前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[Docker容器启动与运行命令详解]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Docker
Docker , Docker是一款开源的应用容器引擎,它使用容器化技术将应用程序及其依赖项打包在一起,形成一个可移植、自包含的软件单元。在不同的操作系统和环境下,Docker容器可以确保应用的一致性运行,极大地提高了开发、测试和部署的效率与灵活性。 Docker镜像 , Docker镜像是创建Docker容器的基础,是一个只读模板,包含了运行某个软件服务所需的所有文件系统结构、环境变量以及配置信息。在本文中,“liumiaocn/thunder-linux”就是一个迅雷的Docker镜像,通过docker pull命令从Docker Hub仓库下载到本地,然后基于此镜像启动迅雷的Docker容器。 数据卷挂载(-v 参数) , 在Docker中,数据卷是宿主机和容器之间共享数据的一种方式。通过 -v 参数可以在启动容器时指定宿主机目录与容器内部目录的映射关系,使得容器内产生的数据能够持久化存储在宿主机上。在本文的具体场景下,使用 -v $ HOME /Downloads:/root/Downloads 将主机用户的下载目录挂载到容器的根用户下载目录,这样迅雷在容器内下载的文件就可以直接保存在主机的 ~/Downloads 目录下,方便用户在宿主机层面访问和管理这些文件。 X11服务器 (DISPLAY) , X11是一个用于Unix和类Unix系统图形界面显示的网络协议。在Docker容器中运行需要图形界面的应用程序时,通常需要将容器连接到宿主机的X11服务器,以便在宿主机上显示应用程序窗口。在文章中,通过 -e DISPLAY=$DISPLAY 和 -v /tmp/.X11-unix:/tmp/.X11-unix 参数设置,实现了迅雷这个图形界面应用在Docker容器内运行时,其界面能正确显示在宿主机桌面上的功能。
2023-01-28 13:49:08
526
程序媛
Docker
Docker , Docker是一个开源的应用容器引擎,它通过容器化技术将应用程序及其依赖环境打包成一个可移植、自包含的镜像,能够在不同的Linux操作系统上以一致的方式运行。在本文中,用户通过手动输入Docker命令来管理(如创建、启动、停止和进入容器)这些容器。 Docker Hub , Docker Hub是Docker官方提供的镜像仓库服务,类似于软件应用商店,其中包含了大量由社区和官方发布的预构建Docker镜像。用户可以通过docker pull命令从Docker Hub下载所需的镜像,以便快速部署和运行各种应用程序或服务。 容器 , 在Docker环境下,容器是一种轻量级、独立运行的一组进程,它们与主机和其他容器共享内核,但每个容器拥有自己独立的文件系统、网络配置和资源限制。容器提供了隔离且一致的运行环境,使得应用程序可以在不同环境中实现无缝迁移和快速部署。 端口映射 , 端口映射是在Docker容器与宿主机之间建立的一种网络通信机制,通过-p选项在docker run命令中指定。例如,-p 80:80表示将宿主机的80端口与容器内部的80端口进行映射,这样外部客户端可以通过访问宿主机的80端口来与容器内的服务进行通信。 Docker Compose , 尽管文章没有直接提到,但它是Docker生态中的一个重要工具,用于定义和运行多容器应用程序。通过编写一个YAML格式的docker-compose.yml文件,可以轻松地定义一组相关联的服务以及它们之间的依赖关系,然后使用一条命令来启动和协调所有容器的生命周期。 Kubernetes(简称K8s) , 虽然在给出的文章摘要中未详细阐述,但在现代云原生架构中,Kubernetes是一个流行的开源容器编排系统,它可以自动化容器应用的部署、扩展和管理。在文中提及的新版Docker优化了与Kubernetes的集成体验,意味着用户能够更加便捷地将基于Docker的容器部署到Kubernetes集群中,实现大规模容器集群的高效管理和调度。
2023-03-26 21:05:17
324
软件工程师
转载文章
Docker Daemon , Docker Daemon是Docker系统的核心服务进程,它在后台运行并负责管理Docker容器的整个生命周期,包括创建、启动、停止和删除容器,以及与镜像仓库进行交互以下载或上传镜像。在本文中,Docker Daemon的配置文件路径根据不同运行模式(root模式和rootless模式)有所不同,默认位于\ /etc/docker/daemon.json\ 或用户主目录下的\ ~/.docker/daemon.json\ 。 TLS (Transport Layer Security) 模式 , TLS是一种用于网络通信加密的安全协议,确保在互联网上数据传输的安全性和私密性。在Docker环境中,启用TLS模式可以对Docker守护进程与客户端之间的通信进行加密,防止敏感信息被窃取或篡改。当Docker Daemon需要使用到TLS证书时,会按照特定顺序查找这些证书文件,例如优先检查命令行参数指定的证书路径,其次考虑环境变量DOCKER_CERT_PATH等。 containerd Socket (sock) , containerd是一个独立于Docker Daemon的高性能容器运行时,提供了容器的生命周期管理功能。在Docker生态系统中,containerd.sock是一个Unix Domain Socket,它作为containerd与Docker以及其他组件之间进行通信的重要接口。在文中提到的\ /run/containerd/containerd.sock\ 即为containerd服务监听的通信端点,Docker通过连接这个socket与containerd进行交互,执行如创建、启动和停止容器等操作。
2023-09-08 20:50:40
88
转载
Docker
Docker , Docker是一种开源的应用容器引擎技术,它通过操作系统级别的虚拟化方式,将应用程序及其依赖环境封装在轻量级的、可移植的容器中。这些容器能够在不同基础设施之间无缝运行,实现应用的快速部署、扩展和版本管理。每个Docker容器都是一个独立的运行时环境,基于只读的Docker镜像创建,并且可以配置资源限制、网络设置以及存储卷等。 Docker镜像 , Docker镜像是创建Docker容器的基础模板,是一个包含应用程序及其所有依赖组件(包括操作系统层)的静态文件集合。镜像以层级结构保存,遵循可复用原则,允许开发人员构建分层的、模块化的软件交付物。在Docker中,用户可以通过编写Dockerfile来定义镜像的具体构建过程,然后使用docker build命令生成新的镜像。 Docker Compose , Docker Compose是一款用于定义和运行多容器Docker应用程序的工具,它通过一个名为docker-compose.yml的YAML文件来描述多个容器服务、网络及数据卷等组件间的依赖关系和服务配置。借助Docker Compose,开发者能够简化多容器应用的部署与管理,轻松地在一个命令下启动、停止或重新配置整个应用栈,极大地提升了开发效率和生产力。例如,在docker-compose.yml文件中,可以定义web服务器容器和数据库容器,并配置它们之间的网络连接、端口映射和环境变量等信息。
2024-01-21 17:25:00
424
电脑达人
Docker
...天我们要聊的是如何在Docker上部署WGCLOUD的agent。好多小伙伴可能对这个概念还摸不着头脑,别急,我来带你们一步一步搞懂然后搞定它。装个监控工具(咱们叫它agent)可能听着挺麻烦,但实际上它就是个帮手,能让我们更轻松地照顾好服务器。废话不多说,让我们开始吧! 2. Docker基础 首先,我们需要确保你已经安装了Docker,并且对它有一定的了解。如果你是第一次用Docker,可以把它想象成一个轻量级的“虚拟房间”,在这个房间里,你可以跑你的应用,完全不用操心那些烦人的环境配置问题。就像你搬进一个新的公寓,不需要重新装修或买新家具,直接就可以住进去一样方便。 bash 检查Docker是否已安装 docker --version 安装Docker(以Ubuntu为例) sudo apt-get update sudo apt-get install docker.io 3. 获取WGCLOUD的agent镜像 接下来,我们需要获取WGCLOUD的agent镜像。这可以通过Docker Hub来完成。Docker Hub就像是一个大超市,里面摆满了各种Docker镜像,你想找啥都有,真是太方便了! bash 拉取WGCLOUD的agent镜像 docker pull wgc/wgcloud-agent:latest 4. 创建Docker容器 现在我们已经有了镜像,下一步就是创建一个Docker容器来运行这个agent。我们可以使用docker run命令来完成这个操作。在这过程中,你可能得设定一些东西,比如说容器的名称啊,端口映射之类的。 bash 创建并启动Docker容器 docker run -d --name wgcloud-agent \ -p 8080:8080 \ -v /path/to/config:/config \ wgc/wgcloud-agent:latest 这里,-d表示后台运行,--name用来指定容器的名字,-p用于映射端口,-v则用于挂载卷,将宿主机上的某个目录挂载到容器内的某个目录。/path/to/config是你本地的配置文件路径,你需要根据实际情况修改。 5. 配置WGCLOUD的agent 配置文件是WGCLOUD agent运行的关键,它包含了agent的一些基本设置,如服务器地址、认证信息等。我们需要将这些信息正确地配置到文件中。 yaml 示例配置文件 server: url: "http://your-server-address" auth_token: "your-auth-token" 将上述内容保存为config.yaml文件,并按照上面的步骤挂载到容器内。 6. 启动与验证 一切准备就绪后,我们就可以启动容器了。启动后,你可以通过访问http://localhost:8080来验证agent是否正常工作。如果一切顺利,你应该能看到一些监控数据。 bash 查看容器日志 docker logs wgcloud-agent 如果日志中没有错误信息,恭喜你,你的agent已经成功部署并运行了! 7. 总结 好了,到这里我们的教程就结束了。跟着这个教程,你不仅搞定了在Docker上部署WGCLOUD代理的事儿,还顺带学会了几个玩转Docker的小技巧。如果你有任何疑问或者遇到任何问题,欢迎随时联系我。我们一起学习,一起进步! --- 希望这篇教程对你有所帮助,如果你觉得这篇文章有用,不妨分享给更多的人。最后,记得给我点个赞哦!
