)。可以用 unwatch 取消。 2.4 事务可能遇到的问题 我们把事务执行遇到的问题分成两种,一种是在执行 exec 之前发生错误,一种是在执行 exec 之后发生错误。 2.4.1 在执行 exec 之前发生错误 比如:入队的命令存在语法错误,包括参数数量,参数名等等(编译器错误)。 在这种情况下事务会被拒绝执行,也就是队列中所有的命令都不会得到执行。 2.4.2 在执行 exec 之后发生错误 比如,类型错误,比如对 String 使用了 Hash 的命令,这是一种运行时错误。 最后我们发现 set k1 1 的命令是成功的,也就是在这种发生了运行时异常的情况下, 只有错误的命令没有被执行,但是其他命令没有受到影响。 这个显然不符合我们对原子性的定义,也就是我们没办法用 Redis 的这种事务机制来实现原子性,保证数据的一致。 3、Lua脚本 Lua/ˈluə/是一种轻量级脚本语言,它是用 C 语言编写的,跟数据的存储过程有点类似。 使用 Lua 脚本来执行 Redis 命令的好处: 1、一次发送多个命令,减少网络开销。 2、Redis 会将整个脚本作为一个整体执行,不会被其他请求打断,保持原子性。 3、对于复杂的组合命令,我们可以放在文件中,可以实现程序之间的命令集复用。 3.1 在Redis中调用Lua脚本 使用 eval /ɪ’væl/ 方法,语法格式: redis> eval lua-script key-num [key1 key2 key3 ....] [value1 value2 value3 ....] eval代表执行Lua语言的命令。 lua-script代表Lua语言脚本内容。 key-num表示参数中有多少个key,需要注意的是Redis中key是从1开始的,如果没有key的参数,那么写0。 [key1key2key3…]是key作为参数传递给Lua语言,也可以不填,但是需要和key-num的个数对应起来。 [value1 value2 value3 …]这些参数传递给 Lua 语言,它们是可填可不填的。 示例,返回一个字符串,0 个参数: redis> eval "return 'Hello World'" 0 3.2 在Lua脚本中调用Redis命令 使用 redis.call(command, key [param1, param2…])进行操作。语法格式: redis> eval "redis.call('set',KEYS[1],ARGV[1])" 1 lua-key lua-value command是命令,包括set、get、del等。 key是被操作的键。 param1,param2…代表给key的参数。 注意跟 Java 不一样,定义只有形参,调用只有实参。 Lua 是在调用时用 key 表示形参,argv 表示参数值(实参)。 3.2.1 设置键值对 在 Redis 中调用 Lua 脚本执行 Redis 命令 redis> eval "return redis.call('set',KEYS[1],ARGV[1])" 1 gupao 2673 redis> get gupao 以上命令等价于 set gupao 2673。 在 redis-cli 中直接写 Lua 脚本不够方便,也不能实现编辑和复用,通常我们会把脚本放在文件里面,然后执行这个文件。 3.2.2 在 Redis 中调用 Lua 脚本文件中的命令,操作 Redis 创建 Lua 脚本文件: cd /usr/local/soft/redis5.0.5/src vim gupao.lua Lua 脚本内容,先设置,再取值: cd /usr/local/soft/redis5.0.5/src redis-cli --eval gupao.lua 0 得到返回值: root@localhost src] redis-cli --eval gupao.lua 0 "lua666" 3.2.3 案例:对 IP 进行限流 需求:在 X 秒内只能访问 Y 次。 设计思路:用 key 记录 IP,用 value 记录访问次数。 拿到 IP 以后,对 IP+1。如果是第一次访问,对 key 设置过期时间(参数 1)。否则判断次数,超过限定的次数(参数 2),返回 0。如果没有超过次数则返回 1。超过时间, key 过期之后,可以再次访问。 KEY[1]是 IP, ARGV[1]是过期时间 X,ARGV[2]是限制访问的次数 Y。 -- ip_limit.lua-- IP 限流,对某个 IP 频率进行限制 ,6 秒钟访问 10 次 local num=redis.call('incr',KEYS[1])if tonumber(num)==1 thenredis.call('expire',KEYS[1],ARGV[1])return 1elseif tonumber(num)>tonumber(ARGV[2]) thenreturn 0 elsereturn 1 end 6 秒钟内限制访问 10 次,调用测试(连续调用 10 次): ./redis-cli --eval "ip_limit.lua" app:ip:limit:192.168.8.111 , 6 10 app:ip:limit:192.168.8.111 是 key 值 ,后面是参数值,中间要加上一个空格和一个逗号,再加上一个空格 。 即:./redis-cli –eval [lua 脚本] [key…]空格,空格[args…] 多个参数之间用一个空格分割 。 代码:LuaTest.java 3.2.4 缓存 Lua 脚本 为什么要缓存 在脚本比较长的情况下,如果每次调用脚本都需要把整个脚本传给 Redis 服务端, 会产生比较大的网络开销。为了解决这个问题,Redis 提供了 EVALSHA 命令,允许开发者通过脚本内容的 SHA1 摘要来执行脚本。 如何缓存 Redis 在执行 script load 命令时会计算脚本的 SHA1 摘要并记录在脚本缓存中,执行 EVALSHA 命令时 Redis 会根据提供的摘要从脚本缓存中查找对应的脚本内容,如果找到了则执行脚本,否则会返回错误:“NOSCRIPT No matching script. Please use EVAL.” 127.0.0.1:6379> script load "return 'Hello World'" "470877a599ac74fbfda41caa908de682c5fc7d4b"127.0.0.1:6379> evalsha "470877a599ac74fbfda41caa908de682c5fc7d4b" 0 "Hello World" 3.2.5 自乘案例 Redis 有 incrby 这样的自增命令,但是没有自乘,比如乘以 3,乘以 5。我们可以写一个自乘的运算,让它乘以后面的参数: local curVal = redis.call("get", KEYS[1]) if curVal == false thencurVal = 0 elsecurVal = tonumber(curVal)endcurVal = curVal tonumber(ARGV[1]) redis.call("set", KEYS[1], curVal) return curVal 把这个脚本变成单行,语句之间使用分号隔开 local curVal = redis.call("get", KEYS[1]); if curVal == false then curVal = 0 else curVal = tonumber(curVal) end; curVal = curVal tonumber(ARGV[1]); redis.call("set", KEYS[1], curVal); return curVal script load ‘命令’ 127.0.0.1:6379> script load 'local curVal = redis.call("get", KEYS[1]); if curVal == false then curVal = 0 else curVal = tonumber(curVal) end; curVal = curVal tonumber(ARGV[1]); redis.call("set", KEYS[1], curVal); return curVal' "be4f93d8a5379e5e5b768a74e77c8a4eb0434441" 调用: 127.0.0.1:6379> set num 2OK127.0.0.1:6379> evalsha be4f93d8a5379e5e5b768a74e77c8a4eb0434441 1 num 6 (integer) 12 3.2.6 脚本超时 Redis 的指令执行本身是单线程的,这个线程还要执行客户端的 Lua 脚本,如果 Lua 脚本执行超时或者陷入了死循环,是不是没有办法为客户端提供服务了呢? eval 'while(true) do end' 0 为了防止某个脚本执行时间过长导致 Redis 无法提供服务,Redis 提供了 lua-time-limit 参数限制脚本的最长运行时间,默认为 5 秒钟。 lua-time-limit 5000(redis.conf 配置文件中) 当脚本运行时间超过这一限制后,Redis 将开始接受其他命令但不会执行(以确保脚本的原子性,因为此时脚本并没有被终止),而是会返回“BUSY”错误。 Redis 提供了一个 script kill 的命令来中止脚本的执行。新开一个客户端: script kill 如果当前执行的 Lua 脚本对 Redis 的数据进行了修改(SET、DEL 等),那么通过 script kill 命令是不能终止脚本运行的。 