前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[方法调用拦截器设计 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
...显示关闭,主要原因是调用ExecuteReader方法时,使用了参数 CommandBehavior 并将其设置为 CloseConnection: SqlDataReader rdr = cmd.ExecuteReader(CommandBehavior.CloseConnection); 根据MSDN的说法:如果创建了 SqlDataReader 并将 CommandBehavior 设置为 CloseConnection,则关闭 SqlDataReader 会自动关闭此连接。 参考网址:http://msdn.microsoft.com/zh-cn/library/y6wy5a0f(v=vs.80).aspx 版权所有©2012,WestGarden.欢迎转载,转载请注明出处.更多文章请参阅博客http://www.cnblogs.com/WestGarden/ 转载于:https://www.cnblogs.com/WestGarden/archive/2012/06/04/2533560.html 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_33697898/article/details/94471782。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-18 20:09:36
89
转载
转载文章
...本改变文本的大小方法是把每一个text遍历。调用set_size方法设置它的属性for t in l_text:t.set_size(25)for t in p_text:t.set_size(20) 设置x,y轴刻度一致,这样饼图才能是圆的plt.axis('equal')plt.legend(loc="upper left",frameon=False,fontsize=20,borderaxespad=-5)plt.title('721法则', y=-0.1,fontsize=30,loc="center")plt.savefig("721法则.png")plt.show() 下图还是我画的,当然,没有上面那个美观。 第二个图import matplotlib.pyplot as pltplt.rcParams['font.family']='SimHei'plt.figure(figsize=(6, 9))labels = '实践与经验','交流与反馈','培训与学习'sizes = [70.0,20.0,10.0]explode = (0.1,0,0)colors = ['gray','00FFFF','FF1493']plt.pie(sizes,explode=explode,labels=labels,colors=colors,labeldistance=1.1,\autopct='%d%%',shadow=True,counterclock=False)plt.legend(loc="upper left",frameon=False,fontsize=18,borderaxespad=-5)plt.axis('equal')plt.title('721法则', y=-0.1,fontsize=18)plt.savefig("721法则.png")plt.show() 结论:我们不但要会画,还要学着画得尽可能美,实践是唯一的途径。 Python入门教程 如果你现在还是不会Python也没关系,下面我会给大家免费分享一份Python全套学习资料, 包含视频、源码、课件,希望能帮到那些不满现状,想提升自己却又没有方向的朋友,可以和我一起来学习交 流。 ① Python所有方向的学习路线图,清楚各个方向要学什么东西 ② 600多节Python课程视频,涵盖必备基础、爬虫和数据分析 ③ 100多个Python实战案例,含50个超大型项目详解,学习不再是只会理论 ④ 20款主流手游迫解 爬虫手游逆行迫解教程包 ⑤ 爬虫与反爬虫攻防教程包,含15个大型网站迫解 ⑥ 爬虫APP逆向实战教程包,含45项绝密技术详解 ⑦ 超300本Python电子好书,从入门到高阶应有尽有 ⑧ 华为出品独家Python漫画教程,手机也能学习 ⑨ 历年互联网企业Python面试真题,复习时非常方便 👉Python学习视频600合集👈 观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。 👉实战案例👈 光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。 👉100道Python练习题👈 检查学习结果。 👉面试刷题👈 资料领取 上述这份完整版的Python全套学习资料已经上传CSDN官方,朋友们如果需要可以微信扫描下方CSDN官方认证二维码输入“领取资料” 即可领取 好文推荐 了解python的前景:https://blog.csdn.net/weixin_49891576/article/details/127187029 了解python的兼职:https://blog.csdn.net/weixin_49891576/article/details/127125308 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_49891576/article/details/130861900。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-04 23:38:21
105
转载
转载文章
...ice是一种软件系统设计模式,它通过标准的网络协议(如HTTP、HTTPS)提供应用程序间交互的能力。在本文中,WebService指的是基于socket编程和HTTP协议实现的一种服务端程序,允许客户端通过发送特定格式的HTTP请求获取或更新服务器上的数据资源。 套接字(Socket) , 在计算机网络编程中,套接字是一种通信机制,它是进程间通信的端点,用于在网络的不同主机之间建立连接并交换数据。在文章所描述的场景下,套接字是Web服务器与客户端进行TCP通信的基础结构,通过调用socket()函数创建,并通过一系列如Bind()、Listen()和Accept()等操作来管理和维护与客户端的连接及数据传输过程。 HTTP传输协议 , HTTP(HyperText Transfer Protocol,超文本传输协议)是一种应用层协议,常用于分布式、协作式和超媒体信息系统的应用中。在本文上下文中,HTTP传输协议定义了客户端(如Web浏览器)与服务器之间的通信格式和规则,包括请求消息的结构(如GET、POST方法以及URL、头部信息等组成部分)、响应消息的结构(如状态码、头部信息和消息体)等。通过遵循HTTP协议,Web服务器可以接收和解析客户端的请求,然后按照指定格式返回响应内容给客户端。
2023-05-30 18:31:58
90
转载
转载文章
...首开先例:这个程式会拦截分别由 DbgPrint 利用装置驱动程式,和 OutputDebugString 利用 Win32 程式所做的呼叫。它能够在您的本机上或跨往际往路,在不需要作用中的侦错工具情况下,检视和录制侦错工作阶段输出。 DiskExt 显示磁碟区磁碟对应。 Diskmon 这个公用程式会撷取全部的硬碟活动,或是提供系统匣中的软体磁碟活动指示器的功能。 DiskView 图形化磁区公用程式。 Du 依目录检视磁碟使用状况。 EFSDump 检视加密档案的资讯。 Filemon 这个监控工具让您即时检视所有档案系统的活动。 Handle 这个易於操纵的命令列公用程式能够显示档案开启的种类和使用的处理程序等更多资讯。 Hex2dec 十六进位数字和十进位数字相互转换。 Junction 建立 Win2K NTFS 符号连结。 LDMDump 倾印逻辑磁碟管理员的磁碟上之资料库内容,其中描述 Windows 2000 动态磁碟分割。 ListDLLs 列出所有目前载入的 DLL,包括载入位置和他们的版本编号。2.0 版列印载入模组的完整路径名称。 LiveKd 使用 Microsoft 核心侦错工具检视即时系统。 LoadOrder 检视在您 WinNT/2K 系统上载入装置的顺序。 LogonSessions 列出系统上的作用中登入工作阶段。 MoveFile 允许您对下一次开机进行移动和删除命令的排程。 NTFSInfo 使用 NTFSInfo 检视详细的 NTFS 磁碟区资讯,包括主档案表格 (MFT) 和 MFT 区的大小和位置,还有 NTFS 中继资料档案的大小。 PageDefrag 将您的分页档和登录 Hive 进行磁碟重组。 PendMoves 列举档案重新命名的清单,删除下次开机将会执行的命令。 Portmon 使用这个进阶的监视工具进行监视序列和平行连接埠活动。它不仅掌握所有标准的序列和平行 IOCTL,甚至会显示传送和接收的资料部份。Version 3.x 具有强大的新 UI 增强功能和进阶的筛选功能。 Process Monitor 即时监控档案系统、登录、程序、执行绪和 DLL 活动。 procexp 任务管理器,这个管理器比windows自带的管理器要强大方便的很多,建议替换自带的任务管理器(本人一直用这个管理器,很不错)。此工具也有汉化版,fans可以自己搜索下载 ProcFeatures 这个小应用程式会描述「实体位址扩充」的处理器和 Windows 支援,而没「没有执行」缓冲区溢位保护。 PsExec 以有限的使用者权限执行处理程序。 PsFile 检视远端开启档案有哪些。 PsGetSid 显示电脑或使用者的 SID。 PsInfo 取得有关系统的资讯。 PsKill 终止本机或远端处理程序。 PsList 显示处理程序和执行绪的相关资讯。 PsLoggedOn 显示使用者登录至一个系统。 PsLogList 倾印事件记录档的记录。 PsPasswd 变更帐户密码。 PsService 检视及控制服务。 PsShutdown 关机及选择重新启动电脑。 PsSuspend 暂停及继续处理程序。 PsTools PsTools 产品系列包括命令列公用程式,其功能有列出在本机或远端电脑上执行的处理程序、远端执行的处理程序、重新开机的电脑和倾印事件记录等等。 RegDelNull 扫描并删除登录机码,这些登录机码包括了标准登录编辑工具无法删除的内嵌式 Null 字元。 RegHide 建立名为 "HKEY_LOCAL_MACHINE\Software\Sysinternals\Can't touch me!\0" 并使用原生 API 的金钥,而且会在此金钥内建立一个值。 Regjump 跳至您在 Regedit 中指定的登录路径。 Regmon 这个监视工具让您即时看到全部的登录活动。 RootkitRevealer 扫描您系统上 Rootkit 为基础的恶意程式码。 SDelete 以安全的方法覆写您的机密档案,并且清除因先前使用这个 DoD 相容安全删除程式所删除档案後而释放的可用空间。包括完整的原始程式码。 ShareEnum 扫描网路上档案共用并检视其安全性设定,来关闭安全性漏洞。 Sigcheck 倾印档案版本资讯和验证系统上的影像皆已完成数位签章。 Strings 搜寻 binaryimages 中的 ANSI 和 UNICODE 字串。 Sync 将快取的资料清除至磁碟。 TCPView 作用中的通讯端命令列检视器。 VolumeId 设定 FAT 或 NTFS 磁碟区 ID。 Whois 看看谁拥有一个网际网路位址。 Winobj 最完整的物件管理员命名空间检视器在此。 ZoomIt 供萤幕上缩放和绘图的简报公用程式。 转自:http://www.360doc.com/content/15/0323/06/20545288_457293504.shtml 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_33515088/article/details/80721846。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-01-22 15:44:41
102
转载
Go-Spring
...在一个循环中处理网络调用,同时利用context来控制调用的超时时间。在每次调用失败时,我们记录详细的错误信息和调用次数。这种做法有助于在出现问题时快速响应和诊断。 结论 通过上述实践,我们可以看到GoSpring如何通过结构化错误处理和日志记录来提升应用的健壮性和维护性。哎呀,兄弟!如果咱们能好好执行这些招数,那可真是大有裨益啊!不仅能大大缩短遇到问题时,咱们得花多少时间去修复,还能省下一大笔银子呢!更棒的是,还能让咱们团队里的小伙伴们,心往一处想,劲往一处使,互相理解,配合得天衣无缝。这感觉,就像是大家在一块儿打游戏,每个人都有自己的角色,但又都为了一个共同的目标而努力,多带劲啊!哎呀,你知道吗?当咱们的应用越做越大,用GoSpring的那些工具和好方法,简直就是如虎添翼啊!这样咱就能打造出一个既稳如泰山又快如闪电,还特别容易打理的系统。想象一下,就像给你的小花园施肥浇水,让每一朵花都长得茁壮又美丽,是不是感觉棒极了?所以啊,别小看了这些工具和最佳实践,它们可是你建大事业的得力助手!
2024-07-31 16:06:44
277
月下独酌
Netty
...面做得相当出色。它的设计思路非常人性化,既考虑了性能,也兼顾了稳定性。咱们可以从以下几个方面入手,看看它是怎么做到的。 --- 二、为什么需要故障恢复? 首先,咱们得明白一个问题:为什么我们需要故障恢复?在现实世界中,网络环境复杂多变,服务器宕机、网络抖动、数据丢失等情况随时随地可能发生。如果我们的程序没有应对这些问题的能力,那后果简直不堪设想! 想象一下,你正在做一个在线支付系统,用户刚输入完支付信息,结果服务器突然挂了,这笔交易失败了。哎呀,这要是让用户碰上了,那可真是抓狂了!所以啊,咱们得想点办法,给系统加点“容错”的本事,不然出了问题用户可就懵圈了。说白了,故障恢复不就是干这个的嘛,就是为了不让小问题变成大麻烦! Netty在这方面做得非常到位。它有一套挺管用的招数,就算网络突然“捣乱”或者出问题了,也能尽量把损失降到最低,然后赶紧恢复到正常状态,一点儿都不耽误事儿。接下来,咱们就一步步拆解这些机制。 --- 三、Netty的故障恢复机制 3.1 异常处理与重试机制 首先,咱们来看看Netty最基础的故障恢复手段:异常处理与重试机制。 Netty提供了一种优雅的方式来处理异常。好比说呗,当客户端和服务器之间的连接突然“闹别扭”了,Netty就会立刻反应过来,自动给我们发个提醒,就像是“叮咚!出问题啦!”这样,咱们就能赶紧去处理这个小麻烦了。具体代码如下: java // 定义一个ChannelFutureListener,用于监听连接状态 ChannelFuture future = channel.connect(remoteAddress); future.addListener((ChannelFutureListener) futureListen -> { if (!futureListen.isSuccess()) { System.out.println("连接失败,尝试重新连接..."); // 这里可以加入重试逻辑 scheduleRetry(); } }); 在这段代码中,我们通过addListener为连接操作添加了一个监听器。如果连接失败,我们会打印一条日志并调用scheduleRetry()方法。这个办法啊,特别适合用来搞那种简单的重试操作,比如说隔一会儿就再试试重新连上啥的,挺实用的! 当然啦,实际项目中可能需要更复杂的重试策略,比如指数退避算法。不过Netty已经为我们提供了足够的灵活性,剩下的就是根据需求去实现啦! --- 3.2 零拷贝技术与内存管理 接下来,咱们聊聊另一个关键点:零拷贝技术与内存管理。 在高并发场景下,频繁的数据传输会导致内存占用飙升,进而引发GC(垃圾回收)风暴。Netty通过零拷贝技术很好地解决了这个问题。简单说呢,零拷贝技术就像是给数据开了一条“直达通道”,不用再把数据倒来倒去地复制一遍,就能让它直接从这儿跑到那儿。 举个例子,假设我们要将文件内容发送给远程客户端,传统的做法是先将文件读取到内存中,然后再逐字节写入Socket输出流。这样不仅效率低下,还会浪费大量内存资源。Netty 这家伙可聪明了,它能用 FileRegion 类直接把文件塞进 Socket 通道里,这样就省得在内存里来回倒腾数据啦,效率蹭蹭往上涨! java // 使用FileRegion发送文件 FileInputStream fileInputStream = new FileInputStream(new File("data.txt")); FileRegion region = new DefaultFileRegion(fileInputStream.getChannel(), 0, fileSize); channel.writeAndFlush(region); 在这段代码中,我们利用DefaultFileRegion将文件内容直接传递给了Netty的通道,大大提升了传输效率。 --- 3.3 长连接复用与心跳检测 第三个重要的机制是长连接复用与心跳检测。 在高并发环境下,频繁创建和销毁TCP连接的成本是非常高的。所以啊,Netty这个家伙超级聪明,它能让一个TCP连接反复用,不用每次都重新建立新的连接。这就像是你跟朋友煲电话粥,不用每次说完一句话就挂断重拨,直接接着聊就行啦,省心又省资源! 与此同时,为了防止连接因为长时间闲置而失效,Netty还引入了心跳检测机制。简单说吧,就像你隔一会儿给对方发个“我还在线”的消息,就为了确认你们的联系没断就行啦! java // 设置心跳检测参数 Bootstrap bootstrap = new Bootstrap(); bootstrap.option(ChannelOption.SO_KEEPALIVE, true); // 开启TCP保活功能 bootstrap.option(ChannelOption.CONNECT_TIMEOUT_MILLIS, 5000); // 设置连接超时时间 在这里,我们通过设置SO_KEEPALIVE选项开启了TCP保活功能,并设置了最长的连接等待时间为5秒。这样一来,即使网络出现短暂中断,Netty也会自动尝试恢复连接。 --- 3.4 数据缓冲与批量处理 最后一个要点是数据缓冲与批量处理。 在网络通信过程中,数据的大小和频率往往不可控。要是每次传来的数据都一点点的,那老是去处理这些小碎数据,就会多花不少功夫啦。Netty通过内置的缓冲区(Buffer)解决了这个问题。 例如,我们可以使用ByteBuf来存储和处理接收到的数据。ByteBuf就像是内存管理界的“万金油”,不仅能够灵活地伸缩大小,还能轻松应对各种编码需求,简直是程序员手里的瑞士军刀! java // 创建一个ByteBuf实例 ByteBuf buffer = Unpooled.buffer(1024); buffer.writeBytes(data); // 处理数据 while (buffer.readableBytes() > 0) { byte b = buffer.readByte(); process(b); } 在这段代码中,我们首先创建了一个容量为1024字节的缓冲区,然后将接收到的数据写入其中。接着,我们通过循环逐个读取并处理缓冲区中的数据。这种方式不仅可以提高处理效率,还能更好地应对突发流量。 --- 四、总结与展望 好了,朋友们,今天的分享就到这里啦!通过上面的内容,相信大家对Netty的故障恢复机制有了更深的理解。不管是应对各种意外情况的异常处理,还是能让数据传输更高效的零拷贝技术,又或者是能重复利用长连接和设置数据缓冲这些招数,Netty可真是个实力派选手啊! 不过,技术的世界永远没有尽头。Netty虽然已经足够优秀,但在某些特殊场景下仍可能存在局限性。未来的日子啊,我超级期待能看到更多的小伙伴,在Netty的基础上大展身手,把自己的系统捯饬得既聪明又靠谱,简直就像给它装了个“智慧大脑”一样! 最后,我想说的是,技术的学习是一个不断探索的过程。希望大家能在实践中积累经验,在挑战中成长进步。如果你有任何疑问或者想法,欢迎随时留言交流哦! 祝大家都能写出又快又稳的代码,一起迈向技术巅峰吧!😎
2025-03-19 16:22:40
79
红尘漫步
ZooKeeper
...oKeeper的一些设计细节。 首先,ZooKeeper的队列大小是由配置文件中的zookeeper.commitlog.capacity参数决定的。默认情况下,这个值是比较小的,可能只有几兆字节。想象一下,你的应用像一个忙碌的快递站,接到了无数订单(也就是那些请求)。但要是快递小哥忙得顾不上送货,订单就会越堆越多,很快整个站点就塞满了,连下一份订单都没地方放了! 其次,网络环境也是一个重要因素。有时候,客户端和服务端之间的网络延迟会导致请求堆积。就算客户端那边请求没那么频繁,但要是服务端反应慢了,照样会出问题啊。 最后,还有一个容易被忽视的原因就是客户端的连接数过多。每个连接都会占用一定的资源,包括内存和CPU。要是连上的用户太多了,但服务器的“体力”又不够强(比如内存、CPU之类的资源有限),那它就很容易“忙不过来”,导致请求都排着队等着,根本处理不完。 说到这里,我忍不住想吐槽一下自己曾经犯过的错误。嘿,有次我在测试环境里弄了个能扛大流量的程序,结果发现ZooKeeper老是蹦出个叫“CommitQueueFullException”的错误,烦得不行!我当时就纳闷了:“我明明设了个挺合理的线程池大小啊,怎么还出问题了呢?”后来一查才发现,坏事了,是客户端的连接数配少了,结果请求都堵在那儿了,就像高速公路堵车一样。真是教训深刻啊! --- 三、如何优雅地处理CommitQueueFullException? 既然知道了问题的根源,那接下来就要谈谈具体的解决办法了。我觉得可以从以下几个方面入手: 1. 调整队列大小 最直接的办法当然是增大队列的容量。通过修改zookeeper.commitlog.capacity参数,可以让ZooKeeper拥有更大的缓冲空间。其实嘛,这个方法也不是啥灵丹妙药,毕竟咱们手头的硬件资源就那么多,要是傻乎乎地把队列弄得太长,说不定反而会惹出别的麻烦,比如让系统跑得更卡之类的。 代码示例: properties zookeeper.commitlog.capacity=10485760 上面这段配置文件的内容表示将队列大小调整为10MB。你可以根据实际情况进行调整。 2. 优化客户端逻辑 很多时候,CommitQueueFullException并不是因为服务器的问题,而是客户端的请求模式不合理造成的。比如说,你是否可以合并多个小请求为一个大请求?或者是否可以采用批量操作的方式减少请求次数? 举个例子,假设你在做一个日志采集系统,每天需要向ZooKeeper写入成千上万个临时节点。与其每次都往一个节点里写东西,不如一口气往多个节点里写,这样能大大减少你发出的请求次数,省事儿又高效! 代码示例: java List nodesToCreate = Arrays.asList("/node1", "/node2", "/node3"); List createdNodes = zk.create("/batch/", new byte[0], ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL_SEQUENTIAL, nodesToCreate.size()); System.out.println("Created nodes: " + createdNodes); 在这段代码中,我们一次性创建了三个临时节点,而不是分别调用三次create()方法。这样的做法不仅减少了请求次数,还提高了效率。 3. 增加服务器资源 如果以上两种方法都不能解决问题,那么可能就需要考虑升级服务器硬件了。比如增加内存、提升CPU性能,甚至更换更快的磁盘。当然,这通常是最后的选择,因为它涉及到成本和技术难度。 4. 使用异步API ZooKeeper提供了同步和异步两种API,其中异步API可以在一定程度上缓解CommitQueueFullException的问题。异步API可酷了!你提交个请求,它立马给你返回结果,根本不用傻等那个响应回来。这样一来啊,就相当于给任务队列放了个假,压力小了很多呢! 代码示例: java import org.apache.zookeeper.AsyncCallback.StringCallback; public class AsyncExample implements StringCallback { @Override public void processResult(int rc, String path, Object ctx, String name) { if (rc == 0) { System.out.println("Node created successfully at path: " + name); } else { System.err.println("Failed to create node with error code: " + rc); } } public static void main(String[] args) throws Exception { ZooKeeper zk = new ZooKeeper("localhost:2181", 5000, null); zk.createAsync("/asyncTest", "data".getBytes(), ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT, new AsyncExample(), null); } } 在这段代码中,我们使用了createAsync()方法来异步创建节点。相比于同步版本,这种方式不会阻塞主线程,从而降低了队列满的风险。 --- 四、总结与展望 通过今天的探讨,我相信大家都对CommitQueueFullException有了更深刻的理解。嘿,别被这个错误吓到!其实啊,它也没那么可怕。只要你找到对的方法,保证分分钟搞定,就跟玩儿似的! 回顾整个过程,我觉得最重要的是要保持冷静和耐心。遇到技术难题的时候啊,别慌!先搞清楚它到底是个啥问题,就像剥洋葱一样,一层层搞明白本质。接着呢,就一步一步地去找解决的办法,慢慢来,总能找到出路的!就像攀登一座高山一样,每一步都需要脚踏实地。 最后,我想鼓励大家多动手实践。理论固然重要,但真正的成长来自于不断的尝试和失败。希望大家能够在实际项目中运用今天学到的知识,创造出更加优秀的应用! 好了,今天的分享就到这里啦!如果你还有什么疑问或者想法,欢迎随时交流哦~
2025-03-16 15:37:44
10
林中小径
转载文章
