前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[端口映射 -p ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
...主机名 IP 角色 端口 nodename 数据目录 gtm 192.168.20.132 GTM 6666 gtm /nodes/gtm 协调器 5432 coord1 /nodes/coordinator xl1 192.168.20.133 数据节点 5433 node1 /nodes/pgdata gtm代理 6666 gtmpoxy01 /nodes/gtm_pxy1 协调器 5432 coord2 /nodes/coordinator xl2 192.168.20.134 数据节点 5433 node2 /nodes/pgdata gtm代理 6666 gtmpoxy02 /nodes/gtm_pxy2 要求 GNU make版本 3.8及以上版本 [root@pg ~] make --versionGNU Make 3.82Built for x86_64-redhat-linux-gnuCopyright (C) 2010 Free Software Foundation, Inc.License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>This is free software: you are free to change and redistribute it.There is NO WARRANTY, to the extent permitted by law. 需安装GCC包 需安装tar包 用于解压缩文件 默认需要GNU Readline library 其作用是可以让psql命令行记住执行过的命令,并且可以通过键盘上下键切换命令。但是可以通过--without-readline禁用这个特性,或者可以指定--withlibedit-preferred选项来使用libedit 默认使用zlib压缩库 可通过--without-zlib选项来禁用 配置hosts 所有主机上都配置 [root@xl2 11] cat /etc/hosts127.0.0.1 localhost192.168.20.132 gtm192.168.20.133 xl1192.168.20.134 xl2 关闭防火墙、Selinux 所有主机都执行 关闭防火墙: [root@gtm ~] systemctl stop firewalld.service[root@gtm ~] systemctl disable firewalld.service selinux设置: [root@gtm ~]vim /etc/selinux/config 设置SELINUX=disabled,保存退出。 This file controls the state of SELinux on the system. SELINUX= can take one of these three values: enforcing - SELinux security policy is enforced. permissive - SELinux prints warnings instead of enforcing. disabled - No SELinux policy is loaded.SELINUX=disabled SELINUXTYPE= can take one of three two values: targeted - Targeted processes are protected, minimum - Modification of targeted policy. Only selected processes are protected. mls - Multi Level Security protection. 安装依赖包 所有主机上都执行 yum install -y flex bison readline-devel zlib-devel openjade docbook-style-dsssl gcc 创建用户 所有主机上都执行 [root@gtm ~] useradd postgres[root@gtm ~] passwd postgres[root@gtm ~] su - postgres[root@gtm ~] mkdir ~/.ssh[root@gtm ~] chmod 700 ~/.ssh 配置SSH免密登录 仅仅在gtm节点配置如下操作: [root@gtm ~] su - postgres[postgres@gtm ~] ssh-keygen -t rsa[postgres@gtm ~] cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys[postgres@gtm ~] chmod 600 ~/.ssh/authorized_keys 将刚生成的认证文件拷贝到xl1到xl2中,使得gtm节点可以免密码登录xl1~xl2的任意一个节点: [postgres@gtm ~] scp ~/.ssh/authorized_keys postgres@xl1:~/.ssh/[postgres@gtm ~] scp ~/.ssh/authorized_keys postgres@xl2:~/.ssh/ 对所有提示都不要输入,直接enter下一步。直到最后,因为第一次要求输入目标机器的用户密码,输入即可。 下载源码 下载地址:https://www.postgres-xl.org/download/ [root@slave ~] ll postgres-xl-10r1.1.tar.gz-rw-r--r-- 1 root root 28121666 May 30 05:21 postgres-xl-10r1.1.tar.gz 编译、安装Postgres-XL 所有节点都安装,编译需要一点时间,最好同时进行编译。 [root@slave ~] tar xvf postgres-xl-10r1.1.tar.gz[root@slave ~] ./configure --prefix=/home/postgres/pgxl/[root@slave ~] make[root@slave ~] make install[root@slave ~] cd contrib/ --安装必要的工具,在gtm节点上安装即可[root@slave ~] make[root@slave ~] make install 配置环境变量 所有节点都要配置 进入postgres用户,修改其环境变量,开始编辑 [root@gtm ~]su - postgres[postgres@gtm ~]vi .bashrc --不是.bash_profile 在打开的文件末尾,新增如下变量配置: export PGHOME=/home/postgres/pgxlexport LD_LIBRARY_PATH=$PGHOME/lib:$LD_LIBRARY_PATHexport PATH=$PGHOME/bin:$PATH 按住esc,然后输入:wq!保存退出。输入以下命令对更改重启生效。 [postgres@gtm ~] source .bashrc --不是.bash_profile 输入以下语句,如果输出变量结果,代表生效 [postgres@gtm ~] echo $PGHOME 应该输出/home/postgres/pgxl代表生效 配置集群 生成pgxc_ctl.conf配置文件 [postgres@gtm ~] pgxc_ctl prepare/bin/bashInstalling pgxc_ctl_bash script as /home/postgres/pgxl/pgxc_ctl/pgxc_ctl_bash.ERROR: File "/home/postgres/pgxl/pgxc_ctl/pgxc_ctl.conf" not found or not a regular file. No such file or directoryInstalling pgxc_ctl_bash script as /home/postgres/pgxl/pgxc_ctl/pgxc_ctl_bash.Reading configuration using /home/postgres/pgxl/pgxc_ctl/pgxc_ctl_bash --home /home/postgres/pgxl/pgxc_ctl --configuration /home/postgres/pgxl/pgxc_ctl/pgxc_ctl.confFinished reading configuration. PGXC_CTL START Current directory: /home/postgres/pgxl/pgxc_ctl 配置pgxc_ctl.conf 新建/home/postgres/pgxc_ctl/pgxc_ctl.conf文件,编辑如下: 对着模板文件一个一个修改,否则会造成初始化过程出现各种神奇问题。 pgxcInstallDir=$PGHOMEpgxlDATA=$PGHOME/data pgxcOwner=postgres---- GTM Master -----------------------------------------gtmName=gtmgtmMasterServer=gtmgtmMasterPort=6666gtmMasterDir=$pgxlDATA/nodes/gtmgtmSlave=y Specify y if you configure GTM Slave. Otherwise, GTM slave will not be configured and all the following variables will be reset.gtmSlaveName=gtmSlavegtmSlaveServer=gtm value none means GTM slave is not available. Give none if you don't configure GTM Slave.gtmSlavePort=20001 Not used if you don't configure GTM slave.gtmSlaveDir=$pgxlDATA/nodes/gtmSlave Not used if you don't configure GTM slave.---- GTM-Proxy Master -------gtmProxyDir=$pgxlDATA/nodes/gtm_proxygtmProxy=y gtmProxyNames=(gtm_pxy1 gtm_pxy2) gtmProxyServers=(xl1 xl2) gtmProxyPorts=(6666 6666) gtmProxyDirs=($gtmProxyDir $gtmProxyDir) ---- Coordinators ---------coordMasterDir=$pgxlDATA/nodes/coordcoordNames=(coord1 coord2) coordPorts=(5432 5432) poolerPorts=(6667 6667) coordPgHbaEntries=(0.0.0.0/0)coordMasterServers=(xl1 xl2) coordMasterDirs=($coordMasterDir $coordMasterDir)coordMaxWALsernder=0 没设置备份节点,设置为0coordMaxWALSenders=($coordMaxWALsernder $coordMaxWALsernder) 数量保持和coordMasterServers一致coordSlave=n---- Datanodes ----------datanodeMasterDir=$pgxlDATA/nodes/dn_masterprimaryDatanode=xl1 主数据节点datanodeNames=(node1 node2)datanodePorts=(5433 5433) datanodePoolerPorts=(6668 6668) datanodePgHbaEntries=(0.0.0.0/0)datanodeMasterServers=(xl1 xl2)datanodeMasterDirs=($datanodeMasterDir $datanodeMasterDir)datanodeMaxWalSender=4datanodeMaxWALSenders=($datanodeMaxWalSender $datanodeMaxWalSender) 集群初始化,启动,停止 初始化 pgxc_ctl -c /home/postgres/pgxc_ctl/pgxc_ctl.conf init all 输出结果: /bin/bashInstalling pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Installing pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Reading configuration using /home/postgres/pgxc_ctl/pgxc_ctl_bash --home /home/postgres/pgxc_ctl --configuration /home/postgres/pgxc_ctl/pgxc_ctl.conf/home/postgres/pgxc_ctl/pgxc_ctl.conf: line 189: $coordExtraConfig: ambiguous redirectFinished reading configuration. PGXC_CTL START Current directory: /home/postgres/pgxc_ctlStopping all the coordinator masters.Stopping coordinator master coord1.Stopping coordinator master coord2.pg_ctl: directory "/home/postgres/pgxc/nodes/coord/coord1" does not existpg_ctl: directory "/home/postgres/pgxc/nodes/coord/coord2" does not existDone.Stopping all the datanode masters.Stopping datanode master datanode1.Stopping datanode master datanode2.pg_ctl: PID file "/home/postgres/pgxc/nodes/datanode/datanode1/postmaster.pid" does not existIs server running?Done.Stop GTM masterwaiting for server to shut down.... doneserver stopped[postgres@gtm ~]$ echo $PGHOME/home/postgres/pgxl[postgres@gtm ~]$ ll /home/postgres/pgxl/pgxc/nodes/gtm/gtm.^C[postgres@gtm ~]$ pgxc_ctl -c /home/postgres/pgxc_ctl/pgxc_ctl.conf init all/bin/bashInstalling pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Installing pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Reading configuration using /home/postgres/pgxc_ctl/pgxc_ctl_bash --home /home/postgres/pgxc_ctl --configuration /home/postgres/pgxc_ctl/pgxc_ctl.conf/home/postgres/pgxc_ctl/pgxc_ctl.conf: line 189: $coordExtraConfig: ambiguous redirectFinished reading configuration. PGXC_CTL START Current directory: /home/postgres/pgxc_ctlInitialize GTM masterERROR: target directory (/home/postgres/pgxc/nodes/gtm) exists and not empty. Skip GTM initilializationDone.Start GTM masterserver startingInitialize all the coordinator masters.Initialize coordinator master coord1.ERROR: target coordinator master coord1 is running now. Skip initilialization.Initialize coordinator master coord2.The files belonging to this database system will be owned by user "postgres".This user must also own the server process.The database cluster will be initialized with locale "en_US.UTF-8".The default database encoding has accordingly been set to "UTF8".The default text search configuration will be set to "english".Data page checksums are disabled.fixing permissions on existing directory /home/postgres/pgxc/nodes/coord/coord2 ... okcreating subdirectories ... okselecting default max_connections ... 100selecting default shared_buffers ... 128MBselecting dynamic shared memory implementation ... posixcreating configuration files ... okrunning bootstrap script ... okperforming post-bootstrap initialization ... creating cluster information ... oksyncing data to disk ... okfreezing database template0 ... okfreezing database template1 ... okfreezing database postgres ... okWARNING: enabling "trust" authentication for local connectionsYou can change this by editing pg_hba.conf or using the option -A, or--auth-local and --auth-host, the next time you run initdb.Success.Done.Starting coordinator master.Starting coordinator master coord1ERROR: target coordinator master coord1 is already running now. Skip initialization.Starting coordinator master coord22019-05-30 21:09:25.562 EDT [2148] LOG: listening on IPv4 address "0.0.0.0", port 54322019-05-30 21:09:25.562 EDT [2148] LOG: listening on IPv6 address "::", port 54322019-05-30 21:09:25.563 EDT [2148] LOG: listening on Unix socket "/tmp/.s.PGSQL.5432"2019-05-30 21:09:25.601 EDT [2149] LOG: database system was shut down at 2019-05-30 21:09:22 EDT2019-05-30 21:09:25.605 EDT [2148] LOG: database system is ready to accept connections2019-05-30 21:09:25.612 EDT [2156] LOG: cluster monitor startedDone.Initialize all the datanode masters.Initialize the datanode master datanode1.Initialize the datanode master datanode2.The files belonging to this database system will be owned by user "postgres".This user must also own the server process.The database cluster will be initialized with locale "en_US.UTF-8".The default database encoding has accordingly been set to "UTF8".The default text search configuration will be set to "english".Data page checksums are disabled.fixing permissions on existing directory /home/postgres/pgxc/nodes/datanode/datanode1 ... okcreating subdirectories ... okselecting default max_connections ... 100selecting default shared_buffers ... 128MBselecting dynamic shared memory implementation ... posixcreating configuration files ... okrunning bootstrap script ... okperforming post-bootstrap initialization ... creating cluster information ... oksyncing data to disk ... okfreezing database template0 ... okfreezing database template1 ... okfreezing database postgres ... okWARNING: enabling "trust" authentication for local connectionsYou can change this by editing pg_hba.conf or using the option -A, or--auth-local and --auth-host, the next time you run initdb.Success.The files belonging to this database system will be owned by user "postgres".This user must also own the server process.The database cluster will be initialized with locale "en_US.UTF-8".The default database encoding has accordingly been set to "UTF8".The default text search configuration will be set to "english".Data page checksums are disabled.fixing permissions on existing directory /home/postgres/pgxc/nodes/datanode/datanode2 ... okcreating subdirectories ... okselecting default max_connections ... 100selecting default shared_buffers ... 128MBselecting dynamic shared memory implementation ... posixcreating configuration files ... okrunning bootstrap script ... okperforming post-bootstrap initialization ... creating cluster information ... oksyncing data to disk ... okfreezing database template0 ... okfreezing database template1 ... okfreezing database postgres ... okWARNING: enabling "trust" authentication for local connectionsYou can change this by editing pg_hba.conf or using the option -A, or--auth-local and --auth-host, the next time you run initdb.Success.Done.Starting all the datanode masters.Starting datanode master datanode1.WARNING: datanode master datanode1 is running now. Skipping.Starting datanode master datanode2.2019-05-30 21:09:33.352 EDT [2404] LOG: listening on IPv4 address "0.0.0.0", port 154322019-05-30 21:09:33.352 EDT [2404] LOG: listening on IPv6 address "::", port 154322019-05-30 21:09:33.355 EDT [2404] LOG: listening on Unix socket "/tmp/.s.PGSQL.15432"2019-05-30 21:09:33.392 EDT [2404] LOG: redirecting log output to logging collector process2019-05-30 21:09:33.392 EDT [2404] HINT: Future log output will appear in directory "pg_log".Done.psql: FATAL: no pg_hba.conf entry for host "192.168.20.132", user "postgres", database "postgres"psql: FATAL: no pg_hba.conf entry for host "192.168.20.132", user "postgres", database "postgres"Done.psql: FATAL: no pg_hba.conf entry for host "192.168.20.132", user "postgres", database "postgres"psql: FATAL: no pg_hba.conf entry for host "192.168.20.132", user "postgres", database "postgres"Done.[postgres@gtm ~]$ pgxc_ctl -c /home/postgres/pgxc_ctl/pgxc_ctl.conf stop all/bin/bashInstalling pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Installing pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Reading configuration using /home/postgres/pgxc_ctl/pgxc_ctl_bash --home /home/postgres/pgxc_ctl --configuration /home/postgres/pgxc_ctl/pgxc_ctl.conf/home/postgres/pgxc_ctl/pgxc_ctl.conf: line 189: $coordExtraConfig: ambiguous redirectFinished reading configuration. PGXC_CTL START Current directory: /home/postgres/pgxc_ctlStopping all the coordinator masters.Stopping coordinator master coord1.Stopping coordinator master coord2.pg_ctl: directory "/home/postgres/pgxc/nodes/coord/coord1" does not existDone.Stopping all the datanode masters.Stopping datanode master datanode1.Stopping datanode master datanode2.pg_ctl: PID file "/home/postgres/pgxc/nodes/datanode/datanode1/postmaster.pid" does not existIs server running?Done.Stop GTM masterwaiting for server to shut down.... doneserver stopped[postgres@gtm ~]$ pgxc_ctl/bin/bashInstalling pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Installing pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Reading configuration using /home/postgres/pgxc_ctl/pgxc_ctl_bash --home /home/postgres/pgxc_ctl --configuration /home/postgres/pgxc_ctl/pgxc_ctl.conf/home/postgres/pgxc_ctl/pgxc_ctl.conf: line 189: $coordExtraConfig: ambiguous redirectFinished reading configuration. PGXC_CTL START Current directory: /home/postgres/pgxc_ctlPGXC monitor allNot running: gtm masterRunning: coordinator master coord1Not running: coordinator master coord2Running: datanode master datanode1Not running: datanode master datanode2PGXC stop coordinator master coord1Stopping coordinator master coord1.pg_ctl: directory "/home/postgres/pgxc/nodes/coord/coord1" does not existDone.PGXC stop datanode master datanode1Stopping datanode master datanode1.pg_ctl: PID file "/home/postgres/pgxc/nodes/datanode/datanode1/postmaster.pid" does not existIs server running?Done.PGXC monitor allNot running: gtm masterRunning: coordinator master coord1Not running: coordinator master coord2Running: datanode master datanode1Not running: datanode master datanode2PGXC monitor allNot running: gtm masterNot running: coordinator master coord1Not running: coordinator master coord2Not running: datanode master datanode1Not running: datanode master datanode2PGXC exit[postgres@gtm ~]$ pgxc_ctl -c /home/postgres/pgxc_ctl/pgxc_ctl.conf init all/bin/bashInstalling pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Installing pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Reading configuration using /home/postgres/pgxc_ctl/pgxc_ctl_bash --home /home/postgres/pgxc_ctl --configuration /home/postgres/pgxc_ctl/pgxc_ctl.conf/home/postgres/pgxc_ctl/pgxc_ctl.conf: line 189: $coordExtraConfig: ambiguous redirectFinished reading configuration. PGXC_CTL START Current directory: /home/postgres/pgxc_ctlInitialize GTM masterERROR: target directory (/home/postgres/pgxc/nodes/gtm) exists and not empty. Skip GTM initilializationDone.Start GTM masterserver startingInitialize all the coordinator masters.Initialize coordinator master coord1.Initialize coordinator master coord2.The files belonging to this database system will be owned by user "postgres".This user must also own the server process.The database cluster will be initialized with locale "en_US.UTF-8".The default database encoding has accordingly been set to "UTF8".The default text search configuration will be set to "english".Data page checksums are disabled.fixing permissions on existing directory /home/postgres/pgxc/nodes/coord/coord1 ... okcreating subdirectories ... okselecting default max_connections ... 100selecting default shared_buffers ... 128MBselecting dynamic shared memory implementation ... posixcreating configuration files ... okrunning bootstrap script ... okperforming post-bootstrap initialization ... creating cluster information ... oksyncing data to disk ... okfreezing database template0 ... okfreezing database template1 ... okfreezing database postgres ... okWARNING: enabling "trust" authentication for local connectionsYou can change this by editing pg_hba.conf or using the option -A, or--auth-local and --auth-host, the next time you run initdb.Success.The files belonging to this database system will be owned by user "postgres".This user must also own the server process.The database cluster will be initialized with locale "en_US.UTF-8".The default database encoding has accordingly been set to "UTF8".The default text search configuration will be set to "english".Data page checksums are disabled.fixing permissions on existing directory /home/postgres/pgxc/nodes/coord/coord2 ... okcreating subdirectories ... okselecting default max_connections ... 