2025-03-09 16:19:42
87
青春印记_
Redis
...绝招叫setnx命令,这已经变成了众多程序员老铁们在实现分布式锁时的常用“神器”之一了。然而,在我们用Spring Boot 2搭配Docker搭建的线上环境里,遇到了一个让人摸不着头脑的情况:当两个Java程序同时使出“setnx”命令抢夺Redis锁的时候,竟然会出现两个人都能抢到锁的怪事!这可真是让我们一众人大跌眼镜,直呼神奇。本文将尝试分析这一现象的原因,并给出解决方案。 二、问题复现 首先,我们需要准备两台Linux服务器作为开发环境,分别命名为A和B。然后,在服务器A上启动一个Spring Boot应用,并在其中加入如下代码: typescript @Autowired private StringRedisTemplate stringRedisTemplate; public void lock(String key) { String result = stringRedisTemplate.execute((ConnectionFactory connectionFactory, RedisCallback action) -> { Jedis jedis = new Jedis(connectionFactory.getConnection()); try { return jedis.setnx(key, "1"); } catch (Exception e) { log.error("lock failed", e); } finally { if (jedis != null) { jedis.close(); } } return null; }); if (result == null || !result.equals("1")) { throw new RuntimeException("Failed to acquire lock"); } } 接着,在服务器B上也启动同样的应用,并在其中执行上述lock方法。这时候我们注意到一个情况,这“lock”方法时灵时不灵的,有时候它会突然尥蹶子,抛出异常告诉我们锁没拿到;但有时候又乖巧得很,顺利就把锁给拿下了。这是怎么回事呢? 三、问题分析 经过一番研究,我们发现了问题所在。原来,当两个Java进程同时执行setnx命令时,Redis并没有按照我们的预期进行操作。咱们都知道,这个setnx命令啊,它就像个贴心的小管家。如果发现某个key还没在数据库里安家落户,嘿,它立马就动手,给创建一个新的键值对出来。这个键嘛,就是你传给它的第一个小宝贝;而这个值呢,就是紧跟在后面的那个小家伙。不过,要是这key已经存在了,那它可就不干活啦,悠哉悠哉地返回个0给你,表示这次没执行任何操作。不过在实际情况里头,如果两个进程同时发出了“setnx”命令,Redis可能不会马上做出判断,而是会选择先把这两个请求放在一起,排个队,等会儿再逐一处理。想象一下,如果有两个请求一起蹦跶过来,如果其中一个请求抢先被处理了,那么另一个请求很可能就被晾在一边,这样一来,就可能引发一些预料之外的问题啦。 四、解决方案 针对上述问题,我们可以采取以下几种解决方案: 1. 使用Redis Cluster Redis Cluster是一种专门用于处理高并发情况的分布式数据库,它可以通过将数据分散在多个节点上来提高读写效率,同时也能够避免单点故障。通过将Redis部署在Redis Cluster上,我们可以有效防止多线程竞争同一资源的情况发生。 2. 提升Java进程的优先级 我们可以在Java进程中设置更高的优先级,以便让Java进程优先获得CPU资源。这样,即使有两个Java程序小哥同时按下“setnx”这个按钮,也可能会因为CPU这个大忙人只能服务一个请求,导致其中一个程序小哥暂时抢不到锁,只能干等着。 3. 使用Redis的其他命令 除了setnx命令外,Redis还提供了其他的命令来实现分布式锁的功能,例如blpop、brpoplpush等。这些命令有个亮点,就是能把锁的状态存到Redis这个数据库里头,这样一来,就巧妙地化解了多个线程同时抢夺同一块资源的矛盾啦。 五、总结 总的来说,Redis的setnx命令是一个非常有用的工具,可以帮助我们解决分布式系统中的许多问题。不过呢,在实际使用的时候,咱们也得留心一些小细节,这样才能避免那些突如其来的状况,让一切顺顺利利的。比如在同时处理多个任务的情况下,我们得留意把控好向Redis发送请求的个数,别一股脑儿地把太多的请求挤到Redis那里去,让它应接不暇。另外,咱们也得学会对症下药,挑选适合的解决方案来解决具体的问题。比如,为了提升读写速度,我们可以考虑使个巧劲儿,用上Redis Cluster;再比如,为了避免多个线程争抢同一块资源引发的“战争”,我们可以派出其他命令来巧妙化解这类矛盾。最后,我们也应该不断地学习和探索,以便更好地利用Redis这个强大的工具。
2023-05-29 08:16:28
269
草原牧歌_t
转载文章
...的) pull 2、启动容器 run 3、进入容器 exec 1、镜像: docker hub官网搜索nginx 下载:docker pull nginx 查看下载情况:docker images 2、容器: 创建容器命令:docker run [-d 后台启动] [–name nginx01 起别名] [-p 3344:80 端口:协议] [镜像(包含版本)] (创建)启动容器实例:docker run -d --name nginx01 -p 3344:80 nginx 查看容器运行状况:docker ps 本机访问测试一下:curl localhost:3344 ■ 端口暴露 -p 宿主机端口:容器内部端口 浏览器输入: http://服务器ip地址:3344/ 3344 是暴露的端口 ----接下来: 进入(正在运行的)容器内部:docker exec -it nginx01 /bin/bash [root@iZwz9535z41cmgcpkm7i81Z /] docker exec -it nginx01 /bin/bashroot@d1a29e4791e3:/ whereis nginxnginx: /usr/sbin/nginx /usr/lib/nginx /etc/nginx /usr/share/nginxroot@d1a29e4791e3:/ cd /etc/nginxroot@d1a29e4791e3:/etc/nginx lsconf.d fastcgi_params mime.types modules nginx.conf scgi_params uwsgi_paramsroot@d1a29e4791e3:/etc/nginx ■ /bin/bash 是Linux的一种常用shell脚本,用于解释执行Linux命令,根据镜像支持的shell的不同,可以使用不同的的shell脚本。 容器,也是和虚拟机一样是虚拟技术呀,通过脚本执行/bin/bash实现,创建并进入容器内部docker ● 思考问题:每次改动nginx配置文件,都需要进入容器内部,十分麻烦: 要是可以在容器外部提供一个映射路径,达到在容器修改文件名,容器内部就可以自动修改?-v 数据卷技术! 二、部署tomcat docker run 可以不用pull,能自动下载 ctrl+c退出 docker pull tomcat:9.0 启动运行,应该加上版本号: docker run -d -p 3355:8080 --name tomcat01 tomcat:9.0 进入容器 docker exec -it tomcat01 /bin/bash ● 部署tomcat,发现问题: 1、linux命令少了 2、没有webapps 这是阿里云镜像的原因:默认使用最小镜像,所有不必要的都剔除了,保证最小可运行环境 可以通过拷贝的方式,解决没有webapps的问题: 在浏览器中输入:http://服务器ip地址:3355/ 进行访问 ● 思考问题:我们以后部署项目,如果每次都要进入容器很麻烦? 要是可以在容器外部提供一个映射路径,webapps,我们在外部放置项目,容器内部就可以自动修改?-v 数据卷技术! 三、部署es+kibana ● Elasticsearch 的问题: es 暴露的端口很多 es 十分耗内存 es 的数据一般需要放置到安全目录!