...t(){ // JS调用入口table = document.getElementById('pop_star'); // 获取到最外层的父元素作为桌面for(var i = 0 ; i < boardWidth; i ++){squareSet[i] = new Array(); //二维数组的创建,对每一个元素new Array()创建新数组for(var j = 0 ; j < boardWidth ; j ++){var square = createSquare(Math.floor(Math.random() 5) , i , j);squareSet[i][j] = square; //必须将新创建的方块放回到数组中table.appendChild(square); //需要将创建的新元素添加到桌面上} }refresh(); //每次页面内容发生变化需要重绘页面}window.onload = function(){init();} // window.onload 保证了在页面全部加载完毕后再执行JS代码 效果 第二阶段:鼠标选中后,闪烁 只有JavaScript需要修改 var table; //游戏桌面var squareWidth = 50; //方块宽高var boardWidth = 10; //行列数var squareSet = []; //方块信息集合(二维数组)每个元素保存该方块的全部信息var baseScore = 5; //第一块的分数var stepScore = 10; //每多一块的累加分数var totalScore = 0; //当前总分var targetScore = 1500; //目标分var choose = []; //选中的连通小方块var timer = null; //闪烁定时器var flag = true; //锁,防止点击事件中响应其他点击或移入时间var tempSquare = null; //临时方块function refresh(){for (var i = 0; i < squareSet.length; i++) {for (var j = 0; j < squareSet[i].length; j++) {squareSet[i][j].style.background="url(pic/"+squareSet[i][j].num+".png)"squareSet[i][j].style.left=squareSet[i][j].colsquareWidth+"px";squareSet[i][j].style.bottom=squareSet[i][j].rowsquareWidth+"px";} }}function createSquare(value,row,col){ //创建小方块,传入参数为颜色、行、列,初始化时使用。var temp = document.createElement('div'); //创建div dom对象temp.style.height = squareWidth + "px";temp.style.width = squareWidth + "px";temp.style.position = "absolute"; //相对于背景绝对定位temp.num = value;temp.col = col;temp.row = row;return temp; //返回这个创建出来的对象}function goBack(){ //还原样式if(timer != null){ //清空计时器clearInterval(timer);}for(var i = 0 ; i < squareSet.length ; i ++){for(var j = 0 ; j < squareSet[i].length ; j ++){squareSet[i][j].style.border = "0px solid white";squareSet[i][j].style.transform = "scale(0.95)";} }}function checkLinked(square , arr){ // 递归连通图算法arr.push(square); // 将当前方块放入选中数组中// check leftif( square.col > 0 && //未到边界squareSet[square.row][square.col - 1].num == square.num && //颜色相同arr.indexOf(squareSet[square.row][square.col - 1]) == -1) { //不在choose中,避免循环判断checkLinked(squareSet[square.row][square.col - 1] , arr);}// check rightif( square.col < boardWidth - 1 &&squareSet[square.row][square.col + 1].num == square.num &&arr.indexOf(squareSet[square.row][square.col + 1]) == -1) {checkLinked(squareSet[square.row][square.col + 1] , arr);}// check upif( square.row < boardWidth - 1 &&squareSet[square.row + 1][square.col].num == square.num &&arr.indexOf(squareSet[square.row + 1][square.col]) == -1) {checkLinked(squareSet[square.row + 1][square.col] , arr);}// check downif( square.row > 0 &&squareSet[square.row - 1][square.col].num == square.num &&arr.indexOf(squareSet[square.row - 1][square.col]) == -1) {checkLinked(squareSet[square.row - 1][square.col] , arr);} }function flicker(arr){ // 选中连通的小方块可以闪烁var num = 0;timer = setInterval(function(){for(var i = 0 ; i < arr.length ; i ++){arr[i].style.border = "3px solid BFEFFF";//有个框arr[i].style.transform = "scale(" + (0.9 + (0.05 Math.pow(-1 , num))) + ")";//一闪一闪}num ++; // 注意这里所采用的数学技巧,仍然使用transform:scale(val)来进行缩放。},300);//闪烁的时间}function mouseOver(obj){ //鼠标移入区域响应// 还原所有样式goBack();// 检查相邻choose = [];checkLinked(obj , choose);// 闪烁flicker(choose);// 显示分数selectScore();}function init(){ // JS调用入口table = document.getElementById('pop_star'); // 获取到最外层的父元素作为桌面document.getElementById('targetScore').innerHTML = "Target Score : " + targetScore; //显示目标分数用innerHTML// 循环初始化星星区域for(var i = 0 ; i < boardWidth ; i ++){squareSet[i] = new Array(); //二维数组的创建,对每一个元素new Array()创建新数组for(var j = 0 ; j < boardWidth ; j ++){var square = createSquare(Math.floor(Math.random() 5) , i , j);// 鼠标移入事件square.onmouseover = function(){mouseOver(this);}squareSet[i][j] = square; //必须将新创建的方块放回到数组中table.appendChild(square); //需要将创建的新元素添加到桌面上} }refresh(); //每次页面内容发生变化需要重绘页面}window.onload = function(){init();} // window.onload 保证了在页面全部加载完毕后再执行JS代码 效果2.1 加入这段代码,便会计算闪烁方块得分 function selectScore(){ //可以显示当前选中小方块的得分var score = 0;for(var i = 0 ; i < choose.length ; i ++){score += (baseScore + i stepScore);}document.getElementById('selectScore').innerHTML = choose.length + " blocks " + score + " points";document.getElementById('selectScore').style.opacity = 1;// 设置时间间隔1秒后显示消失的过渡动画setTimeout(function(){document.getElementById('selectScore').style.opacity = 0;document.getElementById('selectScore').style.transition = "opacity 1s";},1000);} 完整代码为: var table; //游戏桌面var squareWidth = 50; //方块宽高var boardWidth = 10; //行列数var squareSet = []; //方块信息集合(二维数组)每个元素保存该方块的全部信息var baseScore = 5; //第一块的分数var stepScore = 10; //每多一块的累加分数var totalScore = 0; //当前总分var targetScore = 1500; //目标分var choose = []; //选中的连通小方块var timer = null; //闪烁定时器var flag = true; //锁,防止点击事件中响应其他点击或移入时间var tempSquare = null; //临时方块function refresh(){for (var i = 0; i < squareSet.length; i++) {for (var j = 0; j < squareSet[i].length; j++) {squareSet[i][j].style.background="url(pic/"+squareSet[i][j].num+".png)"squareSet[i][j].style.left=squareSet[i][j].colsquareWidth+"px";squareSet[i][j].style.bottom=squareSet[i][j].rowsquareWidth+"px";} }}function createSquare(value,row,col){ //创建小方块,传入参数为颜色、行、列,初始化时使用。var temp = document.createElement('div'); //创建div dom对象temp.style.height = squareWidth + "px";temp.style.width = squareWidth + "px";temp.style.position = "absolute"; //相对于背景绝对定位temp.num = value;temp.col = col;temp.row = row;return temp; //返回这个创建出来的对象}function goBack(){ //还原样式if(timer != null){ //清空计时器clearInterval(timer);}for(var i = 0 ; i < squareSet.length ; i ++){for(var j = 0 ; j < squareSet[i].length ; j ++){squareSet[i][j].style.border = "0px solid white";squareSet[i][j].style.transform = "scale(0.95)";} }}function checkLinked(square , arr){ // 递归连通图算法arr.push(square); // 将当前方块放入选中数组中// check leftif( square.col > 0 && //未到边界squareSet[square.row][square.col - 1].num == square.num && //颜色相同arr.indexOf(squareSet[square.row][square.col - 1]) == -1) { //不在choose中,避免循环判断checkLinked(squareSet[square.row][square.col - 1] , arr);}// check rightif( square.col < boardWidth - 1 &&squareSet[square.row][square.col + 1].num == square.num &&arr.indexOf(squareSet[square.row][square.col + 1]) == -1) {checkLinked(squareSet[square.row][square.col + 1] , arr);}// check upif( square.row < boardWidth - 1 &&squareSet[square.row + 1][square.col].num == square.num &&arr.indexOf(squareSet[square.row + 1][square.col]) == -1) {checkLinked(squareSet[square.row + 1][square.col] , arr);}// check downif( square.row > 0 &&squareSet[square.row - 1][square.col].num == square.num &&arr.indexOf(squareSet[square.row - 1][square.col]) == -1) {checkLinked(squareSet[square.row - 1][square.col] , arr);} }function flicker(arr){ // 选中连通的小方块可以闪烁var num = 0;timer = setInterval(function(){for(var i = 0 ; i < arr.length ; i ++){arr[i].style.border = "3px solid BFEFFF";//有个框arr[i].style.transform = "scale(" + (0.9 + (0.05 Math.pow(-1 , num))) + ")";//一闪一闪}num ++; // 注意这里所采用的数学技巧,仍然使用transform:scale(val)来进行缩放。},300);//闪烁的时间}function selectScore(){ //可以显示当前选中小方块的得分var score = 0;for(var i = 0 ; i < choose.length ; i ++){score += (baseScore + i stepScore);}document.getElementById('selectScore').innerHTML = choose.length + " blocks " + score + " points";document.getElementById('selectScore').style.opacity = 1;// 设置时间间隔1秒后显示消失的过渡动画setTimeout(function(){document.getElementById('selectScore').style.opacity = 0;document.getElementById('selectScore').style.transition = "opacity 1s";},1000);}function mouseOver(obj){ //鼠标移入区域响应// 还原所有样式goBack();// 检查相邻choose = [];checkLinked(obj , choose);// 闪烁flicker(choose);// 显示分数selectScore();}function init(){ // JS调用入口table = document.getElementById('pop_star'); // 获取到最外层的父元素作为桌面document.getElementById('targetScore').innerHTML = "Target Score : " + targetScore; //显示目标分数用innerHTML// 循环初始化星星区域for(var i = 0 ; i < boardWidth ; i ++){squareSet[i] = new Array(); //二维数组的创建,对每一个元素new Array()创建新数组for(var j = 0 ; j < boardWidth ; j ++){var square = createSquare(Math.floor(Math.random() 5) , i , j);// 鼠标移入事件square.onmouseover = function(){mouseOver(this);}squareSet[i][j] = square; //必须将新创建的方块放回到数组中table.appendChild(square); //需要将创建的新元素添加到桌面上} }refresh(); //每次页面内容发生变化需要重绘页面}window.onload = function(){init();} // window.onload 保证了在页面全部加载完毕后再执行JS代码 效果2.2 第三阶段:消灭星星(只消灭一次) 只消除选中的星星,但是不会掉下来。 在function init(){}里面添加以下代码: // 鼠标点击事件square.onclick = function(){//为移除增加一个延迟动画,为了防止闭包,这里采用立即执行函数for(var i = 0 ; i < choose.length ; i ++){(function(i){setTimeout(function(){squareSet[choose[i].row][choose[i].col] = null; //为状态数组置空table.removeChild(choose[i]); //将其从桌面上移除} , i 100);})(i);} } 效果 使得星星移动(原作者这里出现错误) function move(){//纵向下落,采用快慢指针算法for(var i = 0 ; i < boardWidth ; i ++){var pointer = 0; //慢指针for(var j = 0 ; j < boardWidth ; j ++){if(squareSet[j][i] != null){ //按行遍历if(pointer != j){ //快慢指针不同步说明中间有空元素squareSet[pointer][i] = squareSet[j][i]; //慢指针设成快指针元素squareSet[j][i].row = pointer;squareSet[j][i] = null; //快指针处置空}pointer ++; //该行非空时慢指针增加} }} 完整代码如下: var table; //游戏桌面var squareWidth = 50; //方块宽高var boardWidth = 10; //行列数var squareSet = []; //方块信息集合(二维数组)每个元素保存该方块的全部信息var baseScore = 5; //第一块的分数var stepScore = 10; //每多一块的累加分数var totalScore = 0; //当前总分var targetScore = 1500; //目标分var choose = []; //选中的连通小方块var timer = null; //闪烁定时器var flag = true; //锁,防止点击事件中响应其他点击或移入时间var tempSquare = null; //临时方块function refresh(){for (var i = 0; i < squareSet.length; i++) {for (var j = 0; j < squareSet[i].length; j++) {squareSet[i][j].style.background="url(pic/"+squareSet[i][j].num+".png)"squareSet[i][j].style.left=squareSet[i][j].colsquareWidth+"px";squareSet[i][j].style.bottom=squareSet[i][j].rowsquareWidth+"px";} }}function createSquare(value,row,col){ //创建小方块,传入参数为颜色、行、列,初始化时使用。var temp = document.createElement('div'); //创建div dom对象temp.style.height = squareWidth + "px";temp.style.width = squareWidth + "px";temp.style.position = "absolute"; //相对于背景绝对定位temp.num = value;temp.col = col;temp.row = row;return temp; //返回这个创建出来的对象}function goBack(){ //还原样式if(timer != null){ //清空计时器clearInterval(timer);}for(var i = 0 ; i < squareSet.length ; i ++){for(var j = 0 ; j < squareSet[i].length ; j ++){squareSet[i][j].style.border = "0px solid white";squareSet[i][j].style.transform = "scale(0.95)";} }}function checkLinked(square , arr){ // 递归连通图算法arr.push(square); // 将当前方块放入选中数组中// check leftif( square.col > 0 && //未到边界squareSet[square.row][square.col - 1].num == square.num && //颜色相同arr.indexOf(squareSet[square.row][square.col - 1]) == -1) { //不在choose中,避免循环判断checkLinked(squareSet[square.row][square.col - 1] , arr);}// check rightif( square.col < boardWidth - 1 &&squareSet[square.row][square.col + 1].num == square.num &&arr.indexOf(squareSet[square.row][square.col + 1]) == -1) {checkLinked(squareSet[square.row][square.col + 1] , arr);}// check upif( square.row < boardWidth - 1 &&squareSet[square.row + 1][square.col].num == square.num &&arr.indexOf(squareSet[square.row + 1][square.col]) == -1) {checkLinked(squareSet[square.row + 1][square.col] , arr);}// check downif( square.row > 0 &&squareSet[square.row - 1][square.col].num == square.num &&arr.indexOf(squareSet[square.row - 1][square.col]) == -1) {checkLinked(squareSet[square.row - 1][square.col] , arr);} }function flicker(arr){ // 选中连通的小方块可以闪烁var num = 0;timer = setInterval(function(){for(var i = 0 ; i < arr.length ; i ++){arr[i].style.border = "3px solid BFEFFF";//有个框arr[i].style.transform = "scale(" + (0.9 + (0.05 Math.pow(-1 , num))) + ")";//一闪一闪}num ++; // 注意这里所采用的数学技巧,仍然使用transform:scale(val)来进行缩放。},300);//闪烁的时间}function selectScore(){ //可以显示当前选中小方块的得分var score = 0;for(var i = 0 ; i < choose.length ; i ++){score += (baseScore + i stepScore);}document.getElementById('selectScore').innerHTML = choose.length + " blocks " + score + " points";document.getElementById('selectScore').style.opacity = 1;// 设置时间间隔1秒后显示消失的过渡动画setTimeout(function(){document.getElementById('selectScore').style.opacity = 0;document.getElementById('selectScore').style.transition = "opacity 1s";},1000);}function mouseOver(obj){ //鼠标移入区域响应// 还原所有样式goBack();// 检查相邻choose = [];checkLinked(obj , choose);// 闪烁flicker(choose);// 显示分数selectScore();}function move(){//纵向下落,采用快慢指针算法for(var i = 0 ; i < boardWidth ; i ++){var pointer = 0; //慢指针for(var j = 0 ; j < boardWidth ; j ++){if(squareSet[j][i] != null){ //按行遍历if(pointer != j){ //快慢指针不同步说明中间有空元素squareSet[pointer][i] = squareSet[j][i]; //慢指针设成快指针元素squareSet[j][i].row = pointer;squareSet[j][i] = null; //快指针处置空}pointer ++; //该行非空时慢指针增加} }}// 横向移动(当出现一列为空时)for(var i = 0 ; i < squareSet[0].length ;){ //必须注意循环结束条件的判断if(squareSet[0][i] == null){ //逻辑:只需判断最低层为空,该行则全为空for(var j = 0 ; j < boardWidth ; j ++){squareSet[j].splice(i , 1); //splice删除数组squareSet[j]中从i开始的1个元素}continue;//注意移动后i不应改变了}i ++;}refresh();}function init(){ // JS调用入口table = document.getElementById('pop_star'); // 获取到最外层的父元素作为桌面document.getElementById('targetScore').innerHTML = "Target Score : " + targetScore; //显示目标分数用innerHTML// 循环初始化星星区域for(var i = 0 ; i < boardWidth ; i ++){squareSet[i] = new Array(); //二维数组的创建,对每一个元素new Array()创建新数组for(var j = 0 ; j < boardWidth ; j ++){var square = createSquare(Math.floor(Math.random() 5) , i , j);// 鼠标移入事件square.onmouseover = function(){mouseOver(this);}// 鼠标点击事件square.onclick = function(){//对锁进行控制if(!flag || choose.length == null){return;}flag = false;tempSquare = null;//更新分数var score = 0;for(var i = 0 ; i < choose.length ; i ++){score += (baseScore + i stepScore);}totalScore += score;document.getElementById('nowScore').innerHTML = "Current Score : " + totalScore;//为移除增加一个延迟动画,为了防止闭包,这里采用立即执行函数for(var i = 0 ; i < choose.length ; i ++){(function(i){setTimeout(function(){squareSet[choose[i].row][choose[i].col] = null; //为状态数组置空table.removeChild(choose[i]); //将其从桌面上移除} , i 100);})(i);}//需要等星星消除完毕后再移动,故需增加一个延迟setTimeout(function(){move(); //调用移动函数},choose.length 100);}squareSet[i][j] = square; //必须将新创建的方块放回到数组中table.appendChild(square); //需要将创建的新元素添加到桌面上} }refresh(); //每次页面内容发生变化需要重绘页面}window.onload = function(){init();} // window.onload 保证了在页面全部加载完毕后再执行JS代码 效果(下降成功,但是有点小bug只有部分下降了) 解决方案:只需要在function refresh(){}的双循环里面增加以下代码: if(squareSet[i][j] == null) continue; 完整代码如下: var table; //游戏桌面var squareWidth = 50; //方块宽高var boardWidth = 10; //行列数var squareSet = []; //方块信息集合(二维数组)每个元素保存该方块的全部信息var baseScore = 5; //第一块的分数var stepScore = 10; //每多一块的累加分数var totalScore = 0; //当前总分var targetScore = 1500; //目标分var choose = []; //选中的连通小方块var timer = null; //闪烁定时器var flag = true; //锁,防止点击事件中响应其他点击或移入时间var tempSquare = null; //临时方块function refresh(){for (var i = 0; i < squareSet.length; i++) {for (var j = 0; j < squareSet[i].length; j++) {if(squareSet[i][j] == null) continue; // 点击后数组中可能有空值需要跳过squareSet[i][j].style.background="url(pic/"+squareSet[i][j].num+".png)"squareSet[i][j].style.left=squareSet[i][j].colsquareWidth+"px";squareSet[i][j].style.bottom=squareSet[i][j].rowsquareWidth+"px";} }}function createSquare(value,row,col){ //创建小方块,传入参数为颜色、行、列,初始化时使用。