100selecting default shared_buffers ... 128MBselecting dynamic shared memory implementation ... posixcreating configuration files ... okrunning bootstrap script ... okperforming post-bootstrap initialization ... creating cluster information ... oksyncing data to disk ... okfreezing database template0 ... okfreezing database template1 ... okfreezing database postgres ... okWARNING: enabling "trust" authentication for local connectionsYou can change this by editing pg_hba.conf or using the option -A, or--auth-local and --auth-host, the next time you run initdb.Success.Done.Starting coordinator master.Starting coordinator master coord1Starting coordinator master coord22019-05-30 21:13:03.998 EDT [25137] LOG: listening on IPv4 address "0.0.0.0", port 54322019-05-30 21:13:03.998 EDT [25137] LOG: listening on IPv6 address "::", port 54322019-05-30 21:13:04.000 EDT [25137] LOG: listening on Unix socket "/tmp/.s.PGSQL.5432"2019-05-30 21:13:04.038 EDT [25138] LOG: database system was shut down at 2019-05-30 21:13:00 EDT2019-05-30 21:13:04.042 EDT [25137] LOG: database system is ready to accept connections2019-05-30 21:13:04.049 EDT [25145] LOG: cluster monitor started2019-05-30 21:13:04.020 EDT [2730] LOG: listening on IPv4 address "0.0.0.0", port 54322019-05-30 21:13:04.020 EDT [2730] LOG: listening on IPv6 address "::", port 54322019-05-30 21:13:04.021 EDT [2730] LOG: listening on Unix socket "/tmp/.s.PGSQL.5432"2019-05-30 21:13:04.057 EDT [2731] LOG: database system was shut down at 2019-05-30 21:13:00 EDT2019-05-30 21:13:04.061 EDT [2730] LOG: database system is ready to accept connections2019-05-30 21:13:04.062 EDT [2738] LOG: cluster monitor startedDone.Initialize all the datanode masters.Initialize the datanode master datanode1.Initialize the datanode master datanode2.The files belonging to this database system will be owned by user "postgres".This user must also own the server process.The database cluster will be initialized with locale "en_US.UTF-8".The default database encoding has accordingly been set to "UTF8".The default text search configuration will be set to "english".Data page checksums are disabled.fixing permissions on existing directory /home/postgres/pgxc/nodes/datanode/datanode1 ... okcreating subdirectories ... okselecting default max_connections ... 100selecting default shared_buffers ... 128MBselecting dynamic shared memory implementation ... posixcreating configuration files ... okrunning bootstrap script ... okperforming post-bootstrap initialization ... creating cluster information ... oksyncing data to disk ... okfreezing database template0 ... okfreezing database template1 ... okfreezing database postgres ... okWARNING: enabling "trust" authentication for local connectionsYou can change this by editing pg_hba.conf or using the option -A, or--auth-local and --auth-host, the next time you run initdb.Success.The files belonging to this database system will be owned by user "postgres".This user must also own the server process.The database cluster will be initialized with locale "en_US.UTF-8".The default database encoding has accordingly been set to "UTF8".The default text search configuration will be set to "english".Data page checksums are disabled.fixing permissions on existing directory /home/postgres/pgxc/nodes/datanode/datanode2 ... okcreating subdirectories ... okselecting default max_connections ... 100selecting default shared_buffers ... 128MBselecting dynamic shared memory implementation ... posixcreating configuration files ... okrunning bootstrap script ... okperforming post-bootstrap initialization ... creating cluster information ... oksyncing data to disk ... okfreezing database template0 ... okfreezing database template1 ... okfreezing database postgres ... okWARNING: enabling "trust" authentication for local connectionsYou can change this by editing pg_hba.conf or using the option -A, or--auth-local and --auth-host, the next time you run initdb.Success.Done.Starting all the datanode masters.Starting datanode master datanode1.Starting datanode master datanode2.2019-05-30 21:13:12.077 EDT [25392] LOG: listening on IPv4 address "0.0.0.0", port 154322019-05-30 21:13:12.077 EDT [25392] LOG: listening on IPv6 address "::", port 154322019-05-30 21:13:12.079 EDT [25392] LOG: listening on Unix socket "/tmp/.s.PGSQL.15432"2019-05-30 21:13:12.114 EDT [25392] LOG: redirecting log output to logging collector process2019-05-30 21:13:12.114 EDT [25392] HINT: Future log output will appear in directory "pg_log".2019-05-30 21:13:12.079 EDT [2985] LOG: listening on IPv4 address "0.0.0.0", port 154322019-05-30 21:13:12.079 EDT [2985] LOG: listening on IPv6 address "::", port 154322019-05-30 21:13:12.081 EDT [2985] LOG: listening on Unix socket "/tmp/.s.PGSQL.15432"2019-05-30 21:13:12.117 EDT [2985] LOG: redirecting log output to logging collector process2019-05-30 21:13:12.117 EDT [2985] HINT: Future log output will appear in directory "pg_log".Done.psql: FATAL: no pg_hba.conf entry for host "192.168.20.132", user "postgres", database "postgres"psql: FATAL: no pg_hba.conf entry for host "192.168.20.132", user "postgres", database "postgres"Done.psql: FATAL: no pg_hba.conf entry for host "192.168.20.132", user "postgres", database "postgres"psql: FATAL: no pg_hba.conf entry for host "192.168.20.132", user "postgres", database "postgres"Done. 启动 pgxc_ctl -c /home/postgres/pgxc_ctl/pgxc_ctl.conf start all 关闭 pgxc_ctl -c /home/postgres/pgxc_ctl/pgxc_ctl.conf stop all 查看集群状态 [postgres@gtm ~]$ pgxc_ctl monitor all/bin/bashInstalling pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Installing pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Reading configuration using /home/postgres/pgxc_ctl/pgxc_ctl_bash --home /home/postgres/pgxc_ctl --configuration /home/postgres/pgxc_ctl/pgxc_ctl.conf/home/postgres/pgxc_ctl/pgxc_ctl.conf: line 189: $coordExtraConfig: ambiguous redirectFinished reading configuration. PGXC_CTL START Current directory: /home/postgres/pgxc_ctlRunning: gtm masterRunning: coordinator master coord1Running: coordinator master coord2Running: datanode master datanode1Running: datanode master datanode2 配置集群信息 分别在数据节点、协调器节点上分别执行以下命令: 注:本节点只执行修改操作即可(alert node),其他节点执行创建命令(create node)。因为本节点已经包含本节点的信息。 create node coord1 with (type=coordinator,host=xl1, port=5432);create node coord2 with (type=coordinator,host=xl2, port=5432);alter node coord1 with (type=coordinator,host=xl1, port=5432);alter node coord2 with (type=coordinator,host=xl2, port=5432);create node datanode1 with (type=datanode, host=xl1,port=15432,primary=true,PREFERRED);create node datanode2 with (type=datanode, host=xl2,port=15432);alter node datanode1 with (type=datanode, host=xl1,port=15432,primary=true,PREFERRED);alter node datanode2 with (type=datanode, host=xl2,port=15432);select pgxc_pool_reload(); 分别登陆数据节点、协调器节点验证 postgres= select from pgxc_node;node_name | node_type | node_port | node_host | nodeis_primary | nodeis_preferred | node_id-----------+-----------+-----------+-----------+----------------+------------------+-------------coord1 | C | 5432 | xl1 | f | f | 1885696643coord2 | C | 5432 | xl2 | f | f | -1197102633datanode2 | D | 15432 | xl2 | f | f | -905831925datanode1 | D | 15432 | xl1 | t | f | 888802358(4 rows) 测试 插入数据 在数据节点1,执行相关操作。 通过协调器端口登录PG [postgres@xl1 ~]$ psql -p 5432psql (PGXL 10r1.1, based on PG 10.6 (Postgres-XL 10r1.1))Type "help" for help.postgres= create database lei;CREATE DATABASEpostgres= \c lei;You are now connected to database "lei" as user "postgres".lei= create table test1(id int,name text);CREATE TABLElei= insert into test1(id,name) select generate_series(1,8),'测试';INSERT 0 8lei= select from test1;id | name----+------1 | 测试2 | 测试5 | 测试6 | 测试8 | 测试3 | 测试4 | 测试7 | 测试(8 rows) 注:默认创建的表为分布式表,也就是每个数据节点值存储表的部分数据。关于表类型具体说明,下面有说明。 通过15432端口登录数据节点,查看数据 有5条数据 [postgres@xl1 ~]$ psql -p 15432psql (PGXL 10r1.1, based on PG 10.6 (Postgres-XL 10r1.1))Type "help" for help.postgres= \c lei;You are now connected to database "lei" as user "postgres".lei= select from test1;id | name----+------1 | 测试2 | 测试5 | 测试6 | 测试8 | 测试(5 rows) 登录到节点2,查看数据 有3条数据 [postgres@xl2 ~]$ psql -p15432psql (PGXL 10r1.1, based on PG 10.6 (Postgres-XL 10r1.1))Type "help" for help.postgres= \c lei;You are now connected to database "lei" as user "postgres".lei= select from test1;id | name----+------3 | 测试4 | 测试7 | 测试(3 rows) 两个节点的数据加起来整个8条,没有问题。 至此Postgre-XL集群搭建完成。 创建数据库、表时可能会出现以下错误: ERROR: Failed to get pooled connections 是因为pg_hba.conf配置不对,所有节点加上host all all 192.168.20.0/0 trust并重启集群即可。 ERROR: No Datanode defined in cluster 首先确认是否创建了数据节点,也就是create node相关的命令。如果创建了则执行select pgxc_pool_reload();使其生效即可。 集群管理与应用 表类型说明 REPLICATION表:各个datanode节点中,表的数据完全相同,也就是说,插入数据时,会分别在每个datanode节点插入相同数据。读数据时,只需要读任意一个datanode节点上的数据。 建表语法: CREATE TABLE repltab (col1 int, col2 int) DISTRIBUTE BY REPLICATION; DISTRIBUTE :会将插入的数据,按照拆分规则,分配到不同的datanode节点中存储,也就是sharding技术。每个datanode节点只保存了部分数据,通过coordinate节点可以查询完整的数据视图。 CREATE TABLE disttab(col1 int, col2 int, col3 text) DISTRIBUTE BY HASH(col1); 模拟数据插入 任意登录一个coordinate节点进行建表操作 [postgres@gtm ~]$ psql -h xl1 -p 5432 -U postgrespostgres= INSERT INTO disttab SELECT generate_series(1,100), generate_series(101, 200), 'foo';INSERT 0 100postgres= INSERT INTO repltab SELECT generate_series(1,100), generate_series(101, 200);INSERT 0 100 查看数据分布结果: DISTRIBUTE表分布结果 postgres= SELECT xc_node_id, count() FROM disttab GROUP BY xc_node_id;xc_node_id | count ------------+-------1148549230 | 42-927910690 | 58(2 rows) REPLICATION表分布结果 postgres= SELECT count() FROM repltab;count -------100(1 row) 查看另一个datanode2中repltab表结果 [postgres@datanode2 pgxl9.5]$ psql -p 15432psql (PGXL 10r1.1, based on PG 10.6 (Postgres-XL 10r1.1))Type "help" for help.postgres= SELECT count() FROM repltab;count -------100(1 row) 结论:REPLICATION表中,datanode1,datanode2中表是全部数据,一模一样。而DISTRIBUTE表,数据散落近乎平均分配到了datanode1,datanode2节点中。 新增数据节点与数据重分布 在线新增节点、并重新分布数据。 新增datanode节点 在gtm集群管理节点上执行pgxc_ctl命令 [postgres@gtm ~]$ pgxc_ctl/bin/bashInstalling pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Installing pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Reading configuration using /home/postgres/pgxc_ctl/pgxc_ctl_bash --home /home/postgres/pgxc_ctl --configuration /home/postgres/pgxc_ctl/pgxc_ctl.confFinished reading configuration. PGXC_CTL START Current directory: /home/postgres/pgxc_ctlPGXC 在服务器xl3上,新增一个master角色的datanode节点,名称是datanode3 端口号暂定5430,pool master暂定6669 ,指定好数据目录位置,从两个节点升级到3个节点,之后要写3个none none应该是datanodeSpecificExtraConfig或者datanodeSpecificExtraPgHba配置PGXC add datanode master datanode3 xl3 15432 6671 /home/postgres/pgxc/nodes/datanode/datanode3 none none none 等待新增完成后,查询集群节点状态: postgres= select from pgxc_node;node_name | node_type | node_port | node_host | nodeis_primary | nodeis_preferred | node_id-----------+-----------+-----------+-----------+----------------+------------------+-------------datanode1 | D | 15432 | xl1 | t | f | 888802358datanode2 | D | 15432 | xl2 | f | f | -905831925datanode3 | D | 15432 | xl3 | f | f | -705831925coord1 | C | 5432 | xl1 | f | f | 1885696643coord2 | C | 5432 | xl2 | f | f | -1197102633(4 rows) 节点新增完毕 数据重新分布 由于新增节点后无法自动完成数据重新分布,需要手动操作。 DISTRIBUTE表分布在了node1,node2节点上,如下: postgres= SELECT xc_node_id, count() FROM disttab GROUP BY xc_node_id;xc_node_id | count ------------+-------1148549230 | 42-927910690 | 58(2 rows) 新增一个节点后,将sharding表数据重新分配到三个节点上,将repl表复制到新节点 重分布sharding表postgres= ALTER TABLE disttab ADD NODE (datanode3);ALTER TABLE 复制数据到新节点postgres= ALTER TABLE repltab ADD NODE (datanode3);ALTER TABLE 查看新的数据分布: postgres= SELECT xc_node_id, count() FROM disttab GROUP BY xc_node_id;xc_node_id | count ------------+--------700122826 | 36-927910690 | 321148549230 | 32(3 rows) 登录datanode3(新增的时候,放在了xl3服务器上,端口15432)节点查看数据: [postgres@gtm ~]$ psql -h xl3 -p 15432 -U postgrespsql (PGXL 10r1.1, based on PG 10.6 (Postgres-XL 10r1.1))Type "help" for help.postgres= select count() from repltab;count -------100(1 row) 很明显,通过 ALTER TABLE tt ADD NODE (dn)命令,可以将DISTRIBUTE表数据重新分布到新节点,重分布过程中会中断所有事务。可以将REPLICATION表数据复制到新节点。 从datanode节点中回收数据 postgres= ALTER TABLE disttab DELETE NODE (datanode3);ALTER TABLEpostgres= ALTER TABLE repltab DELETE NODE (datanode3);ALTER TABLE 删除数据节点 Postgresql-XL并没有检查将被删除的datanode节点是否有replicated/distributed表的数据,为了数据安全,在删除之前需要检查下被删除节点上的数据,有数据的话,要回收掉分配到其他节点,然后才能安全删除。删除数据节点分为四步骤: 1.查询要删除节点dn3的oid postgres= SELECT oid, FROM pgxc_node;oid | node_name | node_type | node_port | node_host | nodeis_primary | nodeis_preferred | node_id -------+-----------+-----------+-----------+-----------+----------------+------------------+-------------11819 | coord1 | C | 5432 | datanode1 | f | f | 188569664316384 | coord2 | C | 5432 | datanode2 | f | f | -119710263316385 | node1 | D | 5433 | datanode1 | f | t | 114854923016386 | node2 | D | 5433 | datanode2 | f | f | -92791069016397 | dn3 | D | 5430 | datanode1 | f | f | -700122826(5 rows) 2.查询dn3对应的oid中是否有数据 testdb= SELECT FROM pgxc_class WHERE nodeoids::integer[] @> ARRAY[16397];pcrelid | pclocatortype | pcattnum | pchashalgorithm | pchashbuckets | nodeoids ---------+---------------+----------+-----------------+---------------+-------------------16388 | H | 1 | 1 | 4096 | 16397 16385 1638616394 | R | 0 | 0 | 0 | 16397 16385 16386(2 rows) 3.有数据的先回收数据 postgres= ALTER TABLE disttab DELETE NODE (dn3);ALTER TABLEpostgres= ALTER TABLE repltab DELETE NODE (dn3);ALTER TABLEpostgres= SELECT FROM pgxc_class WHERE nodeoids::integer[] @> ARRAY[16397];pcrelid | pclocatortype | pcattnum | pchashalgorithm | pchashbuckets | nodeoids ---------+---------------+----------+-----------------+---------------+----------(0 rows) 4.安全删除dn3 PGXC$ remove datanode master dn3 clean 故障节点FAILOVER 1.查看当前集群状态 [postgres@gtm ~]$ psql -h xl1 -p 5432psql (PGXL 10r1.1, based on PG 10.6 (Postgres-XL 10r1.1))Type "help" for help.postgres= SELECT oid, FROM pgxc_node;oid | node_name | node_type | node_port | node_host | nodeis_primary | nodeis_preferred | node_id-------+-----------+-----------+-----------+-----------+----------------+------------------+-------------11739 | coord1 | C | 5432 | xl1 | f | f | 188569664316384 | coord2 | C | 5432 | xl2 | f | f | -119710263316387 | datanode2 | D | 15432 | xl2 | f | f | -90583192516388 | datanode1 | D | 15432 | xl1 | t | t | 888802358(4 rows) 2.模拟datanode1节点故障 直接关闭即可 PGXC stop -m immediate datanode master datanode1Stopping datanode master datanode1.Done. 3.测试查询 只要查询涉及到datanode1上的数据,那么该查询就会报错 postgres= SELECT xc_node_id, count() FROM disttab GROUP BY xc_node_id;WARNING: failed to receive file descriptors for connectionsERROR: Failed to get pooled connectionsHINT: This may happen because one or more nodes are currently unreachable, either because of node or network failure.Its also possible that the target node may have hit the connection limit or the pooler is configured with low connections.Please check if all nodes are running fine and also review max_connections and max_pool_size configuration parameterspostgres= SELECT xc_node_id, FROM disttab WHERE col1 = 3;xc_node_id | col1 | col2 | col3------------+------+------+-------905831925 | 3 | 103 | foo(1 row) 测试发现,查询范围如果涉及到故障的node1节点,会报错,而查询的数据范围不在node1上的话,仍然可以查询。 4.手动切换 要想切换,必须要提前配置slave节点。 PGXC$ failover datanode node1 切换完成后,查询集群 postgres= SELECT oid, FROM pgxc_node;oid | node_name | node_type | node_port | node_host | nodeis_primary | nodeis_preferred | node_id -------+-----------+-----------+-----------+-----------+----------------+------------------+-------------11819 | coord1 | C | 5432 | datanode1 | f | f | 188569664316384 | coord2 | C | 5432 | datanode2 | f | f | -119710263316386 | node2 | D | 15432 | datanode2 | f | f | -92791069016385 | node1 | D | 15433 | datanode2 | f | t | 1148549230(4 rows) 发现datanode1节点的ip和端口都已经替换为配置的slave了。 本篇文章为转载内容。原文链接:https://blog.csdn.net/qianglei6077/article/details/94379331。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-30 11:09:03
94
转载
转载文章