挂载 1、问题1:es 十分耗内存 下载启动运行elastissearch 之后,Linux系统就变得特别卡 # 启动了 linux就卡住了docker stats# 查看 cpu的状态 #es 是十分耗内存的,1.xG# 1核2G(学生机)! # 查看 docker stats 2、问题2:es 需要暴露的端口很多 -p (下载)启动 elasticsearch$ docker run -d --name elasticsearch01 -p 9200:9200 -p 9300:9300 -e "discovery.type=single-node" elasticsearch:7.6.2 查看内存占用情况docker stats 先感觉stop一下docker stop ba18713ca536 3、es 十分耗内存的解决:增加内存的限制,修改配置文件 -e 环境配置修改 通过 -e 限制内存docker run -d --name elasticsearch02 -p 9200:9200 -p 9300:9300 -e "discovery.type=single-node" -e ES_JAVA_OPTS="-Xms64m -Xmx512m" elasticsearch:7.6.2 [root@iZwz9535z41cmgcpkm7i81Z /] curl localhost:9200/{"name" : "14329968b00f","cluster_name" : "docker-cluster","cluster_uuid" : "0iDu-G_KTo-4X8KORDj1XQ","version" : {"number" : "7.6.2","build_flavor" : "default","build_type" : "docker","build_hash" : "ef48eb35cf30adf4db14086e8aabd07ef6fb113f","build_date" : "2020-03-26T06:34:37.794943Z","build_snapshot" : false,"lucene_version" : "8.4.0","minimum_wire_compatibility_version" : "6.8.0","minimum_index_compatibility_version" : "6.0.0-beta1"},"tagline" : "You Know, for Search"} 4、思考:用kibana连接elasticsearch? 思考(kibana连接elasticsearch)网络如何连接过去 ☺ 参考来源: 狂神的B站视频《【狂神说Java】Docker最新超详细版教程通俗易懂》 https://www.bilibili.com/video/BV1og4y1q7M4 如果本文对你有帮助的话记得给一乐点个赞哦,感谢! 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_45630258/article/details/124785912。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-12 10:54:44
65
转载
Docker
...管理工具,特别是结合Docker使用后,简直是如虎添翼! 所以今天,咱们就来聊聊这些工具,看看它们能不能成为你心目中的“神器”。 --- 2. Docker 让一切都变得简单 首先,我们得谈谈Docker。Docker是什么?简单来说,它是一种容器化技术,可以让你的应用程序及其依赖项打包成一个独立的“容器”,然后轻松地运行在任何支持Docker的环境中。 举个例子吧,假如你想在一个全新的服务器上安装WordPress,传统方法可能是手动下载PHP、MySQL、Nginx等一堆软件,再逐一配置。而如果你用Docker,只需要一条命令就能搞定: bash docker run --name wordpress -d -p 80:80 \ -v /path/to/wordpress:/var/www/html \ -e WORDPRESS_DB_HOST=db \ -e WORDPRESS_DB_USER=root \ -e WORDPRESS_DB_PASSWORD=yourpassword \ wordpress 这段代码的意思是:启动一个名为wordpress的容器,并将本地目录/path/to/wordpress挂载到容器内的/var/www/html路径下,同时设置数据库连接信息。是不是比传统的安装方式简洁多了? 不过,单独使用Docker虽然强大,但对于不熟悉命令行的人来说还是有点门槛。这时候就需要一些辅助工具来帮助我们更好地管理和调度容器了。 --- 3. Portainer 可视化管理Docker的好帮手 Portainer绝对是我最近发现的一颗“宝藏”。它的界面非常直观,几乎不需要学习成本。不管是想看看现有的容器啥情况,还是想启动新的容器,甚至连网络和卷的管理,都只需要动动鼠标拖一拖、点一点就行啦! 比如,如果你想快速创建一个新的MySQL容器,只需要打开Portainer的Web界面,点击“Add Container”,然后填写几个基本信息即可: yaml image: mysql:5.7 name: my-mysql ports: - "3306:3306" volumes: - /data/mysql:/var/lib/mysql environment: MYSQL_ROOT_PASSWORD: rootpassword 这段YAML配置文件描述了一个MySQL容器的基本参数。Portainer会自动帮你解析并生成对应的Docker命令。是不是超方便? 另外,Portainer还有一个特别棒的功能——实时监控。你打开页面就能看到每个“小房子”(就是容器)里用掉的CPU和内存情况,而且还能像穿越空间一样,去访问别的机器上跑着的那些“小房子”(Docker实例)。这种功能对于运维人员来说简直是福音! --- 4. Rancher 企业级的容器编排利器 如果你是一个团队协作的开发者,或者正在运营一个大规模的服务集群,那么Rancher可能是你的最佳选择。它不仅仅是一个Docker管理工具,更是一个完整的容器编排平台。 Rancher的核心优势在于它的“多集群管理”能力。想象一下,你的公司有好几台服务器,分别放在地球上的不同角落,有的在美国,有的在欧洲,还有的在中国。每台服务器上都跑着各种各样的服务,比如网站、数据库啥的。这时候,Rancher就派上用场了!它就像一个超级贴心的小管家,让你不用到处切换界面,在一个地方就能轻松搞定所有服务器和服务的管理工作,省时又省力! 举个例子,如果你想在Rancher中添加一个新的节点,只需要几步操作即可完成: 1. 登录Rancher控制台。 2. 点击“Add Cluster”按钮。 3. 输入目标节点的信息(IP地址、SSH密钥等)。 4. 等待几分钟,Rancher会自动为你安装必要的组件。 一旦节点加入成功,你就可以直接在这个界面上部署应用了。比如,用Kubernetes部署一个Redis集群: bash kubectl create deployment redis --image=redis:alpine kubectl expose deployment redis --type=LoadBalancer --port=6379 虽然这条命令看起来很简单,但它背后实际上涉及到了复杂的调度逻辑和网络配置。而Rancher把这些复杂的事情封装得很好,让我们可以专注于业务本身。 --- 5. Traefik 反向代理与负载均衡的最佳拍档 最后要介绍的是Traefik,这是一个轻量级的反向代理工具,专门用来处理HTTP请求的转发和负载均衡。它最厉害的地方啊,就是能跟Docker完美地融为一体,还能根据容器上的标签,自动调整路由规则呢! 比如说,你有两个服务分别监听在8080和8081端口,现在想通过一个域名访问它们。只需要给这两个容器加上相应的标签: yaml labels: - "traefik.enable=true" - "traefik.http.routers.service1.rule=Host(service1.example.com)" - "traefik.http.services.service1.loadbalancer.server.port=8080" - "traefik.http.routers.service2.rule=Host(service2.example.com)" - "traefik.http.services.service2.loadbalancer.server.port=8081" 这样一来,当用户访问service1.example.com时,Traefik会自动将请求转发到监听8080端口的容器;而访问service2.example.com则会指向8081端口。这种方式不仅高效,还极大地减少了配置的工作量。 --- 6. 总结 找到最适合自己的工具 好了,到这里咱们已经聊了不少关于服务器管理工具的话题。从Docker到Portainer,再到Rancher和Traefik,每一种工具都有其独特的优势和适用场景。 我的建议是,先根据自己的需求确定重点。要是你只想弄个小玩意儿,图个省事儿快点搞起来,那用Docker配个Portainer就完全够用了。但要是你们团队一起干活儿,或者要做大范围的部署,那Rancher这种专业的“老司机工具”就得安排上啦! 当然啦,技术的世界永远没有绝对的答案。其实啊,很多时候你会发现,最适合你的工具不一定是最火的那个,而是那个最合你心意、用起来最顺手的。就像穿鞋一样,别人觉得好看的根本不合脚,而那双不起眼的小众款却让你走得又稳又舒服!所以啊,在用这些工具的时候,别光顾着看,得多动手试试,边用边记下自己的感受和想法,这样你才能真的搞懂它们到底有啥门道! 好了,今天的分享就到这里啦!如果你还有什么问题或者想法,欢迎随时留言交流哦~咱们下次再见啦!