127.0.0.1:6379> eval "redis.call('set','gupao','666') while true do end" 0 因为要保证脚本运行的原子性,如果脚本执行了一部分终止,那就违背了脚本原子性的要求。最终要保证脚本要么都执行,要么都不执行。 127.0.0.1:6379> script kill(error) UNKILLABLE Sorry the script already executed write commands against the dataset. You can either wait the scripttermination or kill the server in a hard way using the SHUTDOWN NOSAVE command. 遇到这种情况,只能通过 shutdown nosave 命令来强行终止 redis。 shutdown nosave 和 shutdown 的区别在于 shutdown nosave 不会进行持久化操作,意味着发生在上一次快照后的数据库修改都会丢失。 4、Redis 为什么这么快? 4.1 Redis到底有多快? 根据官方的数据,Redis 的 QPS 可以达到 10 万左右(每秒请求数)。 4.2 Redis为什么这么快? 总结:1)纯内存结构、2)单线程、3)多路复用 4.2.1 内存 KV 结构的内存数据库,时间复杂度 O(1)。 第二个,要实现这么高的并发性能,是不是要创建非常多的线程? 恰恰相反,Redis 是单线程的。 4.2.2 单线程 单线程有什么好处呢? 1、没有创建线程、销毁线程带来的消耗 2、避免了上线文切换导致的 CPU 消耗 3、避免了线程之间带来的竞争问题,例如加锁释放锁死锁等等 4.2.3 异步非阻塞 异步非阻塞 I/O,多路复用处理并发连接。 4.3 Redis为什么是单线程的? 不是白白浪费了 CPU 的资源吗? 因为单线程已经够用了,CPU 不是 redis 的瓶颈。Redis 的瓶颈最有可能是机器内存或者网络带宽。既然单线程容易实现,而且 CPU 不会成为瓶颈,那就顺理成章地采用单线程的方案了。 4.4 单线程为什么这么快? 因为 Redis 是基于内存的操作,我们先从内存开始说起。 4.4.1 虚拟存储器(虚拟内存 Vitual Memory) 名词解释:主存:内存;辅存:磁盘(硬盘) 计算机主存(内存)可看作一个由 M 个连续的字节大小的单元组成的数组,每个字节有一个唯一的地址,这个地址叫做物理地址(PA)。早期的计算机中,如果 CPU 需要内存,使用物理寻址,直接访问主存储器。 这种方式有几个弊端: 1、在多用户多任务操作系统中,所有的进程共享主存,如果每个进程都独占一块物理地址空间,主存很快就会被用完。我们希望在不同的时刻,不同的进程可以共用同一块物理地址空间。 2、如果所有进程都是直接访问物理内存,那么一个进程就可以修改其他进程的内存数据,导致物理地址空间被破坏,程序运行就会出现异常。 为了解决这些问题,我们就想了一个办法,在 CPU 和主存之间增加一个中间层。CPU 不再使用物理地址访问,而是访问一个虚拟地址,由这个中间层把地址转换成物理地址,最终获得数据。这个中间层就叫做虚拟存储器(Virtual Memory)。 具体的操作如下所示: 在每一个进程开始创建的时候,都会分配一段虚拟地址,然后通过虚拟地址和物理地址的映射来获取真实数据,这样进程就不会直接接触到物理地址,甚至不知道自己调用的哪块物理地址的数据。 目前,大多数操作系统都使用了虚拟内存,如 Windows 系统的虚拟内存、Linux 系统的交换空间等等。Windows 的虚拟内存(pagefile.sys)是磁盘空间的一部分。 在 32 位的系统上,虚拟地址空间大小是 2^32bit=4G。在 64 位系统上,最大虚拟地址空间大小是多少? 是不是 2^64bit=10241014TB=1024PB=16EB?实际上没有用到 64 位,因为用不到这么大的空间,而且会造成很大的系统开销。Linux 一般用低 48 位来表示虚拟地址空间,也就是 2^48bit=256T。 cat /proc/cpuinfo address sizes : 40 bits physical, 48 bits virtual 实际的物理内存可能远远小于虚拟内存的大小。 总结:引入虚拟内存,可以提供更大的地址空间,并且地址空间是连续的,使得程序编写、链接更加简单。并且可以对物理内存进行隔离,不同的进程操作互不影响。还可以通过把同一块物理内存映射到不同的虚拟地址空间实现内存共享。 4.4.2 用户空间和内核空间 为了避免用户进程直接操作内核,保证内核安全,操作系统将虚拟内存划分为两部分,一部分是内核空间(Kernel-space)/ˈkɜːnl /,一部分是用户空间(User-space)。 内核是操作系统的核心,独立于普通的应用程序,可以访问受保护的内存空间,也有访问底层硬件设备的权限。 内核空间中存放的是内核代码和数据,而进程的用户空间中存放的是用户程序的代码和数据。不管是内核空间还是用户空间,它们都处于虚拟空间中,都是对物理地址的映射。 在 Linux 系统中, 内核进程和用户进程所占的虚拟内存比例是 1:3。 当进程运行在内核空间时就处于内核态,而进程运行在用户空间时则处于用户态。 进程在内核空间以执行任意命令,调用系统的一切资源;在用户空间只能执行简单的运算,不能直接调用系统资源,必须通过系统接口(又称 system call),才能向内核发出指令。 top 命令: us 代表 CPU 消耗在 User space 的时间百分比; sy 代表 CPU 消耗在 Kernel space 的时间百分比。 4.4.3 进程切换(上下文切换) 多任务操作系统是怎么实现运行远大于 CPU 数量的任务个数的? 当然,这些任务实际上并不是真的在同时运行,而是因为系统通过时间片分片算法,在很短的时间内,将 CPU 轮流分配给它们,造成多任务同时运行的错觉。 为了控制进程的执行,内核必须有能力挂起正在 CPU 上运行的进程,并恢复以前挂起的某个进程的执行。这种行为被称为进程切换。 什么叫上下文? 在每个任务运行前,CPU 都需要知道任务从哪里加载、又从哪里开始运行,也就是说,需要系统事先帮它设置好 CPU 寄存器和程序计数器(ProgramCounter),这个叫做 CPU 的上下文。 而这些保存下来的上下文,会存储在系统内核中,并在任务重新调度执行时再次加载进来。这样就能保证任务原来的状态不受影响,让任务看起来还是连续运行。 在切换上下文的时候,需要完成一系列的工作,这是一个很消耗资源的操作。 4.4.4 进程的阻塞 正在运行的进程由于提出系统服务请求(如 I/O 操作),但因为某种原因未得到操作系统的立即响应,该进程只能把自己变成阻塞状态,等待相应的事件出现后才被唤醒。 进程在阻塞状态不占用 CPU 资源。 4.4.5 文件描述符 FD Linux 系统将所有设备都当作文件来处理,而 Linux 用文件描述符来标识每个文件对象。 文件描述符(File Descriptor)是内核为了高效管理已被打开的文件所创建的索引,用于指向被打开的文件,所有执行 I/O 操作的系统调用都通过文件描述符;文件描述符是一个简单的非负整数,用以表明每个被进程打开的文件。 Linux 系统里面有三个标准文件描述符。 0:标准输入(键盘); 1:标准输出(显示器); 2:标准错误输出(显示器)。 4.4.6 传统 I/O 数据拷贝 以读操作为例: 当应用程序执行 read 系统调用读取文件描述符(FD)的时候,如果这块数据已经存在于用户进程的页内存中,就直接从内存中读取数据。如果数据不存在,则先将数据从磁盘加载数据到内核缓冲区中,再从内核缓冲区拷贝到用户进程的页内存中。(两次拷贝,两次 user 和 kernel 的上下文切换)。 I/O 的阻塞到底阻塞在哪里? 4.4.7 Blocking I/O 当使用 read 或 write 对某个文件描述符进行过读写时,如果当前 FD 不可读,系统就不会对其他的操作做出响应。从设备复制数据到内核缓冲区是阻塞的,从内核缓冲区拷贝到用户空间,也是阻塞的,直到 copy complete,内核返回结果,用户进程才解除 block 的状态。 为了解决阻塞的问题,我们有几个思路。 1、在服务端创建多个线程或者使用线程池,但是在高并发的情况下需要的线程会很多,系统无法承受,而且创建和释放线程都需要消耗资源。 2、由请求方定期轮询,在数据准备完毕后再从内核缓存缓冲区复制数据到用户空间 (非阻塞式 I/O),这种方式会存在一定的延迟。 能不能用一个线程处理多个客户端请求? 4.4.8 I/O 多路复用(I/O Multiplexing) I/O 指的是网络 I/O。 多路指的是多个 TCP 连接(Socket 或 Channel)。 复用指的是复用一个或多个线程。它的基本原理就是不再由应用程序自己监视连接,而是由内核替应用程序监视文件描述符。 客户端在操作的时候,会产生具有不同事件类型的 socket。在服务端,I/O 多路复用程序(I/O Multiplexing Module)会把消息放入队列中,然后通过文件事件分派器(File event Dispatcher),转发到不同的事件处理器中。 多路复用有很多的实现,以 select 为例,当用户进程调用了多路复用器,进程会被阻塞。内核会监视多路复用器负责的所有 socket,当任何一个 socket 的数据准备好了,多路复用器就会返回。这时候用户进程再调用 read 操作,把数据从内核缓冲区拷贝到用户空间。 