...ins/ml2 测试端口可连接性 curl -u admin:admin http://10.13.80.34:8181/controller/nb/v2/neutron/networks odl配置文件修改 etc/custom.properties ovsdb.l3.fwd.enabled=yes ovsdb.l3gateway.mac=0a:00:27:00:00:0d telnet 10.13.80.34 8181 netstat -nlp | grep 8181 telnet 127.0.0.1 8181 telnet 10.13.80.34 8181 systemctl status firewall iptables iptables -nvL iptables -F 清空iptables openstack server create --flavor tiny --image cirros --nic net-id=24449ee2-b84e-493f-8d76-139ac3e4f3cd --key-name mykey provider-instance nova service-list nova show ae5e26d1-c84d-40fa-bb27-f0b46d6a7061 查看虚机详情 ovs-vsctl set Open_vSwitch 89444614-3bf8-4d7a-b3a0-df5d20b48b7a other_config={'local_ip'='192.168.56.102'} ovs-vsctl set Open_vSwitch b084eccf-b92e-470c-8dff-8549e92c2104 other_config={'local_ip'='192.168.56.122'} ovs-vsctl list interface eth0 ovs-appctl fdb/show br-int [root@rcontroller01 ~] openstack security group rule list 2e19a748-9086-49f8-9498-01abc1a964fe 一个神奇的命令 +--------------------------------------+-------------+-----------+------------+--------------------------------------+ | ID | IP Protocol | IP Range | Port Range | Remote Security Group | +--------------------------------------+-------------+-----------+------------+--------------------------------------+ | 0184e6b3-4f7f-4fd5-8125-b80682e7ee48 | None | None | | 2e19a748-9086-49f8-9498-01abc1a964fe | | 1e0bfedc-8f25-408a-9328-708113bbbc52 | icmp | 0.0.0.0/0 | | None | | 39116d39-454b-4d82-867e-bbfd3ea63182 | None | None | | None | | 4032366f-3ac9-4862-85a7-c7411a8b7678 | None | None | | 2e19a748-9086-49f8-9498-01abc1a964fe | | dc7bc251-f0d0-456a-9102-c5b66646aa84 | tcp | 0.0.0.0/0 | 22:22 | None | | ddacf7ea-57ea-4c8a-8b68-093766284595 | None | None | | None | +--------------------------------------+-------------+-----------+------------+--------------------------------------+ dpif/dump-flows dp 想控制端打印dp中流表的所有条目。 这个命令主要来与debugOpen Vswitch.它所打印的流表不是openFlow的流条目。 它打印的是由dp模块维护的简单的流。 如果你想查看OpenFlow条目,请使用ovs-ofctl dump-flows。dpif/del-fow dp 删除指定dp上所有流表。同上所述,这些不是OpenFlow流表。 ovs-appctl dpif/dump-flows br-int 创建网络 openstack network create --share --external --provider-physical-network provider --provider-network-type flat provider $ openstack subnet create --network provider \ --allocation-pool start=192.168.56.100,end=192.168.56.200 \ --dns-nameserver 8.8.8.8 --gateway 192.168.56.1 \ --subnet-range 192.168.56.0/24 provider openstack network create selfservice $ openstack subnet create --network selfservice \ --dns-nameserver 8.8.8.8 --gateway 192.168.1.1 \ --subnet-range 192.168.1.0/24 selfservice openstack router create router openstack router add subnet router selfservice openstack router set router --external-gateway provider openstack port list --router router +--------------------------------------+------+-------------------+-------------------------------------------------------------------------------+--------+ | ID | Name | MAC Address | Fixed IP Addresses | Status | +--------------------------------------+------+-------------------+-------------------------------------------------------------------------------+--------+ | bff6605d-824c-41f9-b744-21d128fc86e1 | | fa:16:3e:2f:34:9b | ip_address='172.16.1.1', subnet_id='3482f524-8bff-4871-80d4-5774c2730728' | ACTIVE | | d6fe98db-ae01-42b0-a860-37b1661f5950 | | fa:16:3e:e8:c1:41 | ip_address='203.0.113.102', subnet_id='5cc70da8-4ee7-4565-be53-b9c011fca011' | ACTIVE | +--------------------------------------+------+-------------------+-------------------------------------------------------------------------------+--------+ $ ping -c 4 203.0.113.102 创建虚机 openstack keypair list $ ssh-keygen -q -N "" $ openstack keypair create --public-key ~/.ssh/id_rsa.pub mykey openstack flavor list openstack image list openstack network list openstack server create --flavor tiny --image cirros --nic net-id=27616098-0374-4ab4-95a8-b5bf4839dcf8 --key-name mykey provider-instance 网络配置 python /usr/lib/python2.7/site-packages/networking_odl/cmd/set_ovs_hostconfigs.py --ovs_hostconfigs='{ "ODL L2": { "allowed_network_types": [ "flat", "vlan", "vxlan" ], "bridge_mappings": { "provider": "br-int" }, "supported_vnic_types": [ { "vnic_type": "normal", "vif_type": "ovs", "vif_details": {} } ] }, "ODL L3": {} }' ovs-vsctl list open . [2019/1/16 19:09] 高正伟: ovs-vsctl set Open_vSwitch . other_config:local_ip=hostip ovs-vsctl set Open_vSwitch . other_config:local_ip=192.168.56.122 ovs-vsctl set Open_vSwitch . other_config:remote_ip=192.168.56.122 ovs-vsctl remove interface tunca7b782f232 options remote_ip ovs-vsctl set Open_vSwitch . other_config:provider_mappings=provider:br-ex ovs-vsctl set Open_vSwitch . external_ids:provider_mappings="{\"provider\": \"br-ex\"}" 清空 ovs-vsctl clear Open_vSwitch . external_ids ovs-vsctl set-manager tcp:10.13.80.34:6640 ovs-vsctl set-controller br-ex tcp:10.13.80.34:6640 ovs-vsctl del-controller br-ex sudo neutron-odl-ovs-hostconfig ovs-vsctl show ovs-vsctl add-port <bridge name> <port name> ovs-vsctl add-port br-ex enp0s10 ovs-vsctl del-port br-ex phy-br-ex ovs-vsctl del-port br-ex tun2ad7e9e91e4 重启odl后 systemctl restart openvswitch.service systemctl restart neutron-server.service systemctl stop neutron-server.service 创建虚机 openstack network create --share --external --provider-physical-network provider --provider-network-type flat provider openstack subnet create --network provider --allocation-pool start=192.168.56.2,end=192.168.56.100 --dns-nameserver 8.8.8.8 --gateway 192.168.56.1 --subnet-range 192.168.56.0/24 provider nova boot --image cirros --flavor tiny --nic net-id= --availability-zone nova:rcontroller01 vm-01 openstack server create --flavor tiny --image cirros --nic net-id= --key-name mykey test nova boot --image cirros --flavor tiny --nic net-id=0fe983c2-8178-403b-a00e-e8561580b210 --availability-zone nova:rcontroller01 vm-01 虚机可以学习到mac但是ping不通 抓包,先在虚机网卡上抓包, 然后在br-int上抓包 发现虚拟网卡上是发送了icmp请求报文的,但是br-int上没有 查看报文情况 [root@rcontroller01 ~] ovs-appctl dpif/dump-flows br-int recirc_id(0),tunnel(tun_id=0x0,src=192.168.56.102,dst=192.168.56.122,flags(-df-csum+key)),in_port(4),eth(),eth_type(0x0800),ipv4(proto=17,frag=no),udp(dst=3784), packets:266436, bytes:17584776, used:0.591s, actions:userspace(pid=4294962063,slow_path(bfd)) recirc_id(0xa0),in_port(5),ct_state(+new-est-rel-inv+trk),ct_mark(0/0x1),eth(),eth_type(0x0800),ipv4(frag=no), packets:148165, bytes:14520170, used:0.566s, actions:drop recirc_id(0),in_port(3),eth(),eth_type(0x0806), packets:1, bytes:60, used:5.228s, actions:drop recirc_id(0),tunnel(tun_id=0xb,src=192.168.56.102,dst=192.168.56.122,flags(-df-csum+key)),in_port(4),eth(dst=fa:16:3e:ab:ba:7e),eth_type(0x0806), packets:0, bytes:0, used:never, actions:5 recirc_id(0),in_port(5),eth(src=fa:16:3e:ab:ba:7e),eth_type(0x0800),ipv4(src=192.168.0.16,proto=1,frag=no), packets:148165, bytes:14520170, used:0.566s, actions:ct(zone=5004),recirc(0xa0) recirc_id(0),in_port(3),eth(),eth_type(0x0800),ipv4(frag=no), packets:886646, bytes:316947183, used:0.210s, flags:SFPR., actions:drop recirc_id(0),in_port(5),eth(src=fa:16:3e:ab:ba:7e,dst=fa:16:3e:7d:95:75),eth_type(0x0806),arp(sip=192.168.0.16,tip=192.168.0.5,op=1/0xff,sha=fa:16:3e:ab:ba:7e), packets:0, bytes:0, used:never, actions:userspace(pid=4294961925,controller(reason=4,dont_send=0,continuation=0,recirc_id=4618,rule_cookie=0x822002d,controller_id=0,max_len=65535)),set(tunnel(tun_id=0xb,src=192.168.56.122,dst=192.168.56.102,ttl=64,tp_dst=4789,flags(df|key))),4 安全组设置 openstack security group rule create --proto tcp 2e19a748-9086-49f8-9498-01abc1a964fe openstack security group rule create --proto tcp 6095293d-c2cd-433d-8a8f-e77ecb03609e openstack security group rule create --proto udp 2e19a748-9086-49f8-9498-01abc1a964fe openstack security group rule create --proto udp 6095293d-c2cd-433d-8a8f-e77ecb03609e ovs-vsctl add-port br-ex "ex-patch-int" ovs-vsctl set interface "ex-patch-int" type=patch ovs-vsctl set interface "ex-patch-int" options:peer=int-patch-ex ovs-vsctl add-port br-int "int-patch-ex" ovs-vsctl set interface "int-patch-ex" type=patch ovs-vsctl set interface "int-patch-ex" options:peer=ex-patch-int ovs-vsctl del-port br-ex "ex-patch-int" ovs-vsctl del-port br-int "int-patch-ex" ovs-vsctl del-port br-ex enp0s9 ovs-vsctl add-port br-int enp0s9 ovs-appctl ofproto/trace 重要命令 sudo ovs-ofctl -O OpenFlow13 show br-int sudo ovs-appctl ofproto/trace br-int "in_port=5,ip,nw_src=192.168.0.16,nw_dst=192.168.0.5" ovs-appctl dpctl/dump-conntrack 11.查看接口id等 ovs-appctl dpif/show 12.查看接口统计 ovs-ofctl dump-ports br-int 查看接口 sudo ovs-ofctl show br-int -O OpenFlow13 ovs常用命令 控制管理类 1.查看网桥和端口 ovs-vsctl show 1 2.创建一个网桥 ovs-vsctl add-br br0 ovs-vsctl set bridge br0 datapath_type=netdev 1 2 3.添加/删除一个端口 for system interfaces ovs-vsctl add-port br0 eth1 ovs-vsctl del-port br0 eth1 for DPDK ovs-vsctl add-port br0 dpdk1 -- set interface dpdk1 type=dpdk options:dpdk-devargs=0000:01:00.0 for DPDK bonds ovs-vsctl add-bond br0 dpdkbond0 dpdk1 dpdk2 \ -- set interface dpdk1 type=dpdk options:dpdk-devargs=0000:01:00.0 \ -- set interface dpdk2 type=dpdk options:dpdk-devargs=0000:02:00.0 1 2 3 4 5 6 7 8 9 4.设置/清除网桥的openflow协议版本 ovs-vsctl set bridge br0 protocols=OpenFlow13 ovs-vsctl clear bridge br0 protocols 1 2 5.查看某网桥当前流表 ovs-ofctl dump-flows br0 ovs-ofctl -O OpenFlow13 dump-flows br0 ovs-appctl bridge/dump-flows br0 1 2 3 6.设置/删除控制器 ovs-vsctl set-controller br0 tcp:1.2.3.4:6633 ovs-vsctl del-controller br0 1 2 7.查看控制器列表 ovs-vsctl list controller 1 8.设置/删除被动连接控制器 ovs-vsctl set-manager tcp:1.2.3.4:6640 ovs-vsctl get-manager ovs-vsctl del-manager 1 2 3 9.设置/移除可选选项 ovs-vsctl set Interface eth0 options:link_speed=1G ovs-vsctl remove Interface eth0 options link_speed 1 2 10.设置fail模式,支持standalone或者secure standalone(default):清除所有控制器下发的流表,ovs自己接管 secure:按照原来流表继续转发 ovs-vsctl del-fail-mode br0 ovs-vsctl set-fail-mode br0 secure ovs-vsctl get-fail-mode br0 1 2 3 11.查看接口id等 ovs-appctl dpif/show 1 12.查看接口统计 ovs-ofctl dump-ports br0 1 流表类 流表操作 1.添加普通流表 ovs-ofctl add-flow br0 in_port=1,actions=output:2 1 2.删除所有流表 ovs-ofctl del-flows br0 1 3.按匹配项来删除流表 ovs-ofctl del-flows br0 "in_port=1" 1 匹配项 1.匹配vlan tag,范围为0-4095 ovs-ofctl add-flow br0 priority=401,in_port=1,dl_vlan=777,actions=output:2 1 2.匹配vlan pcp,范围为0-7 ovs-ofctl add-flow br0 priority=401,in_port=1,dl_vlan_pcp=7,actions=output:2 1 3.匹配源/目的MAC ovs-ofctl add-flow br0 in_port=1,dl_src=00:00:00:00:00:01/00:00:00:00:00:01,actions=output:2 ovs-ofctl add-flow br0 in_port=1,dl_dst=00:00:00:00:00:01/00:00:00:00:00:01,actions=output:2 1 2 4.匹配以太网类型,范围为0-65535 ovs-ofctl add-flow br0 in_port=1,dl_type=0x0806,actions=output:2 1 5.匹配源/目的IP 条件:指定dl_type=0x0800,或者ip/tcp ovs-ofctl add-flow br0 ip,in_port=1,nw_src=10.10.0.0/16,actions=output:2 ovs-ofctl add-flow br0 ip,in_port=1,nw_dst=10.20.0.0/16,actions=output:2 1 2 6.匹配协议号,范围为0-255 条件:指定dl_type=0x0800或者ip ICMP ovs-ofctl add-flow br0 ip,in_port=1,nw_proto=1,actions=output:2 7.匹配IP ToS/DSCP,tos范围为0-255,DSCP范围为0-63 条件:指定dl_type=0x0800/0x86dd,并且ToS低2位会被忽略(DSCP值为ToS的高6位,并且低2位为预留位) ovs-ofctl add-flow br0 ip,in_port=1,nw_tos=68,actions=output:2 ovs-ofctl add-flow br0 ip,in_port=1,ip_dscp=62,actions=output:2 8.匹配IP ecn位,范围为0-3 条件:指定dl_type=0x0800/0x86dd ovs-ofctl add-flow br0 ip,in_port=1,ip_ecn=2,actions=output:2 9.匹配IP TTL,范围为0-255 ovs-ofctl add-flow br0 ip,in_port=1,nw_ttl=128,actions=output:2 10.匹配tcp/udp,源/目的端口,范围为0-65535 匹配源tcp端口179 ovs-ofctl add-flow br0 tcp,tcp_src=179/0xfff0,actions=output:2 匹配目的tcp端口179 ovs-ofctl add-flow br0 tcp,tcp_dst=179/0xfff0,actions=output:2 匹配源udp端口1234 ovs-ofctl add-flow br0 udp,udp_src=1234/0xfff0,actions=output:2 匹配目的udp端口1234 ovs-ofctl add-flow br0 udp,udp_dst=1234/0xfff0,actions=output:2 11.匹配tcp flags tcp flags=fin,syn,rst,psh,ack,urg,ece,cwr,ns ovs-ofctl add-flow br0 tcp,tcp_flags=ack,actions=output:2 12.匹配icmp code,范围为0-255 条件:指定icmp ovs-ofctl add-flow br0 icmp,icmp_code=2,actions=output:2 13.匹配vlan TCI TCI低12位为vlan id,高3位为priority,例如tci=0xf123则vlan_id为0x123和vlan_pcp=7 ovs-ofctl add-flow br0 in_port=1,vlan_tci=0xf123,actions=output:2 14.匹配mpls label 条件:指定dl_type=0x8847/0x8848 ovs-ofctl add-flow br0 mpls,in_port=1,mpls_label=7,actions=output:2 15.匹配mpls tc,范围为0-7 条件:指定dl_type=0x8847/0x8848 ovs-ofctl add-flow br0 mpls,in_port=1,mpls_tc=7,actions=output:2 1 16.匹配tunnel id,源/目的IP 匹配tunnel id ovs-ofctl add-flow br0 in_port=1,tun_id=0x7/0xf,actions=output:2 匹配tunnel源IP ovs-ofctl add-flow br0 in_port=1,tun_src=192.168.1.0/255.255.255.0,actions=output:2 匹配tunnel目的IP ovs-ofctl add-flow br0 in_port=1,tun_dst=192.168.1.0/255.255.255.0,actions=output:2 一些匹配项的速记符 速记符 匹配项 ip dl_type=0x800 ipv6 dl_type=0x86dd icmp dl_type=0x0800,nw_proto=1 icmp6 dl_type=0x86dd,nw_proto=58 tcp dl_type=0x0800,nw_proto=6 tcp6 dl_type=0x86dd,nw_proto=6 udp dl_type=0x0800,nw_proto=17 udp6 dl_type=0x86dd,nw_proto=17 sctp dl_type=0x0800,nw_proto=132 sctp6 dl_type=0x86dd,nw_proto=132 arp dl_type=0x0806 rarp dl_type=0x8035 mpls dl_type=0x8847 mplsm dl_type=0x8848 指令动作 1.动作为出接口 从指定接口转发出去 ovs-ofctl add-flow br0 in_port=1,actions=output:2 1 2.动作为指定group group id为已创建的group table ovs-ofctl add-flow br0 in_port=1,actions=group:666 1 3.动作为normal 转为L2/L3处理流程 ovs-ofctl add-flow br0 in_port=1,actions=normal 1 4.动作为flood 从所有物理接口转发出去,除了入接口和已关闭flooding的接口 ovs-ofctl add-flow br0 in_port=1,actions=flood 1 5.动作为all 从所有物理接口转发出去,除了入接口 ovs-ofctl add-flow br0 in_port=1,actions=all 1 6.动作为local 一般是转发给本地网桥 ovs-ofctl add-flow br0 in_port=1,actions=local 1 7.动作为in_port 从入接口转发回去 ovs-ofctl add-flow br0 in_port=1,actions=in_port 1 8.动作为controller 以packet-in消息上送给控制器 ovs-ofctl add-flow br0 in_port=1,actions=controller 1 9.动作为drop 丢弃数据包操作 ovs-ofctl add-flow br0 in_port=1,actions=drop 1 10.动作为mod_vlan_vid 修改报文的vlan id,该选项会使vlan_pcp置为0 ovs-ofctl add-flow br0 in_port=1,actions=mod_vlan_vid:8,output:2 1 11.动作为mod_vlan_pcp 修改报文的vlan优先级,该选项会使vlan_id置为0 ovs-ofctl add-flow br0 in_port=1,actions=mod_vlan_pcp:7,output:2 1 12.动作为strip_vlan 剥掉报文内外层vlan tag ovs-ofctl add-flow br0 in_port=1,actions=strip_vlan,output:2 1 13.动作为push_vlan 在报文外层压入一层vlan tag,需要使用openflow1.1以上版本兼容 ovs-ofctl add-flow -O OpenFlow13 br0 in_port=1,actions=push_vlan:0x8100,set_field:4097-\>vlan_vid,output:2 1 ps: set field值为4096+vlan_id,并且vlan优先级为0,即4096-8191,对应的vlan_id为0-4095 14.动作为push_mpls 修改报文的ethertype,并且压入一个MPLS LSE ovs-ofctl add-flow br0 in_port=1,actions=push_mpls:0x8847,set_field:10-\>mpls_label,output:2 1 15.动作为pop_mpls 剥掉最外层mpls标签,并且修改ethertype为非mpls类型 ovs-ofctl add-flow br0 mpls,in_port=1,mpls_label=20,actions=pop_mpls:0x0800,output:2 1 16.动作为修改源/目的MAC,修改源/目的IP 修改源MAC ovs-ofctl add-flow br0 in_port=1,actions=mod_dl_src:00:00:00:00:00:01,output:2 修改目的MAC ovs-ofctl add-flow br0 in_port=1,actions=mod_dl_dst:00:00:00:00:00:01,output:2 修改源IP ovs-ofctl add-flow br0 in_port=1,actions=mod_nw_src:192.168.1.1,output:2 修改目的IP ovs-ofctl add-flow br0 in_port=1,actions=mod_nw_dst:192.168.1.1,output:2 17.动作为修改TCP/UDP/SCTP源目的端口 修改TCP源端口 ovs-ofctl add-flow br0 tcp,in_port=1,actions=mod_tp_src:67,output:2 修改TCP目的端口 ovs-ofctl add-flow br0 tcp,in_port=1,actions=mod_tp_dst:68,output:2 修改UDP源端口 ovs-ofctl add-flow br0 udp,in_port=1,actions=mod_tp_src:67,output:2 修改UDP目的端口 ovs-ofctl add-flow br0 udp,in_port=1,actions=mod_tp_dst:68,output:2 18.动作为mod_nw_tos 条件:指定dl_type=0x0800 修改ToS字段的高6位,范围为0-255,值必须为4的倍数,并且不会去修改ToS低2位ecn值 ovs-ofctl add-flow br0 ip,in_port=1,actions=mod_nw_tos:68,output:2 1 19.动作为mod_nw_ecn 条件:指定dl_type=0x0800,需要使用openflow1.1以上版本兼容 修改ToS字段的低2位,范围为0-3,并且不会去修改ToS高6位的DSCP值 ovs-ofctl add-flow br0 ip,in_port=1,actions=mod_nw_ecn:2,output:2 1 20.动作为mod_nw_ttl 修改IP报文ttl值,需要使用openflow1.1以上版本兼容 ovs-ofctl add-flow -O OpenFlow13 br0 in_port=1,actions=mod_nw_ttl:6,output:2 1 21.动作为dec_ttl 对IP报文进行ttl自减操作 ovs-ofctl add-flow br0 in_port=1,actions=dec_ttl,output:2 1 22.动作为set_mpls_label 对报文最外层mpls标签进行修改,范围为20bit值 ovs-ofctl add-flow br0 in_port=1,actions=set_mpls_label:666,output:2 1 23.动作为set_mpls_tc 对报文最外层mpls tc进行修改,范围为0-7 ovs-ofctl add-flow br0 in_port=1,actions=set_mpls_tc:7,output:2 1 24.动作为set_mpls_ttl 对报文最外层mpls ttl进行修改,范围为0-255 ovs-ofctl add-flow br0 in_port=1,actions=set_mpls_ttl:255,output:2 1 25.动作为dec_mpls_ttl 对报文最外层mpls ttl进行自减操作 ovs-ofctl add-flow br0 in_port=1,actions=dec_mpls_ttl,output:2 1 26.动作为move NXM字段 使用move参数对NXM字段进行操作 将报文源MAC复制到目的MAC字段,并且将源MAC改为00:00:00:00:00:01 ovs-ofctl add-flow br0 in_port=1,actions=move:NXM_OF_ETH_SRC[]-\>NXM_OF_ETH_DST[],mod_dl_src:00:00:00:00:00:01,output:2 1 2 ps: 常用NXM字段参照表 NXM字段 报文字段 NXM_OF_ETH_SRC 源MAC NXM_OF_ETH_DST 目的MAC NXM_OF_ETH_TYPE 以太网类型 NXM_OF_VLAN_TCI vid NXM_OF_IP_PROTO IP协议号 NXM_OF_IP_TOS IP ToS值 NXM_NX_IP_ECN IP ToS ECN NXM_OF_IP_SRC 源IP NXM_OF_IP_DST 目的IP NXM_OF_TCP_SRC TCP源端口 NXM_OF_TCP_DST TCP目的端口 NXM_OF_UDP_SRC UDP源端口 NXM_OF_UDP_DST UDP目的端口 NXM_OF_SCTP_SRC SCTP源端口 NXM_OF_SCTP_DST SCTP目的端口 27.动作为load NXM字段 使用load参数对NXM字段进行赋值操作 push mpls label,并且把10(0xa)赋值给mpls label ovs-ofctl add-flow br0 in_port=1,actions=push_mpls:0x8847,load:0xa-\>OXM_OF_MPLS_LABEL[],output:2 对目的MAC进行赋值 ovs-ofctl add-flow br0 in_port=1,actions=load:0x001122334455-\>OXM_OF_ETH_DST[],output:2 1 2 3 4 28.动作为pop_vlan 弹出报文最外层vlan tag ovs-ofctl add-flow br0 in_port=1,dl_type=0x8100,dl_vlan=777,actions=pop_vlan,output:2 1 meter表 常用操作 由于meter表是openflow1.3版本以后才支持,所以所有命令需要指定OpenFlow1.3版本以上 ps: 在openvswitch-v2.8之前的版本中,还不支持meter 在v2.8版本之后已经实现,要正常使用的话,需要注意的是datapath类型要指定为netdev,band type暂时只支持drop,还不支持DSCP REMARK 1.查看当前设备对meter的支持 ovs-ofctl -O OpenFlow13 meter-features br0 2.查看meter表 ovs-ofctl -O OpenFlow13 dump-meters br0 3.查看meter统计 ovs-ofctl -O OpenFlow13 meter-stats br0 4.创建meter表 限速类型以kbps(kilobits per second)计算,超过20kb/s则丢弃 ovs-ofctl -O OpenFlow13 add-meter br0 meter=1,kbps,band=type=drop,rate=20 同上,增加burst size参数 ovs-ofctl -O OpenFlow13 add-meter br0 meter=2,kbps,band=type=drop,rate=20,burst_size=256 同上,增加stats参数,对meter进行计数统计 ovs-ofctl -O OpenFlow13 add-meter br0 meter=3,kbps,stats,band=type=drop,rate=20,burst_size=256 限速类型以pktps(packets per second)计算,超过1000pkt/s则丢弃 ovs-ofctl -O OpenFlow13 add-meter br0 meter=4,pktps,band=type=drop,rate=1000 5.删除meter表 删除全部meter表 ovs-ofctl -O OpenFlow13 del-meters br0 删除meter id=1 ovs-ofctl -O OpenFlow13 del-meter br0 meter=1 6.创建流表 ovs-ofctl -O OpenFlow13 add-flow br0 in_port=1,actions=meter:1,output:2 group表 由于group表是openflow1.1版本以后才支持,所以所有命令需要指定OpenFlow1.1版本以上 常用操作 group table支持4种类型 all:所有buckets都执行一遍 select: 每次选择其中一个bucket执行,常用于负载均衡应用 ff(FAST FAILOVER):快速故障修复,用于检测解决接口等故障 indirect:间接执行,类似于一个函数方法,被另一个group来调用 1.查看当前设备对group的支持 ovs-ofctl -O OpenFlow13 dump-group-features br0 2.查看group表 ovs-ofctl -O OpenFlow13 dump-groups br0 3.