2025-04-16 16:05:13
97
月影清风_
转载文章
...删除相应内容。 随着容器技术越来越火热,各种大会上标杆企业分享容器化收益,带动其他还未实施容器的企业也在考虑实施容器化。不过真要在自己企业实践容器的时候,会认识到容器化不是一个简单工程,甚至会有一种茫然不知从何入手的感觉。 本文总结了通用的企业容器化实施线路图,主要针对企业有存量系统改造为容器,或者部分新开发的系统使用容器技术的场景。不包含企业系统从0开始全新构建的场景,这种场景相对简单。 容器实践路线图 企业着手实践容器的路线,建议从3个维度评估,然后根据评估结果落地实施。3个评估维度为:商业目标,技术选型,团队配合。 商业目标是重中之重,需要回答为何要容器化,这个也是牵引团队在容器实践路上不断前行的动力,是遇到问题是解决问题的方向指引,最重要的是让决策者认同商业目标,并能了解到支持商业目标的技术原理,上下目标对齐才好办事。 商业目标确定之后,需要确定容器相关的技术选型,容器是一种轻量化的虚拟化技术,与传统虚拟机比较有优点也有缺点,要找出这些差异点识别出对基础设施与应用的影响,提前识别风险并采取应对措施。 技术选型明确之后,在公司或部门内部推广与评审,让开发人员、架构师、测试人员、运维人员相关人员与团队理解与认同方案,听取他们意见,他们是直接使用容器的客户,不要让他们有抱怨。 最后是落地策略,一般是选取一些辅助业务先试点,在实践过程中不断总结经验。 商业目标 容器技术是以应用为中心的轻量级虚拟化技术,而传统的Xen与KVM是以资源为中心的虚拟化技术,这是两者的本质差异。以应用为中心是容器技术演进的指导原则,正是在这个原则指导下,容器技术相对于传统虚拟化有几个特点:打包既部署、镜像分层、应用资源调度。 打包即部署:打包即部署是指在容器镜像制作过程包含了传统软件包部署的过程(安装依赖的操作系统库或工具、创建用户、创建运行目录、解压、设置文件权限等等),这么做的好处是把应用及其依赖封装到了一个相对封闭的环境,减少了应用对外部环境的依赖,增强了应用在各种不同环境下的行为一致性,同时也减少了应用部署时间。 镜像分层:容器镜像包是分层结构,同一个主机上的镜像层是可以在多个容器之间共享的,这个机制可以极大减少镜像更新时候拉取镜像包的时间,通常应用程序更新升级都只是更新业务层(如Java程序的jar包),而镜像中的操作系统Lib层、运行时(如Jre)层等文件不会频繁更新。因此新版本镜像实质有变化的只有很小的一部分,在更新升级时候也只会从镜像仓库拉取很小的文件,所以速度很快。 应用资源调度:资源(计算/存储/网络)都是以应用为中心的,中心体现在资源分配是按照应用粒度分配资源、资源随应用迁移。 基于上述容器技术特点,可以推导出容器技术的3大使用场景:CI/CD、提升资源利用率、弹性伸缩。这3个使用场景自然推导出通用的商业层面收益:CI/CD提升研发效率、提升资源利用率降低成本、按需弹性伸缩在体验与成本之间达成平衡。 当然,除了商业目标之外,可能还有其他一些考虑因素,如基于容器技术实现计算任务调度平台、保持团队技术先进性等。 CI/CD提升研发效率 为什么容器技术适合CI/CD CI/CD是DevOps的关键组成部分,DevOps是一套软件工程的流程,用于持续提升软件开发效率与软件交付质量。DevOps流程来源于制造业的精益生产理念,在这个领域的领头羊是丰田公司,《丰田套路》这本书总结丰田公司如何通过PDCA(Plan-Do-Check-Act)方法实施持续改进。PDCA通常也称为PDCA循环,PDCA实施过程简要描述为:确定目标状态、分析当前状态、找出与目标状态的差距、制定实施计划、实施并总结、开始下一个PDCA过程。 DevOps基本也是这么一个PDCA流程循环,很容易认知到PDCA过程中效率是关键,同一时间段内,实施更多数量的PDCA过程,收益越高。在软件开发领域的DevOps流程中,各种等待(等待编译、等待打包、等待部署等)、各种中断(部署失败、机器故障)是影响DevOps流程效率的重要因素。 容器技术出来之后,将容器技术应用到DevOps场景下,可以从技术手段消除DevOps流程中的部分等待与中断,从而大幅度提升DevOps流程中CI/CD的效率。 容器的OCI标准定义了容器镜像规范,容器镜像包与传统的压缩包(zip/tgz等)相比有两个关键区别点:1)分层存储;2)打包即部署。 分层存储可以极大减少镜像更新时候拉取镜像包的时间,通常应用程序更新升级都只是更新业务层(如Java程序的jar包),而镜像中的操作系统Lib层、运行时(如Jre)层等文件不会频繁更新。因此新版本镜像实质有变化的只有很小的一部分,在更新升级时候也只会从镜像仓库拉取很小的文件,所以速度很快。 打包即部署是指在容器镜像制作过程包含了传统软件包部署的过程(安装依赖的操作系统库或工具、创建用户、创建运行目录、解压、设置文件权限等等),这么做的好处是把应用及其依赖封装到了一个相对封闭的环境,减少了应用对外部环境的依赖,增强了应用在各种不同环境下的行为一致性,同时也减少了应用部署时间。 基于容器镜像的这些优势,容器镜像用到CI/CD场景下,可以减少CI/CD过程中的等待时间,减少因环境差异而导致的部署中断,从而提升CI/CD的效率,提升整体研发效率。 CI/CD的关键诉求与挑战 快 开发人员本地开发调试完成后,提交代码,执行构建与部署,等待部署完成后验证功能。这个等待的过程尽可能短,否则开发人员工作容易被打断,造成后果就是效率降低。如果提交代码后几秒钟就能够完成部署,那么开发人员几乎不用等待,工作也不会被打断;如果需要好几分钟或十几分钟,那么可以想象,这十几分钟就是浪费了,这时候很容易做点别的事情,那么思路又被打断了。 所以构建CI/CD环境时候,快是第一个需要考虑的因素。要达到快,除了有足够的机器资源免除排队等待,引入并行编译技术也是常用做法,如Maven3支持多核并行构建。 自定义流程 不同行业存在不同的行业规范、监管要求,各个企业有一套内部质量规范,这些要求都对软件交付流程有定制需求,如要求使用商用的代码扫描工具做安全扫描,如构建结果与企业内部通信系统对接发送消息。 在团队协同方面,不同的公司,对DevOps流程在不同团队之间分工有差异,典型的有开发者负责代码编写构建出构建物(如jar包),而部署模板、配置由运维人员负责;有的企业开发人员负责构建并部署到测试环境;有的企业开发人员直接可以部署到生产环境。这些不同的场景,对CI/CD的流程、权限管控都有定制需求。 提升资源利用率 OCI标准包含容器镜像标准与容器运行时标准两部分,容器运行时标准聚焦在定义如何将镜像包从镜像仓库拉取到本地并更新、如何隔离运行时资源这些方面。得益于分层存储与打包即部署的特性,容器镜像从到镜像仓库拉取到本地运行速度非常快(通常小于30秒,依赖镜像本身大小等因素),基于此可以实现按需分配容器运行时资源(cpu与内存),并限定单个容器资源用量;然后根据容器进程资源使用率设定弹性伸缩规则,实现自动的弹性伸缩。 这种方式相对于传统的按峰值配置资源方式,可以提升资源利用率。 按需弹性伸缩在体验与成本之间达成平衡 联动弹性伸缩 应用运行到容器,按需分配资源之后,理想情况下,Kubernetes的池子里没有空闲的资源。这时候扩容应用实例数,新扩容的实例会因资源不足调度失败。这时候需要资源池能自动扩容,加入新的虚拟机,调度新扩容的应用。 由于应用对资源的配比与Flavor有要求,因此新加入的虚拟机,应当是与应用所需要的资源配比与Flavor一致的。缩容也是类似。 弹性伸缩还有一个诉求点是“平滑”,对业务做到不感知,也称为“优雅”扩容/缩容。 请求风暴 上面提到的弹性伸缩一般是有计划或缓慢增压的场景,存在另外一种无法预期的请求风暴场景,这种场景的特征是无法预测、突然请求量增大数倍或数十倍、持续时间短。典型的例子如行情交易系统,当行情突变的时候,用户访问量徒增,持续几十分钟或一个小时。 这种场景的弹性诉求,要求短时间内能将资源池扩大数倍,关键是速度要快(秒级),否则会来不及扩容,系统已经被冲垮(如果无限流的话)。 目前基于 Virtual Kubelet 与云厂家的 Serverless 容器,理论上可以提供应对请求风暴的方案。不过在具体实施时候,需要考虑传统托管式Kubernetes容器管理平台与Serverless容器之间互通的问题,需要基于具体厂家提供的能力来评估。 基于容器技术实现计算调度平台 计算(大数据/AI训练等)场景的特征是短时间内需要大量算力,算完即释放。容器的环境一致性以及调度便利性适合这种场景。 技术选型 容器技术是属于基础设施范围,但是与传统虚拟化技术(Xen/KVM)比较,容器技术是应用虚拟化,不是纯粹的资源虚拟化,与传统虚拟化存在差异。在容器技术选型时候,需要结合当前团队在应用管理与资源管理的现状,对照容器技术与虚拟化技术的差异,选择最合适的容器技术栈。 什么是容器技术 (1)容器是一种轻量化的应用虚拟化技术。 在讨论具体的容器技术栈的时候,先介绍目前几种常用的应用虚拟化技术,当前有3种主流的应用虚拟化技术: LXC,MicroVM,UniKernel(LibOS)。 LXC: Linux Container,通过 Linux的 namespace/cgroups/chroot 等技术隔离进程资源,目前应用最广的docker就是基于LXC实现应用虚拟化的。 MicroVM: MicroVM 介于 传统的VM 与 LXC之间,隔离性比LXC好,但是比传统的VM要轻量,轻量体现在体积小(几M到几十M)、启动快(小于1s)。 AWS Firecracker 就是一种MicroVM的实现,用于AWS的Serverless计算领域,Serverless要求启动快,租户之间隔离性好。 UniKernel: 是一种专用的(特定编程语言技术栈专用)、单地址空间、使用 library OS 构建出来的镜像。UniKernel要解决的问题是减少应用软件的技术栈层次,现代软件层次太多导致越来越臃肿:硬件+HostOS+虚拟化模拟+GuestOS+APP。UniKernel目标是:硬件+HostOS+虚拟化模拟+APP-with-libos。 三种技术对比表: 开销 体积 启动速度 隔离/安全 生态 LXC 低(几乎为0) 小 快(等同进程启动) 差(内核共享) 好 MicroVM 高 大 慢(小于1s) 好 中(Kata项目) UniKernel 中 中 中 好 差 根据上述对比来看,LXC是应用虚拟化首选的技术,如果LXC无法满足隔离性要,则可以考虑MicroVM这种技术。