所以,I/O 多路复用的特点是通过一种机制一个进程能同时等待多个文件描述符,而这些文件描述符(套接字描述符)其中的任意一个进入读就绪(readable)状态,select() 函数就可以返回。 Redis 的多路复用, 提供了 select, epoll, evport, kqueue 几种选择,在编译的时 候来选择一种。 evport 是 Solaris 系统内核提供支持的; epoll 是 LINUX 系统内核提供支持的; kqueue 是 Mac 系统提供支持的; select 是 POSIX 提供的,一般的操作系统都有支撑(保底方案); 源码 ae_epoll.c、ae_select.c、ae_kqueue.c、ae_evport.c 5、内存回收 Reids 所有的数据都是存储在内存中的,在某些情况下需要对占用的内存空间进行回 收。内存回收主要分为两类,一类是 key 过期,一类是内存使用达到上限(max_memory) 触发内存淘汰。 5.1 过期策略 要实现 key 过期,我们有几种思路。 5.1.1 定时过期(主动淘汰) 每个设置过期时间的 key 都需要创建一个定时器,到过期时间就会立即清除。该策略可以立即清除过期的数据,对内存很友好;但是会占用大量的 CPU 资源去处理过期的 数据,从而影响缓存的响应时间和吞吐量。 5.1.2 惰性过期(被动淘汰) 只有当访问一个 key 时,才会判断该 key 是否已过期,过期则清除。该策略可以最大化地节省 CPU 资源,却对内存非常不友好。极端情况可能出现大量的过期 key 没有再次被访问,从而不会被清除,占用大量内存。 例如 String,在 getCommand 里面会调用 expireIfNeeded server.c expireIfNeeded(redisDb db, robj key) 第二种情况,每次写入 key 时,发现内存不够,调用 activeExpireCycle 释放一部分内存。 expire.c activeExpireCycle(int type) 5.1.3 定期过期 源码:server.h typedef struct redisDb { dict dict; / 所有的键值对 /dict expires; / 设置了过期时间的键值对 /dict blocking_keys; dict ready_keys; dict watched_keys; int id;long long avg_ttl;list defrag_later; } redisDb; 每隔一定的时间,会扫描一定数量的数据库的 expires 字典中一定数量的 key,并清除其中已过期的 key。该策略是前两者的一个折中方案。通过调整定时扫描的时间间隔和每次扫描的限定耗时,可以在不同情况下使得 CPU 和内存资源达到最优的平衡效果。 Redis 中同时使用了惰性过期和定期过期两种过期策略。 5.2 淘汰策略 Redis 的内存淘汰策略,是指当内存使用达到最大内存极限时,需要使用淘汰算法来决定清理掉哪些数据,以保证新数据的存入。 5.2.1 最大内存设置 redis.conf 参数配置: maxmemory <bytes> 如果不设置 maxmemory 或者设置为 0,64 位系统不限制内存,32 位系统最多使用 3GB 内存。 动态修改: redis> config set maxmemory 2GB 到达最大内存以后怎么办? 5.2.2 淘汰策略 https://redis.io/topics/lru-cache redis.conf maxmemory-policy noeviction 先从算法来看: LRU,Least Recently Used:最近最少使用。判断最近被使用的时间,目前最远的数据优先被淘汰。 LFU,Least Frequently Used,最不常用,4.0 版本新增。 random,随机删除。 如果没有符合前提条件的 key 被淘汰,那么 volatile-lru、volatile-random、 volatile-ttl 相当于 noeviction(不做内存回收)。 动态修改淘汰策略: redis> config set maxmemory-policy volatile-lru 建议使用 volatile-lru,在保证正常服务的情况下,优先删除最近最少使用的 key。 5.2.3 LRU 淘汰原理 问题:如果基于传统 LRU 算法实现 Redis LRU 会有什么问题? 需要额外的数据结构存储,消耗内存。 Redis LRU 对传统的 LRU 算法进行了改良,通过随机采样来调整算法的精度。如果淘汰策略是 LRU,则根据配置的采样值 maxmemory_samples(默认是 5 个), 随机从数据库中选择 m 个 key, 淘汰其中热度最低的 key 对应的缓存数据。所以采样参数m配置的数值越大, 就越能精确的查找到待淘汰的缓存数据,但是也消耗更多的CPU计算,执行效率降低。 问题:如何找出热度最低的数据? Redis 中所有对象结构都有一个 lru 字段, 且使用了 unsigned 的低 24 位,这个字段用来记录对象的热度。对象被创建时会记录 lru 值。在被访问的时候也会更新 lru 的值。 但是不是获取系统当前的时间戳,而是设置为全局变量 server.lruclock 的值。 源码:server.h typedef struct redisObject {unsigned type:4;unsigned encoding:4;unsigned lru:LRU_BITS;int refcount;void ptr; } robj; server.lruclock 的值怎么来的? Redis 中有个定时处理的函数 serverCron,默认每 100 毫秒调用函数 updateCachedTime 更新一次全局变量的 server.lruclock 的值,它记录的是当前 unix 时间戳。 源码:server.c void updateCachedTime(void) { time_t unixtime = time(NULL); atomicSet(server.unixtime,unixtime); server.mstime = mstime();struct tm tm; localtime_r(&server.unixtime,&tm);server.daylight_active = tm.tm_isdst; } 问题:为什么不获取精确的时间而是放在全局变量中?不会有延迟的问题吗? 这样函数 lookupKey 中更新数据的 lru 热度值时,就不用每次调用系统函数 time,可以提高执行效率。 OK,当对象里面已经有了 LRU 字段的值,就可以评估对象的热度了。 函数 estimateObjectIdleTime 评估指定对象的 lru 热度,思想就是对象的 lru 值和全局的 server.lruclock 的差值越大(越久没有得到更新),该对象热度越低。 源码 evict.c / Given an object returns the min number of milliseconds the object was never requested, using an approximated LRU algorithm. /unsigned long long estimateObjectIdleTime(robj o) {unsigned long long lruclock = LRU_CLOCK(); if (lruclock >= o->lru) {return (lruclock - o->lru) LRU_CLOCK_RESOLUTION; } else {return (lruclock + (LRU_CLOCK_MAX - o->lru)) LRU_CLOCK_RESOLUTION;} } server.lruclock 只有 24 位,按秒为单位来表示才能存储 194 天。当超过 24bit 能表 示的最大时间的时候,它会从头开始计算。 server.h define LRU_CLOCK_MAX ((1<<LRU_BITS)-1) / Max value of obj->lru / 在这种情况下,可能会出现对象的 lru 大于 server.lruclock 的情况,如果这种情况 出现那么就两个相加而不是相减来求最久的 key。 为什么不用常规的哈希表+双向链表的方式实现?需要额外的数据结构,消耗资源。而 Redis LRU 算法在 sample 为 10 的情况下,已经能接近传统 LRU 算法了。 问题:除了消耗资源之外,传统 LRU 还有什么问题? 如图,假设 A 在 10 秒内被访问了 5 次,而 B 在 10 秒内被访问了 3 次。因为 B 最后一次被访问的时间比 A 要晚,在同等的情况下,A 反而先被回收。 问题:要实现基于访问频率的淘汰机制,怎么做? 5.2.4 LFU server.h typedef struct redisObject {unsigned type:4;unsigned encoding:4;unsigned lru:LRU_BITS;int refcount;void ptr; } robj; 当这 24 bits 用作 LFU 时,其被分为两部分: 高 16 位用来记录访问时间(单位为分钟,ldt,last decrement time) 低 8 位用来记录访问频率,简称 counter(logc,logistic counter) counter 是用基于概率的对数计数器实现的,8 位可以表示百万次的访问频率。 对象被读写的时候,lfu 的值会被更新。 