创建group表 类型为all ovs-ofctl -O OpenFlow13 add-group br0 group_id=1,type=all,bucket=output:1,bucket=output:2,bucket=output:3 类型为select ovs-ofctl -O OpenFlow13 add-group br0 group_id=2,type=select,bucket=output:1,bucket=output:2,bucket=output:3 类型为select,指定hash方法(5元组,OpenFlow1.5+) ovs-ofctl -O OpenFlow15 add-group br0 group_id=3,type=select,selection_method=hash,fields=ip_src,bucket=output:2,bucket=output:3 4.删除group表 ovs-ofctl -O OpenFlow13 del-groups br0 group_id=2 5.创建流表 ovs-ofctl -O OpenFlow13 add-flow br0 in_port=1,actions=group:2 goto table配置 数据流先从table0开始匹配,如actions有goto_table,再进行后续table的匹配,实现多级流水线,如需使用goto table,则创建流表时,指定table id,范围为0-255,不指定则默认为table0 1.在table0中添加一条流表条目 ovs-ofctl add-flow br0 table=0,in_port=1,actions=goto_table=1 2.在table1中添加一条流表条目 ovs-ofctl add-flow br0 table=1,ip,nw_dst=10.10.0.0/16,actions=output:2 tunnel配置 如需配置tunnel,必需确保当前系统对各tunnel的remote ip网络可达 gre 1.创建一个gre接口,并且指定端口id=1001 ovs-vsctl add-port br0 gre1 -- set Interface gre1 type=gre options:remote_ip=1.1.1.1 ofport_request=1001 2.可选选项 将tos或者ttl在隧道上继承,并将tunnel id设置成123 ovs-vsctl set Interface gre1 options:tos=inherit options:ttl=inherit options:key=123 3.创建关于gre流表 封装gre转发 ovs-ofctl add-flow br0 ip,in_port=1,nw_dst=10.10.0.0/16,actions=output:1001 解封gre转发 ovs-ofctl add-flow br0 in_port=1001,actions=output:1 vxlan 1.创建一个vxlan接口,并且指定端口id=2001 ovs-vsctl add-port br0 vxlan1 -- set Interface vxlan1 type=vxlan options:remote_ip=1.1.1.1 ofport_request=2001 2.可选选项 将tos或者ttl在隧道上继承,将vni设置成123,UDP目的端为设置成8472(默认为4789) ovs-vsctl set Interface vxlan1 options:tos=inherit options:ttl=inherit options:key=123 options:dst_port=8472 3.创建关于vxlan流表 封装vxlan转发 ovs-ofctl add-flow br0 ip,in_port=1,nw_dst=10.10.0.0/16,actions=output:2001 解封vxlan转发 ovs-ofctl add-flow br0 in_port=2001,actions=output:1 sflow配置 1.对网桥br0进行sflow监控 agent: 与collector通信所在的网口名,通常为管理口 target: collector监听的IP地址和端口,端口默认为6343 header: sFlow在采样时截取报文头的长度 polling: 采样时间间隔,单位为秒 ovs-vsctl -- --id=@sflow create sflow agent=eth0 target=\"10.0.0.1:6343\" header=128 sampling=64 polling=10 -- set bridge br0 sflow=@sflow 2.查看创建的sflow ovs-vsctl list sflow 3.删除对应的网桥sflow配置,参数为sFlow UUID ovs-vsctl remove bridge br0 sflow 7b9b962e-fe09-407c-b224-5d37d9c1f2b3 4.删除网桥下所有sflow配置 ovs-vsctl -- clear bridge br0 sflow 1 QoS配置 ingress policing 1.配置ingress policing,对接口eth0入流限速10Mbps ovs-vsctl set interface eth0 ingress_policing_rate=10000 ovs-vsctl set interface eth0 ingress_policing_burst=8000 2.清除相应接口的ingress policer配置 ovs-vsctl set interface eth0 ingress_policing_rate=0 ovs-vsctl set interface eth0 ingress_policing_burst=0 3.查看接口ingress policer配置 ovs-vsctl list interface eth0 4.查看网桥支持的Qos类型 ovs-appctl qos/show-types br0 端口镜像配置 1.配置eth0收到/发送的数据包镜像到eth1 ovs-vsctl -- set bridge br0 mirrors=@m \ -- --id=@eth0 get port eth0 \ -- --id=@eth1 get port eth1 \ -- --id=@m create mirror name=mymirror select-dst-port=@eth0 select-src-port=@eth0 output-port=@eth1 2.删除端口镜像配置 ovs-vsctl -- --id=@m get mirror mymirror -- remove bridge br0 mirrors @m 3.清除网桥下所有端口镜像配置 ovs-vsctl clear bridge br0 mirrors 4.查看端口镜像配置 ovs-vsctl get bridge br0 mirrors Open vSwitch中有多个命令,分别有不同的作用,大致如下: ovs-vsctl用于控制ovs db ovs-ofctl用于管理OpenFlow switch 的 flow ovs-dpctl用于管理ovs的datapath ovs-appctl用于查询和管理ovs daemon 转载于:https://www.cnblogs.com/liuhongru/p/10336849.html 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_30876945/article/details/99916308。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-08 17:13:19
294
转载
转载文章
... //打印服务器监听端口 </script> </html> <!-- ★★★ 模式2 ★★★ --> <?php //如果有php运行环境,只需把该文件扩展名改成 .php,然后上传到web目录即可在真实服务器上测试 header("Access-Control-Allow-Origin: "); ?> <!DOCTYPE html> <head> <meta charset="utf-8" /> <title>康虎云报表系统测试</title> <style type="text/css"> output {font-size: 12px; background-color:F0FFF0;} </style> </head> <body> <div style="width: 100%;text-align:center;"> <h2>康虎云报表系统(Ver 1.3.0)</h2> <h3>打印测试(模式2)</h3> <div style="line-height: 1.5;"> <div style="width: 70%; text-align: left;"> <b>一、首先按下列步骤设置:</b><br/> 1、运行打印服务器;<br/> 2、按“停止”按钮停止服务;<br/> 3、打开“设置”区;<br/> 4、在“常用参数-->服务模式”中,选择“模式2”;<br/> 5、按“启动”按钮启动服务。 </div> <div style="width: 70%; text-align: left;"> <b>二、按本页的“打印”按钮开始打印。</b><br/> </div><br/> <input type="button" id="btnPrint" value="打印" /><br/><br/> <div style="width: 70%; text-align: left; font-size: 12px;"> 由于JavaScript在不同域名下访问会出现由来已久的跨域问题,所以正式部署到服务器使用时,要解决跨域问题。<br/> 对于IE8以上版本浏览器,只需增加一个reponse头:Access-Control-Allow-Origin即可,而对于php、jsp、asp/aspx等动态语言而言,增加一个response头是非常简单的事,例如:<br/> <b>在php:</b><br/><span style="color: red;"> <?php <br/> header("Access-Control-Allow-Origin: ");<br/> ?><br/> </span> <b>在jsp:</b><br/><span style="color: red;"> <% <br/> response.setHeader("Access-Control-Allow-Origin", ""); <br/> %><br/> </span> <b>在asp.net中:</b><br/><span style="color: red;"> Response.AppendHeader("Access-Control-Allow-Origin", ""); </span>,<br/>其他语言里,大家请自行搜索“ajax跨域”。而对于IE8以下的浏览器,大家可以自行搜索“IE6+Ajax+跨域”寻找解决办法吧,也可以联系我们帮助。 </div> </div> </div> <div id="output"></div> </body> <!-- 引入模式2所需的javascript支持库 --> <script type="text/javascript" src="cfprint_mode2.min.js" charset="UTF-8"></script> <!-- 构造报表数据 --> <script type="text/javascript"> var _reportData = '{"template":"waybill.fr3","ver":3, "Tables":[ {"Name":"Table1", "Cols":[{"type":"str","size":255,"name":"HAWB","required":false},{"type":"int","size":0,"name":"NO","required":false},{"type":"float","size":0,"name":"报关公司面单号","required":false},{"type":"integer","size":0,"name":"公司内部单号","required":false},{"type":"str","size":255,"name":"发件人","required":false},{"type":"str","size":255,"name":"发件人地址","required":false},{"type":"str","size":255,"name":"发件人电话","required":false},{"type":"str","size":255,"name":"发货国家","required":false},{"type":"str","size":255,"name":"收件人","required":false},{"type":"str","size":255,"name":"收件人地址","required":false},{"type":"str","size":255,"name":"收件人电话","required":false},{"type":"str","size":255,"name":"收货人证件号码","required":false},{"type":"str","size":255,"name":"收货省份","required":false},{"type":"float","size":0,"name":"总计费重量","required":false},{"type":"int","size":0,"name":"总件数","required":false},{"type":"float","size":0,"name":"申报总价(CNY)","required":false},{"type":"float","size":0,"name":"申报总价(JPY)","required":false},{"type":"int","size":0,"name":"件数1","required":false},{"type":"str","size":255,"name":"品名1","required":false},{"type":"float","size":0,"name":"单价1(JPY)","required":false},{"type":"str","size":255,"name":"单位1","required":false},{"type":"float","size":0,"name":"申报总价1(CNY)","required":false},{"type":"float","size":0,"name":"申报总价1(JPY)","required":false},{"type":"int","size":0,"name":"件数2","required":false},{"type":"str","size":255,"name":"品名2","required":false},{"type":"float","size":0,"name":"单价2(JPY)","required":false},{"type":"str","size":255,"name":"单位2","required":false},{"type":"float","size":0,"name":"申报总价2(CNY)","required":false},{"type":"float","size":0,"name":"申报总价2(JPY)","required":false},{"type":"int","size":0,"name":"件数3","required":false},{"type":"str","size":255,"name":"品名3","required":false},{"type":"float","size":0,"name":"单价3(JPY)","required":false},{"type":"str","size":255,"name":"单位3","required":false},{"type":"float","size":0,"name":"申报总价3(CNY)","required":false},{"type":"float","size":0,"name":"申报总价3(JPY)","required":false},{"type":"int","size":0,"name":"件数4","required":false},{"type":"str","size":255,"name":"品名4","required":false},{"type":"float","size":0,"name":"单价4(JPY)","required":false},{"type":"str","size":255,"name":"单位4","required":false},{"type":"float","size":0,"name":"申报总价4(CNY)","required":false},{"type":"float","size":0,"name":"申报总价4(JPY)","required":false},{"type":"int","size":0,"name":"件数5","required":false},{"type":"str","size":255,"name":"品名5","required":false},{"type":"float","size":0,"name":"单价5(JPY)","required":false},{"type":"str","size":255,"name":"单位5","required":false},{"type":"float","size":0,"name":"申报总价5(CNY)","required":false},{"type":"float","size":0,"name":"申报总价5(JPY)","required":false},{"type":"str","size":255,"name":"参考号","required":false},{"type":"AutoInc","size":0,"name":"ID","required":false}],"Data":[{"公司内部单号":730293,"发货国家":"日本","单价1(JPY)":null,"申报总价2(JPY)":null,"单价4(JPY)":null,"申报总价2(CNY)":null,"申报总价5(JPY)":null,"报关公司面单号":200303900791,"申报总价5(CNY)":null,"收货人证件号码":null,"申报总价1(JPY)":null,"单价3(JPY)":null,"申报总价1(CNY)":null,"申报总价4(JPY)":null,"申报总价4(CNY)":null,"收件人电话":"182-1758-9999","收件人地址":"上海市闵行区虹梅南路1660弄蔷薇八村139号502室","HAWB":"860014010055","发件人电话":"03-3684-9999","发件人地址":" 1-1-13,Kameido,Koto-ku,Tokyo","NO":3,"ID":3,"单价2(JPY)":null,"申报总价3(JPY)":null,"单价5(JPY)":null,"申报总价3(CNY)":null,"收货省份":null,"申报总价(JPY)":null,"申报总价(CNY)":null,"总计费重量":3.20,"收件人":"张三丰2","总件数":13,"品名5":null,"品名4":null,"品名3":null,"品名2":null,"品名1":"纸尿片","参考号":null,"发件人":"NAKAGAWA SUMIRE 2","单位5":null,"单位4":null,"单位3":null,"单位2":null,"单位1":null,"件数5":null,"件数4":null,"件数3":3,"件数2":null,"件数1":10},{"公司内部单号":730291,"发货国家":"日本","单价1(JPY)":null,"申报总价2(JPY)":null,"单价4(JPY)":null,"申报总价2(CNY)":null,"申报总价5(JPY)":null,"报关公司面单号":200303900789,"申报总价5(CNY)":null,"收货人证件号码":null,"申报总价1(JPY)":null,"单价3(JPY)":null,"申报总价1(CNY)":null,"申报总价4(JPY)":null,"申报总价4(CNY)":null,"收件人电话":"182-1758-9999","收件人地址":"上海市闵行区虹梅南路1660弄蔷薇八村139号502室","HAWB":"860014010035","发件人电话":"03-3684-9999","发件人地址":" 1-1-13,Kameido,Koto-ku,Tokyo","NO":1,"ID":1,"单价2(JPY)":null,"申报总价3(JPY)":null,"单价5(JPY)":null,"申报总价3(CNY)":null,"收货省份":null,"申报总价(JPY)":null,"申报总价(CNY)":null,"总计费重量":3.20,"收件人":"张三丰","总件数":13,"品名5":null,"品名4":null,"品名3":null,"品名2":null,"品名1":"纸尿片","参考号":null,"发件人":"NAKAGAWA SUMIRE","单位5":null,"单位4":null,"单位3":null,"单位2":null,"单位1":null,"件数5":null,"件数4":null,"件数3":3,"件数2":null,"件数1":10},{"公司内部单号":730292,"发货国家":"日本","单价1(JPY)":null,"申报总价2(JPY)":null,"单价4(JPY)":null,"申报总价2(CNY)":null,"申报总价5(JPY)":null,"报关公司面单号":200303900790,"申报总价5(CNY)":null,"收货人证件号码":null,"申报总价1(JPY)":null,"单价3(JPY)":null,"申报总价1(CNY)":null,"申报总价4(JPY)":null,"申报总价4(CNY)":null,"收件人电话":"182-1758-9999","收件人地址":"上海市闵行区虹梅南路1660弄蔷薇八村139号502室","HAWB":"860014010045","发件人电话":"03-3684-9999","发件人地址":" 1-1-13,Kameido,Koto-ku,Tokyo","NO":2,"ID":2,"单价2(JPY)":null,"申报总价3(JPY)":null,"单价5(JPY)":null,"申报总价3(CNY)":null,"收货省份":null,"申报总价(JPY)":null,"申报总价(CNY)":null,"总计费重量":3.20,"收件人":"张无忌","总件数":13,"品名5":null,"品名4":null,"品名3":null,"品名2":null,"品名1":"纸尿片","参考号":null,"发件人":"NAKAGAWA SUMIRE 1","单位5":null,"单位4":null,"单位3":null,"单位2":null,"单位1":null,"件数5":null,"件数4":null,"件数3":3,"件数2":null,"件数1":10}]}]}'; if(window.console) console.log("reportData = " + _reportData); </script> <!-- 设置服务器参数 --> <script language="javascript" type="text/javascript"> var cfprint_addr = "127.0.0.1"; //打印服务器监听地址 var cfprint_port = 54321; //打印服务器监听端口 var _url = "http://"+cfprint_addr+":"+cfprint_port; </script> <!-- 编写回调函数用以处理服务器返回的数据 --> <script type="text/javascript"> / 参数: readyState: XMLHttpRequest的状态 httpStatus: 服务端返回的http状态 responseText: 服务端返回的内容 / var callbackSuccess = function(readyState, httpStatus, responseText){ if (httpStatus === 200) { //{"result": 1, "message": "打印完成"} var response = CFPrint.parseJSON(responseText); alert(response.message+", 状态码["+response.result+"]"); }else{ alert('打印失败,HTTP状态代码是:'+httpStatus); } } / 参数: message: 错误信息 / var callbackFailed = function(message){ alert('发送打印任务出错: ' + message); } </script> <!-- 调用发送打印请求功能 --> <script type="text/javascript"> (function(){ document.getElementById("btnPrint").onclick = function() { CFPrint.outputid = "output"; //指定调试信息输出div的id CFPrint.SendRequest(_url, _reportData, callbackSuccess, callbackFailed); //发送打印请求 }; })(); </script> </html> 六、模板设计器(重要!重要!!,好多朋友都找不到设计器入口) 在主界面上,双击右下角的“设计”两个字,即可打开模板设计工具箱,在工具箱有三个按钮和一个大文本框。三个按钮的作用分别是: 设计:以大文本框中的json数据为数据源,打开模板设计器窗口; 预览:以大文本框中的json数据为数据源,预览当前所用模板的打印效果; 打印:以大文本框中的json数据为数据源,向打印机输出当前所用模板生成的报表; 以后将会有详细的模板设计教程发布,如果您遇到紧急的难题,请向作者咨询。 本篇文章为转载内容。原文链接:https://blog.csdn.net/chensongmol/article/details/76087600。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-01 18:34:12
234
转载
转载文章
...虚拟地址和物理地址的映射来获取真实数据,这样进程就不会直接接触到物理地址,甚至不知道自己调用的哪块物理地址的数据。 目前,大多数操作系统都使用了虚拟内存,如 Windows 系统的虚拟内存、Linux 系统的交换空间等等。Windows 的虚拟内存(pagefile.sys)是磁盘空间的一部分。 在 32 位的系统上,虚拟地址空间大小是 2^32bit=4G。在 64 位系统上,最大虚拟地址空间大小是多少? 是不是 2^64bit=10241014TB=1024PB=16EB?实际上没有用到 64 位,因为用不到这么大的空间,而且会造成很大的系统开销。Linux 一般用低 48 位来表示虚拟地址空间,也就是 2^48bit=256T。 cat /proc/cpuinfo address sizes : 40 bits physical, 48 bits virtual 实际的物理内存可能远远小于虚拟内存的大小。 总结:引入虚拟内存,可以提供更大的地址空间,并且地址空间是连续的,使得程序编写、链接更加简单。并且可以对物理内存进行隔离,不同的进程操作互不影响。还可以通过把同一块物理内存映射到不同的虚拟地址空间实现内存共享。 4.4.2 用户空间和内核空间 为了避免用户进程直接操作内核,保证内核安全,操作系统将虚拟内存划分为两部分,一部分是内核空间(Kernel-space)/ˈkɜːnl /,一部分是用户空间(User-space)。 内核是操作系统的核心,独立于普通的应用程序,可以访问受保护的内存空间,也有访问底层硬件设备的权限。 内核空间中存放的是内核代码和数据,而进程的用户空间中存放的是用户程序的代码和数据。不管是内核空间还是用户空间,它们都处于虚拟空间中,都是对物理地址的映射。 在 Linux 系统中, 内核进程和用户进程所占的虚拟内存比例是 1:3。 当进程运行在内核空间时就处于内核态,而进程运行在用户空间时则处于用户态。 进程在内核空间以执行任意命令,调用系统的一切资源;在用户空间只能执行简单的运算,不能直接调用系统资源,必须通过系统接口(又称 system call),才能向内核发出指令。 top 命令: us 代表 CPU 消耗在 User space 的时间百分比; sy 代表 CPU 消耗在 Kernel space 的时间百分比。 4.4.3 进程切换(上下文切换) 多任务操作系统是怎么实现运行远大于 CPU 数量的任务个数的? 当然,这些任务实际上并不是真的在同时运行,而是因为系统通过时间片分片算法,在很短的时间内,将 CPU 轮流分配给它们,造成多任务同时运行的错觉。 为了控制进程的执行,内核必须有能力挂起正在 CPU 上运行的进程,并恢复以前挂起的某个进程的执行。这种行为被称为进程切换。 什么叫上下文? 在每个任务运行前,CPU 都需要知道任务从哪里加载、又从哪里开始运行,也就是说,需要系统事先帮它设置好 CPU 寄存器和程序计数器(ProgramCounter),这个叫做 CPU 的上下文。 而这些保存下来的上下文,会存储在系统内核中,并在任务重新调度执行时再次加载进来。这样就能保证任务原来的状态不受影响,让任务看起来还是连续运行。 在切换上下文的时候,需要完成一系列的工作,这是一个很消耗资源的操作。 4.4.4 进程的阻塞 正在运行的进程由于提出系统服务请求(如 I/O 操作),但因为某种原因未得到操作系统的立即响应,该进程只能把自己变成阻塞状态,等待相应的事件出现后才被唤醒。 进程在阻塞状态不占用 CPU 资源。 4.4.5 文件描述符 FD Linux 系统将所有设备都当作文件来处理,而 Linux 用文件描述符来标识每个文件对象。 文件描述符(File Descriptor)是内核为了高效管理已被打开的文件所创建的索引,用于指向被打开的文件,所有执行 I/O 操作的系统调用都通过文件描述符;文件描述符是一个简单的非负整数,用以表明每个被进程打开的文件。 Linux 系统里面有三个标准文件描述符。 0:标准输入(键盘); 1:标准输出(显示器); 2:标准错误输出(显示器)。 4.4.6 传统 I/O 数据拷贝 以读操作为例: 当应用程序执行 read 系统调用读取文件描述符(FD)的时候,如果这块数据已经存在于用户进程的页内存中,就直接从内存中读取数据。如果数据不存在,则先将数据从磁盘加载数据到内核缓冲区中,再从内核缓冲区拷贝到用户进程的页内存中。(两次拷贝,两次 user 和 kernel 的上下文切换)。 I/O 的阻塞到底阻塞在哪里? 4.4.7 Blocking I/O 当使用 read 或 write 对某个文件描述符进行过读写时,如果当前 FD 不可读,系统就不会对其他的操作做出响应。从设备复制数据到内核缓冲区是阻塞的,从内核缓冲区拷贝到用户空间,也是阻塞的,直到 copy complete,内核返回结果,用户进程才解除 block 的状态。 为了解决阻塞的问题,我们有几个思路。 1、在服务端创建多个线程或者使用线程池,但是在高并发的情况下需要的线程会很多,系统无法承受,而且创建和释放线程都需要消耗资源。 2、由请求方定期轮询,在数据准备完毕后再从内核缓存缓冲区复制数据到用户空间 (非阻塞式 I/O),这种方式会存在一定的延迟。 能不能用一个线程处理多个客户端请求? 4.4.8 I/O 多路复用(I/O Multiplexing) I/O 指的是网络 I/O。 多路指的是多个 TCP 连接(Socket 或 Channel)。 复用指的是复用一个或多个线程。它的基本原理就是不再由应用程序自己监视连接,而是由内核替应用程序监视文件描述符。 客户端在操作的时候,会产生具有不同事件类型的 socket。在服务端,I/O 多路复用程序(I/O Multiplexing Module)会把消息放入队列中,然后通过文件事件分派器(File event Dispatcher),转发到不同的事件处理器中。 多路复用有很多的实现,以 select 为例,当用户进程调用了多路复用器,进程会被阻塞。内核会监视多路复用器负责的所有 socket,当任何一个 socket 的数据准备好了,多路复用器就会返回。这时候用户进程再调用 read 操作,把数据从内核缓冲区拷贝到用户空间。 所以,I/O 多路复用的特点是通过一种机制一个进程能同时等待多个文件描述符,而这些文件描述符(套接字描述符)其中的任意一个进入读就绪(readable)状态,select() 函数就可以返回。 Redis 的多路复用, 提供了 select, epoll, evport, kqueue 几种选择,在编译的时 候来选择一种。 evport 是 Solaris 系统内核提供支持的; epoll 是 LINUX 系统内核提供支持的; kqueue 是 Mac 系统提供支持的; select 是 POSIX 提供的,一般的操作系统都有支撑(保底方案); 源码 ae_epoll.c、ae_select.c、ae_kqueue.c、ae_evport.c 5、内存回收 Reids 所有的数据都是存储在内存中的,在某些情况下需要对占用的内存空间进行回 收。内存回收主要分为两类,一类是 key 过期,一类是内存使用达到上限(max_memory) 触发内存淘汰。 5.1 过期策略 要实现 key 过期,我们有几种思路。 5.1.1 定时过期(主动淘汰) 每个设置过期时间的 key 都需要创建一个定时器,到过期时间就会立即清除。该策略可以立即清除过期的数据,对内存很友好;但是会占用大量的 CPU 资源去处理过期的 数据,从而影响缓存的响应时间和吞吐量。 5.1.2 惰性过期(被动淘汰) 只有当访问一个 key 时,才会判断该 key 是否已过期,过期则清除。该策略可以最大化地节省 CPU 资源,却对内存非常不友好。极端情况可能出现大量的过期 key 没有再次被访问,从而不会被清除,占用大量内存。 例如 String,在 getCommand 里面会调用 expireIfNeeded server.c expireIfNeeded(redisDb db, robj key) 第二种情况,每次写入 key 时,发现内存不够,调用 activeExpireCycle 释放一部分内存。 expire.c activeExpireCycle(int type) 5.1.3 定期过期 源码:server.h typedef struct redisDb { dict dict; / 所有的键值对 /dict expires; / 设置了过期时间的键值对 /dict blocking_keys; dict ready_keys; dict watched_keys; int id;long long avg_ttl;list defrag_later; } redisDb; 每隔一定的时间,会扫描一定数量的数据库的 expires 字典中一定数量的 key,并清除其中已过期的 key。该策略是前两者的一个折中方案。通过调整定时扫描的时间间隔和每次扫描的限定耗时,可以在不同情况下使得 CPU 和内存资源达到最优的平衡效果。 Redis 中同时使用了惰性过期和定期过期两种过期策略。 5.2 淘汰策略 Redis 的内存淘汰策略,是指当内存使用达到最大内存极限时,需要使用淘汰算法来决定清理掉哪些数据,以保证新数据的存入。 5.2.1 最大内存设置 redis.conf 参数配置: maxmemory <bytes> 如果不设置 maxmemory 或者设置为 0,64 位系统不限制内存,32 位系统最多使用 3GB 内存。 动态修改: redis> config set maxmemory 2GB 到达最大内存以后怎么办? 5.2.2 淘汰策略 https://redis.io/topics/lru-cache redis.conf maxmemory-policy noeviction 先从算法来看: LRU,Least Recently Used:最近最少使用。判断最近被使用的时间,目前最远的数据优先被淘汰。 LFU,Least Frequently Used,最不常用,4.0 版本新增。 random,随机删除。 如果没有符合前提条件的 key 被淘汰,那么 volatile-lru、volatile-random、 volatile-ttl 相当于 noeviction(不做内存回收)。 动态修改淘汰策略: redis> config set maxmemory-policy volatile-lru 建议使用 volatile-lru,在保证正常服务的情况下,优先删除最近最少使用的 key。 5.2.3 LRU 淘汰原理 问题:如果基于传统 LRU 算法实现 Redis LRU 会有什么问题? 需要额外的数据结构存储,消耗内存。 Redis LRU 对传统的 LRU 算法进行了改良,通过随机采样来调整算法的精度。如果淘汰策略是 LRU,则根据配置的采样值 maxmemory_samples(默认是 5 个), 随机从数据库中选择 m 个 key, 淘汰其中热度最低的 key 对应的缓存数据。所以采样参数m配置的数值越大, 就越能精确的查找到待淘汰的缓存数据,但是也消耗更多的CPU计算,执行效率降低。 问题:如何找出热度最低的数据? Redis 中所有对象结构都有一个 lru 字段, 且使用了 unsigned 的低 24 位,这个字段用来记录对象的热度。对象被创建时会记录 lru 值。在被访问的时候也会更新 lru 的值。 但是不是获取系统当前的时间戳,而是设置为全局变量 server.lruclock 的值。 源码:server.h typedef struct redisObject {unsigned type:4;unsigned encoding:4;unsigned lru:LRU_BITS;int refcount;void ptr; } robj; server.lruclock 的值怎么来的? Redis 中有个定时处理的函数 serverCron,默认每 100 毫秒调用函数 updateCachedTime 更新一次全局变量的 server.lruclock 的值,它记录的是当前 unix 时间戳。 源码:server.c void updateCachedTime(void) { time_t unixtime = time(NULL); atomicSet(server.unixtime,unixtime); server.mstime = mstime();struct tm tm; localtime_r(&server.unixtime,&tm);server.daylight_active = tm.tm_isdst; } 问题:为什么不获取精确的时间而是放在全局变量中?不会有延迟的问题吗? 这样函数 lookupKey 中更新数据的 lru 热度值时,就不用每次调用系统函数 time,可以提高执行效率。 OK,当对象里面已经有了 LRU 字段的值,就可以评估对象的热度了。 函数 estimateObjectIdleTime 评估指定对象的 lru 热度,思想就是对象的 lru 值和全局的 server.lruclock 的差值越大(越久没有得到更新),该对象热度越低。 