当前社区已经在着手融合LXC与MicroVM这两种技术,从应用打包/发布调度/运行层面统一规范,Kubernetes集成Kata支持混合应用调度特性可以了解一下。 UniKernel 在应用生态方面相对比较落后,目前在追赶中,目前通过 linuxkit 工具可以在UniKernel应用镜像中使用docker镜像。这种方式笔者还未验证过,另外docker镜像运行起来之后,如何监控目前还未知。 从上述三种应用虚拟化技术对比,可以得出结论: (2)容器技术与传统虚拟化技术不断融合中。 再从规范视角来看容器技术,可以将容器技术定义为: (3)容器=OCI+CRI+辅助工具。 OCI规范包含两部分,镜像规范与运行时规范。简要的说,要实现一个OCI的规范,需要能够下载镜像并解压镜像到文件系统上组成成一个文件目录结构,运行时工具能够理解这个目录结构并基于此目录结构管理(创建/启动/停止/删除)进程。 容器(container)的技术构成就是实现OCI规范的技术集合。 对于不同的操作系统(Linux/Windows),OCI规范的实现技术不同,当前docker的实现,支持Windows与Linux与MacOS操作系统。当前使用最广的是Linux系统,OCI的实现,在Linux上组成容器的主要技术: chroot: 通过分层文件系统堆叠出容器进程的rootfs,然后通过chroot设置容器进程的根文件系统为堆叠出的rootfs。 cgroups: 通过cgroups技术隔离容器进程的cpu/内存资源。 namesapce: 通过pid, uts, mount, network, user namesapce 分别隔离容器进程的进程ID,时间,文件系统挂载,网络,用户资源。 网络虚拟化: 容器进程被放置到独立的网络命名空间,通过Linux网络虚拟化veth, macvlan, bridge等技术连接主机网络与容器虚拟网络。 存储驱动: 本地文件系统,使用容器镜像分层文件堆叠的各种实现驱动,当前推荐的是overlay2。 广义的容器还包含容器编排,即当下很火热的Kubernetes。Kubernetes为了把控容器调度的生态,发布了CRI规范,通过CRI规范解耦Kubelet与容器,只要实现了CRI接口,都可以与Kubelet交互,从而被Kubernetes调度。OCI规范的容器实现与CRI标准接口对接的实现是CRI-O。 辅助工具用户构建镜像,验证镜像签名,管理存储卷等。 容器定义 容器是一种轻量化的应用虚拟化技术。 容器=OCI+CRI+辅助工具。 容器技术与传统虚拟化技术不断融合中。 什么是容器编排与调度 选择了应用虚拟化技术之后,还需要应用调度编排,当前Kubernetes是容器领域内编排的事实标准,不管使用何种应用虚拟化技术,都已经纳入到了Kubernetes治理框架中。 Kubernetes 通过 CRI 接口规范,将应用编排与应用虚拟化实现解耦:不管使用何种应用虚拟化技术(LXC, MicroVM, LibOS),都能够通过Kubernetes统一编排。 当前使用最多的是docker,其次是cri-o。docker与crio结合kata-runtime都能够支持多种应用虚拟化技术混合编排的场景,如LXC与MicroVM混合编排。 docker(now): Moby 公司贡献的 docker 相关部件,当前主流使用的模式。 docker(daemon) 提供对外访问的API与CLI(docker client) containerd 提供与 kubelet 对接的 CRI 接口实现 shim负责将Pod桥接到Host namespace。 cri-o: 由 RedHat/Intel/SUSE/IBM/Hyper 公司贡献的实现了CRI接口的符合OCI规范的运行时,当前包括 runc 与 kata-runtime ,也就是说使用 cir-o 可以同时运行LXC容器与MicroVM容器,具体在Kata介绍中有详细说明。 CRI-O: 实现了CRI接口的进程,与 kubelet 交互 crictl: 类似 docker 的命令行工具 conmon: Pod监控进程 other cri runtimes: 其他的一些cri实现,目前没有大规模应用到生产环境。 容器与传统虚拟化差异 容器(container)的技术构成 前面主要讲到的是容器与编排,包括CRI接口的各种实现,我们把容器领域的规范归纳为南向与北向两部分,CRI属于北向接口规范,对接编排系统,OCI就属于南向接口规范,实现应用虚拟化。 简单来讲,可以这么定义容器: 容器(container) ~= 应用打包(build) + 应用分发(ship) + 应用运行/资源隔离(run)。 build-ship-run 的内容都被定义到了OCI规范中,因此也可以这么定义容器: 容器(container) == OCI规范 OCI规范包含两部分,镜像规范与运行时规范。简要的说,要实现一个OCI的规范,需要能够下载镜像并解压镜像到文件系统上组成成一个文件目录结构,运行时工具能够理解这个目录结构并基于此目录结构管理(创建/启动/停止/删除)进程。 容器(container)的技术构成就是实现OCI规范的技术集合。 对于不同的操作系统(Linux/Windows),OCI规范的实现技术不同,当前docker的实现,支持Windows与Linux与MacOS操作系统。当前使用最广的是Linux系统,OCI的实现,在Linux上组成容器的主要技术: chroot: 通过分层文件系统堆叠出容器进程的rootfs,然后通过chroot设置容器进程的根文件系统为堆叠出的rootfs。 cgroups: 通过cgroups技术隔离容器进程的cpu/内存资源。 namesapce: 通过pid, uts, mount, network, user namesapce 分别隔离容器进程的进程ID,时间,文件系统挂载,网络,用户资源。 网络虚拟化: 容器进程被放置到独立的网络命名空间,通过Linux网络虚拟化veth, macvlan, bridge等技术连接主机网络与容器虚拟网络。 存储驱动: 本地文件系统,使用容器镜像分层文件堆叠的各种实现驱动,当前推荐的是overlay2。 广义的容器还包含容器编排,即当下很火热的Kubernetes。Kubernetes为了把控容器调度的生态,发布了CRI规范,通过CRI规范解耦Kubelet与容器,只要实现了CRI接口,都可以与Kubelet交互,从而被Kubernetes调度。OCI规范的容器实现与CRI标准接口对接的实现是CRI-O。 容器与虚拟机差异对比 容器与虚拟机的差异可以总结为2点:应用打包与分发的差异,应用资源隔离的差异。当然,导致这两点差异的根基是容器是以应用为中心来设计的,而虚拟化是以资源为中心来设计的,本文对比容器与虚拟机的差异,更多的是站在应用视角来对比。 从3个方面对比差异:资源隔离,应用打包与分发,延伸的日志/监控/DFX差异。 1.资源隔离 隔离机制差异 容器 虚拟化 mem/cpu cgroup, 使用时候设定 require 与 limit 值 QEMU, KVM network Linux网络虚拟化技术(veth,tap,bridge,macvlan,ipvlan), 跨虚拟机或出公网访问:SNAT/DNAT, service转发:iptables/ipvs, SR-IOV Linux网络虚拟化技术(veth,tap,bridge,macvlan,ipvlan), QEMU, SR-IOV storage 本地存储: 容器存储驱动 本地存储:virtio-blk 差异引入问题与实践建议 应用程序未适配 cgroup 的内存隔离导致问题: 典型的是 JVM 虚拟机,在 JVM 启动时候会根据系统内存自动设置 MaxHeapSize 值,通常是系统内存的1/4,但是 JVM 并未考虑 cgroup 场景,读系统内存时候任然读取主机的内存来设置 MaxHeapSize,这样会导致内存超过 cgroup 限制从而导致进程被 kill 。问题详细阐述与解决建议参考Java inside docker: What you must know to not FAIL。 多次网络虚拟化问题: 如果在虚拟机内使用容器,会多一层网络虚拟化,并加入了SNAT/DNAT技术, iptables/ipvs技术,对网络吞吐量与时延都有影响(具体依赖容器网络方案),对问题定位复杂度变高,同时还需要注意网络内核参数调优。 典型的网络调优参数有:转发表大小 /proc/sys/net/netfilter/nf_conntrack_max 使用iptables 作为service转发实现的时候,在转发规则较多的时候,iptables更新由于需要全量更新导致非常耗时,建议使用ipvs。详细参考[华为云在 K8S 大规模场景下的 Service 性能优化实践](https://zhuanlan.zhihu.com/p/37230013)。 容器IP地址频繁变化不固定,周边系统需要协调适配,包括基于IP地址的白名单或防火墙控制策略需要调整,CMDB记录的应用IP地址需要适配动态IP或者使用服务名替代IP地址。 存储驱动带来的性能损耗: 容器本地文件系统是通过联合文件系统方式堆叠出来的,当前主推与默认提供的是overlay2驱动,这种模式应用写本地文件系统文件或修改已有文件,使用Copy-On-Write方式,也就是会先拷贝源文件到可写层然后修改,如果这种操作非常频繁,建议使用 volume 方式。 2.应用打包与分发 应用打包/分发/调度差异 容器 虚拟化 打包 打包既部署 一般不会把应用程序与虚拟机打包在一起,通过部署系统部署应用 分发 使用镜像仓库存储与分发 使用文件存储 调度运行 使用K8S亲和/反亲和调度策略 使用部署系统的调度能力 差异引入问题与实践建议 部署提前到构建阶段,应用需要支持动态配置与静态程序分离;如果在传统部署脚本中依赖外部动态配置,这部分需要做一些调整。 打包格式发生变化,制作容器镜像需要注意安全/效率因素,可参考Dockerfile最佳实践 容器镜像存储与分发是按layer来组织的,镜像在传输过程中放篡改的方式是传统软件包有差异。 3.