db.c——lookupKey void updateLFU(robj val) {unsigned long counter = LFUDecrAndReturn(val); counter = LFULogIncr(counter);val->lru = (LFUGetTimeInMinutes()<<8) | counter;} 增长的速率由,lfu-log-factor 越大,counter 增长的越慢 redis.conf 配置文件。 lfu-log-factor 10 如果计数器只会递增不会递减,也不能体现对象的热度。没有被访问的时候,计数器怎么递减呢? 减少的值由衰减因子 lfu-decay-time(分钟)来控制,如果值是 1 的话,N 分钟没有访问就要减少 N。 redis.conf 配置文件 lfu-decay-time 1 6、持久化机制 https://redis.io/topics/persistence Redis 速度快,很大一部分原因是因为它所有的数据都存储在内存中。如果断电或者宕机,都会导致内存中的数据丢失。为了实现重启后数据不丢失,Redis 提供了两种持久化的方案,一种是 RDB 快照(Redis DataBase),一种是 AOF(Append Only File)。 6.1 RDB RDB 是 Redis 默认的持久化方案。当满足一定条件的时候,会把当前内存中的数据写入磁盘,生成一个快照文件 dump.rdb。Redis 重启会通过加载 dump.rdb 文件恢复数据。 什么时候写入 rdb 文件? 6.1.1 RDB 触发 1、自动触发 a)配置规则触发。 redis.conf, SNAPSHOTTING,其中定义了触发把数据保存到磁盘的触发频率。 如果不需要 RDB 方案,注释 save 或者配置成空字符串""。 save 900 1 900 秒内至少有一个 key 被修改(包括添加) save 300 10 400 秒内至少有 10 个 key 被修改save 60 10000 60 秒内至少有 10000 个 key 被修改 注意上面的配置是不冲突的,只要满足任意一个都会触发。 RDB 文件位置和目录: 文件路径,dir ./ 文件名称dbfilename dump.rdb 是否是LZF压缩rdb文件 rdbcompression yes 开启数据校验 rdbchecksum yes 问题:为什么停止 Redis 服务的时候没有 save,重启数据还在? RDB 还有两种触发方式: b)shutdown 触发,保证服务器正常关闭。 c)flushall,RDB 文件是空的,没什么意义(删掉 dump.rdb 演示一下)。 2、手动触发 如果我们需要重启服务或者迁移数据,这个时候就需要手动触 RDB 快照保存。Redis 提供了两条命令: a)save save 在生成快照的时候会阻塞当前 Redis 服务器, Redis 不能处理其他命令。如果内存中的数据比较多,会造成 Redis 长时间的阻塞。生产环境不建议使用这个命令。 为了解决这个问题,Redis 提供了第二种方式。 执行 bgsave 时,Redis 会在后台异步进行快照操作,快照同时还可以响应客户端请求。 具体操作是 Redis 进程执行 fork 操作创建子进程(copy-on-write),RDB 持久化过程由子进程负责,完成后自动结束。它不会记录 fork 之后后续的命令。阻塞只发生在 fork 阶段,一般时间很短。 用 lastsave 命令可以查看最近一次成功生成快照的时间。 6.1.2 RDB 数据的恢复(演示) 1、shutdown 持久化添加键值 添加键值 redis> set k1 1 redis> set k2 2 redis> set k3 3 redis> set k4 4 redis> set k5 5 停服务器,触发 save redis> shutdown 备份 dump.rdb 文件 cp dump.rdb dump.rdb.bak 启动服务器 /usr/local/soft/redis-5.0.5/src/redis-server /usr/local/soft/redis-5.0.5/redis.conf 啥都没有: redis> keys 3、通过备份文件恢复数据停服务器 redis> shutdown 重命名备份文件 mv dump.rdb.bak dump.rdb 启动服务器 /usr/local/soft/redis-5.0.5/src/redis-server /usr/local/soft/redis-5.0.5/redis.conf 查看数据 redis> keys 6.1.3 RDB 文件的优势和劣势 一、优势 1.RDB 是一个非常紧凑(compact)的文件,它保存了 redis 在某个时间点上的数据集。这种文件非常适合用于进行备份和灾难恢复。 2.生成 RDB 文件的时候,redis 主进程会 fork()一个子进程来处理所有保存工作,主进程不需要进行任何磁盘 IO 操作。 3.RDB 在恢复大数据集时的速度比 AOF 的恢复速度要快。 二、劣势 1、RDB 方式数据没办法做到实时持久化/秒级持久化。因为 bgsave 每次运行都要执行 fork 操作创建子进程,频繁执行成本过高。 2、在一定间隔时间做一次备份,所以如果 redis 意外 down 掉的话,就会丢失最后一次快照之后的所有修改(数据有丢失)。 如果数据相对来说比较重要,希望将损失降到最小,则可以使用 AOF 方式进行持久化。 6.2 AOF Append Only File AOF:Redis 默认不开启。AOF 采用日志的形式来记录每个写操作,并追加到文件中。开启后,执行更改 Redis 数据的命令时,就会把命令写入到 AOF 文件中。 Redis 重启时会根据日志文件的内容把写指令从前到后执行一次以完成数据的恢复工作。 6.2.1 AOF 配置 配置文件 redis.conf 开关appendonly no 文件名appendfilename "appendonly.aof" AOF 文件的内容(vim 查看): 问题:数据都是实时持久化到磁盘吗? 由于操作系统的缓存机制,AOF 数据并没有真正地写入硬盘,而是进入了系统的硬盘缓存。什么时候把缓冲区的内容写入到 AOF 文件? 问题:文件越来越大,怎么办? 由于 AOF 持久化是 Redis 不断将写命令记录到 AOF 文件中,随着 Redis 不断的进行,AOF 的文件会越来越大,文件越大,占用服务器内存越大以及 AOF 恢复要求时间越长。 例如 set xxx 666,执行 1000 次,结果都是 xxx=666。 为了解决这个问题,Redis 新增了重写机制,当 AOF 文件的大小超过所设定的阈值时,Redis 就会启动 AOF 文件的内容压缩,只保留可以恢复数据的最小指令集。 可以使用命令 bgrewriteaof 来重写。 AOF 文件重写并不是对原文件进行重新整理,而是直接读取服务器现有的键值对,然后用一条命令去代替之前记录这个键值对的多条命令,生成一个新的文件后去替换原来的 AOF 文件。 重写触发机制 auto-aof-rewrite-percentage 100 auto-aof-rewrite-min-size 64mb 问题:重写过程中,AOF 文件被更改了怎么办? 另外有两个与 AOF 相关的参数: 6.2.2 AOF 数据恢复 重启 Redis 之后就会进行 AOF 文件的恢复。 6.2.3 AOF 优势与劣势 优点: 1、AOF 持久化的方法提供了多种的同步频率,即使使用默认的同步频率每秒同步一次,Redis 最多也就丢失 1 秒的数据而已。 缺点: 1、对于具有相同数据的的 Redis,AOF 文件通常会比 RDB 文件体积更大(RDB 存的是数据快照)。 2、虽然 AOF 提供了多种同步的频率,默认情况下,每秒同步一次的频率也具有较高的性能。在高并发的情况下,RDB 比 AOF 具好更好的性能保证。 6.3 两种方案比较 那么对于 AOF 和 RDB 两种持久化方式,我们应该如何选择呢? 如果可以忍受一小段时间内数据的丢失,毫无疑问使用 RDB 是最好的,定时生成 RDB 快照(snapshot)非常便于进行数据库备份, 并且 RDB 恢复数据集的速度也要比 AOF 恢复的速度要快。 否则就使用 AOF 重写。但是一般情况下建议不要单独使用某一种持久化机制,而是应该两种一起用,在这种情况下,当 redis 重启的时候会优先载入 AOF 文件来恢复原始的数据,因为在通常情况下 AOF 文件保存的数据集要比 RDB 文件保存的数据集要完整。 本篇文章为转载内容。原文链接:https://blog.csdn.net/zhoutaochun/article/details/120075092。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-03-18 12:25:04
541
转载
转载文章
在深入理解了使用Java和Jsoup库进行HTML解析与信息提取的技术实践后,我们可以进一步关注该领域的一些最新动态和技术应用实例。近期,《信息安全技术与应用》期刊报道了一项关于网络空间安全监控的研究,其中就利用了类似的HTML内容抓取和分析技术,对全球范围内的公开漏洞报告进行了实时监测和智能分析,有效提升了漏洞管理效率并降低了潜在风险。 同时,随着Web技术的快速发展,HTML5标准的普及以及各类网站结构的复杂化,如何更精准高效地从海量网页中提取关键数据成为一个亟待解决的问题。例如,Mozilla最近发布的一篇博客文章详细介绍了其如何借助类似Jsoup的开源库优化Firefox浏览器的安全更新通告系统,通过精确筛选和解析HTML页面中的特定元素,实现了对安全漏洞信息的自动化获取和分类。 此外,针对网络安全领域,国内外众多安全研究团队正积极研发新型的信息抽取模型,结合机器学习、深度学习等先进技术,提升对网页内容的理解能力,以便更快更准确地定位高危漏洞。近日,在Black Hat USA 2023大会上,就有专家演示了利用强化学习方法训练出的智能爬虫,成功在大量网页中挖掘出尚未被广泛认知的隐蔽性安全漏洞。 综上所述,无论是基于Jsoup的传统HTML解析技术,还是结合AI前沿发展的智能信息抽取手段,都在不断推动网络安全监控和漏洞管理领域的进步,为构建更加安全可靠的网络环境提供了有力支持。