var temp = document.createElement('div'); //创建div dom对象temp.style.height = squareWidth + "px";temp.style.width = squareWidth + "px";temp.style.position = "absolute"; //相对于背景绝对定位temp.num = value;temp.col = col;temp.row = row;return temp; //返回这个创建出来的对象}function goBack(){ //还原样式if(timer != null){ //清空计时器clearInterval(timer);}for(var i = 0 ; i < squareSet.length ; i ++){for(var j = 0 ; j < squareSet[i].length ; j ++){squareSet[i][j].style.border = "0px solid white";squareSet[i][j].style.transform = "scale(0.95)";} }}function checkLinked(square , arr){ // 递归连通图算法arr.push(square); // 将当前方块放入选中数组中// check leftif( square.col > 0 && //未到边界squareSet[square.row][square.col - 1].num == square.num && //颜色相同arr.indexOf(squareSet[square.row][square.col - 1]) == -1) { //不在choose中,避免循环判断checkLinked(squareSet[square.row][square.col - 1] , arr);}// check rightif( square.col < boardWidth - 1 &&squareSet[square.row][square.col + 1].num == square.num &&arr.indexOf(squareSet[square.row][square.col + 1]) == -1) {checkLinked(squareSet[square.row][square.col + 1] , arr);}// check upif( square.row < boardWidth - 1 &&squareSet[square.row + 1][square.col].num == square.num &&arr.indexOf(squareSet[square.row + 1][square.col]) == -1) {checkLinked(squareSet[square.row + 1][square.col] , arr);}// check downif( square.row > 0 &&squareSet[square.row - 1][square.col].num == square.num &&arr.indexOf(squareSet[square.row - 1][square.col]) == -1) {checkLinked(squareSet[square.row - 1][square.col] , arr);} }function flicker(arr){ // 选中连通的小方块可以闪烁var num = 0;timer = setInterval(function(){for(var i = 0 ; i < arr.length ; i ++){arr[i].style.border = "3px solid BFEFFF";//有个框arr[i].style.transform = "scale(" + (0.9 + (0.05 Math.pow(-1 , num))) + ")";//一闪一闪}num ++; // 注意这里所采用的数学技巧,仍然使用transform:scale(val)来进行缩放。},300);//闪烁的时间}function selectScore(){ //可以显示当前选中小方块的得分var score = 0;for(var i = 0 ; i < choose.length ; i ++){score += (baseScore + i stepScore);}document.getElementById('selectScore').innerHTML = choose.length + " blocks " + score + " points";document.getElementById('selectScore').style.opacity = 1;// 设置时间间隔1秒后显示消失的过渡动画setTimeout(function(){document.getElementById('selectScore').style.opacity = 0;document.getElementById('selectScore').style.transition = "opacity 1s";},1000);}function mouseOver(obj){ //鼠标移入区域响应// 还原所有样式goBack();// 检查相邻choose = [];checkLinked(obj , choose);// 闪烁flicker(choose);// 显示分数selectScore();}function move(){//纵向下落,采用快慢指针算法for(var i = 0 ; i < boardWidth ; i ++){var pointer = 0; //慢指针for(var j = 0 ; j < boardWidth ; j ++){if(squareSet[j][i] != null){ //按行遍历if(pointer != j){ //快慢指针不同步说明中间有空元素squareSet[pointer][i] = squareSet[j][i]; //慢指针设成快指针元素squareSet[j][i].row = pointer;squareSet[j][i] = null; //快指针处置空}pointer ++; //该行非空时慢指针增加} }}// 横向移动(当出现一列为空时)for(var i = 0 ; i < squareSet[0].length ;){ //必须注意循环结束条件的判断if(squareSet[0][i] == null){ //逻辑:只需判断最低层为空,该行则全为空for(var j = 0 ; j < boardWidth ; j ++){squareSet[j].splice(i , 1); //splice删除数组squareSet[j]中从i开始的1个元素}continue;//注意移动后i不应改变了}i ++;}refresh();}function init(){ // JS调用入口table = document.getElementById('pop_star'); // 获取到最外层的父元素作为桌面document.getElementById('targetScore').innerHTML = "Target Score : " + targetScore; //显示目标分数用innerHTML// 循环初始化星星区域for(var i = 0 ; i < boardWidth ; i ++){squareSet[i] = new Array(); //二维数组的创建,对每一个元素new Array()创建新数组for(var j = 0 ; j < boardWidth ; j ++){var square = createSquare(Math.floor(Math.random() 5) , i , j);// 鼠标移入事件square.onmouseover = function(){mouseOver(this);}// 鼠标点击事件square.onclick = function(){//对锁进行控制if(!flag || choose.length == null){return;}flag = false;tempSquare = null;//更新分数var score = 0;for(var i = 0 ; i < choose.length ; i ++){score += (baseScore + i stepScore);}totalScore += score;document.getElementById('nowScore').innerHTML = "Current Score : " + totalScore;//为移除增加一个延迟动画,为了防止闭包,这里采用立即执行函数for(var i = 0 ; i < choose.length ; i ++){(function(i){setTimeout(function(){squareSet[choose[i].row][choose[i].col] = null; //为状态数组置空table.removeChild(choose[i]); //将其从桌面上移除} , i 100);})(i);}//需要等星星消除完毕后再移动,故需增加一个延迟setTimeout(function(){move(); //调用移动函数},choose.length 100);}squareSet[i][j] = square; //必须将新创建的方块放回到数组中table.appendChild(square); //需要将创建的新元素添加到桌面上} }refresh(); //每次页面内容发生变化需要重绘页面}window.onload = function(){init();} // window.onload 保证了在页面全部加载完毕后再执行JS代码 第四阶段:消灭全部星星,返回结果 最终完整版代码如下: var table; //游戏桌面var squareWidth = 50; //方块宽高var boardWidth = 10; //行列数var squareSet = []; //方块信息集合(二维数组)每个元素保存该方块的全部信息var baseScore = 5; //第一块的分数var stepScore = 10; //每多一块的累加分数var totalScore = 0; //当前总分var targetScore = 1500; //目标分var choose = []; //选中的连通小方块var timer = null; //闪烁定时器var flag = true; //锁,防止点击事件中响应其他点击或移入时间var tempSquare = null; //临时方块function refresh(){ //重绘画板,每次鼠标点击后刷新for(var i = 0 ; i < squareSet.length ; i ++){for(var j = 0 ; j < squareSet[i].length ; j ++){if(squareSet[i][j] == null) continue; // 点击后数组中可能有空值需要跳过squareSet[i][j].row = i; //更新当前的行列数squareSet[i][j].col = j;squareSet[i][j].style.backgroundImage = "url(./pic/" + squareSet[i][j].num + ".png)"squareSet[i][j].style.backgroundSize = "cover"; //占满范围squareSet[i][j].style.transform = "scale(0.95)"; //美观效果让不同星星之间留出空隙(缩小至0.95倍大小)squareSet[i][j].style.left = squareSet[i][j].col squareWidth + "px"; // 别忘了加"px"squareSet[i][j].style.bottom = squareSet[i][j].row squareWidth + "px";squareSet[i][j].style.transition = "left 0.3s, bottom 0.3s";} }}function createSquare(value,row,col){ //创建小方块,传入参数为颜色、行、列,初始化时使用。var temp = document.createElement('div'); //创建div dom对象temp.style.height = squareWidth + "px";temp.style.width = squareWidth + "px";temp.style.display = "inline-block"; //需要让对象元素能排列一排temp.style.position = "absolute"; //相对于背景绝对定位temp.style.boxSizing = "border-box"; //重要:不会使增加的边框溢出覆盖到旁边的元素temp.style.borderRadius = "12px";temp.num = value;temp.col = col;temp.row = row;return temp; //返回这个创建出来的对象}function goBack(){ //还原样式if(timer != null){ //清空计时器clearInterval(timer);}for(var i = 0 ; i < squareSet.length ; i ++){for(var j = 0 ; j < squareSet[i].length ; j ++){if(squareSet[i][j] == null) continue;squareSet[i][j].style.border = "0px solid white";squareSet[i][j].style.transform = "scale(0.95)";} }}function checkLinked(square , arr){ // 递归连通图算法if(square == null) return; // 递归边界arr.push(square); // 将当前方块放入选中数组中// check leftif( square.col > 0 && //未到边界squareSet[square.row][square.col - 1] && //左侧有块squareSet[square.row][square.col - 1].num == square.num && //颜色相同arr.indexOf(squareSet[square.row][square.col - 1]) == -1) { //不在choose中,避免循环判断checkLinked(squareSet[square.row][square.col - 1] , arr);}// check rightif( square.col < boardWidth - 1 &&squareSet[square.row][square.col + 1] &&squareSet[square.row][square.col + 1].num == square.num &&arr.indexOf(squareSet[square.row][square.col + 1]) == -1) {checkLinked(squareSet[square.row][square.col + 1] , arr);}// check upif( square.row < boardWidth - 1 &&squareSet[square.row + 1][square.col] &&squareSet[square.row + 1][square.col].num == square.num &&arr.indexOf(squareSet[square.row + 1][square.col]) == -1) {checkLinked(squareSet[square.row + 1][square.col] , arr);}// check downif( square.row > 0 &&squareSet[square.row - 1][square.col] &&squareSet[square.row - 1][square.col].num == square.num &&arr.indexOf(squareSet[square.row - 1][square.col]) == -1) {checkLinked(squareSet[square.row - 1][square.col] , arr);} }function flicker(arr){ // 选中连通的小方块可以闪烁var num = 0;timer = setInterval(function(){for(var i = 0 ; i < arr.length ; i ++){arr[i].style.border = "3px solid BFEFFF";arr[i].style.transform = "scale(" + (0.9 + (0.05 Math.pow(-1 , num))) + ")";}num ++; // 注意这里所采用的数学技巧,仍然使用transform:scale(val)来进行缩放。},300);}function selectScore(){ //可以显示当前选中小方块的得分var score = 0;for(var i = 0 ; i < choose.length ; i ++){score += (baseScore + i stepScore);}if(score == 0) return;document.getElementById('selectScore').innerHTML = choose.length + " blocks " + score + " points";document.getElementById('selectScore').style.opacity = 1;document.getElementById('selectScore').style.transition = null;// 设置时间间隔1秒后显示消失的过渡动画setTimeout(function(){document.getElementById('selectScore').style.opacity = 0;document.getElementById('selectScore').style.transition = "opacity 1s";},1000);}function mouseOver(obj){ //鼠标移入区域响应// 加锁,点击事件过程中不允许其他点击事件与移入事件if(!flag){tempSquare = obj;return;}// 还原所有样式goBack();// 检查相邻choose = [];checkLinked(obj , choose);if(choose.length <= 1){choose = [];return;}// 闪烁flicker(choose);// 显示分数selectScore();}function move(){ //下落移动控制//纵向下落,采用快慢指针算法for(var i = 0 ; i < boardWidth ; i ++){var pointer = 0; //慢指针for(var j = 0 ; j < boardWidth ; j ++){if(squareSet[j][i] != null){ //按行遍历if(pointer != j){ //快慢指针不同步说明中间有空元素squareSet[pointer][i] = squareSet[j][i]; //慢指针设成快指针元素squareSet[j][i].row = pointer;squareSet[j][i] = null; //快指针处置空}pointer ++; //该行非空时慢指针增加} }}// 横向移动(当出现一列为空时)for(var i = 0 ; i < squareSet[0].length ;){ // 注意循环终止条件的判断!!!因为数组长度会更新if(squareSet[0][i] == null){ //逻辑:只需判断最低层为空,该行则全为空for(var j = 0 ; j < boardWidth ; j ++){squareSet[j].splice(i , 1); //splice删除数组squareSet[j]中从i开始的1个元素}continue;//注意移动后i不应改变了}i ++;}refresh();}function isFinish(){ //判断游戏结束flag = true; //重要:需要先解锁,保证后续鼠标事件可以被响应for(var i = 0 ; i < squareSet.length ; i ++){for(var j = 0 ; j < squareSet[i].length ; j ++){if(squareSet[i][j] == null) continue; //遍历每一元素判断连通var temp = [];checkLinked(squareSet[i][j] , temp);if(temp.length > 1) return false; //若有某一元素仍有多块连通,则游戏未结束} }return flag;}function init(){ // JS调用入口table = document.getElementById('pop_star'); // 获取到最外层的父元素作为桌面document.getElementById('targetScore').innerHTML = "Target Score : " + targetScore; //显示目标分数用innerHTML// 循环初始化星星区域for(var i = 0 ; i < boardWidth ; i ++){squareSet[i] = new Array(); //二维数组的创建,对每一个元素new Array()创建新数组for(var j = 0 ; j < boardWidth ; j ++){var square = createSquare(Math.floor(Math.random() 5) , i , j);// 鼠标移入事件square.onmouseover = function(){mouseOver(this);}// 鼠标点击事件square.onclick = function(){//对锁进行控制if(!flag || choose.length == null){return;}flag = false;tempSquare = null;//更新分数var score = 0;for(var i = 0 ; i < choose.length ; i ++){score += (baseScore + i stepScore);}totalScore += score;document.getElementById('nowScore').innerHTML = "Current Score : " + totalScore;//为移除增加一个延迟动画,为了防止闭包,这里采用立即执行函数for(var i = 0 ; i < choose.length ; i ++){(function(i){setTimeout(function(){squareSet[choose[i].row][choose[i].col] = null; //为状态数组置空table.removeChild(choose[i]); //将其从桌面上移除} , i 50);})(i);}//需要等星星消除完毕后再移动,故需增加一个延迟setTimeout(function(){move(); //调用移动函数setTimeout(function(){var judge = isFinish();if(judge){ //游戏达到结束条件if(totalScore > targetScore){alert('Congratulations! You win!');}else{alert('Mission Failed!');} }else{flag = true;choose = [];mouseOver(tempSquare); //处理可能存在的冲突} },300 + choose.length 75); //需要一个判断延迟},choose.length 50);}squareSet[i][j] = square; //必须将新创建的方块放回到数组中table.appendChild(square); //需要将创建的新元素添加到桌面上} }refresh(); //每次页面内容发生变化需要重绘页面}window.onload = function(){init();} // window.onload 保证了在页面全部加载完毕后再执行JS代码 效果 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_56471396/article/details/128681321。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-08 15:26:34
516
转载
Spark
...务快开始了,你再随手调用一下.cache()这个方法,这样就能保证数据乖乖地待在内存里,别到时候卡壳啦! 三、实践案例 如何正确使用分布式缓存? 接下来,我想分享几个具体的案例,帮助大家更好地理解和运用分布式缓存。 案例1:简单的词频统计 假设我们有一个文本文件,里面包含了大量的英文单词。我们的目标是统计每个单词出现的次数。为了提高效率,我们可以先将文件内容缓存起来,然后再进行处理。 scala val textFile = sc.textFile("hdfs://path/to/input.txt") textFile.cache() val wordCounts = textFile.flatMap(_.split(" ")) .map(word => (word, 1)) .reduceByKey(_ + _) wordCounts.collect().foreach(println) 在这个例子中,.cache()方法确保了textFile RDD的内容只被加载一次,并且可以被后续的操作共享。其实嘛,要是没用缓存的话,每次你调用flatMap或者map的时候,都得重新去原始数据里翻一遍,这就跟每次出门都得把家里所有东西再检查一遍似的,纯属给自己找麻烦啊! 案例2:多步骤处理流程 有时候,一个任务可能会涉及到多个阶段的处理,比如过滤、映射、聚合等等。在这种情况下,合理安排缓存的位置尤为重要。 python from pyspark.sql import SparkSession spark = SparkSession.builder.appName("WordCount").getOrCreate() df = spark.read.text("hdfs://path/to/input.txt") 第一步:将文本拆分为单词 words = df.selectExpr("split(value, ' ') as words").select("words.") 第二步:缓存中间结果 words.cache() 第三步:统计每个单词的出现次数 word_counts = words.groupBy("value").count() word_counts.show() 这里,我们在第一步处理完之后立即调用了.cache()方法,目的是为了保留中间结果,方便后续步骤复用。要是不这么干啊,那每走一步都得把上一步的算一遍,想想就费劲,效率肯定低得让人抓狂。 四、总结与展望 通过今天的讨论,相信大家对Spark的分布式缓存有了更深刻的认识。虽然它能带来显著的性能提升,但也并非万能药。其实啊,要想把它用得溜、用得爽,就得先搞懂它是怎么工作的,再根据具体的情况去灵活调整。不然的话,它的那些本事可就都浪费啦! 未来,随着硬件条件的不断改善以及算法优化的持续推进,相信Spark会在更多领域展现出更加卓越的表现。嘿,咱们做开发的嘛,就得有颗永远好奇的心!就跟追剧似的,新技术一出就得赶紧瞅两眼,说不定哪天就用上了呢。别怕麻烦,多学点东西总没错,说不定哪天就能整出个大招儿来! 最后,感谢大家耐心阅读这篇文章。如果你有任何疑问或者想法,欢迎随时交流!让我们一起努力,共同进步吧!