监控/日志/DFX 差异 容器 虚拟化 监控 cpu/mem的资源上限是cgroup定义的;containerd/shim/docker-daemon等进程的监控 传统进程监控 日志采集 stdout/stderr日志采集方式变化;日志持久化需要挂载到volume;进程会被随机调度到其他节点导致日志需要实时采集否则分散很难定位 传统日志采集 问题定位 进程down之后自动拉起会导致问题定位现场丢失;无法停止进程来定位问题因为停止即删除实例 传统问题定位手段 差异引入问题实践与建议 使用成熟的监控工具,运行在docker中的应用使用cadvisor+prometheus实现采集与警报,cadvisor中预置了常用的监控指标项 对于docker管理进程(containerd/shim/docker-daemon)也需要一并监控 使用成熟的日志采集工具,如果已有日志采集Agent,则可以考虑将日志文件挂载到volume后由Agent采集;需要注意的是stderr/stdout输出也要一并采集 如果希望容器内应用进程退出后保留现场定位问题,则可以将Pod的restartPolicy设置为never,进程退出后进程文件都还保留着(/var/lib/docker/containers)。但是这么做的话需要进程没有及时恢复,会影响业务,需要自己实现进程重拉起。 团队配合 与周边的开发团队、架构团队、测试团队、运维团队评审并交流方案,与周边团队达成一致。 落地策略与注意事项 逐步演进过程中网络互通 根据当前已经存在的基础实施情况,选择容器化落地策略。通常使用逐步演进的方式,由于容器化引入了独立的网络namespace导致容器与传统虚拟机进程网络隔离,逐步演进过程中如何打通隔离的网络是最大的挑战。 分两种场景讨论: 不同服务集群之间使用VIP模式互通: 这种模式相对简单,基于VIP做灰度发布。 不同服务集群之间使用微服务点对点模式互通(SpringCloud/ServiceComb/Dubbo都是这一类): 这种模式相对复杂,在逐步容器化过程中,要求容器网络与传统虚拟机网络能够互通(难点是在虚拟机进程内能够直接访问到容器网络的IP地址),当前解决这个问题有几种方法。 自建Kubernetes场景,可使用开源的kube-router,kube-router 使用BGP协议实现容器网络与传统虚拟机网络之间互通,要求网络交换机支持BGP协议。 使用云厂商托管Kubernetes场景,选择云厂商提供的VPC-Router互通的网络插件,如阿里云的Terway网络插件, 华为云的Underlay网络模式。 选择物理机还是虚拟机 选择物理机运行容器还是虚拟机运行容器,需要结合基础设施与业务隔离性要求综合考虑。分两种场景:自建IDC、租用公有云。 自建IDC: 理想情况是使用物理机组成一个大集群,根据业务诉求,对资源保障与安全性要求高的应用,使用MicorVM方式隔离;普通应用使用LXC方式隔离。所有物理机在一个大集群内,方便削峰填谷提升资源利用率。 租用公有云:当前公有云厂家提供的裸金属服务价格较贵且只能包周期,使用裸金属性价比并不高,使用虚拟机更合适。 集群规模与划分 选择集群时候,是多个应用共用一个大集群,还是按应用分组分成多个小集群呢?我们把节点规模数量>=1000的定义为大集群,节点数<1000的定义为小集群。 大集群的优点是资源池共享容器,方便资源调度(削峰填谷);缺点是随着节点数量与负载数量的增多,会引入管理性能问题(需要量化): DNS 解析表变大,增加/删除 Service 或 增加/删除 Endpoint 导致DNS表刷新慢 K8S Service 转发表变大,导致工作负载增加/删除刷新iptables/ipvs记录变慢 etcd 存储空间变大,如果加上ConfigMap,可能导致 etcd 访问时延增加 小集群的优点是不会有管理性能问题,缺点是会导致资源碎片化,不容易共享。共享分两种情况: 应用之间削峰填谷:目前无法实现 计算任务与应用之间削峰填谷:由于计算任务是短时任务,可以通过上层的任务调度软件,在多个集群之间分发计算任务,从而达到集群之间资源共享的目的。 选择集群规模的时候,可以参考上述分析,结合实际情况选择适合的集群划分。 Helm? Helm是为了解决K8S管理对象散碎的问题,在K8S中并没有"应用"的概念,只有一个个散的对象(Deployment, ConfigMap, Service, etc),而一个"应用"是多个对象组合起来的,且这些对象之间还可能存在一定的版本配套关系。 Helm 通过将K8S多个对象打包为一个包并标注版本号形成一个"应用",通过 Helm 管理进程部署/升级这个"应用"。这种方式解决了一些问题(应用分发更方便)同时也引入了一些问题(引入Helm增加应用发布/管理复杂度、在K8S修改了对象后如何同步到Helm)。对于是否需要使用Helm,建议如下: 在自运维模式下不使用Helm: 自运维模式下,很多场景是开发团队交付一个运行包,运维团队负责部署与配置下发,内部通过兼容性或软件包与配置版本配套清单、管理软件包与配置的配套关系。 在交付软件包模式下使用Helm: 交付软件包模式下,Helm 这种把散碎组件组装为一个应用的模式比较适合,使用Helm实现软件包分发/部署/升级场比较简单。 Reference DOCKER vs LXC vs VIRTUAL MACHINES Cgroup与LXC简介 Introducing Container Runtime Interface (CRI) in Kubernetes frakti rkt appc-spec OCI 和 runc:容器标准化和 docker Linux 容器技术史话:从 chroot 到未来 Linux Namespace和Cgroup Java inside docker: What you must know to not FAIL QEMU,KVM及QEMU-KVM介绍 kvm libvirt qemu实践系列(一)-kvm介绍 KVM 介绍(4):I/O 设备直接分配和 SR-IOV [KVM PCI/PCIe Pass-Through SR-IOV] prometheus-book 到底什么是Unikernel? The Rise and Fall of the Operating System The Design and Implementation of the Anykernel and Rump Kernels UniKernel Unikernel:从不入门到入门 OSv 京东如何打造K8s全球最大集群支撑万亿电商交易 Cloud Native App Hub 更多云最佳实践 https://best.practices.cloud 本篇文章为转载内容。原文链接:https://blog.csdn.net/sinat_33155975/article/details/118013855。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-17 15:03:28
225
转载
Docker
Docker , Docker是一种开源的应用容器引擎,它允许开发者打包应用及其依赖包到一个可移植的容器中,然后发布到任何流行的Linux或Windows机器上,也可以实现虚拟化。在本文中,Docker被用作一种工具,帮助用户构建、部署和运行包含应用程序及其所有依赖项的独立容器镜像。 Dockerfile , Dockerfile是用于自动化创建Docker镜像的一种文本文件,其中包含了若干条用于配置镜像环境及安装软件等操作的指令集合。在文章中,Dockerfile用于指导从基础镜像scratch开始,添加hello二进制文件,并设置启动命令,从而生成一个定制化的Docker镜像。 Docker镜像 , Docker镜像是Docker容器的基础,是一个只读模板,包含运行某个应用所需的所有内容,包括代码、运行时、库、环境变量和配置文件等。在本文的场景下,通过编写并执行Dockerfile中的指令,创建了一个包含hello应用程序及其依赖项的Docker镜像,随后可以基于此镜像启动Docker容器来运行该应用。 Docker容器 , Docker容器是从Docker镜像创建的运行实例,它可以被视为一个轻量级的、独立运行的一组进程,与主机系统和其他容器隔离。在文中提到,使用docker run命令启动了一个名为hello-app的Docker容器,这个容器就是基于之前构建好的hello镜像运行的,能够在其中执行预设的命令(即运行hello二进制文件)。
2023-02-25 10:58:36
491
数据库专家
Docker
Docker是一个开放源码的应用虚拟环境工具,它可以协助程序员更加有效地创建和操控应用。在Docker中,一个虚拟环境就是一个自主且自给自足的程序包,包括了应用以及运行所需的全部依赖项。 对于Docker虚拟环境中的读写文件动作,常用到的方法是在Dockerfile中使用COPY或ADD命令,将本地文件或文件夹复制到虚拟环境中。例如: COPY /path/to/local/file /path/to/container/file 上述命令将本地路径下的文件复制到Docker虚拟环境中指定的路径下。类似地,也可以使用ADD命令完成同样的操作。 除了在Dockerfile中定义文件复制操作外,我们也可以使用Docker的volumes机制来实现虚拟环境与本地文件系统的交互。该机制可以将主机文件系统中的文件夹映射到虚拟环境的对应路径上,实现文件的双向读写。 使用volumes机制,需要在启动虚拟环境时添加相应参数,如下所示: docker run -v /host/path:/container/path -d image-name 上述命令将主机上的路径 /host/path 映射到虚拟环境中的路径 /container/path 上,实现双向文件的传输。 总的来说,Docker提供了多种文件读写的方法,根据不同场景可以选择最为适合的方法,实现高效的虚拟环境应用的开发和运行。
2023-12-30 15:13:37
472
编程狂人
Docker