2023-07-19 10:42:16
295
转载
Java
在深入理解Java中对象的比较方式后,我们可以进一步探索更广阔的应用场景和实践策略。近期,随着JDK 17的发布,对内存管理和字符串处理的优化更加凸显了正确使用“==”和equals()方法的重要性。例如,在JDK 17引入的String类的内部优化中,对于相同的字符串字面量,其“==”比较的结果在更多情况下将表现为true,这是由于对字符串常量池进行了更为高效的管理。 此外,对于自定义类的对象比较,不仅需要重写equals()方法以实现内容比较,还应遵循约定,同时重写hashCode()方法以保持equals()和hashCode()的一致性原则。这在诸如HashMap、HashSet等集合类的使用场景中至关重要,因为这些类会依赖hashCode()来快速定位元素,而equals()则用于最终确定元素是否相等。 实践中,对于复杂的对象结构,如多层嵌套的对象属性,可以采用Apache Commons Lang库中的EqualsBuilder和HashCodeBuilder工具类进行深度内容比较。这些工具提供了链式调用的方式,能确保即使对象结构复杂也能准确地判断内容是否相等,从而避免因属性遗漏而导致的比较错误。 总之,理解并有效运用Java中的对象比较方式是编程过程中的基石之一,它不仅关乎程序逻辑的准确性,也在很大程度上影响着应用程序的性能与健壮性。紧跟技术发展趋势,结合实际项目需求,灵活选择和定制合适的比较策略,是每个Java开发者不断提升技能的重要环节。
2023-06-27 10:13:01
314
键盘勇士
HTML
在前端开发中,将JavaScript代码转换为HTML字符串是构建动态网页内容的关键技术之一。随着现代Web应用日趋复杂和交互性增强,这一需求变得更加普遍且重要。近期,Vue.js、React和Angular等主流前端框架在模板渲染方面提供了更为强大且灵活的解决方案。 例如,Vue.js采用MVVM(Model-View-ViewModel)模式,并支持模板语法,开发者可以直接在HTML中插入可响应的数据绑定表达式,如{ {name} }和v-bind指令,框架会自动将其转化为对应的HTML字符串,实现数据与视图的实时同步更新。 同时,React推崇JSX语法,它允许开发者直接在JavaScript中编写类似HTML的结构,通过Babel编译器将其转化为React.createElement函数调用序列,最终生成HTML字符串。这种将模板与逻辑紧密耦合的方式有利于提升代码的可维护性和复用性。 深入研究,还可以发现诸如lit-html这样的轻量级库,它利用模板字面量和HTML模板化功能,结合高效的差异更新算法,在保证性能的同时简化了将JavaScript转为HTML字符串的过程。 总之,在当前前端开发领域,将JavaScript转换为HTML字符串不仅停留在原始的字符串拼接或模板字符串阶段,而是融入到各类现代框架的核心机制之中,以更高效、便捷的方式服务于复杂的Web应用开发实践。不断跟进和掌握这些新方法和技术趋势,有助于开发者提升项目质量和开发效率。
2023-11-22 11:28:15
474
电脑达人
JQuery
...ry框架中如何高效地拼接HTML和为动态生成的元素绑定事件后,我们可将探索延伸至现代Web开发中的最新实践与趋势。随着原生JavaScript能力的不断增强以及性能优化需求的增长,诸如React、Vue等现代化前端框架以其组件化、虚拟DOM和高效的事件处理机制,在Web开发领域崭露头角。 例如,React通过JSX语法让开发者能够更直观地构建和更新UI,其组件化的特性使得动态生成HTML内容变得更为简洁且易于维护;同时,React合成事件系统确保了无论是静态还是动态渲染的元素,都能高效响应用户交互。 另外,Vue.js也提供了类似的便利性,它采用模板语法结合v-for指令可以方便地遍历数据并生成列表项,同时利用v-on或@指令进行事件绑定,即使面对动态生成的元素,也能借助于依赖追踪和异步更新队列实现事件委托的效果。 值得注意的是,尽管这些新兴框架带来了许多优势,但JQuery仍因其广泛兼容性和易用性,在不少项目尤其是对旧版浏览器支持有要求的场景下继续发挥着重要作用。因此,深入理解和掌握JQuery及其它JavaScript库和框架在DOM操作和事件处理方面的差异与共通之处,对于提升Web开发效率和代码质量至关重要。 此外,随着Web Components标准的推进和发展,未来可能会出现更多基于原生API实现的解决方案,这也将改变我们对动态生成元素和事件绑定的传统认知。对此,持续关注相关技术动态,适时调整和优化开发策略,无疑有助于保持技术水平与时俱进。
2023-12-04 09:15:37
395
逻辑鬼才
JQuery
在深入探讨JavaScript数组的.join()方法如何有效地将数字拼接为字符串之后,我们发现其在前端开发中扮演了至关重要的角色。特别是在处理大量数据时,如动态生成网页元素内容、构建查询字符串以及进行AJAX请求参数序列化等场景。 最近,随着WebAssembly和高性能JavaScript库的兴起,原生JavaScript性能优化的重要性更为凸显。例如,在Vue 3或React最新版本的应用中,为了提高渲染效率,开发者们更倾向于使用原生JavaScript方法而非框架提供的便捷工具。.join()凭借其高效的内存管理和运行速度,在此类优化实践中发挥了关键作用。 另外,在大数据处理与可视化领域,.join()方法同样被广泛应用。例如,在D3.js库中创建SVG路径时,需要将坐标点数组转换为连续的路径数据字符串,此时.join()就能派上用场,实现高效的数据格式转化。 不仅如此,.join()方法还揭示了JavaScript对Unicode字符集的良好支持,当数组元素包含非ASCII字符时,它依然能准确无误地拼接成字符串,这对于国际化应用开发具有重要意义。 因此,对于前端开发者而言,不仅需要掌握jQuery等库的便捷功能,更要深入了解JavaScript原生API,如.join()这样的基础函数,以应对不断变化的技术趋势和实际应用场景的需求。同时,持续关注ECMAScript新标准的发展,了解并掌握新的字符串处理方式,也是提升开发效能的关键所在。
2023-04-28 20:55:09
44
码农
Java
在深入理解Java中HashMap和HashSet的工作原理及其高效性能后,我们可以进一步关注它们在实际开发中的最新应用与优化策略。近年来,随着JDK版本的不断迭代更新,对HashMap和HashSet的实现细节也有所调整和完善。 例如,在JDK 1.8版本中,HashMap引入了红黑树来解决哈希冲突导致的链表过长问题,当桶中元素数量超过一定阈值(默认为8)时,链表会自动转换为红黑树以保持高效的查找、插入和删除操作。因此,开发者需要关注此类内部机制的变化,以便更好地进行性能调优。 另外,对于多线程环境下的使用,由于HashMap和HashSet并不保证线程安全,Java提供了ConcurrentHashMap作为线程安全的替代方案,它采用分段锁技术实现了更高的并发性能。与此同时,Guava库中的HashMultiset、ImmutableSet等集合类也为开发者的高性能编程提供了更多选择。 此外,针对自定义对象作为键的情况,确保正确且一致地重写equals()和hashCode()方法至关重要,这对于维护集合内部状态的一致性及避免潜在的逻辑错误至关重要。 综上所述,深入理解和掌握HashMap与HashSet的工作原理,并结合最新的技术和实践,可以帮助开发者构建更为高效、稳定的系统。同时,持续关注官方文档更新、社区讨论以及相关学术研究,可以及时了解并应用这些数据结构的最新发展成果。
2023-10-10 17:34:26
308
编程狂人
JSON
...准确地处理JSON与Java对象间的转换成为开发者关注的重点。Jackson库作为Java世界中最常用的JSON处理工具之一,提供了丰富的功能以满足不同场景下的需求。 除了上述文章介绍的基础用法外,Jackson库还支持将JSON转换为自定义的Java Bean对象,并能处理复杂嵌套结构的数据。例如,通过注解的方式,可以指定JSON字段与Java类属性之间的映射关系,使得转换过程更加智能且灵活。此外,对于可能存在的空值或异常情况,Jackson也提供了多种配置选项供开发者进行容错处理。 另一方面,Gson、Fastjson等其他开源库也是处理JSON与Java对象互转的有效工具,各有优劣,开发者可以根据项目需求和性能指标选择合适的库。同时,最新的Java版本(如Java 11及以上)已经原生支持JSON操作,例如使用JsonParser解析JSON,或者通过内置的JSON-B实现进行序列化和反序列化。 值得注意的是,在处理大量数据或高并发场景时,对JSON转换性能的优化至关重要。这包括但不限于选择高效的JSON库、合理设计数据模型以减少转换开销、利用缓冲技术提高IO效率等手段。因此,深入理解并掌握这些技术点,不仅能够提升程序性能,也能更好地应对实际开发中的各种挑战。
2023-12-27 11:56:29
500
逻辑鬼才
Python