2025-05-02 15:46:14
82
素颜如水
转载文章
... 锁定用户账号方法一[root@hehe ~] passwd -l test3 锁定用户账号方法二[root@hehe ~] usermod -U test2 解锁用户账号方法一[root@hehe~] passwd -u test3 解锁用户账号方法二查看账户有没有被锁:passwd -S [用户名] 3.删除无用的账号 [root@hehe ~] userdel test1[root@hehe~] userdel -r test2 4.锁定账号文件passwd,shadow [root@hehe ~] chattr +i /etc/passwd /etc/shadow 锁定文件,包括root也无法修改[root@hehe ~] chattr -i /etc/passwd /etc/shadow 解锁文件[root@hehe ~] lsattr /etc/passwd /etc/shadow查看文件状态属性 举个例子: 二.密码安全控制: 1.设置密码有效期: 1.[root@localhost ~] chage -M 60 test3 这种方法适合修改已经存在的用户12.[root@localhost ~] vim /etc/login.defs 这种适合以后添加新用户PASS_MAX_DAYS 30 1.这个方法适用于早就已经存在的用户: 2.这个方法适用于新用户 2.要求用户下次登录时改密码: [root@hehe ~] chage -d 0 [用户名] 强制要求用户下次登陆时修改密码 三.命令历史限制与自动注销 1.命令历史限制: 1.减少记录的命令条数 减少记录命令的条数:1.[root@hehe ~] vim /etc/profile 进入配置文件修改限制命令条数。适合新用户HISTSIZE=200 修改限制命令为200条,系统默认是1000条profile [root@lhehe ~] source /etc/ 刷新配置文件,使文件立即生效2.[root@hehe~] export HISTSIZE=200 适用于当前(之后)用户[root@hehe~] source /etc/profile [root@hehe ~] source /etc/profile 刷新配置文件,使文件立即生效 1.减少记录命令的条数(适用之前的用户): 2.注销时自动清空命令历史 3. 注销时自动清空命令:[root@hehe ~] vim ~/.bash_logout(临时清除,重启缓存的话还在)echo "" > ~/.bash_history(永久删除)history是查你使用过的命令 2.终端自动注销: 1.闲置600秒后自动注销 闲置600秒后自动注销:[root@hehe ~]vim .bash_profile 进入配置文件export TMOUT=600 全局声明超过60秒闲置后自动注销终端[root@hehe ~] source .bash_profile [root@hehe ~] echo $TMOUT[root@hehe ~] export TMOUT=600 如果不在配置文件输入这条命令,那么是对当前用户生效[root@hehe ~]vim .bash_profile export TMOUT=600 注释掉这条命令,就不会自动注销了 四.PAM安全认证 1.su的命令的安全隐患 1.,默认情况下,任何用户都允许使用su命令,有机会反复尝试其他用户(如root) 的登录密码,带来安全风险; 2.为了加强su命令的使用控制,可借助于PAM认证模块,只允许极个别用户使用su命令进行切换。 2.什么是PAM 1.PAM(Pluggable Authentication Modules)可插拔式认证模块 2.是一种高效而且灵活便利的用户级别的认证方式; 3.也是当前Linux服务器普遍使用的认证方式。 4.PAM提供了对所有服务进行认证的中央机制,适用于login,远程登陆,su等应用 5.系统管理员通过PAM配置文件来制定不同的应用程序的不同认证策略 3.PAM认证原理 1.PAM认证一般遵循的顺序: Service (服务) --> PAM (配置文件) --> pam_.so;, 2.PAM认证首先要确定哪一项应用服务,然后加载相应的PAM的配置文件(位于/etc/pam.d下),最后调用认 模块(位于/lib64/security/下)进行安全认证。 3.用户访问服务器的时候,服务器的某一个服务程序把用户的请求发送到PAM模块进行认证。不同的应用程序所对应的PAM模块也是不同的。 4.如果想查看某个程序是否支持PAM认证,可以用ls命令进行查看/etc/pam.d/。 ls /etc/pam.d/ | grep su 5.PAM的配置文件中的每一行都是一个独立的认证过程,它们按从上往下的顺序依次由PAM模块调用。 4.PAM安全认证流程 控制类型也称做Control Flags,用于PAM验证类型的返回结果 用户1 用户2 用户3 用户4 auth required 模块1 pass fail pass pass auth sufficient 模块2 pass pass fail pass auth required 模块3 pass pass pass fail 结果 pass fail pass pass 4 五.限制使用su命令的用户(pam-wheel认证模块) 1.su命令概述: 通过su命令可以非常方便切换到另一个用户,但前提条件是必须知道用户登录密码。对于生产环境中的Linux服务器,每多一个人知道特权密码,安全风险就多一分。于是就多了一种折中的办法,使用sudo命令提升执行权限,不过需要由管理员预先进行授权, 指定用户使用某些命令: 2. su命令的用途以及用法: 用途:以其他用户身份(如root)执行授权命令用法:sudo 授权命令 3.配置su的授权(加入wheel组)(pam_wheel认证模块:): 进入授权命令:1.visudo 或者 vim /etc/sudoers语法格式:1.用户 主机名=命令程序列表2.用户 主机名=(用户)命令程序列表-l:列出用户在主机上可用的和被禁止的命令;一般配置好/etc/sudoers后,要用这个命令来查看和测试是不是配置正确的;-v:验证用户的时间戳;如果用户运行sudo后,输入用户的密码后,在短时间内可以不用输入口令来直接进行sudo操作;用-v可以跟踪最新的时间戳;-u:指定以以某个用户执行特定操作;-k:删除时间戳,下一个sudo命令要求用求提供密码; 1.首先创建3个组 2.vim /etc/pam.d/su把第六行注释去掉保存退出 1. 以上两行是默认状态(即开启第一行,注释第二行),这种状态下是允许所有用户间使用su命令进行切换的 2.两行都注释也是运行所有用户都能使用su命令,但root下使用su切换到其他普通用户需要输入密码: 3.如果第–行不注释,则root 使用su切换普通用户就不需要输入密码( pam_ rootok. so模块的主要作用是使uid为0的用户,即root用户能够直接通过认证而不用输入密码。) 4.如果开启第二行,表示只有root用户和wheel1组内的用户才可以使用su命令。 5.如果注释第一行,开启第二行,表示只有whee1组内的用户才能使用su命令,root用户也被禁用su命令。 3.将liunan加入到wheel之后,hehe就有了使用su命令的权限 4.使用pam_wheel认证后,没有在wheel里的用户都不能再用su 5.whoami命令确定当前用户是谁 4.配置/etc/sudoers文件(授权用户较多的时候使用): visudo单个授权visudo 或者 vim /etc/sudoers记录格式:user MACHINE=COMMANDS可以使用通配符“ ”号任意值和“ !”号进行取反操作。%组名代表一整个组权限生效后,输入密码后5分钟可以不用重新输入密码。例如:visudo命令下user kiro=(root)NOPASSWD:/usr/sbin/useradd,PASSWD:/usr/sbin/usermod代表 kiro主机里的user用户,可以无密码使用useradd命令,有密码使用usermod/etc/sudoers多个授权Host_Alias MYHOST= localhost 主机别名:主机名、IP、网络地址、其他主机别名!取反Host_Alias MAILSVRS=smtp,pop(主机名)User_Alias MYUSER = kiro,user1,lisi 用户别名:包含用户、用户组(%组名(使用引导))、还可以包含其他其他已经用户的别名User_Alias OPERATORS=zhangsan,tom,lisi(需要授权的用户)Cmnd_Alias MYCMD = /sbin/,/usr/bin/passwd 命令路劲、目录(此目录内的所有命令)、其他事先定义过的命令别名Cmnd_Alias PKGTOOLS=/bin/rpm,/usr/bin/yum(授权)MYUSER MYHOST = NOPASSWD : MYCMDDS 授权格式sudo -l 查询目前sudo操作查看sudo操作记录需启用Defaults logfile配置默认日志文件: /var/log/sudosudo -l 查看当前用户获得哪些sudo授权(启动日志文件后,sudo操作过程才会被记录) 1.首先用visudo 或者 vim /etc/sudoers进入,输入需要授权的命令 2.切换到taojian用户,因为设置了它不能使用创建用户的命令所以无法创建 六.开关机安全控制 1.调整BIOS引导设置 1.将第一引导设备设为当前系统所在硬盘2.禁止从其他设备(光盘、U盘、网络)引导系统3.将安全级别设为setup,并设置管理员密码 2.GRUB限制 1.使用grub2-mkpasswd-pbkdf2生成密钥2.修改/etclgrub.d/00_header文件中,添加密码记录3.生成新的grub.cfg配置文件 方法一: 通常情况下在系统开机进入GRUB菜单时,按e键可以查看并修改GRUB引导参数,这对服务器是一个极大的威胁。可以为GRUB菜单设置一个密码,只有提供正确的密码才被允许修改引导参数。grub2-mkpasswd-pbkdf2 根据提示设置GRUB菜单的密码PBKDF2 hash of your password is grub.pbkd..... 省略部分内容为经过加密生成的密码字符串cp /boot/grub2/grub.cfg /boot/grub2/grub.cfg.bak 8cp /etc/grub.d/00_header /etc/grub.d/00_header.bak 9vim /etc/grub.d/00_headercat << EOFset superusers="root" 设置用户名为rootpassword_pbkdf2 root grub.pbkd2..... 设置密码,省略部分内容为经过加密生成的密码字符串EOF16grub2-mkconfig -o /boot/grub2/grub.cfg 生成新的grub.cfg文件重启系统进入GRUB菜单时,按e键将需要输入账号密码才能修改引导参数。 方法二: 1.一步到位2.grub2-setpassword 七.终端以及登录控制 1.限制root只在安全终端登录 安全终端配置文件在 /etc/securetty 2..禁止普通用户登录 1.建立/etc/nologin文件 2.删除nologin文件或重启后即恢复正常 vim /etc/securetty在端口前加号拒绝访问touch /etc/nologin 禁止普通用户登录rm -rf /etc/nologin 取消禁止 八.系统弱口令检测 1.JOHN the Ripper,简称为JR 1.一款密码分析工具,支持字典式的暴力破解2.通过对shadow文件的口令分析,可以检测密码强度3.官网网站:http://www.openwall.com/john/ 2.安装弱口令账号 1.获得Linux/Unix服务器的shadow文件2.执行john程序,讲shadow文件作为参数 3.密码文件的暴力破解 1.准备好密码字典文件,默认为password.lst2.执行john程序,结合--wordlist=字典文件 九.网络端口扫描 1.NMAP 1.—款强大的网络扫描、安全检测工具,支持ping扫描,多端口检测等多种技术。2.官方网站: http://nmap.orgl3.CentOS 7.3光盘中安装包,nmap-6.40-7.el7.x86_64.rpm 2.格式 NMAP [扫描类型] [选项] <扫描目标....> 安装NMAP软件包rpm -qa | grep nmapyum install -y nmapnmap命令常用的选项和扫描类型-p:指定扫描的端口。-n:禁用反向DNS 解析 (以加快扫描速度)。-sS:TCP的SYN扫描(半开扫描),只向目标发出SYN数据包,如果收到SYN/ACK响应包就认为目标端口正在监听,并立即断开连接;否则认为目标端口并未开放。-sT:TCP连接扫描,这是完整的TCP扫描方式(默认扫描类型),用来建立一个TCP连接,如果成功则认为目标端口正在监听服务,否则认为目标端口并未开放。-sF:TCP的FIN扫描,开放的端口会忽略这种数据包,关闭的端口会回应RST数据包。许多防火墙只对SYN数据包进行简单过滤,而忽略了其他形式的TCP attack 包。这种类型的扫描可间接检测防火墙的健壮性。-sU:UDP扫描,探测目标主机提供哪些UDP服务,UDP扫描的速度会比较慢。-sP:ICMP扫描,类似于ping检测,快速判断目标主机是否存活,不做其他扫描。-P0:跳过ping检测,这种方式认为所有的目标主机是存活的,当对方不响应ICMP请求时,使用这种方式可以避免因无法 ping通而放弃扫描。 总结: 1.账号基本安全措施:系统账号处理、密码安全控制、命令历史清理、自动注销 2.用户切换与提权(su、sudo) 3.开关机安全控制(BIOS引导设置、禁止Ctrl+Alt+Del快捷键、GRUB菜单设置密码) 4.终端控制 5.弱口令检测——John the Ripper 6.端口扫描——namp 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_67474417/article/details/123982900。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-05-07 23:37:44
98
转载
转载文章
...有一些可自定义的特殊方法,它们中的一些有预定义的默认行为,而其它一些则没有,留到需要的时候去实现。这些特殊方法是Python中用来扩充类的强有力的方式。它们可以实现模拟标准类型和重载操作符等。比如__init__()和__del__()就分别充当了构造器和析够器的功能。 这些特殊这些方法都是以双下划线(__)开始及结尾的。下表进行了总结: 基本定制型 C.__init__(self[, arg1, ...]) 构造器(带一些可选的参数) C.__new__(self[, arg1, ...]) 构造器(带一些可选的参数);通常用在设置不变数据类型的子类。 C.__del__(self) 解构器 C.__str__(self) 可打印的字符输出;内建str()及print 语句 C.__repr__(self) 运行时的字符串输出;内建repr() 和操作符 C.__unicode__(self) Unicode 字符串输出;内建unicode() C.__call__(self, args) 表示可调用的实例 C.__nonzero__(self) 为object 定义False 值;内建bool() (从2.2 版开始) C.__len__(self) “长度”(可用于类);内建len() 对象(值)比较 C.__cmp__(self, obj) 对象比较;内建cmp() C.__lt__(self, obj) C.__le__(self, obj) 小于/小于或等于;对应 C.__gt__(self, obj) C.__ge__(self, obj) 大于/大于或等于;对应>及>=操作符 C.__eq__(self, obj) C.__ne__(self, obj) 等于/不等于;对应==,!=及<>操作符 属性 C.__getattr__(self, attr) 获取属性;内建getattr();仅当属性没有找到时调用 C.__setattr__(self, attr, val) 设置属性 C.__delattr__(self, attr) 删除属性 C.__getattribute__(self, attr) 获取属性;内建getattr();总是被调用 C.__get__(self, attr) (描述符)获取属性 C.__set__(self, attr, val) (描述符)设置属性 C.__delete__(self, attr) (描述符)删除属性 数值类型:二进制操作符 C.__add__(self, obj) 加;+操作符 C.__sub__(self, obj) 减;-操作符 C.__mul__(self, obj) 乘;操作符 C.__div__(self, obj) 除;/操作符 C.__truediv__(self, obj) True 除;/操作符 C.__floordiv__(self, obj) Floor 除;//操作符 C.__mod__(self, obj) 取模/取余;%操作符 C.__divmod__(self, obj) 除和取模;内建divmod() C.__pow__(self, obj[, mod]) 乘幂;内建pow();操作符 C.__lshift__(self, obj) 左移位;< 数值类型:二进制操作符 C.__rshift__(self, obj) 右移;>>操作符 C.__and__(self, obj) 按位与;&操作符 C.__or__(self, obj) 按位或;|操作符 C.__xor__(self, obj) 按位与或;^操作符 数值类型:一元操作符 C.__neg__(self) 一元负 C.__pos__(self) 一元正 C.__abs__(self) 绝对值;内建abs() C.__invert__(self) 按位求反;~操作符 数值类型:数值转换 C.__complex__(self, com) 转为complex(复数);内建complex() C.__int__(self) 转为int;内建int() C.__long__(self) 转 .long;内建long() C.__float__(self) 转为float;内建float() 数值类型:基本表示法(String) C.__oct__(self) 八进制表示;内建oct() C.__hex__(self) 十六进制表示;内建hex() 数值类型:数值压缩 C.__coerce__(self, num) 压缩成同样的数值类型;内建coerce() C.__index__(self) 在有必要时,压缩可选的数值类型为整型(比如:用于切片索引等等) 序列类型 C.__len__(self) 序列中项的数目 C.__getitem__(self, ind) 得到单个序列元素 C.__setitem__(self, ind,val) 设置单个序列元素 C.__delitem__(self, ind) 删除单个序列元素 C.__getslice__(self, ind1,ind2) 得到序列片断 C.__setslice__(self, i1, i2,val) 设置序列片断 C.__delslice__(self, ind1,ind2) 删除序列片断 C.__contains__(self, val) 测试序列成员;内建in 关键字 C.__add__(self,obj) 串连;+操作符 C.__mul__(self,obj) 重复;操作符 C.__iter__(self) 创建迭代类;内建iter() 映射类型 C.__len__(self) mapping 中的项的数目 C.__hash__(self) 散列(hash)函数值 C.__getitem__(self,key) 得到给定键(key)的值 C.__setitem__(self,key,val) 设置给定键(key)的值 C.__delitem__(self,key) 删除给定键(key)的值 C.__missing__(self,key) 给定键如果不存在字典中,则提供一个默认值 一:简单定制 classRoundFloatManual(object):def __init__(self, val):assert isinstance(val, float), "Value must be a float!"self.value= round(val, 2)>>> rfm =RoundFloatManual(42) Traceback (mostrecent call last): File"", line 1, in? File"roundFloat2.py", line 5, in __init__assertisinstance(val, float), \ AssertionError: Value must be a float!>>> rfm =RoundFloatManual(4.2)>>>rfm >>> printrfm 它因输入非法而异常,但如果输入正确时,就没有任何输出了。在解释器中,我们得到一些信息,却不是我们想要的。print(使用str())和真正的字符串对象表示(使用repr())都没能显示更多有关我们对象的信息。这就需要实现__str__()和__repr__()二者之一,或者两者都实现。加入下面的方法: def __str__(self):return str(self.value) 现在我们得到下面的: >>> rfm = RoundFloatManual(5.590464)>>>rfm >>> printrfm5.59 >>> rfm = RoundFloatManual(5.5964)>>> printrfm5.6 但是在解释器中转储(dump)对象时,仍然显示的是默认对象符号,要修复它,只需要覆盖__repr__()。可以让__repr__()和__str__()具有相同的代码,但最好的方案是:__repr__ = __str__ 在带参数5.5964的第二个例子中,我们看到它舍入值刚好为5.6,但我们还是想显示带两位小数的数。可以这样修改: def __str__(self):return '%.2f' % self.value 这里就同时具备str()和repr()的输出了: >>> rfm =RoundFloatManual(5.5964)>>>rfm5.60 >>>printrfm5.60 所有代码如下: classRoundFloatManual(object):def __init__(self,val):assert isinstance(val, float), "Valuemust be a float!"self.value= round(val, 2)def __str__(self):return '%.2f' %self.value__repr__ = __str__ 二:数值定制 定义一个Time60,其中,将整数的小时和分钟作为输入传给构造器: classTime60(object):def __init__(self, hr, min): self.hr=hr self.min= min 1:显示 需要在显示实例的时候,得到一个有意义的输出,那么就要覆盖__str__()(如果有必要的话,__repr__()也要覆盖): def __str__(self):return '%d:%d' % (self.hr, self.min) 比如: >>> mon =Time60(10, 30)>>> tue =Time60(11, 15)>>> >>> printmon, tue10:30 11:15 2:加法 Python中的重载操作符很简单。像加号(+),只需要重载__add__()方法,如果合适,还可以用__radd__()及__iadd__()。注意,实现__add__()的时候,必须认识到它返回另一个Time60对象,而不修改原mon或tue: def __add__(self, other):return self.