在 Docker 中,有时侯必需将容器中的端口转发至宿主机的某个端口处,以便容器内部的应用能够经由宿主机的 公网IP 接入。详细来说,我们能够采用docker run命令的-p选项进行端口绑定。 docker run -p 宿主机端口:服务端口 镜像名 其中宿主机端口为必需转发至宿主机的端口号,服务端口为容器内部的端口号,镜像名为必需启动的 Docker 镜像的名称。例如,我们能够采用下面的命令将容器内部的 80 端口转发至宿主机的 8080 端口处: docker run -p 8080:80 nginx 此时,我们在浏览器中输入http://主机公网IP:8080即可接入容器内部的应用。 必需注意的是,当 Docker 容器运行在某个主机上时,容器内部的应用不能直接采用该宿主机的 公网IP 地址接入。容器内部部有自己的 公网IP 地址,我们能够采用命令docker inspect获得该 公网IP 地址。 docker inspect --format='{ {range .NetworkSettings.Networks} }{ {.公网IPAddress} }{ {end} }' 容器名/ID 其中容器名/ID为 Docker 容器的名称或 ID。执行以上命令后,将返回 Docker 容器内部部的 公网IP 地址,我们能够经由接入该 公网IP 地址加上容器内部部的端口号来接入容器内部的应用。
2023-09-21 17:15:59
837
电脑达人
MySQL
...dows系统中,通过命令行启动MySQL数据库是众多管理操作的基础步骤之一。随着MySQL 8.0版本的广泛应用以及云计算、容器化技术的发展,MySQL数据库的部署和管理方式也在持续演进。例如,用户现在可以通过Docker轻松部署MySQL服务器,简化了安装与配置过程,同时也便于实现跨环境的一致性。 近期,微软Azure云平台推出了针对MySQL的完全托管服务,用户无需关心底层基础设施,只需通过图形化界面或API即可完成数据库的创建、配置及扩展等操作。对于那些关注性能优化和高可用性的用户,可以进一步探索MySQL 8.0中的新特性,如窗口函数、原子DDL操作、资源组管理和CACHING_sha2_password身份验证插件等,以提升数据库的稳定性和安全性。 此外,随着DevOps文化的普及,越来越多的企业采用自动化工具(如Ansible、Chef或Puppet)进行MySQL数据库的运维管理,包括自动备份恢复、监控告警、性能调优等任务,大大提高了工作效率和系统稳定性。 而对于深入学习MySQL的开发者和技术人员,建议阅读官方文档和社区发布的最新教程,了解如何在不同场景下利用MySQL命令行、Workbench图形工具或者PHPMyAdmin等第三方工具进行数据库设计、SQL查询优化以及权限管理等高级实践。同时,跟踪MySQL官方博客和社区论坛上的讨论,及时获取关于安全更新、补丁发布以及最佳实践的最新资讯,确保在享受MySQL强大功能的同时,能够紧跟时代步伐,应对不断变化的技术挑战。
2023-12-12 11:10:15
135
数据库专家
Docker
Docker 是一个非常普及的容器化技术,它能够让程序员在不同的环境中创建和执行应用程序。但是,有时候在使用 Docker 的过程中,我们也许会碰到一个非常奇怪的问题:时钟不正确。 在 Docker 容器中,时钟通常会在启动容器时自动与主机时钟同步化。但是,当我们在容器中执行持续执行的程序或者服务时,时钟也许会出现偏移或者不同步化的情况,这会导致程序产生异常或者错误。 这种情况的原因通常是容器内部的时钟与主机系统的时钟存在差异。当容器内的时钟发生偏移时,我们可以使用 Docker 提供的命令行工具来手动进行时钟同步化,例如: docker run --rm -it --privileged alpine /bin/sh hwclock -s 上述命令将登录 Alpine 容器,并使用 hwclock 命令将内部时钟与主机时钟同步化。在其它容器中,您可以使用相同的方法处理时钟不同步化的问题。 另外,如果您需要在容器中执行数据库或其它需要精确时间的应用程序时,您可以考虑使用特定的 Docker 镜像来处理时钟同步化问题,例如: docker run --rm -it --privileged centos /bin/sh yum -y install ntp ntpdate pool.ntp.org 上述命令将在 CentOS 容器中安装 NTP 服务,并使用 ntpdate 命令从 pool.ntp.org 同步化时钟。在其它镜像中,您也可以使用类似的方法来处理时钟同步化问题。 总而言之,时钟不正确是 Docker 容器中常见的问题,但是我们可以使用 Docker 提供的命令行工具或者特定镜像来手动同步化时钟,从而处理这个问题。
2023-10-26 12:53:07
467
程序媛
MySQL
在深入理解了如何启动和停止MySQL服务后,我们还可以进一步探究数据库管理的更多实用技巧与最新动态。近日,MySQL 8.0版本推出了多项重大更新,包括增强安全性、性能优化以及对JSON数据类型支持的改进。对于企业级用户而言,掌握新版本特性并进行升级迁移,能够有效提升数据处理效率和安全性。 与此同时,随着云计算和容器化技术的发展,越来越多的企业选择将MySQL部署在如Docker或云服务器上。例如,AWS RDS(Amazon Relational Database Service)提供了一键式部署MySQL服务的功能,并集成了自动备份、故障切换等高级特性,大大简化了数据库运维工作。 另外,针对数据库优化及安全防护方面,定期审计MySQL日志、合理设置索引策略、采用SSL加密通信协议以保护数据传输安全等也是现代数据库管理员必备的知识点。近期,业界还提出了通过机器学习算法预测数据库性能瓶颈,提前进行资源调度的新方法,这一创新研究为MySQL数据库的高效稳定运行提供了新的可能。 综上所述,在实际操作MySQL服务的基础上,关注其最新版本特性、云端部署趋势以及数据库优化和安全领域的前沿动态,将有助于我们在日常工作中更高效地利用MySQL这一强大而灵活的关系型数据库管理系统。
2023-10-18 17:15:18
48
电脑达人
Docker
容器化平台 , 容器化平台是一种虚拟化技术,它将应用程序及其依赖环境(如库、配置文件等)打包成独立的、可移植的单元——容器。在Docker这样的容器化平台上,每个容器都运行在宿主机操作系统上,但拥有隔离的用户空间,从而实现轻量级的资源隔离和部署。这意味着开发者可以将应用及其所有依赖项封装在一个容器中,在任何支持Docker的环境中,只需简单命令即可启动并运行该应用,确保了跨环境的一致性和便捷性。 Docker Hub , Docker Hub是Docker官方提供的镜像仓库服务,类似于软件开发中的代码仓库,但它存储的是Docker镜像。开发者可以在Docker Hub上查找、下载、分享和管理自己的Docker镜像,极大地简化了镜像分发与复用的过程。例如,通过docker run hello-world命令就能从Docker Hub拉取并运行hello-world镜像,体现了Docker Hub作为中心化镜像仓库的核心价值。 镜像 , 在Docker环境下,镜像是创建和运行容器的基础模板,包含了应用程序及其运行所需的所有文件和配置信息。镜像以层式结构构建,每层代表应用程序的一个修改或添加,从而使得镜像具有高效存储和快速分发的特点。例如,使用docker build -t myapp .命令基于当前目录下的Dockerfile构建一个名为myapp的新镜像,然后通过docker run -p 80:80 myapp命令使用这个新镜像启动一个容器,并映射端口以便外部访问。这样,无论何时何地,只要有了这个镜像,就可以快速且一致地创建出能够运行特定应用程序的容器实例。
2023-03-13 14:25:53
347
编程狂人
Docker
Docker是一个开放源代码的容器化平台,允许开发者对应用程序进行封装、测试和部署。 Docker最初是由Dotcloud公司创立的,并于2013年3月作为开放源代码项目进行公布。 从性能上看,Docker涵盖以下几个方面: • 将应用程序和依赖库封装到一个轻量级容器中,以保证应用程序在任何运行环境中都能运行。 • 迅速、统一性和可靠性,保证您的应用程序程序能够在每个部署和交付中都重现。 • 这种容器的标准化,允许您迅速迭代和交付高质量的应用程序。 • Docker被广泛用于构建、封装、部署和运行云原生应用程序程序,这些应用程序程序以容器为基础构建、分布和部署。 我们可以使用命令 docker --version 来检查Docker的版本信息。例如,上述命令将返回以下输出: Docker version 17.09.0-ce, build afdb6d4 从上面的输出可以看出,我们所使用的Docker版本号是17.09.0-ce。由此可见,Docker已经发展成为非常成熟和广泛使用的容器化技术,拥有大量的用户和使用案例。
2024-02-25 16:17:40
343
软件工程师
Docker
Docker是一个允许开发者在容器中创建、封装和发布应用程序的开源平台。它的优点在于提高开发、测试和生产环境的一致性、弹性和迁移性。 在本文中,我们将介绍如何执行Docker创建一个NPM环境。 首先,我们需要预备一个项目目录。在该目录下创建一个Dockerfile,这是Docker用以创建镜像的文件。 FROM node:10 RUN npm install -g npm WORKDIR /app COPY package.json ./ RUN npm install COPY . . CMD ["npm", "start"] 该Dockerfile执行Node.js作为基础容器,并在其中添加了NPM。它将我们的应用程序文件移动至/app目录,并通过CMD运行NPM。接下来,执行docker build命令来创建该镜像: docker build -t mynpm . 这个命令会创建一个名为"mynpm"的镜像。一旦创建完成,我们就可以通过以下命令将其运行: docker run -it --rm mynpm 这个命令将在交互模式下运行容器,并在容器中运行NPM。如果我们需要将宿主机的文件夹映射到容器中,以便可以对代码进行更改和调试,则可以执行以下命令: docker run -it --rm -v "$(pwd)":/app mynpm 此命令将把当前项目目录绑定到容器的/app目录中。 在容器中安装npm包很容易。只需执行docker run -it --rm mynpm 命令进入交互模式,然后在其中运行npm install即可。 在完成容器的创建和运行后,我们现在已经拥有了一个可重复、可移植并且易于管理的NPM环境!