源码 evict.c / Given an object returns the min number of milliseconds the object was never requested, using an approximated LRU algorithm. /unsigned long long estimateObjectIdleTime(robj o) {unsigned long long lruclock = LRU_CLOCK(); if (lruclock >= o->lru) {return (lruclock - o->lru) LRU_CLOCK_RESOLUTION; } else {return (lruclock + (LRU_CLOCK_MAX - o->lru)) LRU_CLOCK_RESOLUTION;} } server.lruclock 只有 24 位,按秒为单位来表示才能存储 194 天。当超过 24bit 能表 示的最大时间的时候,它会从头开始计算。 server.h define LRU_CLOCK_MAX ((1<<LRU_BITS)-1) / Max value of obj->lru / 在这种情况下,可能会出现对象的 lru 大于 server.lruclock 的情况,如果这种情况 出现那么就两个相加而不是相减来求最久的 key。 为什么不用常规的哈希表+双向链表的方式实现?需要额外的数据结构,消耗资源。而 Redis LRU 算法在 sample 为 10 的情况下,已经能接近传统 LRU 算法了。 问题:除了消耗资源之外,传统 LRU 还有什么问题? 如图,假设 A 在 10 秒内被访问了 5 次,而 B 在 10 秒内被访问了 3 次。因为 B 最后一次被访问的时间比 A 要晚,在同等的情况下,A 反而先被回收。 问题:要实现基于访问频率的淘汰机制,怎么做? 5.2.4 LFU server.h typedef struct redisObject {unsigned type:4;unsigned encoding:4;unsigned lru:LRU_BITS;int refcount;void ptr; } robj; 当这 24 bits 用作 LFU 时,其被分为两部分: 高 16 位用来记录访问时间(单位为分钟,ldt,last decrement time) 低 8 位用来记录访问频率,简称 counter(logc,logistic counter) counter 是用基于概率的对数计数器实现的,8 位可以表示百万次的访问频率。 对象被读写的时候,lfu 的值会被更新。 db.c——lookupKey void updateLFU(robj val) {unsigned long counter = LFUDecrAndReturn(val); counter = LFULogIncr(counter);val->lru = (LFUGetTimeInMinutes()<<8) | counter;} 增长的速率由,lfu-log-factor 越大,counter 增长的越慢 redis.conf 配置文件。 lfu-log-factor 10 如果计数器只会递增不会递减,也不能体现对象的热度。没有被访问的时候,计数器怎么递减呢? 减少的值由衰减因子 lfu-decay-time(分钟)来控制,如果值是 1 的话,N 分钟没有访问就要减少 N。 redis.conf 配置文件 lfu-decay-time 1 6、持久化机制 https://redis.io/topics/persistence Redis 速度快,很大一部分原因是因为它所有的数据都存储在内存中。如果断电或者宕机,都会导致内存中的数据丢失。为了实现重启后数据不丢失,Redis 提供了两种持久化的方案,一种是 RDB 快照(Redis DataBase),一种是 AOF(Append Only File)。 6.1 RDB RDB 是 Redis 默认的持久化方案。当满足一定条件的时候,会把当前内存中的数据写入磁盘,生成一个快照文件 dump.rdb。Redis 重启会通过加载 dump.rdb 文件恢复数据。 什么时候写入 rdb 文件? 6.1.1 RDB 触发 1、自动触发 a)配置规则触发。 redis.conf, SNAPSHOTTING,其中定义了触发把数据保存到磁盘的触发频率。 如果不需要 RDB 方案,注释 save 或者配置成空字符串""。 save 900 1 900 秒内至少有一个 key 被修改(包括添加) save 300 10 400 秒内至少有 10 个 key 被修改save 60 10000 60 秒内至少有 10000 个 key 被修改 注意上面的配置是不冲突的,只要满足任意一个都会触发。 RDB 文件位置和目录: 文件路径,dir ./ 文件名称dbfilename dump.rdb 是否是LZF压缩rdb文件 rdbcompression yes 开启数据校验 rdbchecksum yes 问题:为什么停止 Redis 服务的时候没有 save,重启数据还在? RDB 还有两种触发方式: b)shutdown 触发,保证服务器正常关闭。 c)flushall,RDB 文件是空的,没什么意义(删掉 dump.rdb 演示一下)。 2、手动触发 如果我们需要重启服务或者迁移数据,这个时候就需要手动触 RDB 快照保存。Redis 提供了两条命令: a)save save 在生成快照的时候会阻塞当前 Redis 服务器, Redis 不能处理其他命令。如果内存中的数据比较多,会造成 Redis 长时间的阻塞。生产环境不建议使用这个命令。 为了解决这个问题,Redis 提供了第二种方式。 执行 bgsave 时,Redis 会在后台异步进行快照操作,快照同时还可以响应客户端请求。 具体操作是 Redis 进程执行 fork 操作创建子进程(copy-on-write),RDB 持久化过程由子进程负责,完成后自动结束。它不会记录 fork 之后后续的命令。阻塞只发生在 fork 阶段,一般时间很短。 用 lastsave 命令可以查看最近一次成功生成快照的时间。 6.1.2 RDB 数据的恢复(演示) 1、shutdown 持久化添加键值 添加键值 redis> set k1 1 redis> set k2 2 redis> set k3 3 redis> set k4 4 redis> set k5 5 停服务器,触发 save redis> shutdown 备份 dump.rdb 文件 cp dump.rdb dump.rdb.bak 启动服务器 /usr/local/soft/redis-5.0.5/src/redis-server /usr/local/soft/redis-5.0.5/redis.conf 啥都没有: redis> keys 3、通过备份文件恢复数据停服务器 redis> shutdown 重命名备份文件 mv dump.rdb.bak dump.rdb 启动服务器 /usr/local/soft/redis-5.0.5/src/redis-server /usr/local/soft/redis-5.0.5/redis.conf 查看数据 redis> keys 6.1.3 RDB 文件的优势和劣势 一、优势 1.RDB 是一个非常紧凑(compact)的文件,它保存了 redis 在某个时间点上的数据集。这种文件非常适合用于进行备份和灾难恢复。 2.生成 RDB 文件的时候,redis 主进程会 fork()一个子进程来处理所有保存工作,主进程不需要进行任何磁盘 IO 操作。 3.RDB 在恢复大数据集时的速度比 AOF 的恢复速度要快。 二、劣势 1、RDB 方式数据没办法做到实时持久化/秒级持久化。因为 bgsave 每次运行都要执行 fork 操作创建子进程,频繁执行成本过高。 2、在一定间隔时间做一次备份,所以如果 redis 意外 down 掉的话,就会丢失最后一次快照之后的所有修改(数据有丢失)。 如果数据相对来说比较重要,希望将损失降到最小,则可以使用 AOF 方式进行持久化。 6.2 AOF Append Only File AOF:Redis 默认不开启。AOF 采用日志的形式来记录每个写操作,并追加到文件中。开启后,执行更改 Redis 数据的命令时,就会把命令写入到 AOF 文件中。 Redis 重启时会根据日志文件的内容把写指令从前到后执行一次以完成数据的恢复工作。 6.2.1 AOF 配置 配置文件 redis.conf 开关appendonly no 文件名appendfilename "appendonly.aof" AOF 文件的内容(vim 查看): 问题:数据都是实时持久化到磁盘吗? 由于操作系统的缓存机制,AOF 数据并没有真正地写入硬盘,而是进入了系统的硬盘缓存。什么时候把缓冲区的内容写入到 AOF 文件? 问题:文件越来越大,怎么办? 由于 AOF 持久化是 Redis 不断将写命令记录到 AOF 文件中,随着 Redis 不断的进行,AOF 的文件会越来越大,文件越大,占用服务器内存越大以及 AOF 恢复要求时间越长。 例如 set xxx 666,执行 1000 次,结果都是 xxx=666。 为了解决这个问题,Redis 新增了重写机制,当 AOF 文件的大小超过所设定的阈值时,Redis 就会启动 AOF 文件的内容压缩,只保留可以恢复数据的最小指令集。 可以使用命令 bgrewriteaof 来重写。 AOF 文件重写并不是对原文件进行重新整理,而是直接读取服务器现有的键值对,然后用一条命令去代替之前记录这个键值对的多条命令,生成一个新的文件后去替换原来的 AOF 文件。 重写触发机制 auto-aof-rewrite-percentage 100 auto-aof-rewrite-min-size 64mb 问题:重写过程中,AOF 文件被更改了怎么办? 另外有两个与 AOF 相关的参数: 6.2.2 AOF 数据恢复 重启 Redis 之后就会进行 AOF 文件的恢复。 6.2.3 AOF 优势与劣势 优点: 1、AOF 持久化的方法提供了多种的同步频率,即使使用默认的同步频率每秒同步一次,Redis 最多也就丢失 1 秒的数据而已。 缺点: 1、对于具有相同数据的的 Redis,AOF 文件通常会比 RDB 文件体积更大(RDB 存的是数据快照)。 2、虽然 AOF 提供了多种同步的频率,默认情况下,每秒同步一次的频率也具有较高的性能。在高并发的情况下,RDB 比 AOF 具好更好的性能保证。 6.3 两种方案比较 那么对于 AOF 和 RDB 两种持久化方式,我们应该如何选择呢? 如果可以忍受一小段时间内数据的丢失,毫无疑问使用 RDB 是最好的,定时生成 RDB 快照(snapshot)非常便于进行数据库备份, 并且 RDB 恢复数据集的速度也要比 AOF 恢复的速度要快。 否则就使用 AOF 重写。但是一般情况下建议不要单独使用某一种持久化机制,而是应该两种一起用,在这种情况下,当 redis 重启的时候会优先载入 AOF 文件来恢复原始的数据,因为在通常情况下 AOF 文件保存的数据集要比 RDB 文件保存的数据集要完整。 本篇文章为转载内容。原文链接:https://blog.csdn.net/zhoutaochun/article/details/120075092。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-03-18 12:25:04
541
转载
转载文章
...内存之外(其实是内存映射文件,自行去理解虚拟内存空间的相关概念), 所以直接内存的分配和回收都是有Unsafe类去操作,java在申请一块直接内存之后, 会在堆内存分配一个对象保存这个堆外内存的引用, 这个对象被垃圾收集器管理,一旦这个对象被回收, 相应的用户线程会收到通知并对直接内存进行清理工作。 事实上,虚引用有一个很重要的用途就是用来做堆外内存的释放, DirectByteBuffer就是通过虚引用来实现堆外内存的释放的。/import java.lang.ref.PhantomReference;import java.lang.ref.Reference;import java.lang.ref.ReferenceQueue;import java.util.LinkedList;import java.util.List;public class T04_PhantomReference {private static final List<Object> LIST = new LinkedList<>();private static final ReferenceQueue<M> QUEUE = new ReferenceQueue<>();public static void main(String[] args) {PhantomReference<M> phantomReference = new PhantomReference<>(new M(), QUEUE);new Thread(() -> {while (true) {LIST.add(new byte[1024 1024]);try {Thread.sleep(1000);} catch (InterruptedException e) {e.printStackTrace();Thread.currentThread().interrupt();}System.out.println(phantomReference.get());} }).start();new Thread(() -> {while (true) {Reference<? extends M> poll = QUEUE.poll();if (poll != null) {System.out.println("--- 虚引用对象被jvm回收了 ---- " + poll);} }}).start();try {Thread.sleep(500);} catch (InterruptedException e) {e.printStackTrace();} }} 2、容器 1、发展历史(一定要了解) map容器你需要了解的历史 JDK早期,java提供了Vector和Hashtable两个容器,这两个容器,很多操作都加了锁Synchronized,对于某些不需要用锁的情况下,就显得十分影响性能,所以现在基本没人用这两个容器,但是面试经常问这两个容器里面的数据结构等内容 后来,出现了HashMap,此容器完全不加锁,是用的最多的容器 但是完全不加锁未免不完善,所以java提供了如下方式,将HashMap变为加锁的 //通过Collections.synchronizedMap(HashMap)方法,将其变为加锁Map集合,其中泛型随意,UUID只是举例。static Map<UUID, UUID> m = Collections.synchronizedMap(new HashMap<UUID, UUID>()); 通过阅读源码发现,上面方法将HashMap变为加锁,也是使用Synchronized,只是锁的内容更细,但并不比HashTable效率高多少 所以衍生除了新的容器ConcurrentHashMap ConcurrentHashMap 此容器,插入效率不如上面的,因为它做了各种判断和CAS,但是差距不是特别大 读取效率很高,100个线程同时访问,每个线程读取一百万次实测 Hashtable 39s ,SynchronizedHashMap 38s ,ConcurrentHashMap 1.7s 前两个将近40秒,ConcurrentHashMap只需要不到2s,由此可见此容器读取效率极高 2、为什么推荐使用Queue来做高并发 为什么推荐Queue(队列) Queue接口提供了很多针对多线程非常友好的API(offer ,peek和poll,其中BlockingQueue还添加了put和take可以阻塞),可以说专门为多线程高并发而创造的接口,所以一般我们使用Queue而不用List 以下代码分别使用链表LinkList和ConcurrentQueue,对比一下速度 LinkList用了5s多,ConcurrentQueue几乎瞬间完成 Concurrent接口就是专为多线程设计,多线程设计要多考虑Queue(高并发用)的使用,少使用List / 有N张火车票,每张票都有一个编号 同时有10个窗口对外售票 请写一个模拟程序 分析下面的程序可能会产生哪些问题? 重复销售?超量销售? 使用Vector或者Collections.synchronizedXXX 分析一下,这样能解决问题吗? 就算操作A和B都是同步的,但A和B组成的复合操作也未必是同步的,仍然需要自己进行同步 就像这个程序,判断size和进行remove必须是一整个的原子操作 @author 马士兵/import java.util.LinkedList;import java.util.List;import java.util.concurrent.TimeUnit;public class TicketSeller3 {static List<String> tickets = new LinkedList<>();static {for(int i=0; i<1000; i++) tickets.add("票 编号:" + i);}public static void main(String[] args) {for(int i=0; i<10; i++) {new Thread(()->{while(true) {synchronized(tickets) {if(tickets.size() <= 0) break;try {TimeUnit.MILLISECONDS.sleep(10);} catch (InterruptedException e) {e.printStackTrace();}System.out.println("销售了--" + tickets.remove(0));} }}).start();} }} 队列 import java.util.Queue;import java.util.concurrent.ConcurrentLinkedQueue;public class TicketSeller4 {static Queue<String> tickets = new ConcurrentLinkedQueue<>();static {for(int i=0; i<1000; i++) tickets.add("票 编号:" + i);}public static void main(String[] args) {for(int i=0; i<10; i++) {new Thread(()->{while(true) {String s = tickets.poll();if(s == null) break;else System.out.println("销售了--" + s);} }).start();} }} 3、多线程常用容器 1、ConcurrentHashMap(无序)和ConcurrentSkipListMap(有序,链表,使用跳表数据结构,让查询更快) 跳表:http://blog.csdn.net/sunxianghuang/article/details/52221913 import java.util.;import java.util.concurrent.ConcurrentHashMap;import java.util.concurrent.ConcurrentSkipListMap;import java.util.concurrent.CountDownLatch;public class T01_ConcurrentMap {public static void main(String[] args) {Map<String, String> map = new ConcurrentHashMap<>();//Map<String, String> map = new ConcurrentSkipListMap<>(); //高并发并且排序//Map<String, String> map = new Hashtable<>();//Map<String, String> map = new HashMap<>(); //Collections.synchronizedXXX//TreeMapRandom r = new Random();Thread[] ths = new Thread[100];CountDownLatch latch = new CountDownLatch(ths.length);long start = System.currentTimeMillis();for(int i=0; i<ths.length; i++) {ths[i] = new Thread(()->{for(int j=0; j<10000; j++) map.put("a" + r.nextInt(100000), "a" + r.nextInt(100000));latch.countDown();});}Arrays.asList(ths).forEach(t->t.start());try {latch.await();} catch (InterruptedException e) {e.printStackTrace();}long end = System.currentTimeMillis();System.out.println(end - start);System.out.println(map.size());} } 2、CopyOnWriteList(写时复制)和CopyOnWriteSet 适用于,高并发是,读的多,写的少的情况 当我们写的时候,将容器复制,让写线程去复制的线程写(写的时候加锁) 而读线程依旧去读旧的(读的时候不加锁) 当写完,将对象指向复制后的已经写完的容器,原来容器销毁 大大提高读的效率 / 写时复制容器 copy on write 多线程环境下,写时效率低,读时效率高 适合写少读多的环境 @author 马士兵/import java.util.ArrayList;import java.util.Arrays;import java.util.List;import java.util.Random;import java.util.Vector;import java.util.concurrent.CopyOnWriteArrayList;public class T02_CopyOnWriteList {public static void main(String[] args) {List<String> lists = //new ArrayList<>(); //这个会出并发问题!//new Vector();new CopyOnWriteArrayList<>();Random r = new Random();Thread[] ths = new Thread[100];for(int i=0; i<ths.length; i++) {Runnable task = new Runnable() {@Overridepublic void run() {for(int i=0; i<1000; i++) lists.add("a" + r.nextInt(10000));} };ths[i] = new Thread(task);}runAndComputeTime(ths);System.out.println(lists.size());}static void runAndComputeTime(Thread[] ths) {long s1 = System.currentTimeMillis();Arrays.asList(ths).forEach(t->t.start());Arrays.asList(ths).forEach(t->{try {t.join();} catch (InterruptedException e) {e.printStackTrace();} });long s2 = System.currentTimeMillis();System.out.println(s2 - s1);} } 3、synchronizedList和ConcurrentLinkedQueue package com.mashibing.juc.c_025;import java.util.ArrayList;import java.util.Collections;import java.util.List;import java.util.Queue;import java.util.concurrent.ConcurrentLinkedQueue;public class T04_ConcurrentQueue {public static void main(String[] args) {List<String> strsList = new ArrayList<>();List<String> strsSync = Collections.synchronizedList(strsList);//加锁ListQueue<String> strs = new ConcurrentLinkedQueue<>();//Concurrent链表队列,就是读快for(int i=0; i<10; i++) {strs.offer("a" + i); //add添加,但是不同点是,此方法会返回一个布尔值}System.out.println(strs);System.out.println(strs.size());System.out.println(strs.poll());//取出,取完后将元素去除System.out.println(strs.size());System.out.println(strs.peek());//取出,但是不会将元素从队列删除System.out.println(strs.size());//双端队列Deque} } 4、LinkedBlockingQueue 链表阻塞队列(无界链表,可以一直装东西,直到内存满(其实,也不是无限,其长度Integer.MaxValue就是上限,毕竟最大就这么大)) 主要体现在put和take方法,put添加的时候,如果队列满了,就阻塞当前线程,直到队列有空位,继续插入。take方法取的时候,如果没有值,就阻塞,等有值了,立马去取 import java.util.Random;import java.util.concurrent.BlockingQueue;import java.util.concurrent.LinkedBlockingQueue;import java.util.concurrent.TimeUnit;public class T05_LinkedBlockingQueue {static BlockingQueue<String> strs = new LinkedBlockingQueue<>();static Random r = new Random();public static void main(String[] args) {new Thread(() -> {for (int i = 0; i < 100; i++) {try {strs.put("a" + i); //如果满了,当前线程就会等待(实现阻塞),等多会有空位,将值插入TimeUnit.MILLISECONDS.sleep(r.nextInt(1000));} catch (InterruptedException e) {e.printStackTrace();} }}, "p1").start();for (int i = 0; i < 5; i++) {new Thread(() -> {for (;;) {try {System.out.println(Thread.currentThread().getName() + " take -" + strs.take()); //取内容,如果空了,当前线程就会等待(实现阻塞)} catch (InterruptedException e) {e.printStackTrace();} }}, "c" + i).start();} }} 5、ArrayBlockingQueue 有界阻塞队列(因为Array需要指定长度) import java.util.Random;import java.util.concurrent.ArrayBlockingQueue;import java.util.concurrent.BlockingQueue;import java.util.concurrent.TimeUnit;public class T06_ArrayBlockingQueue {static BlockingQueue<String> strs = new ArrayBlockingQueue<>(10);static Random r = new Random();public static void main(String[] args) throws InterruptedException {for (int i = 0; i < 10; i++) {strs.put("a" + i);}//strs.put("aaa"); //满了就会等待,程序阻塞//strs.add("aaa");//strs.offer("aaa");strs.offer("aaa", 1, TimeUnit.SECONDS);System.out.println(strs);} } 6、特殊的阻塞队列1:DelayQueue 延时队列(按时间进行调度,就是隔多长时间运行,谁隔的少,谁先) 以下例子中,我们添加线程到队列顺序为t12345,正常情况下,会按照顺序运行,但是这里有了延时时间,也就是时间越短,越先执行 步骤很简单,拿到延时队列 指定构造方法 继承 implements Delayed 重写 compareTo和getDelay import java.util.Calendar;import java.util.Random;import java.util.concurrent.BlockingQueue;import java.util.concurrent.DelayQueue;import java.util.concurrent.Delayed;import java.util.concurrent.TimeUnit;public class T07_DelayQueue {static BlockingQueue<MyTask> tasks = new DelayQueue<>();static Random r = new Random();static class MyTask implements Delayed {String name;long runningTime;MyTask(String name, long rt) {this.name = name;this.runningTime = rt;}@Overridepublic int compareTo(Delayed o) {if(this.getDelay(TimeUnit.MILLISECONDS) < o.getDelay(TimeUnit.MILLISECONDS))return -1;else if(this.getDelay(TimeUnit.MILLISECONDS) > o.getDelay(TimeUnit.MILLISECONDS)) return 1;else return 0;}@Overridepublic long getDelay(TimeUnit unit) {return unit.convert(runningTime - System.currentTimeMillis(), TimeUnit.MILLISECONDS);}@Overridepublic String toString() {return name + " " + runningTime;} }public static void main(String[] args) throws InterruptedException {long now = System.currentTimeMillis();MyTask t1 = new MyTask("t1", now + 1000);MyTask t2 = new MyTask("t2", now + 2000);MyTask t3 = new MyTask("t3", now + 1500);MyTask t4 = new MyTask("t4", now + 2500);MyTask t5 = new MyTask("t5", now + 500);tasks.put(t1);tasks.put(t2);tasks.put(t3);tasks.put(t4);tasks.put(t5);System.out.println(tasks);for(int i=0; i<5; i++) {System.out.println(tasks.take());//获取的是toString方法返回值} }} 7、特殊的阻塞队列2:PriorityQueque 优先队列(二叉树算法,就是排序) import java.util.PriorityQueue;public class T07_01_PriorityQueque {public static void main(String[] args) {PriorityQueue<String> q = new PriorityQueue<>();q.add("c");q.add("e");q.add("a");q.add("d");q.add("z");for (int i = 0; i < 5; i++) {System.out.println(q.poll());} }} 8、特殊的阻塞队列3:SynchronusQueue 同步队列(线程池用处非常大) 此队列容量为0,当插入元素时,必须同时有个线程往外取 就是说,当你往这个队列里面插入一个元素,它就拿着这个元素站着(阻塞),直到有个取元素的线程来,它就把元素交给它 就是用来同步数据的,也就是线程间交互数据用的一个特殊队列 package com.mashibing.juc.c_025;import java.util.concurrent.BlockingQueue;import java.util.concurrent.SynchronousQueue;public class T08_SynchronusQueue { //容量为0public static void main(String[] args) throws InterruptedException {BlockingQueue<String> strs = new SynchronousQueue<>();new Thread(()->{//这个线程就是消费者,来取值try {System.out.println(strs.take());//和同步队列要值} catch (InterruptedException e) {e.printStackTrace();} }).start();strs.put("aaa"); //阻塞等待消费者消费,就拿着aaa站着,等线程来取//strs.put("bbb");//strs.add("aaa");System.out.println(strs.size());} } 9、特殊的阻塞队列4:TransferQueue 传递队列 此队列加入了一个方法transfer()用来向队列添加元素 但是和put()方法不同的是,put添加完元素就走了 而这个方法,添加完自己就阻塞了,直到有人将这个元素取走,它才继续工作(省去我们手动阻塞) import java.util.concurrent.LinkedTransferQueue;public class T09_TransferQueue {public static void main(String[] args) throws InterruptedException {LinkedTransferQueue<String> strs = new LinkedTransferQueue<>();new Thread(() -> {try {System.out.println(strs.take());} catch (InterruptedException e) {e.printStackTrace();} }).start();strs.transfer("aaa");//放东西到队列,同时阻塞等待消费者线程,取走元素//strs.put("aaa");//如果用put就和普通队列一样,放完东西就走了/new Thread(() -> {try {System.out.println(strs.take());} catch (InterruptedException e) {e.printStackTrace();} }).start();/} } 3、线程池 线程池 由于单独创建线程,十分影响效率,而且无法对线程集中管理,一旦疏落,可能线程无限执行,浪费资源 线程池就是一个存储线程的游泳池,而每个线程就是池子里面的赛道 池子里的线程不执行任何任务,只是提供一个资源 而谁提交了任务,比如我想来游泳,那么池子就给你一个赛道,让你游泳 比如它想练憋气,那么给它一个赛道练憋气 当他们用完,走了,那么后面其它人再过来继续用 这就是线程池,始终只有这几个线程,不做实现,而是借用这几个线程的用户,自己掌控用这些线程资源做什么(提交任务给线程,线程空闲就帮他们完成任务) 线程池的两种类型(两类,不是两个) ThreadPoolExecutor(简称TPE) ForkJoinPool(分解汇总任务(将任务细化,最后汇总结果),少量线程执行多个任务(子任务,TPE做不到先执行子任务),CPU密集型) Executors(注意这后面有s) 它可以说是线程池工厂类,我们一般通过它创建线程池,并且它为我们封装了线程 1、常用类 Executor ExecutorService 扩展了execute方法,具有一个返回值 规定了异步执行机制,提供了一些执行器方法,比如shutdown()关闭等 但是它不知道执行器中的线程何时执行完 Callable 对Runnable进行了扩展,实现Callable的调用,可以有返回值,表示线程的状态 但是无法返回线程执行结果 Future 获得未来线程执行结果 由此,我们可以得知线程池基本的一个使用步骤 其中service.submit():为异步提交,也就是说,主线程该干嘛干嘛,我是异步执行的,和同步不一样(当前线程执行完,主线程才能继续执行,叫同步) futuer.get():获取结果集结果,此时因为异步,主线程执行到这里,结果集可能还没封装好,所以此时如果没有值,就阻塞,直到结果集出来 public static void main(String[] args) throws ExecutionException, InterruptedException {Callable<String> c = new Callable() {@Overridepublic String call() throws Exception {return "Hello Callable";} };ExecutorService service = Executors.newCachedThreadPool();Future<String> future = service.submit(c); //异步System.out.println(future.get());//阻塞service.shutdown();} 2、FutureTask 可充当任务的结果集 上面我们介绍Future是用来得到任务的执行结果的 而FutureTask,可以当做一个任务用,并且返回任务的结果,也就是可以跑线程,然后还可以得到线程结果 public static void main(String[] args) throws InterruptedException, ExecutionException {FutureTask<Integer> task = new FutureTask<>(()->{TimeUnit.MILLISECONDS.sleep(500);return 1000;}); //new Callable () { Integer call();}new Thread(task).start();System.out.println(task.get()); //阻塞} 3、CompletableFuture 非常灵活的任务结果集 一个非常灵活的结果集 他可以将很多执行不同任务的线程的结果进行汇总 比如一个网站,它可以启动多个线程去各大电商网站,比如淘宝,京东,收集某些或某一个商品的价格 最后,将获取的数据进行整合封装 最终,客户就可以通过此网站,获取某类商品在各网站的价格信息 / 假设你能够提供一个服务 这个服务查询各大电商网站同一类产品的价格并汇总展示 @author 马士兵 http://mashibing.com/import java.io.IOException;import java.util.Random;import java.util.concurrent.CompletableFuture;import java.util.concurrent.ExecutionException;import java.util.concurrent.TimeUnit;public class T06_01_CompletableFuture {public static void main(String[] args) throws ExecutionException, InterruptedException {long start, end;/start = System.currentTimeMillis();priceOfTM();priceOfTB();priceOfJD();end = System.currentTimeMillis();System.out.println("use serial method call! " + (end - start));/start = System.currentTimeMillis();CompletableFuture<Double> futureTM = CompletableFuture.supplyAsync(()->priceOfTM());CompletableFuture<Double> futureTB = CompletableFuture.supplyAsync(()->priceOfTB());CompletableFuture<Double> futureJD = CompletableFuture.supplyAsync(()->priceOfJD());CompletableFuture.allOf(futureTM, futureTB, futureJD).join();//当所有结果集都获取到,才汇总阻塞CompletableFuture.supplyAsync(()->priceOfTM()).thenApply(String::valueOf).thenApply(str-> "price " + str).thenAccept(System.out::println);end = System.currentTimeMillis();System.out.println("use completable future! " + (end - start));try {System.in.read();} catch (IOException e) {e.printStackTrace();} }private static double priceOfTM() {delay();return 1.00;}private static double priceOfTB() {delay();return 2.00;}private static double priceOfJD() {delay();return 3.00;}/private static double priceOfAmazon() {delay();throw new RuntimeException("product not exist!");}/private static void delay() {int time = new Random().nextInt(500);try {TimeUnit.MILLISECONDS.sleep(time);} catch (InterruptedException e) {e.printStackTrace();}System.out.printf("After %s sleep!