__class__(self.hr + other.hr, self.min + other.min) 在类中,一般不直接调用类名,而是使用self 的__class__属性,即实例化self 的那个类,并调用它。调用self.__class__()与调用Time60()是一回事。但self.__class__()的方式更好。 >>> mon = Time60(10, 30)>>> tue = Time60(11, 15)>>> mon +tue >>> print mon +tue21:45 如果没有定义相对应的特殊方法,但是却使用了该方法对应的运算,则会引起一个TypeError异常: >>> mon -tue Traceback (mostrecent call last): File"", line 1, in? TypeError:unsupported operand type(s)for -: 'Time60' and 'Time60' 3:原位加法 __iadd__(),是用来支持像mon += tue 这样的操作符,并把正确的结果赋给mon。重载一个__i__()方法的唯一秘密是它必须返回self: def __iadd__(self, other): self.hr+=other.hr self.min+=other.minreturn self 下面是结果输出: >>> mon = Time60(10,30)>>> tue = Time60(11,15)>>>mon10:30 >>>id(mon)401872 >>> mon +=tue>>>id(mon)401872 >>>mon21:45 下面是Time60的类的完全定义: classTime60(object):'Time60 - track hours and minutes' def __init__(self,hr, min):'Time60 constructor - takes hours andminutes'self.hr=hr self.min=mindef __str__(self):'Time60 - string representation' return '%d:%d' %(self.hr, self.min)__repr__ = __str__ def __add__(self, other):'Time60 - overloading the additionoperator' return self.__class__(self.hr + other.hr,self.min +other.min)def __iadd__(self,other):'Time60 - overloading in-place addition'self.hr+=other.hr self.min+=other.minreturn self 4:升华 在这个类中,还有很多需要优化和改良的地方。首先看下面的例子: >>> wed =Time60(12, 5)>>>wed12:5 正确的显示应该是:“12:05” >>> thu =Time60(10, 30)>>> fri =Time60(8, 45)>>> thu +fri18:75 正确的显示应该是:19:15 可以做出如下修改: def __str__(self):return '%02d:%02d'%(self.hr, self.min)__repr__ = __str__ def __add__(self, othertime): tmin= self.min +othertime.min thr= self.hr +othertime.hrreturn self.__class__(thr + tmin/60, tmin%60)def __iadd__(self, othertime): self.min+=othertime.min self.hr+=othertime.hr self.hr+= self.min/60self.min%= 60 return self 三:迭代器 迭代器对象本身需要支持以下两种方法,它们组合在一起形成迭代器协议: iterator.__iter__() 返回迭代器对象本身。 iterator.next() 从容器中返回下一个元素。 实现了__iter__()和next()方法的类就是一个迭代器。自定义迭代器的例子如下: RandSeq(Random Sequence),传入一个初始序列,__init__()方法执行前述的赋值操作。__iter__()仅返回self,这就是如何将一个对象声明为迭代器的方式,最后,调用next()来得到迭代器中连续的值。这个迭代器唯一的亮点是它没有终点。代码如下: classRandSeq(object):def __init__(self, seq): self.data=seqdef __iter__(self):returnselfdefnext(self):return choice(self.data) 运行它,将会看到下面的输出: >>> from randseq importRandSeq>>> for eachItem in RandSeq(('rock', 'paper', 'scissors')): ...printeachItem ... scissors scissors rock paper paper scissors ...... 四:多类型定制 现在创建另一个新类,NumStr,由一个数字-字符对组成,记为n和s,数值类型使用整型(integer)。用[n::s]来表示它,这两个数据元素构成一个整体。NumStr有下面的特征: 初始化: 类应当对数字和字符串进行初始化;如果其中一个(或两)没有初始化,则使用0和空字符串,也就是, n=0 且s=''作为默认。 加法: 定义加法操作符,功能是把数字加起来,把字符连在一起;比如,NumStr1=[n1::s1]且NumStr2=[n2::s2]。则NumStr1+NumStr2 表示[n1+n2::s1+s2],其中,+代表数字相加及字符相连接。 乘法: 类似的, 定义乘法操作符的功能为, 数字相乘,字符累积相连, 也就是,NumStr1NumStr2=[n1n::s1n]。 False 值:当数字的数值为 0 且字符串为空时,也就是当NumStr=[0::'']时,这个实体即有一个false值。 比较: 比较一对NumStr对象,比如,[n1::s1] vs. [n2::s2],有九种不同的组合。对数字和字符串,按照标准的数值和字典顺序的进行比较。 如果obj1< obj2,则cmp(obj1, obj2)的返回值是一个小于0 的整数, 当obj1 > obj2 时,比较的返回值大于0, 当两个对象有相同的值时, 比较的返回值等于0。 我们的类的解决方案是把这些值相加,然后返回结果。为了能够正确的比较对象,我们需要让__cmp__()在 (n1>n2) 且 (s1>s2)时,返回 1,在(n1s2),或相反),返回0. 反之亦然。代码如下: classNumStr(object):def __init__(self, num=0, string=''): self.__num =num self.__string =stringdef __str__(self):return '[%d :: %r]' % (self.__num, self.__string)__repr__ = __str__ def __add__(self, other):ifisinstance(other, NumStr):return self.__class__(self.__num + other.__num, self.__string + other.__string)else:raise TypeError, 'Illegal argument type for built-in operation' def __mul__(self, num):ifisinstance(num, int):return self.__class__(self.__num num, self.__string num)else:raise TypeError, 'Illegal argument type for built-inoperation' def __nonzero__(self):return self.__num or len(self.__string)def __norm_cval(self, cmpres):returncmp(cmpres, 0)def __cmp__(self, other):return self.__norm_cval(cmp(self.__num, other.__num))+\ self.__norm_cval(cmp(self.__string,other.__string)) 执行一些例子: >>> a =NumStr(3, 'foo')>>> b =NumStr(3, 'goo')>>> c =NumStr(2, 'foo')>>> d =NumStr()>>> e =NumStr(string='boo')>>> f =NumStr(1)>>>a [3 :: 'foo']>>>b [3 :: 'goo']>>>c [2 :: 'foo']>>>d [0 ::'']>>>e [0 ::'boo']>>>f [1 :: '']>>> a True>>> b False>>> a ==a True>>> b 2[6 :: 'googoo']>>> a 3[9 :: 'foofoofoo']>>> b +e [3 :: 'gooboo']>>> e +b [3 :: 'boogoo']>>> if d: 'not false'...>>> if e: 'not false'...'not false' >>>cmp(a, b)-1 >>>cmp(a, c)1 >>>cmp(a, a) 0 如果在__str__中使用“%s”,将导致字符串没有引号: return '[%d :: %s]' % (self.__num, self.__string)>>> printa [3 :: foo] 第二个元素是一个字符串,如果用户看到由引号标记的字符串时,会更加直观。要做到这点,使用“repr()”表示法对代码进行转换,把“%s”替换成“%r”。这相当于调用repr()或者使用单反引号来给出字符串的可求值版本--可求值版本的确要有引号: >>> printa [3 :: 'foo'] __norm_cval()不是一个特殊方法。它是一个帮助我们重载__cmp__()的助手函数:唯一的目的就是把cmp()返回的正值转为1,负值转为-1。cmp()基于比较的结果,通常返回任意的正数或负数(或0),但为了我们的目的,需要严格规定返回值为-1,0 和1。 对整数调用cmp()及与 0 比较,结果即是我们所需要的,相当于如下代码片断: def __norm_cval(self, cmpres):if cmpres<0:return -1 elif cmpres>0:return 1 else:return 0 两个相似对象的实际比较是比较数字,比较字符串,然后返回这两个比较结果的和。 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_30849865/article/details/112989450。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-19 14:30:42
132
转载
转载文章
...码的语法元数据。类、方法、变量、参数、包都可以被注解,可用来将信息元数据与程序元素进行关联。目前很多开源库都使用到了注解,最熟悉的ButtonKnife中的@ViewInject(R.id.x)就可以替代findViewId,不懂这一块技术的同学第一眼看上去肯定会一脸懵逼,下面会手把手带大家写出ButtonKnife的注解使用。使用注解可以简化代码,提高开发效率。本文简单介绍下注解的使用,并对几个 Android 开源库的注解使用原理进行简析。 1、作用 标记,用于告诉编译器一些信息 ; 编译时动态处理,如动态生成代码 ; 运行时动态处理,如得到注解信息。 2、分类 标准 Annotation, 包括 Override, Deprecated, SuppressWarnings。也都是Java自带的几个 Annotation,上面三个分别表示重写函数,不鼓励使用(有更好方式、使用有风险或已不在维护),忽略某项 Warning; 元 Annotation ,@Retention, @Target, @Inherited, @Documented。元 Annotation 是指用来定义 Annotation 的 Annotation,在后面 Annotation 自定义部分会详细介绍含义; 自定义 Annotation , 表示自己根据需要定义的 Annotation,定义时需要用到上面的元 Annotation 这里只是一种分类而已,也可以根据作用域分为源码时、编译时、运行时 Annotation。通过 @interface 定义,注解名即为自定义注解名。 一、自定义注解 例如,注解@MethodInfo: @Documented@Retention(RetentionPolicy.RUNTIME)@Target(ElementType.METHOD)@Inheritedpublic @interface MethodInfo {String author() default "annotation@gmail.com";String date();int version() default 1;} 使用到了元Annotation: @Documented 是否会保存到 Javadoc 文档中 ; @Retention 保留时间,可选值 SOURCE(源码时),CLASS(编译时),RUNTIME(运行时),默认为 CLASS,值为 SOURCE 大都为 Mark Annotation,这类 Annotation 大都用来校验,比如 Override, Deprecated, SuppressWarnings ; @Target 用来指定修饰的元素,如 CONSTRUCTOR:用于描述构造器、FIELD:用于描述域、LOCAL_VARIABLE:用于描述局部变量、METHOD:用于描述方法、PACKAGE:用于描述包、PARAMETER:用于描述参数、TYPE:用于描述类、接口(包括注解类型) 或enum声明。 @Inherited 是否可以被继承,默认为 false。 注解的参数名为注解类的方法名,且: 所有方法没有方法体,没有参数没有修饰符,实际只允许 public & abstract 修饰符,默认为 public ,不允许抛异常; 方法返回值只能是基本类型,String, Class, annotation, enumeration 或者是他们的一维数组; 若只有一个默认属性,可直接用 value() 函数。一个属性都没有表示该 Annotation 为 Mark Annotation。 public class App {@MethodInfo(author = “annotation.cn+android@gmail.com”,date = "2011/01/11",version = 2)public String getAppName() {return "appname";} } 调用自定义MethodInfo 的示例,这里注解的作用实际是给方法添加相关信息: author、date、version 。 二、实战注解Butter Knife 首先,先定义一个ViewInject注解。 public @interface ViewInject { int value() default -1;} 紧接着,为刚自定义注解添加元注解。 @Target({ElementType.FIELD, ElementType.PARAMETER, ElementType.METHOD})@Retention(RetentionPolicy.RUNTIME)public @interface ViewInject {int value() default -1;} 再定义一个注解LayoutInject @Target(ElementType.TYPE)@Retention(RetentionPolicy.RUNTIME)public @interface LayoutInject {int value() default -1;} 定义一个基础的Activity。 package cn.wsy.myretrofit.annotation;import android.os.Bundle;import android.support.v7.app.AppCompatActivity;import android.util.Log;import java.lang.reflect.Field;public class InjectActivity extends AppCompatActivity {private int mLayoutId = -1;@Overrideprotected void onCreate(Bundle savedInstanceState) {super.onCreate(savedInstanceState);displayInjectLayout();displayInjectView();}/ 解析注解view id/private void displayInjectView() {if (mLayoutId <=0){return ;}Class<?> clazz = this.getClass();Field[] fields = clazz.getDeclaredFields();//获得声明的成员变量for (Field field : fields) {//判断是否有注解try {if (field.getAnnotations() != null) {if (field.isAnnotationPresent(ViewInject.class)) {//如果属于这个注解//为这个控件设置属性field.setAccessible(true);//允许修改反射属性ViewInject inject = field.getAnnotation(ViewInject.class);field.set(this, this.findViewById(inject.value()));} }} catch (Exception e) {Log.e("wusy", "not found view id!");} }}/ 注解布局Layout id/private void displayInjectLayout() {Class<?> clazz = this.getClass();if (clazz.getAnnotations() != null){if (clazz.isAnnotationPresent(LayouyInject.class)){LayouyInject inject = clazz.getAnnotation(LayouyInject.class);mLayoutId = inject.value();setContentView(mLayoutId);} }} } 首先,这里是根据映射实现设置控件的注解,java中使用反射的机制效率性能并不高。这里只是举例子实现注解。ButterKnife官方申明不是通过反射机制,因此效率会高点。 package cn.wsy.myretrofit;import android.os.Bundle;import android.widget.TextView;import cn.wsy.myretrofit.annotation.InjectActivity;import cn.wsy.myretrofit.annotation.LayouyInject;import cn.wsy.myretrofit.annotation.ViewInject;@LayoutInject(R.layout.activity_main)public class MainActivity extends InjectActivity {@ViewInject(R.id.textview)private TextView textView;@ViewInject(R.id.textview1)private TextView textview1;@ViewInject(R.id.textview2)private TextView textview2;@ViewInject(R.id.textview3)private TextView textview3;@ViewInject(R.id.textview4)private TextView textview4;@ViewInject(R.id.textview5)private TextView textview5;@Overrideprotected void onCreate(Bundle savedInstanceState) {super.onCreate(savedInstanceState);//设置属性textView.setText("OK");textview1.setText("OK1");textview2.setText("OK2");textview3.setText("OK3");textview4.setText("OK4");textview5.setText("OK5");} } 上面直接继承InjectActivity即可,文章上面也有说过:LayouyInject为什么作用域是TYPE,首先在加载view的时候,肯定是优先加载布局啊,ButterKnife也不例外。因此选择作用域在描述类,并且存在运行时。 二、解析Annotation原理 1、运行时 Annotation 解析 (1) 运行时 Annotation 指 @Retention 为 RUNTIME 的 Annotation,可手动调用下面常用 API 解析 method.getAnnotation(AnnotationName.class);method.getAnnotations();method.isAnnotationPresent(AnnotationName.class); 其他 @Target 如 Field,Class 方法类似 。 getAnnotation(AnnotationName.class) 表示得到该 Target 某个 Annotation 的信息,一个 Target 可以被多个 Annotation 修饰; getAnnotations() 则表示得到该 Target 所有 Annotation ; isAnnotationPresent(AnnotationName.class) 表示该 Target 是否被某个 Annotation 修饰; (2) 解析示例如下: public static void main(String[] args) {try {Class cls = Class.forName("cn.trinea.java.test.annotation.App");for (Method method : cls.getMethods()) {MethodInfo methodInfo = method.getAnnotation(MethodInfo.class);if (methodInfo != null) {System.out.println("method name:" + method.getName());System.out.println("method author:" + methodInfo.author());System.out.println("method version:" + methodInfo.version());System.out.println("method date:" + methodInfo.date());} }} catch (ClassNotFoundException e) {e.printStackTrace();} } 以之前自定义的 MethodInfo 为例,利用 Target(这里是 Method)getAnnotation 函数得到 Annotation 信息,然后就可以调用 Annotation 的方法得到响应属性值 。 