...l)草案,旨在进一步优化数字类型处理性能,并可能引入更高效的新方法以处理大数值的加减运算。例如,对于金融、科学计算等领域,精准且高效的正负数运算至关重要。 与此同时,Python在非数值类型如字符串、列表、元组等上的加法操作也体现了其动态语言特性。在实际开发场景中,开发者可以利用这些灵活的加法规则实现数据拼接、集合合并等功能,极大地提高了开发效率与代码可读性。例如,Facebook的开源库Django就广泛运用了Python的字符串格式化和列表合并机制,从而简化Web开发中的模板渲染逻辑。 此外,深入探讨Python的底层实现原理,我们会发现,无论是整数还是浮点数的加法运算,Python内部都采用了C语言编写的高效算法,确保了计算的准确性和速度。而对于复杂的数据结构,Python通过其内置的方法巧妙地实现了类似“加法”的行为,这是对面向对象编程思想的深刻体现,也是Python设计哲学“简洁即力量”在实践中的应用典范。 总之,Python在正负数加法以及各类数据类型的“加法”操作上展现出了卓越的灵活性与实用性,不断与时俱进的更新也让它持续保持活力,满足广大开发者在不同场景下的需求。建议读者进一步探索Python的相关文档,了解其更多高级特性,并关注Python社区的最新动态,以便更好地掌握这一强大的编程工具。
2023-05-02 19:24:10
336
软件工程师
Java
在Java开发领域中,PDF文档处理是一个常见且重要的需求。近期,随着Apache PDFBox库的不断更新与优化,它作为另一种强大的开源Java库,同样提供了高效、便捷的PDF与String互转功能,并逐渐受到开发者们的青睐。相较于iText,PDFBox在处理大量PDF文件时展现出了卓越的性能和更为灵活的功能支持。 例如,使用PDFBox将PDF转换为文本字符串,可以采用PDFTextStripper类,其API设计简洁易用,支持提取PDF中的富文本信息以及表格内容。而在创建PDF文件方面,PDFBox通过PDDocument、PDPage及PDPageContentStream等核心类,让开发者能够更加精细地控制PDF页面布局与内容填充,实现复杂报表、合同文档等多种类型的PDF生成。 值得注意的是,无论是iText还是PDFBox,都遵循了Apache 2.0开源协议,确保了开发者在商业项目中的自由使用。同时,它们均提供了详细的官方文档和丰富的社区资源,便于开发者深入学习和解决实际问题。 另外,随着云计算和微服务架构的发展,越来越多的服务提供商如Google Cloud、阿里云等也推出了基于RESTful API的云端PDF处理服务,使得开发者无需直接在本地应用中集成上述库,即可轻松完成PDF与字符串之间的转换任务,进一步提升了开发效率与系统的可扩展性。 综上所述,在面对PDF与String互转这一需求时,Java开发者可以根据具体场景选择合适的工具或服务,以适应快速变化的技术环境和业务需求。对于希望深入了解和掌握PDF处理技术的开发者来说,持续关注并研究这些最新的技术和解决方案,无疑将极大地提升自身在文档处理领域的专业能力。
2023-08-30 10:08:22
314
键盘勇士
Java
在深入理解Java中char和Character类的差异及其应用后,我们进一步关注近期Java语言对字符处理方面的最新进展。Java 13引入了文本块(Text Blocks)这一特性,极大地简化了多行字符串和模板文本的处理,尤其在涉及大量字符或需要格式化输出时,开发者无需再为转义字符烦恼。这看似与char和Character直接关联不大,但实则拓宽了字符操作的使用场景,使得字符和字符串结合更为紧密。 此外,在处理国际字符集方面,随着Unicode标准不断迭代升级,Java持续优化其对Unicode字符的支持。例如,Java 11增强了对Unicode 10.0的支持,并在后续版本中跟进最新的Unicode标准,确保开发者能够利用Java处理全球范围内的所有字符。 值得注意的是,虽然Java SE 8及以上版本提供了Optional类以进行更安全的类型处理,但在字符类型的空值安全操作上,Character类并未被完全替代。开发人员仍需谨慎对待可能为空的字符引用,适时运用Character对象或者Java 8中的Objects类提供的方法,如Objects.requireNonNullElse()等,来确保字符操作的安全性和健壮性。 另外,对于性能敏感的应用场景,尽管Character类提供了丰富的功能性方法,但因其涉及到对象创建和方法调用的开销,直接使用char类型进行基础操作可能会获得更好的性能表现。因此,在实际编码实践中,充分理解并灵活运用char与Character的区别至关重要,以便根据具体需求做出最佳选择。
2023-01-16 09:53:47
469
数据库专家
JSON
...的过程中,JSON(JavaScript Object Notation)因其简洁的语法和广泛的兼容性而备受青睐。然而,将JSON数据高效、准确地转换为数据库表格式是一项关键任务,特别是在大数据时代背景下,大量异构数据的整合与分析尤为重要。 近期,业界对于如何优化这一过程展开了深入研究和实践应用。例如,2023年春季,Google Cloud推出了一款名为“Dataflow for JSON”的服务,该服务能够自动解析复杂JSON结构,并智能映射到BigQuery等云数据库中,极大地简化了JSON至关系型数据库的转换流程,提升了数据集成效率。 同时,一些开源项目也在积极探索这一领域,如PostgreSQL的jsonb数据类型就支持直接存储JSON并进行高效的查询操作,使得JSON数据可以直接在数据库层面进行深度处理,无需预先转换成传统的表结构。 此外,针对嵌套层级较深或动态结构变化频繁的JSON数据,有学者提出了基于NoSQL数据库的解决方案,如MongoDB的文档模型能很好地适应JSON数据的特性,实现灵活且高性能的数据管理。 总的来说,随着技术的发展和应用场景的变化,JSON数据转换为数据库表格式的方法不断演进,无论是通过增强传统关系型数据库的功能,还是借助NoSQL数据库的优势,都在推动着更高效、便捷的数据处理方式的创新与发展。
2023-11-04 08:47:08
443
算法侠
Java
Java是一种常见的编程语言,在很多应用场景中都有广泛的应用。其中,Write和Login两个关键词是我们在Java中经常使用的函数名。下面将详细讲解这两个函数的用法和实现。 Write函数 public void Write(String message, OutputStream outputStream) throws IOException Write函数用于将给定的字符串写入指定的输出流中。通常情况下,我们可以使用该函数来将数据写入到文件、网络或控制台等输出设备中。 该函数共有两个参数: message:要写入的字符串。 outputStream:要写入数据的输出流。 下面是一个简单的使用示例: try { OutputStream outputStream = new FileOutputStream("example.txt"); String message = "这是一条测试数据"; Write(message, outputStream); outputStream.close(); } catch (IOException e) { e.printStackTrace(); } Login函数 public void Login(String username, String password) throws LoginException Login函数用于验证给定的用户名和密码是否正确。通常情况下,我们可以使用该函数来进行用户认证,保护系统安全。 该函数共有两个参数: username:要验证的用户名。 password:要验证的密码。 如果验证成功,那么该函数将正常返回;否则,会抛出一个LoginException异常。下面是一个简单的使用示例: try { String username = "test"; String password = "123456"; Login(username, password); System.out.println("登录成功!"); } catch (LoginException e) { e.printStackTrace(); } 通过上述介绍,我们可以看出,Write和Login函数都是Java中常用的函数,它们分别实现了数据输出和用户认证的功能。在实际的Java应用中,我们可以结合具体的业务场景,充分发挥它们的作用,提高系统的性能和安全。
2023-08-11 21:09:32
331
代码侠
MySQL
...0版本,引入了一系列性能优化和新特性,如窗口函数、原子DDL操作以及增强的安全功能(如caching_sha2_password认证插件),这些改进对于系统数据存储与管理的安全性和效率都带来了显著提升。 其次,随着云服务的发展,各大云服务商如AWS、阿里云、腾讯云等均提供了MySQL托管服务,用户无需关心底层硬件维护与软件升级,只需关注数据模型设计和SQL查询优化,大大降低了数据库运维门槛。例如,AWS RDS MySQL服务提供了一键备份恢复、读写分离、自动扩展等功能,为系统数据的高效管理和高可用性提供了有力支持。 再者,深入探讨MySQL在大数据处理领域的应用也不容忽视。虽然MySQL传统上主要用于OLTP在线交易处理场景,但在结合Hadoop、Spark等大数据框架后,也能够实现大规模数据分析和处理。比如使用Apache Sqoop工具将MySQL数据导入HDFS,或通过JDBC连接Spark SQL对MySQL数据进行复杂分析。 此外,对于系统安全性的考虑,如何有效防止SQL注入、实施权限管理以及加密敏感数据也是MySQL使用者需要关注的重点。MySQL自带的多层访问控制机制及密码加密策略可确保数据安全性,同时,业界还推荐遵循OWASP SQL注入防护指南来编写安全的SQL查询语句。 总之,在实际工作中,熟练掌握MySQL并结合最新的技术趋势与最佳实践,将有助于构建更为稳定、高效且安全的系统数据存储解决方案。