\n", time);} } 4、TPE型线程池1:ThreadPoolExecutor 原理及其参数 线程池由两个集合组成,一个集合存储线程,一个集合存储任务 存储线程:可以规定大小,最多可以有多少个,以及指定核心线程数量(不会被回收) 任务队列:存储任务 细节:初始线程池没有线程,当有一个任务来,线程池起一个线程,又有一个任务来,再起一个线程,直到达到核心线程数量 核心线程数量达到时,新来的任务将存储到任务队列中等待核心线程处理完成,直到任务队列也满了 当任务队列满了,此时再次启动一个线程(非核心线程,一旦空闲,达到指定时间将会消失),直到达到线程最大数量 当线程容器和任务容器都满了,又来了线程,将会执行拒绝策略 上面的细节涉及的所有步骤内容,均由创建线程池的参数执行 下面是ThreadPoolExecutor构造方法参数的源码注释 / 用给定的初始值,创建一个新的线程池 @param corePoolSize 核心线程数量 @param maximumPoolSize 最大线程数量 @param keepAliveTime 当线程数大于核心线程数量时,空闲的线程可生存的时间 @param unit 时间单位 @param workQueue 任务队列,只能包含由execute提交的Runnable任务 @param threadFactory 工厂,用于创建线程给线程池调度的工厂,可以自定义 @param handler 拒绝策略(可以自定义,JDK默认提供4种),当线程边界和队列容量已经满了,新来线程被阻塞时使用的处理程序/public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,BlockingQueue<Runnable> workQueue,ThreadFactory threadFactory,RejectedExecutionHandler handler) JDK提供的4种拒绝策略,不常用,一般都是自己定义拒绝策略 Abort:抛异常 Discard:扔掉,不抛异常 DiscardOldest:扔掉排队时间最久的(将队列中排队时间最久的扔掉,然后让新来的进来) CallerRuns:调用者处理任务(谁通过execute方法提交任务,谁处理) ThreadPoolExecutor继承关系 继承关系:ThreadPoolExecutor->AbstractExectorService类->ExectorService接口->Exector接口 Executors(注意这后面有s) 它可以说是线程池工厂类,我们一般通过它创建线程池,并且它为我们封装了线程 看看下面创建线程池,哪里用到了它 使用实例 import java.io.IOException;import java.util.concurrent.;public class T05_00_HelloThreadPool {static class Task implements Runnable {private int i;public Task(int i) {this.i = i;}@Overridepublic void run() {System.out.println(Thread.currentThread().getName() + " Task " + i);try {System.in.read();} catch (IOException e) {e.printStackTrace();} }@Overridepublic String toString() {return "Task{" +"i=" + i +'}';} }public static void main(String[] args) {ThreadPoolExecutor tpe = new ThreadPoolExecutor(2, 4,60, TimeUnit.SECONDS,new ArrayBlockingQueue<Runnable>(4),Executors.defaultThreadFactory(),new ThreadPoolExecutor.CallerRunsPolicy());//创建线程池,核心2个,最大4个,空闲线程存活时间60s,任务队列容量4,使用默认线程工程,创建线程。拒绝策略是JDK提供的for (int i = 0; i < 8; i++) {tpe.execute(new Task(i));//供提交8次任务}System.out.println(tpe.getQueue());//查看任务队列tpe.execute(new Task(100));//提交新的任务System.out.println(tpe.getQueue());tpe.shutdown();//关闭线程池} } 5、TPE型线程池2:SingleThreadPool 单例线程池(只有一个线程) 为什么有单例线程池 有任务队列,有线程池管理机制 Executors(注意这后面有s) 它可以说是线程池工厂类,我们一般通过它创建线程池,并且它为我们封装了线程 看看下面哪里用到了它 /创建单例线程池,扔5个任务进去,查看输出结果,看看有几个线程执行任务/import java.util.concurrent.ExecutorService;import java.util.concurrent.Executors;public class T07_SingleThreadPool {public static void main(String[] args) {ExecutorService service = Executors.newSingleThreadExecutor();for(int i=0; i<5; i++) {final int j = i;service.execute(()->{System.out.println(j + " " + Thread.currentThread().getName());});} }} 6、TPE型线程池3:CachedPool 缓存,存储线程池 此线程池没有核心线程,来一个任务启动一个线程(最多Integer.MaxValue,不会放在任务队列,因为任务队列容量为0),每个线程空闲后,只能活60s 实例 import java.util.concurrent.ExecutorService;import java.util.concurrent.Executors;public class T07_SingleThreadPool {public static void main(String[] args) {ExecutorService service = Executors.newSingleThreadExecutor();//通过Executors获取池子for(int i=0; i<5; i++) {final int j = i;service.execute(()->{//提交任务System.out.println(j + " " + Thread.currentThread().getName());});}service.shutdown();} } 7、TPE型线程池4:FixedThreadPool 固定线程池 此线次池,用于创建一个固定线程数量的线程池,不会回收 实例 import java.util.ArrayList;import java.util.List;import java.util.concurrent.Callable;import java.util.concurrent.ExecutionException;import java.util.concurrent.ExecutorService;import java.util.concurrent.Executors;import java.util.concurrent.Future;public class T09_FixedThreadPool {public static void main(String[] args) throws InterruptedException, ExecutionException {//并发执行long start = System.currentTimeMillis();getPrime(1, 200000); long end = System.currentTimeMillis();System.out.println(end - start);//输出并发执行耗费时间final int cpuCoreNum = 4;//并行执行ExecutorService service = Executors.newFixedThreadPool(cpuCoreNum);MyTask t1 = new MyTask(1, 80000); //1-5 5-10 10-15 15-20MyTask t2 = new MyTask(80001, 130000);MyTask t3 = new MyTask(130001, 170000);MyTask t4 = new MyTask(170001, 200000);Future<List<Integer>> f1 = service.submit(t1);Future<List<Integer>> f2 = service.submit(t2);Future<List<Integer>> f3 = service.submit(t3);Future<List<Integer>> f4 = service.submit(t4);start = System.currentTimeMillis();f1.get();f2.get();f3.get();f4.get();end = System.currentTimeMillis();System.out.println(end - start);//输出并行耗费时间}static class MyTask implements Callable<List<Integer>> {int startPos, endPos;MyTask(int s, int e) {this.startPos = s;this.endPos = e;}@Overridepublic List<Integer> call() throws Exception {List<Integer> r = getPrime(startPos, endPos);return r;} }static boolean isPrime(int num) {for(int i=2; i<=num/2; i++) {if(num % i == 0) return false;}return true;}static List<Integer> getPrime(int start, int end) {List<Integer> results = new ArrayList<>();for(int i=start; i<=end; i++) {if(isPrime(i)) results.add(i);}return results;} } 8、TPE型线程池5:ScheduledPool 预定,延时线程池 根据延时时间(隔多长时间后运行),排序,哪个线程先执行,用户只需要指定核心线程数量 此线程池返回的池对象,和提交任务方法都不一样,比较涉及到时间 import java.util.Random;import java.util.concurrent.Executors;import java.util.concurrent.ScheduledExecutorService;import java.util.concurrent.TimeUnit;public class T10_ScheduledPool {public static void main(String[] args) {ScheduledExecutorService service = Executors.newScheduledThreadPool(4);service.scheduleAtFixedRate(()->{//提交延时任务try {TimeUnit.MILLISECONDS.sleep(new Random().nextInt(1000));} catch (InterruptedException e) {e.printStackTrace();}System.out.println(Thread.currentThread().getName());}, 0, 500, TimeUnit.MILLISECONDS);//指定延时时间和单位,第一个任务延时0毫秒,之后的任务,延时500毫秒} } 9、手写拒绝策略小例子 import java.util.concurrent.;public class T14_MyRejectedHandler {public static void main(String[] args) {ExecutorService service = new ThreadPoolExecutor(4, 4,0, TimeUnit.SECONDS, new ArrayBlockingQueue<>(6),Executors.defaultThreadFactory(),new MyHandler());//将手写拒绝策略传入}static class MyHandler implements RejectedExecutionHandler {//1、继承RejectedExecutionHandler@Overridepublic void rejectedExecution(Runnable r, ThreadPoolExecutor executor) {//2、重写方法//log("r rejected")//伪代码,表示通过log4j.log()报一下日志,拒绝的时间,线程名//save r kafka mysql redis//可以尝试保存队列//try 3 times //可以尝试几次,比如3次,重新去抢队列,3次还不行就丢弃if(executor.getQueue().size() < 10000) {//尝试条件,如果size>10000了,就执行拒绝策略//try put again();//如果小于10000,尝试将其放到队列中} }} } 10、ForkJoinPool线程池1:ForkJoinPool 前面我们讲过线程分为两大类,TPE和FJP ForkJoinPool(分解汇总任务(将任务细化,最后汇总结果),少量线程执行多个任务(子任务,TPE做不到先执行子任务),CPU密集型) 适合将大任务切分成多个小任务运行 两个方法,fork():分子任务,将子任务分配到线程池中 join():当前任务的计算结果,如果有子任务,等子任务结果返回后再汇总 下面实例实现,一百万个随机数求和,由两种方法实现,一种ForkJoinPool分任务并行,一种使用单线程做 import java.io.IOException;import java.util.Arrays;import java.util.Random;import java.util.concurrent.ForkJoinPool;import java.util.concurrent.RecursiveAction;import java.util.concurrent.RecursiveTask;public class T12_ForkJoinPool {//1000000个随机数求和static int[] nums = new int[1000000];//一堆数static final int MAX_NUM = 50000;//分任务时,每个任务的操作量不能多于50000个,否则就继续细分static Random r = new Random();//使用随机数将数组初始化static {for(int i=0; i<nums.length; i++) {nums[i] = r.nextInt(100);}System.out.println("---" + Arrays.stream(nums).sum()); //stream api 单线程就这么做,一个一个加}//分任务,需要继承,可以继承RecursiveAction(不需要返回值,一般用在不需要返回值的场景)或//RecursiveTask(需要返回值,我们用这个,因为我们需要最后获取求和结果)两个更好实现的类,//他俩继承与ForkJoinTaskstatic class AddTaskRet extends RecursiveTask<Long> {private static final long serialVersionUID = 1L;int start, end;AddTaskRet(int s, int e) {start = s;end = e;}@Overrideprotected Long compute() {if(end-start <= MAX_NUM) {//如果任务操作数小于规定的最大操作数,就进行运算,long sum = 0L;for(int i=start; i<end; i++) sum += nums[i];return sum;//返回结果} //如果分配的操作数大于规定,就继续细分(简单的重中点分,两半)int middle = start + (end-start)/2;//获取中间值AddTaskRet subTask1 = new AddTaskRet(start, middle);//传入起始值和中间值,表示一个子任务AddTaskRet subTask2 = new AddTaskRet(middle, end);//中间值和结尾值,表示一个子任务subTask1.fork();//分任务subTask2.fork();//分任务return subTask1.join() + subTask2.join();//最后返回结果汇总} }public static void main(String[] args) throws IOException {/ForkJoinPool fjp = new ForkJoinPool();AddTask task = new AddTask(0, nums.length);fjp.execute(task);/ForkJoinPool fjp = new ForkJoinPool();//创建线程池AddTaskRet task = new AddTaskRet(0, nums.length);//创建任务fjp.execute(task);//传入任务long result = task.join();//返回汇总结果System.out.println(result);//System.in.read();} } 11、ForkJoinPool线程池2:WorkStealingPool 任务偷取线程池 原来的线程池,都是有一个任务队列,而这个不同,它给每个线程都分配了一个任务队列 当某一个线程的任务队列没有任务,并且自己空闲,它就去其它线程的任务队列中偷任务,所以叫任务偷取线程池 细节:当线程自己从自己的任务队列拿任务时,不需要加锁,但是偷任务时,因为有两个线程,可能发生同步问题,需要加锁 此线程继承FJP 实例 import java.io.IOException;import java.util.concurrent.ExecutorService;import java.util.concurrent.Executors;import java.util.concurrent.TimeUnit;public class T11_WorkStealingPool {public static void main(String[] args) throws IOException {ExecutorService service = Executors.newWorkStealingPool();System.out.println(Runtime.getRuntime().availableProcessors());service.execute(new R(1000));service.execute(new R(2000));service.execute(new R(2000));service.execute(new R(2000)); //daemonservice.execute(new R(2000));//由于产生的是精灵线程(守护线程、后台线程),主线程不阻塞的话,看不到输出System.in.read(); }static class R implements Runnable {int time;R(int t) {this.time = t;}@Overridepublic void run() {try {TimeUnit.MILLISECONDS.sleep(time);} catch (InterruptedException e) {e.printStackTrace();}System.out.println(time + " " + Thread.currentThread().getName());} }} 12、流式API:ParallelStreamAPI 不懂的请参考:https://blog.csdn.net/grd_java/article/details/110265219 实例 import java.util.ArrayList;import java.util.List;import java.util.Random;public class T13_ParallelStreamAPI {public static void main(String[] args) {List<Integer> nums = new ArrayList<>();Random r = new Random();for(int i=0; i<10000; i++) nums.add(1000000 + r.nextInt(1000000));//System.out.println(nums);long start = System.currentTimeMillis();nums.forEach(v->isPrime(v));long end = System.currentTimeMillis();System.out.println(end - start);//使用parallel stream apistart = System.currentTimeMillis();nums.parallelStream().forEach(T13_ParallelStreamAPI::isPrime);//并行流,将任务切分成子任务执行end = System.currentTimeMillis();System.out.println(end - start);}static boolean isPrime(int num) {for(int i=2; i<=num/2; i++) {if(num % i == 0) return false;}return true;} } 13、总结 总结 Callable相当于一Runnable但是它有返回值 Future:存储执行完产生的结果 FutureTask 相当于Future+Runnable,既可以执行任务,又能获取任务执行的Future结果 CompletableFuture 可以多任务异步,并对多任务控制,整合任务结果,细化完美,比如可以一个任务完成就可以整合结果,也可以所有任务完成才整合结果 4、ThreadPoolExecutor源码解析 依然只讲重点,实际还需要大家按照上篇博客中看源码的方式来看 1、常用变量的解释 // 1. ctl,可以看做一个int类型的数字,高3位表示线程池状态,低29位表示worker数量private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));// 2. COUNT_BITS,Integer.SIZE为32,所以COUNT_BITS为29private static final int COUNT_BITS = Integer.SIZE - 3;// 3. CAPACITY,线程池允许的最大线程数。1左移29位,然后减1,即为 2^29 - 1private static final int CAPACITY = (1 << COUNT_BITS) - 1;// runState is stored in the high-order bits// 4. 线程池有5种状态,按大小排序如下:RUNNING < SHUTDOWN < STOP < TIDYING < TERMINATEDprivate static final int RUNNING = -1 << COUNT_BITS;private static final int SHUTDOWN = 0 << COUNT_BITS;private static final int STOP = 1 << COUNT_BITS;private static final int TIDYING = 2 << COUNT_BITS;private static final int TERMINATED = 3 << COUNT_BITS;// Packing and unpacking ctl// 5. runStateOf(),获取线程池状态,通过按位与操作,低29位将全部变成0private static int runStateOf(int c) { return c & ~CAPACITY; }// 6. workerCountOf(),获取线程池worker数量,通过按位与操作,高3位将全部变成0private static int workerCountOf(int c) { return c & CAPACITY; }// 7. ctlOf(),根据线程池状态和线程池worker数量,生成ctl值private static int ctlOf(int rs, int wc) { return rs | wc; }/ Bit field accessors that don't require unpacking ctl. These depend on the bit layout and on workerCount being never negative./// 8. runStateLessThan(),线程池状态小于xxprivate static boolean runStateLessThan(int c, int s) {return c < s;}// 9. runStateAtLeast(),线程池状态大于等于xxprivate static boolean runStateAtLeast(int c, int s) {return c >= s;} 2、构造方法 public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,BlockingQueue<Runnable> workQueue,ThreadFactory threadFactory,RejectedExecutionHandler handler) {// 基本类型参数校验if (corePoolSize < 0 ||maximumPoolSize <= 0 ||maximumPoolSize < corePoolSize ||keepAliveTime < 0)throw new IllegalArgumentException();// 空指针校验if (workQueue == null || threadFactory == null || handler == null)throw new NullPointerException();this.corePoolSize = corePoolSize;this.maximumPoolSize = maximumPoolSize;this.workQueue = workQueue;// 根据传入参数unit和keepAliveTime,将存活时间转换为纳秒存到变量keepAliveTime 中this.keepAliveTime = unit.toNanos(keepAliveTime);this.threadFactory = threadFactory;this.handler = handler;} 3、提交执行task的过程 public void execute(Runnable command) {if (command == null)throw new NullPointerException();/ Proceed in 3 steps: 1. If fewer than corePoolSize threads are running, try to start a new thread with the given command as its first task. The call to addWorker atomically checks runState and workerCount, and so prevents false alarms that would add threads when it shouldn't, by returning false. 2. If a task can be successfully queued, then we still need to double-check whether we should have added a thread (because existing ones died since last checking) or that the pool shut down since entry into this method. So we recheck state and if necessary roll back the enqueuing if stopped, or start a new thread if there are none. 3. If we cannot queue task, then we try to add a new thread. If it fails, we know we are shut down or saturated and so reject the task./int c = ctl.get();// worker数量比核心线程数小,直接创建worker执行任务if (workerCountOf(c) < corePoolSize) {if (addWorker(command, true))return;c = ctl.get();}// worker数量超过核心线程数,任务直接进入队列if (isRunning(c) && workQueue.offer(command)) {int recheck = ctl.get();// 线程池状态不是RUNNING状态,说明执行过shutdown命令,需要对新加入的任务执行reject()操作。// 这儿为什么需要recheck,是因为任务入队列前后,线程池的状态可能会发生变化。if (! isRunning(recheck) && remove(command))reject(command);// 这儿为什么需要判断0值,主要是在线程池构造方法中,核心线程数允许为0else if (workerCountOf(recheck) == 0)addWorker(null, false);}// 如果线程池不是运行状态,或者任务进入队列失败,则尝试创建worker执行任务。// 这儿有3点需要注意:// 1. 线程池不是运行状态时,addWorker内部会判断线程池状态// 2. addWorker第2个参数表示是否创建核心线程// 3. addWorker返回false,则说明任务执行失败,需要执行reject操作else if (!addWorker(command, false))reject(command);} 4、addworker源码解析 private boolean addWorker(Runnable firstTask, boolean core) {retry:// 外层自旋for (;;) {int c = ctl.get();int rs = runStateOf(c);// 这个条件写得比较难懂,我对其进行了调整,和下面的条件等价// (rs > SHUTDOWN) || // (rs == SHUTDOWN && firstTask != null) || // (rs == SHUTDOWN && workQueue.isEmpty())// 1. 线程池状态大于SHUTDOWN时,直接返回false// 2. 线程池状态等于SHUTDOWN,且firstTask不为null,直接返回false// 3. 线程池状态等于SHUTDOWN,且队列为空,直接返回false// Check if queue empty only if necessary.if (rs >= SHUTDOWN &&! (rs == SHUTDOWN &&firstTask == null &&! workQueue.isEmpty()))return false;// 内层自旋for (;;) {int wc = workerCountOf(c);// worker数量超过容量,直接返回falseif (wc >= CAPACITY ||wc >= (core ? corePoolSize : maximumPoolSize))return false;// 使用CAS的方式增加worker数量。// 若增加成功,则直接跳出外层循环进入到第二部分if (compareAndIncrementWorkerCount(c))break retry;c = ctl.get(); // Re-read ctl// 线程池状态发生变化,对外层循环进行自旋if (runStateOf(c) != rs)continue retry;// 其他情况,直接内层循环进行自旋即可// else CAS failed due to workerCount change; retry inner loop} }boolean workerStarted = false;boolean workerAdded = false;Worker w = null;try {w = new Worker(firstTask);final Thread t = w.thread;if (t != null) {final ReentrantLock mainLock = this.mainLock;// worker的添加必须是串行的,因此需要加锁mainLock.lock();try {// Recheck while holding lock.