2、编译时 Annotation 解析 (1) 编译时 Annotation 指 @Retention 为 CLASS 的 Annotation,甴 apt(Annotation Processing Tool) 解析自动解析。 使用方法: 自定义类集成自 AbstractProcessor; 重写其中的 process 函数 这块很多同学不理解,实际是 apt(Annotation Processing Tool) 在编译时自动查找所有继承自 AbstractProcessor 的类,然后调用他们的 process 方法去处理。 (2) 假设之前自定义的 MethodInfo 的 @Retention 为 CLASS,解析示例如下: @SupportedAnnotationTypes({ "cn.trinea.java.test.annotation.MethodInfo" })public class MethodInfoProcessor extends AbstractProcessor {@Overridepublic boolean process(Set<? extends TypeElement> annotations, RoundEnvironment env) {HashMap<String, String> map = new HashMap<String, String>();for (TypeElement te : annotations) {for (Element element : env.getElementsAnnotatedWith(te)) {MethodInfo methodInfo = element.getAnnotation(MethodInfo.class);map.put(element.getEnclosingElement().toString(), methodInfo.author());} }return false;} } SupportedAnnotationTypes 表示这个 Processor 要处理的 Annotation 名字。 process 函数中参数 annotations 表示待处理的 Annotations,参数 env 表示当前或是之前的运行环境 process 函数返回值表示这组 annotations 是否被这个 Processor 接受,如果接受后续子的 rocessor 不会再对这个 Annotations 进行处理 三、几个 Android 开源库 Annotation 原理简析 1、Retrofit (1) 调用 @GET("/users/{username}")User getUser(@Path("username") String username); (2) 定义 @Documented@Target(METHOD)@Retention(RUNTIME)@RestMethod("GET")public @interface GET {String value();} 从定义可看出 Retrofit 的 Get Annotation 是运行时 Annotation,并且只能用于修饰 Method (3) 原理 private void parseMethodAnnotations() {for (Annotation methodAnnotation : method.getAnnotations()) {Class<? extends Annotation> annotationType = methodAnnotation.annotationType();RestMethod methodInfo = null;for (Annotation innerAnnotation : annotationType.getAnnotations()) {if (RestMethod.class == innerAnnotation.annotationType()) {methodInfo = (RestMethod) innerAnnotation;break;} }……} } RestMethodInfo.java 的 parseMethodAnnotations 方法如上,会检查每个方法的每个 Annotation, 看是否被 RestMethod 这个 Annotation 修饰的 Annotation 修饰,这个有点绕,就是是否被 GET、DELETE、POST、PUT、HEAD、PATCH 这些 Annotation 修饰,然后得到 Annotation 信息,在对接口进行动态代理时会掉用到这些 Annotation 信息从而完成调用。 因为 Retrofit 原理设计到动态代理,这里只介绍 Annotation。 2、Butter Knife (1) 调用 @InjectView(R.id.user) EditText username; (2) 定义 @Retention(CLASS) @Target(FIELD)public @interface InjectView {int value();} 可看出 Butter Knife 的 InjectView Annotation 是编译时 Annotation,并且只能用于修饰属性 (3) 原理 @Override public boolean process(Set<? extends TypeElement> elements, RoundEnvironment env) {Map<TypeElement, ViewInjector> targetClassMap = findAndParseTargets(env);for (Map.Entry<TypeElement, ViewInjector> entry : targetClassMap.entrySet()) {TypeElement typeElement = entry.getKey();ViewInjector viewInjector = entry.getValue();try {JavaFileObject jfo = filer.createSourceFile(viewInjector.getFqcn(), typeElement);Writer writer = jfo.openWriter();writer.write(viewInjector.brewJava());writer.flush();writer.close();} catch (IOException e) {error(typeElement, "Unable to write injector for type %s: %s", typeElement, e.getMessage());} }return true;} ButterKnifeProcessor.java 的 process 方法如上,编译时,在此方法中过滤 InjectView 这个 Annotation 到 targetClassMap 后,会根据 targetClassMap 中元素生成不同的 class 文件到最终的 APK 中,然后在运行时调用 ButterKnife.inject(x) 函数时会到之前编译时生成的类中去找。 3、ActiveAndroid (1) 调用 @Column(name = “Name") public String name; (2) 定义 @Target(ElementType.FIELD)@Retention(RetentionPolicy.RUNTIME)public @interface Column {……} 可看出 ActiveAndroid 的 Column Annotation 是运行时 Annotation,并且只能用于修饰属性 (3) 原理 Field idField = getIdField(type);mColumnNames.put(idField, mIdName);List<Field> fields = new LinkedList<Field>(ReflectionUtils.getDeclaredColumnFields(type));Collections.reverse(fields);for (Field field : fields) {if (field.isAnnotationPresent(Column.class)) {final Column columnAnnotation = field.getAnnotation(Column.class);String columnName = columnAnnotation.name();if (TextUtils.isEmpty(columnName)) {columnName = field.getName();}mColumnNames.put(field, columnName);} } TableInfo.java 的构造函数如上,运行时,得到所有行信息并存储起来用来构件表信息。 ———————————————————————— 最后一个问题,看看这段代码最后运行结果: public class Person {private int id;private String name;public Person(int id, String name) {this.id = id;this.name = name;}public boolean equals(Person person) {return person.id == id;}public int hashCode() {return id;}public static void main(String[] args) {Set<Person> set = new HashSet<Person>();for (int i = 0; i < 10; i++) {set.add(new Person(i, "Jim"));}System.out.println(set.size());} } 答案:示例代码运行结果应该是 10 而不是 1,这个示例代码程序实际想说明的是标记型注解 Override 的作用,为 equals 方法加上 Override 注解就知道 equals 方法的重载是错误的,参数不对。 本篇文章为转载内容。原文链接:https://blog.csdn.net/csdn_aiyang/article/details/81564408。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-28 22:30:35
104
转载
转载文章
...量传递敏感信息的替代方法,_FILE 可以附加到先前列出的环境变量中,从而导致初始化脚本从容器中存在的文件中加载这些变量的值。 特别是,这可用于从存储在 /run/secrets/<secret_name> 文件中的 Docker 机密中加载密码。 例如: $ docker run --name some-mysql -e MYSQL_ROOT_PASSWORD_FILE=/run/secrets/mysql-root -d mysql:tag 目前,这仅支持 MYSQL_ROOT_PASSWORD、MYSQL_ROOT_HOST、MYSQL_DATABASE、MYSQL_USER和 MYSQL_PASSWORD。 2.4.7. 初始化一个新实例 首次启动容器时,将使用提供的配置变量创建并初始化具有指定名称的新数据库。 此外,它将执行 /docker-entrypoint-initdb.d 中的扩展名为 .sh、.sql 和 .sql.gz 的文件。 文件将按字母顺序执行。 您可以通过将 SQL 转储安装到该目录并提供带有贡献数据的自定义镜像来轻松填充您的 mysql 服务。 SQL 文件将默认导入到 MYSQL_DATABASE 变量指定的数据库中。 2.5. 注意事项 2.5.1. 在哪里存储数据 重要提示:有几种方法可以存储在 Docker 容器中运行的应用程序使用的数据。 我们鼓励 mysql 映像的用户熟悉可用的选项,包括: 让 Docker 通过使用自己的内部卷管理将数据库文件写入主机系统上的磁盘来管理数据库数据的存储。 这是默认设置,对用户来说简单且相当透明。 缺点是对于直接在主机系统(即外部容器)上运行的工具和应用程序,可能很难找到这些文件。 在主机系统(容器外部)上创建一个数据目录,并将其挂载到容器内部可见的目录。 这会将数据库文件放置在主机系统上的已知位置,并使主机系统上的工具和应用程序可以轻松访问这些文件。 缺点是用户需要确保目录存在,例如主机系统上的目录权限和其他安全机制设置正确。 Docker 文档是了解不同存储选项和变体的一个很好的起点,并且有多个博客和论坛帖子在该领域讨论和提供建议。 我们将在这里简单地展示上面后一个选项的基本过程: 在主机系统上的合适卷上创建数据目录,例如 /my/own/datadir。 像这样启动你的 mysql 容器: $ docker run --name some-mysql -v /my/own/datadir:/var/lib/mysql -e MYSQL_ROOT_PASSWORD=my-secret-pw -d mysql:tag 命令的 -v /my/own/datadir:/var/lib/mysql 部分将底层主机系统中的 /my/own/datadir 目录挂载为容器内的 /var/lib/mysql ,默认情况下 MySQL 将 写入其数据文件。 2.5.2. 在 MySQL 初始化完成之前没有连接 如果容器启动时没有初始化数据库,则会创建一个默认数据库。 虽然这是预期的行为,但这意味着在初始化完成之前它不会接受传入的连接。 在使用同时启动多个容器的自动化工具(例如 docker-compose)时,这可能会导致问题。 如果您尝试连接到 MySQL 的应用程序没有处理 MySQL 停机时间或等待 MySQL 正常启动,那么在服务启动之前放置一个连接重试循环可能是必要的。 有关官方图像中此类实现的示例,请参阅 WordPress 或 Bonita。 2.5.3. 针对现有数据库的使用 如果您使用已经包含数据库的数据目录(特别是 mysql 子目录)启动 mysql 容器实例,则应该从运行命令行中省略 $MYSQL_ROOT_PASSWORD 变量; 在任何情况下都将被忽略,并且不会以任何方式更改预先存在的数据库。 2.5.4. 以任意用户身份运行 如果你知道你的目录的权限已经被适当地设置了(例如对一个现有的数据库运行,如上所述)或者你需要使用特定的 UID/GID 运行 mysqld,那么可以使用 --user 调用这个镜像设置为任何值(root/0 除外)以实现所需的访问/配置: $ mkdir data$ ls -lnd datadrwxr-xr-x 2 1000 1000 4096 Aug 27 15:54 data$ docker run -v "$PWD/data":/var/lib/mysql --user 1000:1000 --name some-mysql -e MYSQL_ROOT_PASSWORD=my-secret-pw -d mysql:tag 2.5.5. 创建数据库转储 大多数普通工具都可以工作,尽管在某些情况下它们的使用可能有点复杂,以确保它们可以访问 mysqld 服务器。 确保这一点的一种简单方法是使用 docker exec 并从同一容器运行该工具,类似于以下内容: $ docker exec some-mysql sh -c 'exec mysqldump --all-databases -uroot -p"$MYSQL_ROOT_PASSWORD"' > /some/path/on/your/host/all-databases.sql 2.5.6. 从转储文件恢复数据 用于恢复数据。 您可以使用带有 -i 标志的 docker exec 命令,类似于以下内容: $ docker exec -i some-mysql sh -c 'exec mysql -uroot -p"$MYSQL_ROOT_PASSWORD"' < /some/path/on/your/host/all-databases.sql 备注 docker安装完MySQL,后面就是MySQL容器在跑,基本上就是当MySQL服务去操作,以前MySQL怎么做现在还是一样怎么做,只是个别操作因为docker包了一层,麻烦一点。 有需要的话,我们也可以基于MySQL官方镜像去定制我们自己的镜像,就比如主从镜像之类的。 本篇文章为转载内容。原文链接:https://blog.csdn.net/muluo7fen/article/details/122731852。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-05-29 17:31:06
101
转载
Golang
...通道接收数据。用这种方法,咱们就能又优雅又稳妥地搞定多线程里的同步难题,还不用担心被死锁给缠上。 --- 3. 内存管理 GC的奥秘 接下来谈谈内存管理。Go的垃圾回收器(GC)是它的一大亮点。就像用老式工具编程一样,C/C++这种传统语言就得让程序员自己动手去清理内存,稍不留神,就可能搞出内存泄漏,或者戳到那些讨厌的野指针,简直让人头大!而Go则完全解放了我们的双手,它会自动帮你清理不再使用的内存。 不过,GC也不是万能的。有时候,如果你对性能要求特别高,可能会遇到GC停顿的问题。为了解决这个问题,Go团队一直在优化GC算法。最新版本中引入了分代GC(Generational GC),大幅降低了停顿时间。 那么,我们在实际开发中应该如何减少GC的压力呢?最直接的方法就是尽量避免频繁的小对象分配。比如,我们可以复用一些常见的结构体,而不是每次都新建它们: go type Buffer struct { data []byte } func NewBuffer(size int) Buffer { return &Buffer{data: make([]byte, size)} } func (b Buffer) Reset() { b.data = b.data[:0] } func main() { buf := NewBuffer(1024) for i := 0; i < 100; i++ { buf.Reset() // 使用buf... } } 在这个例子中,我们通过Reset()方法复用了同一个Buffer实例,而不是每次都调用make([]byte, size)重新创建一个新的切片。这样可以显著降低GC的压力。 --- 4. 网络优化 TCP/IP的实战 再来说说网络优化。Go的net包提供了强大的网络编程支持,无论是HTTP、WebSocket还是普通的TCP/UDP,都能轻松搞定。特别是对那些高性能服务器而言,怎么才能又快又稳地搞定海量连接,这简直就是一个绕不开的大难题啊! 举个例子,假设我们要实现一个简单的HTTP长连接服务器。传统的做法可能是监听端口,然后逐个处理请求。但这种方式效率不高,特别是在高并发场景下。Go提供了一个更好的解决方案——使用net/http包的Serve方法: go package main import ( "log" "net/http" ) func handler(w http.ResponseWriter, r http.Request) { w.Write([]byte("Hello, World!")) } func main() { http.HandleFunc("/", handler) log.Fatal(http.ListenAndServe(":8080", nil)) } 这段代码看起来很简单,但它实际上已经具备了处理大量并发连接的能力。为啥呢?就是因为Go语言里的http.Server自带了一个超级能打的“工具箱”,里面有个高效的连接池和请求队列,遇到高并发的情况时,它就能像一个经验丰富的老司机一样,把各种请求安排得明明白白,妥妥地hold住场面! 当然,如果你想要更底层的控制,也可以直接使用net包来编写TCP服务器。比如下面这个简单的TCP回显服务器: go package main import ( "bufio" "fmt" "net" ) func handleConnection(conn net.Conn) { defer conn.Close() reader := bufio.NewReader(conn) for { message, err := reader.ReadString('\n') if err != nil { fmt.Println("Error reading:", err) break } fmt.Print("Received:", message) conn.Write([]byte(message)) } } func main() { listener, err := net.Listen("tcp", ":8080") if err != nil { fmt.Println("Error listening:", err) return } defer listener.Close() fmt.Println("Listening on :8080...") for { conn, err := listener.Accept() if err != nil { fmt.Println("Error accepting:", err) continue } go handleConnection(conn) } } 在这个例子中,我们通过listener.Accept()不断接受客户端连接,并为每个连接启动一个协程来处理请求。这种模式非常适合处理大量短连接的场景。 --- 5. 代码结构 模块化与可扩展性 最后,我们来聊聊代码结构。一个高性能的服务器不仅仅依赖于语言特性,还需要良好的设计思路。Go语言特别推崇把程序分成小块儿来写,就像搭积木一样,每个功能都封装成独立的小模块或包。这样不仅修 bug 的时候方便找问题,写代码的时候也更容易看懂,以后想加新功能啥的也简单多了。 比如,假设我们要开发一个分布式任务调度系统,可以按照以下方式组织代码: go // tasks.go package task type Task struct { ID string Name string Param interface{} } func NewTask(id, name string, param interface{}) Task { return &Task{ ID: id, Name: name, Param: param, } } // scheduler.go package scheduler import "task" type Scheduler struct { tasks []task.Task } func NewScheduler() Scheduler { return &Scheduler{ tasks: make([]task.Task, 0), } } func (s Scheduler) AddTask(t task.Task) { s.tasks = append(s.tasks, t) } func (s Scheduler) Run() { for _, t := range s.tasks { fmt.Printf("Executing task %s\n", t.Name) // 执行任务逻辑... } } 通过这种方式,我们将任务管理和调度逻辑分离出来,使得代码更加清晰易懂。同时,这样的设计也方便未来扩展新的功能,比如添加日志记录、监控指标等功能。 --- 6. 总结与展望 好了,到这里咱们就差不多聊完了如何用Go语言进行高性能服务器开发。说实话,写着这篇文章的时候,我脑海里突然蹦出大学时那股子钻研劲儿,感觉就像重新回到那些熬夜敲代码的日子了,整个人都热血上头!Go这门语言真的太带感了,简单到没话说,效率还超高,稳定性又好得没话说,简直就是程序员的救星啊! 不过,我也想提醒大家一句:技术再好,最终还是要服务于业务需求。不管你用啥法子、说啥话,老老实实问问自己:“这招到底管不管用?是不是真的解决问题了?”这才是真本事! 希望这篇文章对你有所帮助,如果你有任何疑问或者想法,欢迎随时留言讨论!让我们一起继续探索Go的无限可能吧!