2023-01-17 16:44:32
123
程序媛
Apache Pig
...括以下几种: (1)字符型:chararray Pig中的字符型是一个字符串,可以包含任意数量的字符。例如: scss a = 'hello'; (2)整型:int Pig中的整型是一个十进制整数。例如: css b = 123; (3)浮点型:float Pig中的浮点型是一个十进制浮点数。例如: bash c = 3.14; (4)双精度浮点型:double Pig中的双精度浮点型是一个具有较高精度的十进制浮点数。例如: bash d = 3.14159265358979323846; (5)日期型:date Pig中的日期型是一个日期值。例如: python e = '2024-01-18'; (6)时间型:time Pig中的时间型是一个时间值。例如: go f = '12:00:00'; (7)时间戳型:timestamp Pig中的时间戳型是一个包含日期和时间信息的时间值。例如: go g = '2024-01-18 12:00:00'; (8)字节型:bytearray Pig中的字节型是一个二进制数据。例如: python h = {'1', '2', '3'}; (9)集合型:bag Pig中的集合型是一个包含多个相同类型元素的列表。例如: javascript i = {(1, 'apple'), (2, 'banana')}; (10)映射型:tuple Pig中的映射型是一个包含两个不同类型的键值对的元组。例如: php-template j = (1, 'apple'); (11)映射数组型:map Pig中的映射数组型是一个包含多个键值对的列表。例如: bash k = {'key1': 'value1', 'key2': 'value2'}; 2. 复杂类型 Pig中的复杂数据类型主要有两种:列表和文件。 (1)列表:list Pig中的列表是一个包含多个相同类型元素的列表。例如: php-template l = [1, 2, 3]; (2)文件:file Pig中的文件是一个包含多个行的数据文件。例如: makefile m = '/path/to/file.txt'; 3. 特殊类型 Pig中的特殊数据类型主要有三种:null、undefined和struct。 (1)null:null Pig中的null表示一个空值。例如: java n = null; (2)undefined:undefined Pig中的undefined表示一个未定义的值。例如: python o = undefined;
2023-01-14 19:17:59
480
诗和远方-t
Scala
...式值。例如: java def foo[T](t: T): Unit = { println(s"The type of t is $t") } foo("Hello, World!") 在这个例子中,Scala会尝试找到一个可以将字符串转换为T类型的隐式转换,并且找到了scala.Predef.StringOpstoString的隐式转换。 2)隐式转换类:Scala中的隐式转换不仅可以应用于类型参数,也可以应用于对象。例如: java class RichString(val str: String) extends AnyVal { def startsWith(prefix: String): Boolean = str.startsWith(prefix) } object RichString { implicit val stringRich: RichString = new RichString("") } val richStr = "Hello, World!" richStr.startsWith("Hello") 在这个例子中,Scala会尝试找到一个可以将String转换为RichString类型的隐式转换,并且找到了RichString对象。 3)隐式参数解析:我们可以通过在方法或函数的参数列表中声明一个类型为隐式的参数,然后让编译器在编译期间自动推导出该隐式参数的值。例如: java import scala.math.sqrt def area(radius: Double)(implicit ev: => Double = sqrt(4)): Double = { Math.PI radius radius } area(5) 在这个例子中,Scala会尝试找到一个可以将Double转换为Double类型的隐式转换,并且找到了scala.math.sqrt的隐式转换。 序号3:Scala中的隐式转换原理 Scala中的隐式转换是一种编译时机制,它允许我们在代码中省略某些显式类型声明。当你在用Scala编程时,如果编译器找不到一个恰好匹配特定类型的明确类型声明,它就会像个侦探一样,在当前的作用域范围内搜寻一番,看看是否藏着符合要求的隐式类型转换“小秘密”。如果碰巧找到了这样一个隐式转换,编译器就会在程序运行的时候,悄无声息地执行这个转换操作,把参数的类型自动变成目标类型所需要的样子。 例如,考虑下面的代码片段: java class MyClass { val myVar: Int = 5 } val obj = new MyClass() println(obj.myVar + " Hello") // 编译错误 在这个例子中,Scala编译器无法将MyClass的实例转换为String类型,因为没有定义这样的转换。如果我们想要使用隐式转换来解决这个问题,我们可以这样做: java object MyImplicits { implicit val intToString: Int => String = _.toString } val obj = new MyClass() println(MyImplicits.intToString(obj.myVar) + " Hello") // 输出:5 Hello 在这个例子中,我们定义了一个名为intToString的隐式转换,它可以将Int类型转换为String类型。然后我们将这个隐式转换引入到我们的代码中,使得在调用println(obj.myVar + " Hello")时,Scala编译器可以找到这个隐式转换并将其用于将obj.myVar转换为String类型。 总的来说,Scala中的隐式转换是一个强大的工具,它可以帮助我们写出更简洁、更易于理解的代码。但是,咱们也得留个心眼儿,别乱用隐式转换,要不然代码可能会变得让人摸不着头脑,维护起来也够你头疼的。
2023-02-01 13:19:52
120
月下独酌-t
ActiveMQ
...畅,还能大大提高整体性能,让它变得倍儿给力。 三、如何使用消息选择器? 1. 创建消息选择器 在使用消息选择器之前,我们需要先创建一个消息选择器对象。这可以通过调用Connection的createProducer()方法并传入一个QueueBinding对象来实现。例如: java ConnectionFactory factory = new ActiveMQConnectionFactory("tcp://localhost:61616"); Connection connection = factory.createConnection(); connection.start(); Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE); Destination destination = session.createQueue("queueName"); MessageProducer producer = session.createProducer(destination); 2. 设置消息选择器 接下来,我们可以设置消息选择器。这可以通过调用MessageProducer的setMessageSelector()方法并传入一个字符串来实现。例如: java String selector = "color='red'"; producer.setMessageSelector(selector); 在这个例子中,我们设置了消息选择器为"color='red'",这意味着只有颜色为红色的消息才会被发送到队列。 3. 发送消息 最后,我们只需要调用MessageProducer的send()方法并传入一个Message对象就可以发送消息了。例如: java TextMessage message = session.createTextMessage("Hello World"); message.setStringProperty("color", "red"); producer.send(message); 在这个例子中,我们创建了一个文本消息,并将它的颜色属性设置为红色。然后,我们通过消息选择器发送这个消息。 四、总结 通过学习和实践,我们可以发现消息选择器是一个非常强大且实用的功能。这个家伙能够帮助我们更上一层楼地掌握咱们的消息传递流程,让整个系统运转得更加麻溜儿,充满活力和弹性。所以,如果你现在正用着ActiveMQ这款产品,那我可得告诉你,有个功能你绝对不能错过,否则你会后悔的!