// Back out on ThreadFactory failure or if// shut down before lock acquired.// 这儿需要重新检查线程池状态int rs = runStateOf(ctl.get());if (rs < SHUTDOWN ||(rs == SHUTDOWN && firstTask == null)) {// worker已经调用过了start()方法,则不再创建workerif (t.isAlive()) // precheck that t is startablethrow new IllegalThreadStateException();// worker创建并添加到workers成功workers.add(w);// 更新largestPoolSize变量int s = workers.size();if (s > largestPoolSize)largestPoolSize = s;workerAdded = true;} } finally {mainLock.unlock();}// 启动worker线程if (workerAdded) {t.start();workerStarted = true;} }} finally {// worker线程启动失败,说明线程池状态发生了变化(关闭操作被执行),需要进行shutdown相关操作if (! workerStarted)addWorkerFailed(w);}return workerStarted;} 5、线程池worker任务单元 private final class Workerextends AbstractQueuedSynchronizerimplements Runnable{/ This class will never be serialized, but we provide a serialVersionUID to suppress a javac warning./private static final long serialVersionUID = 6138294804551838833L;/ Thread this worker is running in. Null if factory fails. /final Thread thread;/ Initial task to run. Possibly null. /Runnable firstTask;/ Per-thread task counter /volatile long completedTasks;/ Creates with given first task and thread from ThreadFactory. @param firstTask the first task (null if none)/Worker(Runnable firstTask) {setState(-1); // inhibit interrupts until runWorkerthis.firstTask = firstTask;// 这儿是Worker的关键所在,使用了线程工厂创建了一个线程。传入的参数为当前workerthis.thread = getThreadFactory().newThread(this);}/ Delegates main run loop to outer runWorker /public void run() {runWorker(this);}// 省略代码...} 6、核心线程执行逻辑-runworker final void runWorker(Worker w) {Thread wt = Thread.currentThread();Runnable task = w.firstTask;w.firstTask = null;// 调用unlock()是为了让外部可以中断w.unlock(); // allow interrupts// 这个变量用于判断是否进入过自旋(while循环)boolean completedAbruptly = true;try {// 这儿是自旋// 1. 如果firstTask不为null,则执行firstTask;// 2. 如果firstTask为null,则调用getTask()从队列获取任务。// 3. 阻塞队列的特性就是:当队列为空时,当前线程会被阻塞等待while (task != null || (task = getTask()) != null) {// 这儿对worker进行加锁,是为了达到下面的目的// 1. 降低锁范围,提升性能// 2. 保证每个worker执行的任务是串行的w.lock();// If pool is stopping, ensure thread is interrupted;// if not, ensure thread is not interrupted. This// requires a recheck in second case to deal with// shutdownNow race while clearing interrupt// 如果线程池正在停止,则对当前线程进行中断操作if ((runStateAtLeast(ctl.get(), STOP) ||(Thread.interrupted() &&runStateAtLeast(ctl.get(), STOP))) &&!wt.isInterrupted())wt.interrupt();// 执行任务,且在执行前后通过beforeExecute()和afterExecute()来扩展其功能。// 这两个方法在当前类里面为空实现。try {beforeExecute(wt, task);Throwable thrown = null;try {task.run();} catch (RuntimeException x) {thrown = x; throw x;} catch (Error x) {thrown = x; throw x;} catch (Throwable x) {thrown = x; throw new Error(x);} finally {afterExecute(task, thrown);} } finally {// 帮助gctask = null;// 已完成任务数加一 w.completedTasks++;w.unlock();} }completedAbruptly = false;} finally {// 自旋操作被退出,说明线程池正在结束processWorkerExit(w, completedAbruptly);} } 本篇文章为转载内容。原文链接:https://blog.csdn.net/grd_java/article/details/113116244。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-21 16:19:45
328
转载
转载文章
...的声明(Claim)映射出ClaimType类的字段,但对我要的目的已经足够了。在实际项目中不会经常需要显示声明(Claim)的类型。 To see why I have created a controller that uses claims without really explaining what they are, start the application, authenticate as the user Alice (with the password MySecret), and request the /Claims/Index URL. Figure 15-5 shows the content that is generated. 为了弄明白我为何要先创建一个使用声明(Claims)的控制器,而没有真正解释声明(Claims)是什么的原因,可以启动应用程序,以用户Alice进行认证(其口令是MySecret),并请求/Claims/Index URL。图15-5显示了生成的内容。 Figure 15-5. The output from the Index action of the Claims controller 图15-5. Claims控制器中Index动作的输出 It can be hard to make out the detail in the figure, so I have reproduced the content in Table 15-7. 这可能还难以认识到此图的细节,为此我在表15-7中重列了其内容。 Table 15-7. The Data Shown in Figure 15-5 表15-7. 图15-5中显示的数据 Subject(科目) Issuer(发行者) Type(类型) Value(值) Alice LOCAL AUTHORITY SecurityStamp Unique ID Alice LOCAL AUTHORITY IdentityProvider ASP.NET Identity Alice LOCAL AUTHORITY Role Employees Alice LOCAL AUTHORITY Role Users Alice LOCAL AUTHORITY Name Alice Alice LOCAL AUTHORITY NameIdentifier Alice’s user ID The table shows the most important aspect of claims, which is that I have already been using them when I implemented the traditional authentication and authorization features in Chapter 14. You can see that some of the claims relate to user identity (the Name claim is Alice, and the NameIdentifier claim is Alice’s unique user ID in my ASP.NET Identity database). 此表展示了声明(Claims)最重要的方面,这些是我在第14章中实现传统的认证和授权特性时,一直在使用的信息。可以看出,有些声明(Claims)与用户标识有关(Name声明是Alice,NameIdentifier声明是Alice在ASP.NET Identity数据库中的唯一用户ID号)。 Other claims show membership of roles—there are two Role claims in the table, reflecting the fact that Alice is assigned to both the Users and Employees roles. There is also a claim about how Alice has been authenticated: The IdentityProvider is set to ASP.NET Identity. 其他声明(Claims)显示了角色成员——表中有两个Role声明(Claim),体现出Alice被赋予了Users和Employees两个角色这一事实。还有一个是Alice已被认证的声明(Claim):IdentityProvider被设置到了ASP.NET Identity。 The difference when this information is expressed as a set of claims is that you can determine where the data came from. The Issuer property for all the claims shown in the table is set to LOCAL AUTHORITY, which indicates that the user’s identity has been established by the application. 当这种信息被表示成一组声明(Claims)时的差别是,你能够确定这些数据是从哪里来的。表中所显示的所有声明的Issuer属性(发布者)都被设置到了LOACL AUTHORITY(本地授权),这说明该用户的标识是由应用程序建立的。 So, now that you have seen some example claims, I can more easily describe what a claim is. A claim is any piece of information about a user that is available to the application, including the user’s identity and role memberships. And, as you have seen, the information I have been defining about my users in earlier chapters is automatically made available as claims by ASP.NET Identity. 因此,现在你已经看到了一些声明(Claims)示例,我可以更容易地描述声明(Claim)是什么了。一项声明(Claim)是可用于应用程序中的有关用户的一个信息片段,包括用户的标识以及角色成员等。而且,正如你所看到的,我在前几章定义的关于用户的信息,被ASP.NET Identity自动地作为声明(Claims)了。 15.3.2 Creating and Using Claims 15.3.2 创建和使用声明(Claims) Claims are interesting for two reasons. The first reason is that an application can obtain claims from multiple sources, rather than just relying on a local database for information about the user. You will see a real example of this when I show you how to authenticate users through a third-party system in the “Using Third-Party Authentication” section, but for the moment I am going to add a class to the example project that simulates a system that provides claims information. Listing 15-15 shows the contents of the LocationClaimsProvider.cs file that I added to the Infrastructure folder. 声明(Claims)比较有意思的原因有两个。第一个原因是应用程序可以从多个来源获取声明(Claims),而不是只能依靠本地数据库关于用户的信息。你将会看到一个实际的示例,在“使用第三方认证”小节中,将演示如何通过第三方系统来认证用户。不过,此刻我只打算在示例项目中添加一个类,用以模拟一个提供声明(Claims)信息的系统。清单15-15显示了我添加到Infrastructure文件夹中LocationClaimsProvider.cs文件的内容。 Listing 15-15. The Contents of the LocationClaimsProvider.cs File 清单15-15. LocationClaimsProvider.cs文件的内容 using System.Collections.Generic;using System.Security.Claims; namespace Users.Infrastructure {public static class LocationClaimsProvider {public static IEnumerable<Claim> GetClaims(ClaimsIdentity user) {List<Claim> claims = new List<Claim>();if (user.Name.ToLower() == "alice") {claims.Add(CreateClaim(ClaimTypes.PostalCode, "DC 20500"));claims.Add(CreateClaim(ClaimTypes.StateOrProvince, "DC"));} else {claims.Add(CreateClaim(ClaimTypes.PostalCode, "NY 10036"));claims.Add(CreateClaim(ClaimTypes.StateOrProvince, "NY"));}return claims;}private static Claim CreateClaim(string type, string value) {return new Claim(type, value, ClaimValueTypes.String, "RemoteClaims");} }} The GetClaims method takes a ClaimsIdentity argument and uses the Name property to create claims about the user’s ZIP code and state. This class allows me to simulate a system such as a central HR database, which would be the authoritative source of location information about staff, for example. GetClaims方法以ClaimsIdentity为参数,并使用Name属性创建了关于用户ZIP码(邮政编码)和州府的声明(Claims)。上述这个类使我能够模拟一个诸如中心化的HR数据库(人力资源数据库)之类的系统,它可能会成为全体职员的地点信息的权威数据源。 Claims are associated with the user’s identity during the authentication process, and Listing 15-16 shows the changes I made to the Login action method of the Account controller to call the LocationClaimsProvider class. 在认证过程期间,声明(Claims)是与用户标识关联在一起的,清单15-16显示了我对Account控制器中Login动作方法所做的修改,以便调用LocationClaimsProvider类。 Listing 15-16. Associating Claims with a User in the AccountController.cs File 清单15-16. AccountController.cs文件中用户用声明的关联 ...[HttpPost][AllowAnonymous][ValidateAntiForgeryToken]public async Task<ActionResult> Login(LoginModel details, string returnUrl) {if (ModelState.IsValid) {AppUser user = await UserManager.FindAsync(details.Name,details.Password);if (user == null) {ModelState.AddModelError("", "Invalid name or password.");} else {ClaimsIdentity ident = await UserManager.CreateIdentityAsync(user,DefaultAuthenticationTypes.ApplicationCookie); ident.AddClaims(LocationClaimsProvider.GetClaims(ident));AuthManager.SignOut();AuthManager.SignIn(new AuthenticationProperties {IsPersistent = false}, ident);return Redirect(returnUrl);} }ViewBag.returnUrl = returnUrl;return View(details);}... You can see the effect of the location claims by starting the application, authenticating as a user, and requesting the /Claim/Index URL. Figure 15-6 shows the claims for Alice. You may have to sign out and sign back in again to see the change. 为了看看这个地点声明(Claims)的效果,可以启动应用程序,以一个用户进行认证,并请求/Claim/Index URL。图15-6显示了Alice的声明(Claims)。你可能需要退出,然后再次登录才会看到发生的变化。 Figure 15-6. Defining additional claims for users 图15-6. 定义用户的附加声明 Obtaining claims from multiple locations means that the application doesn’t have to duplicate data that is held elsewhere and allows integration of data from external parties. The Claim.Issuer property tells you where a claim originated from, which helps you judge how accurate the data is likely to be and how much weight you should give the data in your application. Location data obtained from a central HR database is likely to be more accurate and trustworthy than data obtained from an external mailing list provider, for example. 从多个地点获取声明(Claims)意味着应用程序不必复制其他地方保持的数据,并且能够与外部的数据集成。Claim.Issuer属性(图15-6中的Issuer数据列——译者注)能够告诉你一个声明(Claim)的发源地,这有助于让你判断数据的精确程度,也有助于让你决定这类数据在应用程序中的权重。例如,从中心化的HR数据库获取的地点数据可能要比外部邮件列表提供器获取的数据更为精确和可信。 1. Applying Claims 1. 运用声明(Claims) The second reason that claims are interesting is that you can use them to manage user access to your application more flexibly than with standard roles. The problem with roles is that they are static, and once a user has been assigned to a role, the user remains a member until explicitly removed. This is, for example, how long-term employees of big corporations end up with incredible access to internal systems: They are assigned the roles they require for each new job they get, but the old roles are rarely removed. (The unexpectedly broad systems access sometimes becomes apparent during the investigation into how someone was able to ship the contents of the warehouse to their home address—true story.) 声明(Claims)有意思的第二个原因是,你可以用它们来管理用户对应用程序的访问,这要比标准的角色管理更为灵活。角色的问题在于它们是静态的,而且一旦用户已经被赋予了一个角色,该用户便是一个成员,直到明确地删除为止。例如,这意味着大公司的长期雇员,对内部系统的访问会十分惊人:他们每次在获得新工作时,都会赋予所需的角色,但旧角色很少被删除。(在调查某人为何能够将仓库里的东西发往他的家庭地址过程中发现,有时会出现异常宽泛的系统访问——真实的故事) Claims can be used to authorize users based directly on the information that is known about them, which ensures that the authorization changes when the data changes. The simplest way to do this is to generate Role claims based on user data that are then used by controllers to restrict access to action methods. Listing 15-17 shows the contents of the ClaimsRoles.cs file that I added to the Infrastructure. 声明(Claims)可以直接根据用户已知的信息对用户进行授权,这能够保证当数据发生变化时,授权也随之而变。此事最简单的做法是根据用户数据来生成Role声明(Claim),然后由控制器用来限制对动作方法的访问。清单15-17显示了我添加到Infrastructure中的ClaimsRoles.cs文件的内容。 Listing 15-17. The Contents of the ClaimsRoles.cs File 清单15-17. ClaimsRoles.cs文件的内容 using System.Collections.Generic;using System.Security.Claims; namespace Users.Infrastructure {public class ClaimsRoles {public static IEnumerable<Claim> CreateRolesFromClaims(ClaimsIdentity user) {List<Claim> claims = new List<Claim>();if (user.HasClaim(x => x.Type == ClaimTypes.StateOrProvince&& x.Issuer == "RemoteClaims" && x.Value == "DC")&& user.HasClaim(x => x.Type == ClaimTypes.Role&& x.Value == "Employees")) {claims.Add(new Claim(ClaimTypes.Role, "DCStaff"));}return claims;} }} The gnarly looking CreateRolesFromClaims method uses lambda expressions to determine whether the user has a StateOrProvince claim from the RemoteClaims issuer with a value of DC and a Role claim with a value of Employees. If the user has both claims, then a Role claim is returned for the DCStaff role. Listing 15-18 shows how I call the CreateRolesFromClaims method from the Login action in the Account controller. CreateRolesFromClaims是一个粗糙的考察方法,它使用了Lambda表达式,以检查用户是否具有StateOrProvince声明(Claim),该声明来自于RemoteClaims发行者(Issuer),值为DC。也检查用户是否具有Role声明(Claim),其值为Employees。如果用户这两个声明都有,那么便返回一个DCStaff角色的Role声明。清单15-18显示了如何在Account控制器中的Login动作中调用CreateRolesFromClaims方法。 Listing 15-18. Generating Roles Based on Claims in the AccountController.cs File 清单15-18. 在AccountController.cs中根据声明生成角色 ...[HttpPost][AllowAnonymous][ValidateAntiForgeryToken]public async Task<ActionResult> Login(LoginModel details, string returnUrl) {if (ModelState.IsValid) {AppUser user = await UserManager.FindAsync(details.Name,details.Password);if (user == null) {ModelState.AddModelError("", "Invalid name or password.");} else {ClaimsIdentity ident = await UserManager.CreateIdentityAsync(user,DefaultAuthenticationTypes.ApplicationCookie);ident.AddClaims(LocationClaimsProvider.GetClaims(ident)); ident.AddClaims(ClaimsRoles.CreateRolesFromClaims(ident));AuthManager.SignOut();AuthManager.SignIn(new AuthenticationProperties {IsPersistent = false}, ident);return Redirect(returnUrl);} }ViewBag.returnUrl = returnUrl;return View(details);}... I can then restrict access to an action method based on membership of the DCStaff role. Listing 15-19 shows a new action method I added to the Claims controller to which I have applied the Authorize attribute. 然后我可以根据DCStaff角色的成员,来限制对一个动作方法的访问。清单15-19显示了在Claims控制器中添加的一个新的动作方法,在该方法上已经运用了Authorize注解属性。 Listing 15-19. Adding a New Action Method to the ClaimsController.cs File 清单15-19. 在ClaimsController.cs文件中添加一个新的动作方法 using System.Security.Claims;using System.Web;using System.Web.Mvc;namespace Users.Controllers {public class ClaimsController : Controller {[Authorize]public ActionResult Index() {ClaimsIdentity ident = HttpContext.User.Identity as ClaimsIdentity;if (ident == null) {return View("Error", new string[] { "No claims available" });} else {return View(ident.Claims);} } [Authorize(Roles="DCStaff")]public string OtherAction() {return "This is the protected action";} }} Users will be able to access OtherAction only if their claims grant them membership to the DCStaff role. Membership of this role is generated dynamically, so a change to the user’s employment status or location information will change their authorization level. 只要用户的声明(Claims)承认他们是DCStaff角色的成员,那么他们便能访问OtherAction动作。该角色的成员是动态生成的,因此,若是用户的雇用状态或地点信息发生变化,也会改变他们的授权等级。 提示:请读者从这个例子中吸取其中的思想精髓。对于读物的理解程度,仁者见仁,智者见智,能领悟多少,全凭各人,译者感觉这里的思想有无数的可能。举例说明:(1)可以根据用户的身份进行授权,比如学生在校时是“学生”,毕业后便是“校友”;(2)可以根据用户所处的部门进行授权,人事部用户属于人事团队,销售部用户属于销售团队,各团队有其自己的应用;(3)下一小节的示例是根据用户的地点授权。简言之:一方面用户的各种声明(Claim)都可以用来进行授权;另一方面用户的声明(Claim)又是可以自定义的。于是可能的运用就无法估计了。总之一句话,这种基于声明的授权(Claims-Based Authorization)有无限可能!要是没有我这里的提示,是否所有读者在此处都会有所体会?——译者注 15.3.3 Authorizing Access Using Claims 15.3.3 使用声明(Claims)授权访问 The previous example is an effective demonstration of how claims can be used to keep authorizations fresh and accurate, but it is a little indirect because I generate roles based on claims data and then enforce my authorization policy based on the membership of that role. A more direct and flexible approach is to enforce authorization directly by creating a custom authorization filter attribute. Listing 15-20 shows the contents of the ClaimsAccessAttribute.cs file, which I added to the Infrastructure folder and used to create such a filter. 前面的示例有效地演示了如何用声明(Claims)来保持新鲜和准确的授权,但有点不太直接,因为我要根据声明(Claims)数据来生成了角色,然后强制我的授权策略基于角色成员。一个更直接且灵活的办法是直接强制授权,其做法是创建一个自定义的授权过滤器注解属性。清单15-20演示了ClaimsAccessAttribute.cs文件的内容,我将它添加在Infrastructure文件夹中,并用它创建了这种过滤器。 Listing 15-20. The Contents of the ClaimsAccessAttribute.cs File 清单15-20. ClaimsAccessAttribute.cs文件的内容 using System.Security.Claims;using System.Web;using System.Web.Mvc; namespace Users.Infrastructure {public class ClaimsAccessAttribute : AuthorizeAttribute {public string Issuer { get; set; }public string ClaimType { get; set; }public string Value { get; set; }protected override bool AuthorizeCore(HttpContextBase context) {return context.User.Identity.IsAuthenticated&& context.User.Identity is ClaimsIdentity&& ((ClaimsIdentity)context.User.Identity).HasClaim(x =>x.Issuer == Issuer && x.Type == ClaimType && x.Value == Value);} }} The attribute I have defined is derived from the AuthorizeAttribute class, which makes it easy to create custom authorization policies in MVC framework applications by overriding the AuthorizeCore method. My implementation grants access if the user is authenticated, the IIdentity implementation is an instance of ClaimsIdentity, and the user has a claim with the issuer, type, and value matching the class properties. Listing 15-21 shows how I applied the attribute to the Claims controller to authorize access to the OtherAction method based on one of the location claims created by the LocationClaimsProvider class. 