2025-04-23 15:46:59
39
桃李春风一杯酒
转载文章
... I/O 多路复用的方法有很多实现方法,我带你来逐个分析一下。 第一种,使用非阻塞 I/O 和水平触发通知,比如使用 select 或者 poll。 根据刚才水平触发的原理,select 和 poll 需要从文件描述符列表中,找出哪些可以执行 I/O ,然后进行真正的网络 I/O 读写。由于 I/O 是非阻塞的,一个线程中就可以同时监控一批套接字的文件描述符,这样就达到了单线程处理多请求的目的。所以,这种方式的最大优点,是对应用程序比较友好,它的 API 非常简单。 但是,应用软件使用 select 和 poll 时,需要对这些文件描述符列表进行轮询,这样,请求数多的时候就会比较耗时。并且,select 和 poll 还有一些其他的限制。 select 使用固定长度的位相量,表示文件描述符的集合,因此会有最大描述符数量的限制。比如,在 32 位系统中,默认限制是 1024。并且,在 select 内部,检查套接字状态是用轮询的方法,再加上应用软件使用时的轮询,就变成了一个 O(n^2) 的关系。 而 poll 改进了 select 的表示方法,换成了一个没有固定长度的数组,这样就没有了最大描述符数量的限制(当然还会受到系统文件描述符限制)。但应用程序在使用 poll 时,同样需要对文件描述符列表进行轮询,这样,处理耗时跟描述符数量就是 O(N) 的关系。 除此之外,应用程序每次调用 select 和 poll 时,还需要把文件描述符的集合,从用户空间传入内核空间,由内核修改后,再传出到用户空间中。这一来一回的内核空间与用户空间切换,也增加了处理成本。 有没有什么更好的方式来处理呢?答案自然是肯定的。 第二种,使用非阻塞 I/O 和边缘触发通知,比如 epoll。既然 select 和 poll 有那么多的问题,就需要继续对其进行优化,而 epoll 就很好地解决了这些问题。 epoll 使用红黑树,在内核中管理文件描述符的集合,这样,就不需要应用程序在每次操作时都传入、传出这个集合。 epoll 使用事件驱动的机制,只关注有 I/O 事件发生的文件描述符,不需要轮询扫描整个集合。 不过要注意,epoll 是在 Linux 2.6 中才新增的功能(2.4 虽然也有,但功能不完善)。由于边缘触发只在文件描述符可读或可写事件发生时才通知,那么应用程序就需要尽可能多地执行 I/O,并要处理更多的异常事件。 第三种,使用异步 I/O(Asynchronous I/O,简称为 AIO)。 在前面文件系统原理的内容中,我曾介绍过异步 I/O 与同步 I/O 的区别。异步 I/O 允许应用程序同时发起很多 I/O 操作,而不用等待这些操作完成。而在 I/O 完成后,系统会用事件通知(比如信号或者回调函数)的方式,告诉应用程序。这时,应用程序才会去查询 I/O 操作的结果。 异步 I/O 也是到了 Linux 2.6 才支持的功能,并且在很长时间里都处于不完善的状态,比如 glibc 提供的异步 I/O 库,就一直被社区诟病。同时,由于异步 I/O 跟我们的直观逻辑不太一样,想要使用的话,一定要小心设计,其使用难度比较高。 工作模型优化 了解了 I/O 模型后,请求处理的优化就比较直观了。 使用 I/O 多路复用后,就可以在一个进程或线程中处理多个请求,其中,又有下面两种不同的工作模型。 第一种,主进程 + 多个 worker 子进程,这也是最常用的一种模型。这种方法的一个通用工作模式就是:主进程执行 bind() + listen() 后,创建多个子进程;然后,在每个子进程中,都通过 accept() 或 epoll_wait() ,来处理相同的套接字。 比如,最常用的反向代理服务器 Nginx 就是这么工作的。它也是由主进程和多个 worker 进程组成。主进程主要用来初始化套接字,并管理子进程的生命周期;而 worker 进程,则负责实际的请求处理。我画了一张图来表示这个关系。 这里要注意,accept() 和 epoll_wait() 调用,还存在一个惊群的问题。换句话说,当网络 I/O 事件发生时,多个进程被同时唤醒,但实际上只有一个进程来响应这个事件,其他被唤醒的进程都会重新休眠。 其中,accept() 的惊群问题,已经在 Linux 2.6 中解决了; 而 epoll 的问题,到了 Linux 4.5 ,才通过 EPOLLEXCLUSIVE 解决。 为了避免惊群问题, Nginx 在每个 worker 进程中,都增加一个了全局锁(accept_mutex)。这些 worker 进程需要首先竞争到锁,只有竞争到锁的进程,才会加入到 epoll 中,这样就确保只有一个 worker 子进程被唤醒。 不过,根据前面 CPU 模块的学习,你应该还记得,进程的管理、调度、上下文切换的成本非常高。那为什么使用多进程模式的 Nginx ,却具有非常好的性能呢? 这里最主要的一个原因就是,这些 worker 进程,实际上并不需要经常创建和销毁,而是在没任务时休眠,有任务时唤醒。只有在 worker 由于某些异常退出时,主进程才需要创建新的进程来代替它。 当然,你也可以用线程代替进程:主线程负责套接字初始化和子线程状态的管理,而子线程则负责实际的请求处理。由于线程的调度和切换成本比较低,实际上你可以进一步把 epoll_wait() 都放到主线程中,保证每次事件都只唤醒主线程,而子线程只需要负责后续的请求处理。 第二种,监听到相同端口的多进程模型。在这种方式下,所有的进程都监听相同的接口,并且开启 SO_REUSEPORT 选项,由内核负责将请求负载均衡到这些监听进程中去。这一过程如下图所示。 由于内核确保了只有一个进程被唤醒,就不会出现惊群问题了。比如,Nginx 在 1.9.1 中就已经支持了这种模式。 不过要注意,想要使用 SO_REUSEPORT 选项,需要用 Linux 3.9 以上的版本才可以。 C1000K 基于 I/O 多路复用和请求处理的优化,C10K 问题很容易就可以解决。不过,随着摩尔定律带来的服务器性能提升,以及互联网的普及,你并不难想到,新兴服务会对性能提出更高的要求。 很快,原来的 C10K 已经不能满足需求,所以又有了 C100K 和 C1000K,也就是并发从原来的 1 万增加到 10 万、乃至 100 万。从 1 万到 10 万,其实还是基于 C10K 的这些理论,epoll 配合线程池,再加上 CPU、内存和网络接口的性能和容量提升。大部分情况下,C100K 很自然就可以达到。 那么,再进一步,C1000K 是不是也可以很容易就实现呢?这其实没有那么简单了。 首先从物理资源使用上来说,100 万个请求需要大量的系统资源。比如, 假设每个请求需要 16KB 内存的话,那么总共就需要大约 15 GB 内存。 而从带宽上来说,假设只有 20% 活跃连接,即使每个连接只需要 1KB/s 的吞吐量,总共也需要 1.6 Gb/s 的吞吐量。千兆网卡显然满足不了这么大的吞吐量,所以还需要配置万兆网卡,或者基于多网卡 Bonding 承载更大的吞吐量。 其次,从软件资源上来说,大量的连接也会占用大量的软件资源,比如文件描述符的数量、连接状态的跟踪(CONNTRACK)、网络协议栈的缓存大小(比如套接字读写缓存、TCP 读写缓存)等等。 最后,大量请求带来的中断处理,也会带来非常高的处理成本。这样,就需要多队列网卡、中断负载均衡、CPU 绑定、RPS/RFS(软中断负载均衡到多个 CPU 核上),以及将网络包的处理卸载(Offload)到网络设备(如 TSO/GSO、LRO/GRO、VXLAN OFFLOAD)等各种硬件和软件的优化。 C1000K 的解决方法,本质上还是构建在 epoll 的非阻塞 I/O 模型上。只不过,除了 I/O 模型之外,还需要从应用程序到 Linux 内核、再到 CPU、内存和网络等各个层次的深度优化,特别是需要借助硬件,来卸载那些原来通过软件处理的大量功能。 C10M 显然,人们对于性能的要求是无止境的。再进一步,有没有可能在单机中,同时处理 1000 万的请求呢?这也就是 C10M 问题。 实际上,在 C1000K 问题中,各种软件、硬件的优化很可能都已经做到头了。特别是当升级完硬件(比如足够多的内存、带宽足够大的网卡、更多的网络功能卸载等)后,你可能会发现,无论你怎么优化应用程序和内核中的各种网络参数,想实现 1000 万请求的并发,都是极其困难的。 究其根本,还是 Linux 内核协议栈做了太多太繁重的工作。从网卡中断带来的硬中断处理程序开始,到软中断中的各层网络协议处理,最后再到应用程序,这个路径实在是太长了,就会导致网络包的处理优化,到了一定程度后,就无法更进一步了。 要解决这个问题,最重要就是跳过内核协议栈的冗长路径,把网络包直接送到要处理的应用程序那里去。这里有两种常见的机制,DPDK 和 XDP。 第一种机制,DPDK,是用户态网络的标准。它跳过内核协议栈,直接由用户态进程通过轮询的方式,来处理网络接收。 说起轮询,你肯定会下意识认为它是低效的象征,但是进一步反问下自己,它的低效主要体现在哪里呢?是查询时间明显多于实际工作时间的情况下吧!那么,换个角度来想,如果每时每刻都有新的网络包需要处理,轮询的优势就很明显了。比如: 在 PPS 非常高的场景中,查询时间比实际工作时间少了很多,绝大部分时间都在处理网络包; 而跳过内核协议栈后,就省去了繁杂的硬中断、软中断再到 Linux 网络协议栈逐层处理的过程,应用程序可以针对应用的实际场景,有针对性地优化网络包的处理逻辑,而不需要关注所有的细节。 此外,DPDK 还通过大页、CPU 绑定、内存对齐、流水线并发等多种机制,优化网络包的处理效率。 第二种机制,XDP(eXpress Data Path),则是 Linux 内核提供的一种高性能网络数据路径。它允许网络包,在进入内核协议栈之前,就进行处理,也可以带来更高的性能。XDP 底层跟我们之前用到的 bcc-tools 一样,都是基于 Linux 内核的 eBPF 机制实现的。 XDP 的原理如下图所示: 你可以看到,XDP 对内核的要求比较高,需要的是 Linux 4.8 以上版本,并且它也不提供缓存队列。基于 XDP 的应用程序通常是专用的网络应用,常见的有 IDS(入侵检测系统)、DDoS 防御、 cilium 容器网络插件等。 总结 C10K 问题的根源,一方面在于系统有限的资源;另一方面,也是更重要的因素,是同步阻塞的 I/O 模型以及轮询的套接字接口,限制了网络事件的处理效率。Linux 2.6 中引入的 epoll ,完美解决了 C10K 的问题,现在的高性能网络方案都基于 epoll。 从 C10K 到 C100K ,可能只需要增加系统的物理资源就可以满足;但从 C100K 到 C1000K ,就不仅仅是增加物理资源就能解决的问题了。这时,就需要多方面的优化工作了,从硬件的中断处理和网络功能卸载、到网络协议栈的文件描述符数量、连接状态跟踪、缓存队列等内核的优化,再到应用程序的工作模型优化,都是考虑的重点。 再进一步,要实现 C10M ,就不只是增加物理资源,或者优化内核和应用程序可以解决的问题了。这时候,就需要用 XDP 的方式,在内核协议栈之前处理网络包;或者用 DPDK 直接跳过网络协议栈,在用户空间通过轮询的方式直接处理网络包。 当然了,实际上,在大多数场景中,我们并不需要单机并发 1000 万的请求。通过调整系统架构,把这些请求分发到多台服务器中来处理,通常是更简单和更容易扩展的方案。 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_23864697/article/details/114626793。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-11 18:25:52
260
转载
转载文章
...激活触发器执行相应的方法. 创建触发器:create trigger 触发器名 (before/after) 触发事件 on 表名 for each row sql语句. 这里的new是指代新插入的拿一条数据(更新的也算),若是old的话,指的是删除的那一条数据(更新之前的数据).(new和old属于过渡变量) 这条触发器的意思时:当t_book有插入数据时,就会根据新插入数据的id找到t_bookType的id,并试该条数据的bookNum加1. Begin与end写sql语句,中间可以写多条sql语句用分号;分隔开…也即是说语句要写完成,不能少分号. Delimiter | 设置分隔符,要不然好像只会执行begin与and之间的第一条sql语句. 查看触发器: 1.show triggers; 语句查看触发器信息.(查询所有的触发器) 2.在triggers表中查看触发器信息.(在数据库原始表triggers中可以查看) 删除触发器: Drop trigger 触发器名称 ; 27.函数: (1)日期函数: CURDATE()当前日期,CURTIME()当前时间,MONTH(d):返回日期d中的月份值,范围试1-12 (2)字符串函数:CHAR_LENGTH(s) 计算字段s值->字符串的长度.UPPER(s) 把该字段的值中所有英文都变成大写,LOWER(s) 和相面相反->把英文都变成小写. (3)数学函数:sum():求和,ABS(s) 求绝对值,SQRT(s):求平方根,mod(x,y),求余x/y (4)加密函数:PASSWORD(STR) 一般对密码加密 不可逆… MD5(STR) 普通加密 ,不可逆. ENCODE(str,pswd_str) 加密函数,结果是一个二进制文件,用blob类型的字段保存,pswd_str类似一个加密的钥匙,可以随便写. DECODE(被加密的值,pswd_str)–>对encode进行解密. 28.存储过程: (1)存储过程和函数:两者是在数据库中定义一些SQL语句的集合,然后直接调用这些存储过程和函数来执行已经定义好的SQL语句.存储过程和函数可以避免重复的写一些sql语句,而且存储过程是在mysql服务器中存储和执行的,减少客户端和服务器端的数据传输.(类似于java代码写的工具类.) (2)创建存储过程和函数: Create procedure 关键字 pro_book 存储过程名称, in 输入 bT 输入参数名称 int 输入参数类型 out 输出 count_num 输出参数名称 int 输入参数类型 Begin 过程开始 end过程结束 中间是sql语句, Delimiter 默认是分号,而他的作用就是若是遇见分号时就开始执行该过程(语句),但是一个存储过程可能有很多sql语句且以分号结束,若这样的情况下当第一条sql语句结束后就会开始执行该过程,产生的后果是创建过程时,执行到第一个分号就会开始创建,导致存储过程创建错误.(若是有多个参数,在多条sql中均有参数,第一条设置完执行了,而这时第二条的参数有可能还么有设置完成,导致sql执行失败.)因此,需要把默认执行过程的demiliter关键字的默认值改为其他的字符,例如上面的就是改为&&,(当然我认为上面就一条sql语句,改不改默认的demiliter的默认值都一样.) . 使用navicat的话不使用delimiter好像也是可以的. Reads sql data则是上面图片所提到的参数指定存储过程的特性.(这个是指读数据,当然还有写输入与读写数据专用的参数类型.)看下图 经常用contains sql (应该是可以读,) 这个是调用上面的存储过程,1为入参,@total相当于全局变量,为出参. 这是一个存储函数,create function 为关键字,fun_book为函数名称, 括号里面为传入的参数名(值)以及入参的类型.RETURNS 为返回的关键字,后面接返回的类型. BEGIN函数开始,END函数结束.中间是return 以及查询数据的sql语句, 这里是指把bookId 传进去,通过存储函数返回对应的书本名字, ---------存储函数的调用和调用系统函数一样 例如:select 存储函数名称(入参值) Select 为查询 func_book 为存储函数名 2为入参值. (3)变量的使用:declaer:声明变量的值 Delimiter && Create procedure user() Begin Declare a,b varchar2(20) ; — a,b有默认的值,为空 Insert into user values(a,b); End && Delimiter ; Set 可以用来赋值,例如: 可以从其他表中查询出对应的值插入到另一个表中.例如: 从t_user2中查询出username2与password2放入到变量a,b中,然后再插入到t_user表中.(当然这只是创建存储过程),创建完以后,需要用CALL 存储过程名(根据过程参数描写.)来调用存储过程.注意:这一种的写法只可以插入单笔数据,若是select查询出多笔数据,因为无循环故而会插入不进去语句,会导致倒致存储过程时出错.下面的游标也是如此. (4)游标的使用.查询语句可能查询出多条记录,在存储过程和函数中使用游标逐条读取查询结果集中的记录.游标的使用包括声明游标,打开游标,使用游标和关闭游标.游标必须声明到处理程序之前,并且声明在变量和条件之后. 声明:declare 游标名 curson for 查询sql语句. 打开:open 游标名 使用:fetch 游标名 into x, 关闭:close 游标名 ----- 游标只能保存单笔数据. 类似于这一个,意思就是先查询出来username2,与password2的值放入到cur_t_user2的游标中(声明,类似于赋值),然后开启->使用.使用的意思就是把游标中存储的值分别赋值到a,b中,然后执行sql语句插入到t_user表中.最后关闭游标. (5)流程控制的使用:mysql可以使用:IF 语句 CASE语句 LOOP语句 LEAVE语句 ITERATE 语句 REPEAT语句与WHILE语句. 这个过程的意思是,查询t_user表中是否存在id等于我们入参时所写的id,若有的情况下查出有几笔这样的数据并且把数值给到全局变量@num中,if判断是否这样的数据是否存在,若是存在执行THEN后面的语句,即使更新该id对应的username,若没有则插入一条新的数据,最后注意END IF. 相当于java中的switch case.例如: 这里想当然于,while(ture){ break; } 这里的意思是,参数一个int类型的参数,loop aaa循环,把参数当做主键id插入到t_user表中,每循环一次参入的参数值减一,直到参数值为0,跳出循环(if判断,leave实现.) 相当于java的continue. 比上面的多了一个当totalNum = 3时,结束本次循环,下面的语句不在执行,直接执行下一次循环,也即是说插入的数据没有主键为3的数据. 和上面的差不多,只不过当执行到UNTIL时满足条件时,就跳出循环.就如上面那一个意思就是当执行到totalNum = 1时,跳出循环,也就是说不会插入主键为0的那一笔数据 当while条件判断为true时,执行do后面的语句,否则就不再执行. (6)调用存储过程和函数 CALL 存储过程名字(参数值1,参数值2,…) 存储函数名称(参数值1,参数值2,…) (7)查看存储过程和函数. Show procedure status like ‘存储过程名’ --只能查看状态 Show create procedure ‘存储过程名’ – 查看定义(使用频率高). 存储函数查看也和上面的一样. 当然还可以从information_schema.Routines中(系统数据库表)查看存储过程与函数. (8)修改存储过程与函数: 修改存储过程comment属性的值 ALTER procedure 存储过程名 comment ‘新值’; (9)删除存储过程与函数: DROP PROCEDURE 存储过程名; DROP function 存储函数名; 29.数据备份与还原: (1)数据备份:数据备份可以保证数据库表的安全性,数据库管理员需要定期的进行数据库备份. 命令:使用mysqldump(下图),或者使用图形工具 Mysqldump在msql文件夹+bin+mysqldump.exe中,相当于一个小软件.执行的话是在dos命令窗操作的. 其实就是导出数据库数据,在navacat中可以如下图导出 (2)数据还原: 若是从navacat中就是把外部的.sql文件数据导入到数据库中去.如下图 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_42847571/article/details/102686087。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-26 19:09:16
83
转载
转载文章