2023-12-05 10:01:06
529
逻辑鬼才
Docker
Docker是一种容器技术,可以将应用程序和它们的依赖资源封装在一个容器中,使它们可以在任何系统上运行。但是,有时候Docker容器或许会崩溃,这时需要重启容器。 docker ps -a // 查看现有全部容器以及运行情况 docker start<容器ID>// 开启已暂停的容器 docker attach<容器ID>// 登陆容器 ctrl + p + q // 离开并将容器暂停 docker exec -it<容器ID>/bin/bash // 以命令行交互模式方式登陆容器 docker top<容器ID>// 显示容器内运行的进程 docker logs<容器ID>// 查看容器的日志 docker stats<容器ID>// 查看容器的资源占用情况 如果以上命令无法解决问题,可以考虑删除容器重新构建并运行: docker stop<容器ID>// 停止当前崩溃的容器 docker rm<容器ID>// 删除容器 docker images // 查看所有镜像 docker rmi<镜像ID>// 删除相关的镜像 docker build -t<新容器名称>. // 构建新容器 docker run -d<新容器名称>// 运行新容器 重启Docker容器的方法有许多,需要依据具体问题具体分析,选择最佳方案进行重启。
2023-12-29 23:51:06
593
电脑达人
Docker
在Docker日常使用中,我们可能会碰到一些效能降低的状况。这些状况可能会对应用程序的效能和可靠性产生不利干扰。在本文中,我们将探讨几个可能引起Docker效能降低的情况以及解决方法。 第一个引起Docker效能降低的因素是资源争夺。当多个容器共享同一台主机时,它们会争夺中央处理器、RAM和带宽等资源。这可能会引起某些容器减速或宕机。为了防止这种情况,我们可以使用Docker Swarm集群管理工具来智能分配资源。 $ docker swarm init 第二个引起Docker效能降低的因素是大量存储卷的使用。在Docker中,存储卷是用于在容器和主机之间共享数据的一种方式。但是,如果容器数量大且每个容器都有自己的存储卷,这可能会严重干扰效能。因此,我们应该尽量减少存储卷的使用。如果必须使用存储卷,则应该考虑使用网络存储卷,例如Amazon EFS。 $ docker volume create --driver=rexray --name=myEFS 第三个引起Docker效能降低的因素是过度使用Docker镜像。当我们下载和使用大量Docker镜像时,它们会占用大量存储空间和带宽。这可能会引起容器启动时间较长。为了解决这个状况,我们应该尽可能防止不必要的镜像使用,并使用基于Dockerfile构建的自定义镜像来优化容器的启动和运行。 $ docker build -t my-image . 综上所述,我们可以通过使用Docker Swarm集群管理工具智能分配资源、减少存储卷使用和防止不必要的Docker镜像使用等方法来解决效能降低状况。
2023-04-04 23:17:36
512
算法侠
Docker
Docker 是当前比较盛行的虚拟机技术。它赋予可复现安装的场景,这个场景包含了安装应用所必须的所有模块(如关联性、程序库等等)。在采用 Docker 安装应用时,时常需要挂接存储卷来保留应用情况或者提供应用间资源共享的功能。接下来我们来讲解一下 Docker 挂载情况。 $ docker run --name mynginx -v /data/nginx:/etc/nginx -d nginx 上面的命令就是在建立 mynginx 虚拟机的同时,将宿主机 /data/nginx 目录挂载到虚拟机内部的 /etc/nginx 目录。这样就能够通过宿主机的 /data/nginx 目录来读取虚拟机内的 /etc/nginx 目录。然而有时,挂载情况会出现问题,接下来来讲解一些常见的挂载情况。 1. No such file or directory $ docker run -v /host:/data myimage 上述代码在执行时报错,报错信息是 No such file or directory。这是因为在 Docker 虚拟机中 /host 目录不存在,因此 Docker 不能挂载 /host 目录到虚拟机内部的 /data 目录。 2. Permission denied $ docker run -v /root:/data myimage 上述代码在执行时报错,报错信息是 Permission denied。这是因为默认情况下,Docker 挂载本地目录到虚拟机内部时,会采用虚拟机内的没有 root 权限的用户来读取挂载目录,然而 /root 目录是只有 root 用户才能读取的,因此会出现 Permission denied 的错误。解决该问题的方法是,在运行 Docker 命令时采用 -u 参数来指定虚拟机内的用户。 3. Readonly file system $ docker run --read-only -v /data:/data myimage 上述代码在执行时报错,报错信息是 Readonly file system。这是因为 Docker 在运行时采用只读文件系统,因此挂载目录的读取权限是只读的,不能对挂载目录进行写入操作。如果需要对挂载目录进行写入操作,需要在 Dockerfile 中采用 VOLUME 指令来显式定义挂载的目录。 总结 Docker 挂载情况是 Docker 安装应用时时常遇到的问题,本文讲解了一些常见的挂载情况及解决方法。在实际应用中,需要根据实际情况来选择合适的挂载方式,保证 Docker 虚拟机正常运行。
2023-01-13 17:03:08
524
逻辑鬼才
Docker
Docker是一种普遍的开放源代码容器应对策略,它可以帮助我们更好地管控应用程式的生存周期。使用Docker,我们可以轻易地启动运行、终止和移除容器。但是,当我们需要一次性终止多个容器时,人工逐个终止就显得比较繁琐了。下面,我们就来看一看如何使用Docker批量终止容器。 docker stop $(docker ps -aq) 上面的命令非常简单,它使用了一个子命令来获取所有容器的ID。这个子命令是“docker ps -aq”,它会列出所有正在运行的容器的ID,但不会列出容器的名称。接着,我们再把这些ID传递给“docker stop”命令,就可以批量终止所有正在运行的容器了。 需要注意的是,这个命令只会终止正在运行的容器,已经被终止的容器不会再次被终止。 如果你想要同时终止指定的容器,你可以使用类似于下面的命令: docker stop container_name1 container_name2 container_name3 其中,container_name1、container_name2和container_name3是要终止的容器的名称。 总之,使用Docker批量终止容器可以帮助我们更好地管控应用程式的生存周期,节省了人工逐个终止容器的繁琐。而且,这个方法还可以轻易地扩展到其他Docker命令中。
2023-07-13 23:32:15
261
码农
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
journalctl [-u service_name]
- 查看系统日志(适用于systemd系统)。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"