我所定义的这个注解属性派生于AuthorizeAttribute类,通过重写AuthorizeCore方法,很容易在MVC框架应用程序中创建自定义的授权策略。在这个实现中,若用户是已认证的、其IIdentity实现是一个ClaimsIdentity实例,而且该用户有一个带有issuer、type以及value的声明(Claim),它们与这个类的属性是匹配的,则该用户便是允许访问的。清单15-21显示了如何将这个注解属性运用于Claims控制器,以便根据LocationClaimsProvider类创建的地点声明(Claim),对OtherAction方法进行授权访问。 Listing 15-21. Performing Authorization on Claims in the ClaimsController.cs File 清单15-21. 在ClaimsController.cs文件中执行基于声明的授权 using System.Security.Claims;using System.Web;using System.Web.Mvc;using Users.Infrastructure;namespace Users.Controllers {public class ClaimsController : Controller {[Authorize]public ActionResult Index() {ClaimsIdentity ident = HttpContext.User.Identity as ClaimsIdentity;if (ident == null) {return View("Error", new string[] { "No claims available" });} else {return View(ident.Claims);} } [ClaimsAccess(Issuer="RemoteClaims", ClaimType=ClaimTypes.PostalCode,Value="DC 20500")]public string OtherAction() {return "This is the protected action";} }} My authorization filter ensures that only users whose location claims specify a ZIP code of DC 20500 can invoke the OtherAction method. 这个授权过滤器能够确保只有地点声明(Claim)的邮编为DC 20500的用户才能请求OtherAction方法。 15.4 Using Third-Party Authentication 15.4 使用第三方认证 One of the benefits of a claims-based system such as ASP.NET Identity is that any of the claims can come from an external system, even those that identify the user to the application. This means that other systems can authenticate users on behalf of the application, and ASP.NET Identity builds on this idea to make it simple and easy to add support for authenticating users through third parties such as Microsoft, Google, Facebook, and Twitter. 基于声明的系统,如ASP.NET Identity,的好处之一是任何声明都可以来自于外部系统,即使是将用户标识到应用程序的那些声明。这意味着其他系统可以代表应用程序来认证用户,而ASP.NET Identity就建立在这样的思想之上,使之能够简单而方便地添加第三方认证用户的支持,如微软、Google、Facebook、Twitter等。 There are some substantial benefits of using third-party authentication: Many users will already have an account, users can elect to use two-factor authentication, and you don’t have to manage user credentials in the application. In the sections that follow, I’ll show you how to set up and use third-party authentication for Google users, which Table 15-8 puts into context. 使用第三方认证有一些实际的好处:许多用户已经有了账号、用户可以选择使用双因子认证、你不必在应用程序中管理用户凭据等等。在以下小节中,我将演示如何为Google用户建立并使用第三方认证,表15-8描述了事情的情形。 Table 15-8. Putting Third-Party Authentication in Context 表15-8. 第三方认证情形 Question 问题 Answer 回答 What is it? 什么是第三方认证? Authenticating with third parties lets you take advantage of the popularity of companies such as Google and Facebook. 第三方认证使你能够利用流行公司,如Google和Facebook,的优势。 Why should I care? 为何要关心它? Users don’t like having to remember passwords for many different sites. Using a provider with large-scale adoption can make your application more appealing to users of the provider’s services. 用户不喜欢记住许多不同网站的口令。使用大范围适应的提供器可使你的应用程序更吸引有提供器服务的用户。 How is it used by the MVC framework? 如何在MVC框架中使用它? This feature isn’t used directly by the MVC framework. 这不是一个直接由MVC框架使用的特性。 Note The reason I have chosen to demonstrate Google authentication is that it is the only option that doesn’t require me to register my application with the authentication service. You can get details of the registration processes required at http://bit.ly/1cqLTrE. 提示:我选择演示Google认证的原因是,它是唯一不需要在其认证服务中注册我应用程序的公司。有关认证服务注册过程的细节,请参阅http://bit.ly/1cqLTrE。 15.4.1 Enabling Google Authentication 15.4.1 启用Google认证 ASP.NET Identity comes with built-in support for authenticating users through their Microsoft, Google, Facebook, and Twitter accounts as well more general support for any authentication service that supports OAuth. The first step is to add the NuGet package that includes the Google-specific additions for ASP.NET Identity. Enter the following command into the Package Manager Console: ASP.NET Identity带有通过Microsoft、Google、Facebook以及Twitter账号认证用户的内建支持,并且对于支持OAuth的认证服务具有更普遍的支持。第一个步骤是添加NuGet包,包中含有用于ASP.NET Identity的Google专用附件。请在“Package Manager Console(包管理器控制台)”中输入以下命令: Install-Package Microsoft.Owin.Security.Google -version 2.0.2 There are NuGet packages for each of the services that ASP.NET Identity supports, as described in Table 15-9. 对于ASP.NET Identity支持的每一种服务都有相应的NuGet包,如表15-9所示。 Table 15-9. The NuGet Authenticaton Packages 表15-9. NuGet认证包 Name 名称 Description 描述 Microsoft.Owin.Security.Google Authenticates users with Google accounts 用Google账号认证用户 Microsoft.Owin.Security.Facebook Authenticates users with Facebook accounts 用Facebook账号认证用户 Microsoft.Owin.Security.Twitter Authenticates users with Twitter accounts 用Twitter账号认证用户 Microsoft.Owin.Security.MicrosoftAccount Authenticates users with Microsoft accounts 用Microsoft账号认证用户 Microsoft.Owin.Security.OAuth Authenticates users against any OAuth 2.0 service 根据任一OAuth 2.0服务认证用户 Once the package is installed, I enable support for the authentication service in the OWIN startup class, which is defined in the App_Start/IdentityConfig.cs file in the example project. Listing 15-22 shows the change that I have made. 一旦安装了这个包,便可以在OWIN启动类中启用此项认证服务的支持,启动类的定义在示例项目的App_Start/IdentityConfig.cs文件中。清单15-22显示了所做的修改。 Listing 15-22. Enabling Google Authentication in the IdentityConfig.cs File 清单15-22. 在IdentityConfig.cs文件中启用Google认证 using Microsoft.AspNet.Identity;using Microsoft.Owin;using Microsoft.Owin.Security.Cookies;using Owin;using Users.Infrastructure;using Microsoft.Owin.Security.Google;namespace Users {public class IdentityConfig {public void Configuration(IAppBuilder app) {app.CreatePerOwinContext<AppIdentityDbContext>(AppIdentityDbContext.Create);app.CreatePerOwinContext<AppUserManager>(AppUserManager.Create);app.CreatePerOwinContext<AppRoleManager>(AppRoleManager.Create); app.UseCookieAuthentication(new CookieAuthenticationOptions {AuthenticationType = DefaultAuthenticationTypes.ApplicationCookie,LoginPath = new PathString("/Account/Login"),}); app.UseExternalSignInCookie(DefaultAuthenticationTypes.ExternalCookie);app.UseGoogleAuthentication();} }} Each of the packages that I listed in Table 15-9 contains an extension method that enables the corresponding service. The extension method for the Google service is called UseGoogleAuthentication, and it is called on the IAppBuilder implementation that is passed to the Configuration method. 表15-9所列的每个包都含有启用相应服务的扩展方法。用于Google服务的扩展方法名称为UseGoogleAuthentication,它通过传递给Configuration方法的IAppBuilder实现进行调用。 Next I added a button to the Views/Account/Login.cshtml file, which allows users to log in via Google. You can see the change in Listing 15-23. 下一步骤是在Views/Account/Login.cshtml文件中添加一个按钮,让用户能够通过Google进行登录。所做的修改如清单15-23所示。 Listing 15-23. Adding a Google Login Button to the Login.cshtml File 清单15-23. 在Login.cshtml文件中添加Google登录按钮 @model Users.Models.LoginModel@{ ViewBag.Title = "Login";}<h2>Log In</h2> @Html.ValidationSummary()@using (Html.BeginForm()) {@Html.AntiForgeryToken();<input type="hidden" name="returnUrl" value="@ViewBag.returnUrl" /><div class="form-group"><label>Name</label>@Html.TextBoxFor(x => x.Name, new { @class = "form-control" })</div><div class="form-group"><label>Password</label>@Html.PasswordFor(x => x.Password, new { @class = "form-control" })</div><button class="btn btn-primary" type="submit">Log In</button>}@using (Html.BeginForm("GoogleLogin", "Account")) {<input type="hidden" name="returnUrl" value="@ViewBag.returnUrl" /><button class="btn btn-primary" type="submit">Log In via Google</button>} The new button submits a form that targets the GoogleLogin action on the Account controller. You can see this method—and the other changes I made the controller—in Listing 15-24. 新按钮递交一个表单,目标是Account控制器中的GoogleLogin动作。可从清单15-24中看到该方法,以及在控制器中所做的其他修改。 Listing 15-24. Adding Support for Google Authentication to the AccountController.cs File 清单15-24. 在AccountController.cs文件中添加Google认证支持 using System.Threading.Tasks;using System.Web.Mvc;using Users.Models;using Microsoft.Owin.Security;using System.Security.Claims;using Microsoft.AspNet.Identity;using Microsoft.AspNet.Identity.Owin;using Users.Infrastructure;using System.Web; namespace Users.Controllers {[Authorize]public class AccountController : Controller {[AllowAnonymous]public ActionResult Login(string returnUrl) {if (HttpContext.User.Identity.IsAuthenticated) {return View("Error", new string[] { "Access Denied" });}ViewBag.returnUrl = returnUrl;return View();}[HttpPost][AllowAnonymous][ValidateAntiForgeryToken]public async Task<ActionResult> Login(LoginModel details, string returnUrl) {if (ModelState.IsValid) {AppUser user = await UserManager.FindAsync(details.Name,details.Password);if (user == null) {ModelState.AddModelError("", "Invalid name or password.");} else {ClaimsIdentity ident = await UserManager.CreateIdentityAsync(user,DefaultAuthenticationTypes.ApplicationCookie); ident.AddClaims(LocationClaimsProvider.GetClaims(ident));ident.AddClaims(ClaimsRoles.CreateRolesFromClaims(ident)); AuthManager.SignOut();AuthManager.SignIn(new AuthenticationProperties {IsPersistent = false}, ident);return Redirect(returnUrl);} }ViewBag.returnUrl = returnUrl;return View(details);} [HttpPost][AllowAnonymous]public ActionResult GoogleLogin(string returnUrl) {var properties = new AuthenticationProperties {RedirectUri = Url.Action("GoogleLoginCallback",new { returnUrl = returnUrl})};HttpContext.GetOwinContext().Authentication.Challenge(properties, "Google");return new HttpUnauthorizedResult();}[AllowAnonymous]public async Task<ActionResult> GoogleLoginCallback(string returnUrl) {ExternalLoginInfo loginInfo = await AuthManager.GetExternalLoginInfoAsync();AppUser user = await UserManager.FindAsync(loginInfo.Login);if (user == null) {user = new AppUser {Email = loginInfo.Email,UserName = loginInfo.DefaultUserName,City = Cities.LONDON, Country = Countries.UK};IdentityResult result = await UserManager.CreateAsync(user);if (!result.Succeeded) {return View("Error", result.Errors);} else {result = await UserManager.AddLoginAsync(user.Id, loginInfo.Login);if (!result.Succeeded) {return View("Error", result.Errors);} }}ClaimsIdentity ident = await UserManager.CreateIdentityAsync(user,DefaultAuthenticationTypes.ApplicationCookie);ident.AddClaims(loginInfo.ExternalIdentity.Claims);AuthManager.SignIn(new AuthenticationProperties {IsPersistent = false }, ident);return Redirect(returnUrl ?? "/");}[Authorize]public ActionResult Logout() {AuthManager.SignOut();return RedirectToAction("Index", "Home");}private IAuthenticationManager AuthManager {get {return HttpContext.GetOwinContext().Authentication;} }private AppUserManager UserManager {get {return HttpContext.GetOwinContext().GetUserManager<AppUserManager>();} }} } The GoogleLogin method creates an instance of the AuthenticationProperties class and sets the RedirectUri property to a URL that targets the GoogleLoginCallback action in the same controller. The next part is a magic phrase that causes ASP.NET Identity to respond to an unauthorized error by redirecting the user to the Google authentication page, rather than the one defined by the application: GoogleLogin方法创建了AuthenticationProperties类的一个实例,并为RedirectUri属性设置了一个URL,其目标为同一控制器中的GoogleLoginCallback动作。下一个部分是一个神奇阶段,通过将用户重定向到Google认证页面,而不是应用程序所定义的认证页面,让ASP.NET Identity对未授权的错误进行响应: ...HttpContext.GetOwinContext().Authentication.Challenge(properties, "Google");return new HttpUnauthorizedResult();... This means that when the user clicks the Log In via Google button, their browser is redirected to the Google authentication service and then redirected back to the GoogleLoginCallback action method once they are authenticated. 这意味着,当用户通过点击Google按钮进行登录时,浏览器被重定向到Google的认证服务,一旦在那里认证之后,便被重定向回GoogleLoginCallback动作方法。 I get details of the external login by calling the GetExternalLoginInfoAsync of the IAuthenticationManager implementation, like this: 我通过调用IAuthenticationManager实现的GetExternalLoginInfoAsync方法,我获得了外部登录的细节,如下所示: ...ExternalLoginInfo loginInfo = await AuthManager.GetExternalLoginInfoAsync();... The ExternalLoginInfo class defines the properties shown in Table 15-10. ExternalLoginInfo类定义的属性如表15-10所示: Table 15-10. The Properties Defined by the ExternalLoginInfo Class 表15-10. ExternalLoginInfo类所定义的属性 Name 名称 Description 描述 DefaultUserName Returns the username 返回用户名 Email Returns the e-mail address 返回E-mail地址 ExternalIdentity Returns a ClaimsIdentity that identities the user 返回标识该用户的ClaimsIdentity Login Returns a UserLoginInfo that describes the external login 返回描述外部登录的UserLoginInfo I use the FindAsync method defined by the user manager class to locate the user based on the value of the ExternalLoginInfo.Login property, which returns an AppUser object if the user has been authenticated with the application before: 我使用了由用户管理器类所定义的FindAsync方法,以便根据ExternalLoginInfo.Login属性的值对用户进行定位,如果用户之前在应用程序中已经认证,该属性会返回一个AppUser对象: ...AppUser user = await UserManager.FindAsync(loginInfo.Login);... If the FindAsync method doesn’t return an AppUser object, then I know that this is the first time that this user has logged into the application, so I create a new AppUser object, populate it with values, and save it to the database. I also save details of how the user logged in so that I can find them next time: 如果FindAsync方法返回的不是AppUser对象,那么我便知道这是用户首次登录应用程序,于是便创建了一个新的AppUser对象,填充该对象的值,并将其保存到数据库。我还保存了用户如何登录的细节,以便下次能够找到他们: ...result = await UserManager.AddLoginAsync(user.Id, loginInfo.Login);... All that remains is to generate an identity the user, copy the claims provided by Google, and create an authentication cookie so that the application knows the user has been authenticated: 剩下的事情只是生成该用户的标识了,拷贝Google提供的声明(Claims),并创建一个认证Cookie,以使应用程序知道此用户已认证: ...ClaimsIdentity ident = await UserManager.CreateIdentityAsync(user,DefaultAuthenticationTypes.ApplicationCookie);ident.AddClaims(loginInfo.ExternalIdentity.Claims);AuthManager.SignIn(new AuthenticationProperties { IsPersistent = false }, ident);... 15.4.2 Testing Google Authentication 15.4.2 测试Google认证 There is one further change that I need to make before I can test Google authentication: I need to change the account verification I set up in Chapter 13 because it prevents accounts from being created with e-mail addresses that are not within the example.com domain. Listing 15-25 shows how I removed the verification from the AppUserManager class. 在测试Google认证之前还需要一处修改:需要修改第13章所建立的账号验证,因为它不允许example.com域之外的E-mail地址创建账号。清单15-25显示了如何在AppUserManager类中删除这种验证。 Listing 15-25. Disabling Account Validation in the AppUserManager.cs File 清单15-25. 在AppUserManager.cs文件中取消账号验证 using Microsoft.AspNet.Identity;using Microsoft.AspNet.Identity.EntityFramework;using Microsoft.AspNet.Identity.Owin;using Microsoft.Owin;using Users.Models; namespace Users.Infrastructure {public class AppUserManager : UserManager<AppUser> {public AppUserManager(IUserStore<AppUser> store): base(store) {}public static AppUserManager Create(IdentityFactoryOptions<AppUserManager> options,IOwinContext context) {AppIdentityDbContext db = context.Get<AppIdentityDbContext>();AppUserManager manager = new AppUserManager(new UserStore<AppUser>(db)); manager.PasswordValidator = new CustomPasswordValidator {RequiredLength = 6,RequireNonLetterOrDigit = false,RequireDigit = false,RequireLowercase = true,RequireUppercase = true}; //manager.UserValidator = new CustomUserValidator(manager) {// AllowOnlyAlphanumericUserNames = true,// RequireUniqueEmail = true//};return manager;} }} Tip you can use validation for externally authenticated accounts, but I am just going to disable the feature for simplicity. 提示:也可以使用外部已认证账号的验证,但这里出于简化,取消了这一特性。 To test authentication, start the application, click the Log In via Google button, and provide the credentials for a valid Google account. When you have completed the authentication process, your browser will be redirected back to the application. If you navigate to the /Claims/Index URL, you will be able to see how claims from the Google system have been added to the user’s identity, as shown in Figure 15-7. 为了测试认证,启动应用程序,通过点击“Log In via Google(通过Google登录)”按钮,并提供有效的Google账号凭据。当你完成了认证过程时,浏览器将被重定向回应用程序。如果导航到/Claims/Index URL,便能够看到来自Google系统的声明(Claims),已被添加到用户的标识中了,如图15-7所示。 Figure 15-7. Claims from Google 图15-7. 来自Google的声明(Claims) 15.5 Summary 15.5 小结 In this chapter, I showed you some of the advanced features that ASP.NET Identity supports. I demonstrated the use of custom user properties and how to use database migrations to preserve data when you upgrade the schema to support them. I explained how claims work and how they can be used to create more flexible ways of authorizing users. I finished the chapter by showing you how to authenticate users via Google, which builds on the ideas behind the use of claims. 本章向你演示了ASP.NET Identity所支持的一些高级特性。演示了自定义用户属性的使用,还演示了在升级数据架构时,如何使用数据库迁移保护数据。我解释了声明(Claims)的工作机制,以及如何将它们用于创建更灵活的用户授权方式。最后演示了如何通过Google进行认证结束了本章,这是建立在使用声明(Claims)的思想基础之上的。 本篇文章为转载内容。原文链接:https://blog.csdn.net/gz19871113/article/details/108591802。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-10-28 08:49:21
283
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
journalctl
- 查看系统日志。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"