2023-03-11 13:19:06
928
山涧溪流-t
Scala
...讨了如何通过存在类型优化Java和Scala等语言中的API设计,使其更加灵活且适应性强。文章分析了实际案例,并提出了一种新的设计模式,有效利用了存在类型的特性来处理复杂的类型交互问题。 同时,对于Scala开发者来说,关注最新的编译器更新也十分必要。Scala 3(Dotty项目)在类型系统上进行了重大革新,虽然在语法层面上简化了对Existential Types的显式使用,但其背后的原理和应用场景依然值得深入探究。例如,Scala 3引入了更为强大的“Union types”和“Intersection types”,它们在某种程度上可以替代或补充existential types的功能,为代码提供更简洁、明确的表述方式。 此外,实践中还可以参考社区内的最佳实践和开源库,了解Existential Types在处理异构数据结构、设计泛型算法等方面的实际运用。通过这些延展阅读和实践操作,开发者不仅可以巩固对Existential Types的理解,还能更好地将其融入到日常开发工作中,提高代码质量和程序性能。
2023-01-22 23:32:50
96
青山绿水-t
Flink
...这种情况下,我们需要优化我们的系统,提高其稳定性。 3. 代码错误 代码错误是导致Flink算子执行异常的一个常见原因。比如,假如我们编的代码里有语法bug,那很可能让Flink运算器没法好好干活儿,执行起来就会出岔子。在这种情况下,我们需要仔细检查我们的代码,确保其没有错误。 三、如何处理Flink算子执行异常? 1. 检查数据 首先,我们需要检查我们的数据。我们需要确保我们的数据是正确的,并且是符合我们的预期的。我们可以使用Flink的调试工具来进行数据检查。 java DataStream data = env.addSource(new StringSource()); data.print(); 在这个例子中,我们添加了一个字符串源,并将其输出到控制台。这样,我们就可以看到我们的数据是否正确。 2. 优化系统 其次,我们需要优化我们的系统。我们需要确保我们的系统稳定,并且能够正常地运行Flink算子。我们可以使用Flink的监控工具来监控我们的系统。 java env.getExecutionEnvironment().enableSysoutLogging(); 在这个例子中,我们开启了Flink的sysout日志,这样我们就可以通过查看日志来监控我们的系统。 3. 修复代码 最后,我们需要修复我们的代码。我们需要找出我们的代码中的错误,并且修复它们。我们可以使用Flink的调试工具来调试我们的代码。 java DataStream> result = env.fromElements(1, 2, 3) .keyBy(0) .sum(1); result.print(); 在这个例子中,我们创建了一个包含三个元素的数据集,并对其进行分组和求和操作。然后,我们将结果输出到控制台。如果我们在代码中犯了错误,那么Flink就会抛出一个异常。 四、总结 总的来说,Flink算子执行异常是一个常见的问题。然而,只要我们掌握了正确的处理方法,就能够有效地解决这个问题。因此,我们应该多学习,多实践,不断提高我们的技能和能力。只有这样,我们才能在大数据处理领域取得成功。
2023-11-05 13:47:13
462
繁华落尽-t
Scala
...理解和维护。例如,在Java中,我们可以定义一个名为Color的枚举类型: java public enum Color { RED, GREEN, BLUE; } 三、Scala中的枚举类型 在Scala中,我们也可以通过定义类来创建枚举类型。但是,这种方式并不直观,并且不能保证所有的值都被定义。这时,我们就需要使用到Enumeratum库了。 四、使用Enumeratum库创建枚举类型 Enumeratum是一个用于定义枚举类型的库,它提供了一种简单的方式来定义枚举,并且能够生成一些有用的工具方法。首先,我们需要在项目中添加Enumeratum的依赖: scala libraryDependencies += "com.beachape" %% "enumeratum-play-json" % "2.9.0" 然后,我们就可以开始定义枚举了: scala import enumeratum._ import play.api.libs.json.Json sealed trait Color extends EnumEntry { override def entryName: String = this.name.toLowerCase } object Color extends Enum[Color] with PlayJsonEnum[Color] { case object Red extends Color case object Green extends Color case object Blue extends Color } 在这里,我们首先导入了Enums模块和PlayJsonEnum模块,这两个模块分别提供了定义枚举类型和支持JSON序列化的功能。然后,我们定义了一个名为Color的密封抽象类,这个类继承自EnumEntry,并实现了entryName方法。然后,我们在这Color对象里头捣鼓了三个小家伙,这三个小家伙都是从Color类那里“借来”的枚举值,换句话说,它们都继承了Color类的特性。最后,我们给Enum施展了个小魔法,让它的apply方法能够大显身手,这样一来,这个对象就能摇身一变,充当构造器来使啦。 五、使用枚举类型 现在,我们已经成功地创建了一个名为Color的枚举类型。我们可以通过以下方式来使用它: scala val color = Color.Red println(color) // 输出 "Red" val json = Json.toJson(Color.Green) println(json) // 输出 "{\"color\":\"green\"}" 在这里,我们首先创建了一个名为color的变量,并赋值为Color.Red。然后,我们打印出这个变量的值,可以看到它输出了"Red"。接着,我们将Color.Green转换成JSON,并打印出这个JSON字符串,可以看到它输出了"{\"color\":\"green\"}"。 六、总结 通过本文的介绍,你已经学会了如何在Scala中使用Enumeratum库来创建枚举类型。你知道吗,使用枚举类型就像是给代码世界创建了一套专属的标签或者目录。它能够让我们把相关的选项分门别类地管理起来,这样一来,不仅能让我们的代码看起来更加井然有序、一目了然,还大大提升了代码的可读性和维护性,就像整理房间一样,东西放得整整齐齐,想找啥一眼就能看到,多方便呐!另外,使用Enumeratum这个库可是好处多多啊,它能让我们有效避开一些常见的坑,还自带了一些超级实用的小工具,让我们的开发工作就像开了挂一样高效。
2023-02-21 12:25:08
204
山涧溪流-t
Struts2
...用Struts2进行Java Web开发时,可能会遇到一种常见的运行时错误——"No result type defined for action method return value". 这种错误通常出现在我们配置的Action类方法返回值无法匹配到预定义的结果类型时。这次,咱将手牵手、一步步深挖这个错误背后的真相,不仅限于理论讲解,还会结合实际的代码实例,让大家真真切切地看到如何解决这个问题,以及如何提前做好防范,让这类错误无处遁形。 2. 错误的理解与解读 首先,让我们来共同剖析一下这个错误信息。在Struts2这个框架里,当你执行完一个Action方法后,它会像个聪明的小助手一样,根据你这个方法返回的结果字符串,去找到对应的那个结果类型处理器。这就像是拿着一把钥匙去找对应的锁一样,结果字符串就是钥匙,结果类型处理器就是那个特定的锁。若Struts2找不到与之匹配的结果类型,就会抛出此异常。这就像是你给一位厨房大厨一张满载神秘食材的任务卡,可关键的是,菜单上并没有教他具体怎么料理这些稀奇古怪的玩意儿,这样一来,大厨可就懵圈了,完全不知道从何下手。 3. 示例代码与解析 为了更好地理解这个问题,我们先看一段简单的Struts2 Action类代码示例: java public class SampleAction extends ActionSupport { public String execute() { // 执行一些业务逻辑... return "customResult"; // 返回自定义结果字符串 } } 然后,在struts.xml配置文件中,如果我们没有为"customResult"定义相应的结果类型: xml 运行程序并调用该Action时,Struts2就无法找到对应的“customResult”的结果处理器,从而抛出"No result type defined for action method return value: customResult"的错误。 4. 解决方案 要解决这个问题,我们需要在struts.xml配置文件中为"customResult"添加相应结果类型定义: xml /WEB-INF/pages/success.jsp 在这个例子中,我们指定了当execute方法返回"customResult"时,系统应该跳转到"/WEB-INF/pages/success.jsp"页面。这样一来,Struts2就能准确无误地处理Action方法的返回值了。 5. 预防与优化 为了避免这类问题的发生,我们在设计和编写Action类时应遵循以下原则: - 明确每个Action方法可能返回的所有结果类型,并在struts.xml中预先配置好。 - 在团队协作中,统一结果类型命名规则,保持良好的文档记录,方便后续维护和扩展。 - 利用Struts2的通配符结果类型或者默认结果类型等特性,简化配置过程,提高开发效率。 6. 总结 在我们的编程实践中,理解和掌握Struts2框架的工作机制至关重要。当你遇到像"No result type defined for action method return value"这样的怪咖问题时,咱们不光得摸清怎么把它摆平,更关键的是,得学会从这个坑里爬出来的同时,顺手拔点“经验值”,让自己在编程这条路上的修养越来越深厚。这样子做,咱们才能在未来的开发道路上越走越远、越走越稳当,确保每次编程的旅程都充满刺激的挑战和满满的收获。
2023-07-16 19:18:49
80
星河万里
c#
...数据库操作的安全性与性能优化。近期,微软发布了.NET 6框架,其中包含了针对ADO.NET的多项改进和新特性,如新的SQL客户端实现——Microsoft.Data.SqlClient,它提供了更强大的安全性支持和性能优化功能。 例如,Microsoft.Data.SqlClient引入了Always Encrypted with secure enclaves技术,能在数据离开应用程序前对其进行加密,并在数据库内部解密,有效防止敏感数据在传输过程中的泄露风险。此外,对于批量插入等大量数据操作场景,新版本客户端优化了缓冲区管理和网络I/O效率,从而显著提升数据写入速度。 同时,随着ORM(对象关系映射)框架如Entity Framework Core的发展与普及,开发者在进行数据库操作时有了更多选择。EF Core不仅简化了CRUD操作,内置的Change Tracker机制能自动跟踪实体状态并生成对应的SQL语句,大大减少了手动拼接SQL命令的工作量和潜在错误,同时也兼顾了事务管理与并发控制。 因此,在实际项目开发中,除了关注SqlHelper类的封装及使用技巧外,及时跟进最新的数据库访问技术趋势,合理选用适合项目需求的工具与框架,是提高数据操作安全性、性能及代码可维护性的关键所在。
2023-09-06 17:36:13
507
山涧溪流_
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
sudo su - user
- 切换到指定用户(需有sudo权限)。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"