...常见异常的原因和解决方法 AccessViolationException 快速了解 .NET 的异常机制 Exception 类 我们大多数小伙伴可能更多的使用 Exception 的类型、Message 属性、StackTrace 以及内部异常来定位问题,但其实 Exception 类型还有更多的信息可以用于辅助定位问题。 Message 用来描述异常原因的详细信息 如果你捕捉到了异常,一般使用这段描述能知道发生的大致原因。 如果你准备抛出异常,在这个信息里面记录能帮助调试问题的详细文字信息。 StackTrace 包含用来确定错误位置的堆栈跟踪(当有调试信息如 PDB 时,这里就会包含源代码文件名和源代码行号) InnerException 包含内部异常信息 Source 这个属性包含导致错误的应用程序或对象的名称 Data 这是一个字典,可以存放基于键值的任意数据,帮助在异常信息中获得更多可以用于调试的数据 HelpLink 这是一个 url,这个 url 里可以提供大量用于说明此异常原因的信息 如果你自己写一个自定义异常类,那么你可以在自定义的异常类中记录更多的信息。然而大多数情况下我们都考虑使用 .NET 中自带的异常类,因此可以充分利用 Exception 类中的已有属性在特殊情况下报告更详细的利于调试的异常信息。 捕捉异常 捕捉异常的基本语法是: try{// 可能引发异常的代码。}catch (FileNotFoundException ex){// 处理一种类型的异常。}catch (IOException ex){// 处理另一种类的异常。} 除此之外,还有 when 关键字用于筛选异常: try{// 可能引发异常的代码。}catch (FileNotFoundException ex) when (Path.GetExtension(ex.FileName) is ".png"){// 处理一种类型的异常,并且此文件扩展名为 .png。}catch (FileNotFoundException ex){// 处理一种类型的异常。} 无论是否有带 when 关键字,都是前面的 catch 块匹配的时候执行匹配的 catch 块而无视后面可能也匹配的 catch 块。 如果 when 块中抛出异常,那么此异常将被忽略,when 中的表达式值视为 false。有个但是,请看:.NET Framework 的 bug?try-catch-when 中如果 when 语句抛出异常,程序将彻底崩溃 - walterlv。 引发异常 引发异常使用 throw 关键字。只是注意如果要重新抛出异常,请使用 throw; 语句或者将原有异常作为内部异常。 创建自定义异常 如果你只是随便在业务上创建一个异常,那么写一个类继承自 Exception 即可: public class MyCustomException : Exception{public string MyCustomProperty { get; }public MyCustomException(string customProperty) => MyCustomProperty = customProperty;} 不过,如果你需要写一些比较通用抽象的异常(用于被继承),或者在底层组件代码中写自定义异常,那么就建议考虑写全异常的所有构造函数,并且加上可序列化: [Serializable]public class InvalidDepartmentException : Exception{public InvalidDepartmentException() : base() { }public InvalidDepartmentException(string message) : base(message) { }public InvalidDepartmentException(string message, Exception innerException) : base(message, innerException) { }// 如果异常需要跨应用程序域、跨进程或者跨计算机抛出,就需要能被序列化。protected InvalidDepartmentException(SerializationInfo info, StreamingContext context) : base(info, context) { } } 在创建自定义异常的时候,建议: 名称以 Exception 结尾 Message 属性的值是一个句子,用于描述异常发生的原因。 提供帮助诊断错误的属性。 尽量写全四个构造函数,前三个方便使用,最后一个用于序列化异常(新的异常类应可序列化)。 finally 异常堆栈跟踪 堆栈跟踪从引发异常的语句开始,到捕获异常的 catch 语句结束。 利用这一点,你可以迅速找到引发异常的那个方法,也能找到是哪个方法中的 catch 捕捉到的这个异常。 异常处理原则 try-catch-finally 我们第一个要了解的异常处理原则是——明确 try catch finally 的用途! try 块中,编写可能会发生异常的代码。 最好的情况是,你只将可能会发生异常的代码放到 try 块中,当然实际应用的时候可能会需要额外放入一些相关代码。但是如果你将多个可能发生异常的代码放到一个 try 块中,那么将来定位问题的时候你就会很抓狂(尤其是多个异常还是一个类别的时候)。 catch 块的作用是用来 “恢复错误” 的,是用来 “恢复错误” 的,是用来 “恢复错误” 的。 如果你在 try 块中先更改了类的状态,随后出了异常,那么最好能将状态改回来——这可以避免这个类型或者应用程序的其他状态出现不一致——这很容易造成应用程序“雪崩”。举一个例子:我们写一个程序有简洁模式和专业模式,在从简洁模式切换到专业模式的时候,我们设置 IsProfessionalMode 为 true,但随后出现了异常导致没有成功切换为专业模式;然而接下来所有的代码在执行时都判断 IsProfessionalMode 为 true 状态不正确,于是执行了一些非预期的操作,甚至可能用到了很多专业模式中才会初始化的类型实例(然而没有完成初始化),产生大量的额外异常;我们说程序雪崩了,多数功能再也无法正常使用了。 当然如果任务已全部完成,仅仅在对外通知的时候出现了异常,那么这个时候不需要恢复状态,因为实际上已经完成了任务。 你可能会有些担心如果我没有任何手段可以恢复错误怎么办?那这个时候就不要处理异常!——如果不知道如何恢复错误,请不要处理异常!让异常交给更上一层的模块处理,或者交给整个应用程序全局异常处理模块进行统一处理(这个后面会讲到)。 另外,异常不能用于在正常执行过程中更改程序的流程。异常只能用于报告和处理错误条件。 finally 块的作用是清理资源。 虽然 .NET 的垃圾回收机制可以在回收类型实例的时候帮助我们回收托管资源(例如 FileStream 类打开的文件),但那个时机不可控。因此我们需要在 finally 块中确保资源可被回收,这样当重新使用这个文件的时候能够立刻使用而不会被占用。 一段异常处理代码中可能没有 catch 块而有 finally 块,这个时候的重点是清理资源,通常也不知道如何正确处理这个错误。 一段异常处理代码中也可能 try 块留空,而只在 finally 里面写代码,这是为了“线程终止”安全考虑。在 .NET Core 中由于不支持线程终止因此可以不用这么写。详情可以参考:.NET/C 异常处理:写一个空的 try 块代码,而把重要代码写到 finally 中(Constrained Execution Regions) - walterlv。 该不该引发异常? 什么情况下该引发异常?答案是——这真的是一个异常情况! 于是,我们可能需要知道什么是“异常情况”。 一个可以参考的判断方法是——判断这件事发生的频率: 如果这件事并不常见,当它发生时确实代表发生了一个错误,那么这件事情就可以认为是异常。 如果这件事经常发生,代码中正常情况就应该处理这件事情,那么这件事情就不应该被认为是异常(而是正常流程的一部分)。 例如这些情况都应该认为是异常: 方法中某个参数不应该传入 null 时但传入了 null 这是开发者使用这个方法时没有遵循此方法的契约导致的,让开发者改变调用此方法的代码就可以完全避免这件事情发生 而下面这些情况则不应该认为是异常: 用户输入了一串字符,你需要将这串字符转换为数字 用户输入的内容本身就千奇百怪,出现非数字的输入再正常不过了,对非数字的处理本就应该成为正常流程的一部分 对于这些不应该认为是异常的情况,编写的代码就应该尽可能避免异常。 有两种方法来避免异常: 先判断再使用。 例如读取文件之前,先判断文件是否存在;例如读取文件流时先判断是否已到达文件末尾。 如果提前判断的成本过高,可采用 TryDo 模式来完成,例如字符串转数字中的 TryParse 方法,字典中的 TryGetValue 方法。 对极为常见的错误案例返回 null(或默认值),而不是引发异常。极其常见的错误案例可被视为常规控制流。通过在这些情况下返回 NULL(或默认值),可最大程度地减小对应用的性能产生的影响。(后面会专门说 null) 而当存在下列一种或多种情况时,应引发异常: 方法无法完成其定义的功能。 根据对象的状态,对某个对象进行不适当的调用。 请勿有意从自己的源代码中引发 System.Exception、System.SystemException、System.NullReferenceException 或 System.IndexOutOfRangeException。 该不该捕获异常? 在前面 try-catch-finally 小节中,我们提到了 catch 块中应该写哪些代码,那里其实已经说明了哪些情况下应该处理异常,哪些情况下不应该处理异常。一句总结性的话是——如果知道如何从错误中恢复,那么就捕获并处理异常,否则交给更上层的业务去捕获异常;如果所有层都不知道如何处理异常,就交给全局异常处理模块进行处理。 应用程序全局处理异常 对于 .NET 程序,无论是 .NET Framework 还是 .NET Core,都有下面这三个可以全局处理的异常。这三个都是事件,可以自行监听。 AppDomain.UnhandledException 应用程序域未处理的异常,任何线程中未处理掉的异常都会进入此事件中 当这里能够收到事件,意味着应用程序现在频临崩溃的边缘(从设计上讲,都到这里了,也再没有任何代码能够使得程序从错误中恢复了) 不过也可以配置 legacyUnhandledExceptionPolicy 防止后台线程抛出的异常让程序崩溃退出 建议在这个事件中记录崩溃日志,然后对应用程序进行最后的拯救恢复操作(例如保存用户的文档数据) AppDomain.FirstChanceException 应用程序域中的第一次机会异常 我们前面说过,一个异常被捕获时,其堆栈信息将包含从 throw 块到 catch 块之间的所有帧,而在第一次机会异常事件中,只是刚刚 throw 出来,还没有被任何 catch 块捕捉,因此在这个事件中堆栈信息永远只会包含一帧(不过可以稍微变通一下在第一次机会异常 FirstChanceException 中获取比较完整的异常堆栈) 注意第一次机会异常事件即便异常会被 catch 也会引发,因为它引发在 catch 之前 不要认为异常已经被 catch 就万事大吉可以无视这个事件了。前面我们说过异常仅在真的是异常的情况才应该引发,因此如果这个事件中引发了异常,通常也真的意味着发生了错误(差别只是我们能否从错误中恢复而已)。如果你经常在正常的操作中发现可以通过此事件监听到第一次机会异常,那么一定是应用程序或框架中的异常设计出了问题(可能把正常应该处理的流程当作了异常,可能内部实现代码错误,可能出现了使用错误),这种情况一定是要改代码修 Bug 的。而一些被认为是异常的情况下收到此事件则是正常的。 TaskScheduler.UnobservedTaskException 在使用 async / await 关键字编写异步代码的时候,如果一直有 await 传递,那么异常始终可以被处理到;但中间有异步任务没有 await 导致异常没有被传递的时候,就会引发此事件。 如果在此事件中监听到异常,通常意味着代码中出现了不正确的 async / await 的使用(要么应该修改实现避免异常,要么应该正确处理异常并从中恢复错误) 对于 GUI 应用程序,还可以监听 UI 线程上专属的全局异常: WPF:Application.DispatcherUnhandledException 或者 Dispatcher.UnhandledException Windows Forms:Application.ThreadException 关于这些全局异常的处理方式和示例代码,可以参阅博客: WPF UnhandledException - Iron 的博客 - CSDN博客 抛出哪些异常? 任何情况下都不应该抛出这些异常: 过于抽象,以至于无法表明其含义 Exception 这可是顶级基类,这都抛出来了,使用者再也无法正确地处理此异常了 SystemException 这是各种异常的基类,本身并没有明确的意义 ApplicationException 这是各种异常的基类,本身并没有明确的意义 由 CLR 引发的异常 NullReferenceException 试图在空引用上执行某些方法,除了告诉实现者出现了意料之外的 null 之外,没有什么其它价值了 IndexOutOfRangeException 使用索引的时候超出了边界 InvalidCastException 表示试图对某个类型进行强转但类型不匹配 StackOverflow 表示栈溢出,这通常说明实现代码的时候写了不正确的显式或隐式的递归 OutOfMemoryException 表示托管堆中已无法分出期望的内存空间,或程序已经没有更多内存可用了 AccessViolationException 这说明使用非托管内存时发生了错误 BadImageFormatException 这说明了加载的 dll 并不是期望中的托管 dll TypeLoadException 表示类型初始化的时候发生了错误 .NET 设计失误 FormatException 因为当它抛出来时无法准确描述到底什么错了 首先是你自己不应该抛出这样的异常。其次,你如果在运行中捕获到了上面这些异常,那么代码一定是写得有问题。 如果是捕获到了上面 CLR 的异常,那么有两种可能: 你的代码编写错误(例如本该判空的代码没有判空,又如索引数组超出界限) 你使用到的别人写的代码编写错误(那你就需要找到它改正,或者如果开源就去开源社区中修复吧) 而一旦捕获到了上面其他种类的异常,那就找到抛这个异常的人,然后对它一帧狂扁即可。 其他的异常则是可以抛出的,只要你可以准确地表明错误原因。 另外,尽量不要考虑抛出聚合异常 AggregateException,而是优先使用 ExceptionDispatchInfo 抛出其内部异常。详见:使用 ExceptionDispatchInfo 捕捉并重新抛出异常 - walterlv。 异常的分类 在 该不该引发异常 小节中我们说到一个异常会被引发,是因为某个方法声称的任务没有成功完成(失败),而失败的原因有四种: 方法的使用者用错了(没有按照方法的契约使用) 方法的执行代码写错了 方法执行时所在的环境不符合预期 简单说来,就是:使用错误,实现错误、环境错误。 使用错误: ArgumentException 表示参数使用错了 ArgumentNullException 表示参数不应该传入 null ArgumentOutOfRangeException 表示参数中的序号超出了范围 InvalidEnumArgumentException 表示参数中的枚举值不正确 InvalidOperationException 表示当前状态下不允许进行此操作(也就是说存在着允许进行此操作的另一种状态) ObjectDisposedException 表示对象已经 Dispose 过了,不能再使用了 NotSupportedException 表示不支持进行此操作(这是在说不要再试图对这种类型的对象调用此方法了,不支持) PlatformNotSupportedException 表示在此平台下不支持(如果程序跨平台的话) NotImplementedException 表示此功能尚在开发中,暂时请勿使用 实现错误: 前面由 CLR 抛出的异常代码主要都是实现错误 NullReferenceException 试图在空引用上执行某些方法,除了告诉实现者出现了意料之外的 null 之外,没有什么其它价值了 IndexOutOfRangeException 使用索引的时候超出了边界 InvalidCastException 表示试图对某个类型进行强转但类型不匹配 StackOverflow 表示栈溢出,这通常说明实现代码的时候写了不正确的显式或隐式的递归 OutOfMemoryException 表示托管堆中已无法分出期望的内存空间,或程序已经没有更多内存可用了 AccessViolationException 这说明使用非托管内存时发生了错误 BadImageFormatException 这说明了加载的 dll 并不是期望中的托管 dll TypeLoadException 表示类型初始化的时候发生了错误 环境错误: IOException 下的各种子类 Win32Exception 下的各种子类 …… 另外,还剩下一些不应该抛出的异常,例如过于抽象的异常和已经过时的异常,这在前面一小结中有说明。 其他 一些常见异常的原因和解决方法 在平时的开发当中,你可能会遇到这样一些异常,它不像是自己代码中抛出的那些常见的异常,但也不包含我们自己的异常堆栈。 这里介绍一些常见这些异常的原因和解决办法。 AccessViolationException 当出现此异常时,说明非托管内存中发生了错误。如果要解决问题,需要从非托管代码中着手调查。 这个异常是访问了不允许的内存时引发的。在原因上会类似于托管中的 NullReferenceException。 参考资料 Handling and throwing exceptions in .NET - Microsoft Docs Exceptions and Exception Handling - C Programming Guide - Microsoft Docs 我的博客会首发于 https://blog.walterlv.com/,而 CSDN 会从其中精选发布,但是一旦发布了就很少更新。 如果在博客看到有任何不懂的内容,欢迎交流。我搭建了 dotnet 职业技术学院 欢迎大家加入。 本作品采用知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议进行许可。欢迎转载、使用、重新发布,但务必保留文章署名吕毅(包含链接:https://walterlv.blog.csdn.net/),不得用于商业目的,基于本文修改后的作品务必以相同的许可发布。如有任何疑问,请与我联系。 本篇文章为转载内容。原文链接:https://blog.csdn.net/WPwalter/article/details/94610764。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-13 13:38:26
59
转载
转载文章
...为开发者提供了丰富的方法来使用这些全新的、智能化的功能,并且更好地提升用户参与度。 您可在 Pixel 设备上立刻参与 Android P Beta的体验。另外,得益于 Project Treble,您也可在我们合作伙伴推出的高端机型 (请查看今天推送的文章) 上体验到这个全新版本,如 Essential、诺基亚、Oppo、索尼、Vivo 和小米,更多机型也即将加入体验阵营。 请 点击访问此网站 了解支持本次体验的全部设备,以及如何在这些设备上安装 Android P Beta。想要为 Android P Beta 开发应用,请 点击访问此网站。 请点击蓝色字体前往 “Android Developers 官方文档”查看详细说明 以机器学习为核心,打造 “更加智能的” 智能手机 Android P 让智能手机可以学习用户、适应用户,从而使 “智能” 更为智能。现在您的应用可以借助本地硬件中的机器学习成果,来触达更多受众,并为他们提供前所未有的体验。 · 动态电量管理 (Adaptive Battery) 无论用户们使用的是何种手机,电量一直都是他们最为关心问题。在 Android P 中,我们和 DeepMind 合作推出了一个全新功能,即动态电量管理 (Adaptive Battery),来优化各个应用的电量使用。 动态电量管理通过机器学习来管理用户们最关心的那些应用所能占用的系统资源。各个应用会被划分到四个不同的群组里,这些群组对系统资源调用有不同的限制,我们称之为 “应用待机群组 (App Standby buckets)”。随着用户的使用,应用会在这四个群组里切换,那些不在 “活跃 (active)” 组里的应用在包括任务 (jobs)、警报、网络以及高优先级的 Firebase Cloud Messages 等资源调用上会受到相应的限制。 如果您的应用已经针对 Doze, App Standby 和后台运行限制做过优化,那么它就应该已经能和动态电量管理完美配合。我们建议您在四个应用待机群组中都对自己的 app 进行测试,请阅读相关文档了解详情。 · App Actions 当用户想要做一个操作的时候,App Actions 会推荐能帮助他们完成这个操作的 app,而且这个推荐的功能会覆盖整个操作系统中的重要交互环节,比如启动器 (Launcher)、智能文本选择、Google Play、Google Search 应用,以及 Assistant。 App Actions 通过机器学习来分析用户最近的行为或使用场景,从而筛选出需要推荐的应用。由于这些推荐与用户当前想要做的事情高度关联,所以这套机制非常利于拓展新用户以及促活现有用户。 只需将您应用中的各个功能定义为语义意图 (semantic intent),便可以充分享受 App Actions 带来的好处。App Actions 中的意图和我们早些时候在 Google Assistant 上推出的语音对谈式动作 (Conversational Action) 是使用同一套通用意图分类,这个分类支持语音控制的音箱、智能屏幕、车载系统、电视、耳机等设备。由于不需要额外的 API 接口,所以只要用户的 Android 平台版本支持,App Actions 就可以正常使用了。 App Actions 很快就会面向开发者发布,如果您希望收到这方面的通知,请点击这里找到相关链接参与订阅。 · Slices 和 App Actions 一同到来的新功能还有 Slices,这个功能可以让您的应用以模块化、富交互的形式插入到多个使用场景中,比如 Google Search 和 Assistant。Slices 支持的交互包括 actions、开关、滑动条、滑动内容等等。 Slices 是让内容与用户联系的极佳方式,所以我们希望它可以在更多的场景中出现。除了在 Android P 上对这个功能进行了平台级别的整合外, Slices 的 API 和模板也加入到了 Android Jetpack 里。Android Jetpack 是我们全新打造的一套创建优秀应用的工具和库,通过 Android Jetpack,您制作的 Slices 能在 Kitkat (API 等级 19) 及更高版本上使用 —— 这覆盖了 95% 的已激活 Android 设备。我们也会定期更新 Slices 的模板来支持更多类型的场景和交互 (比如文本输入)。 请查阅上手指南以了解如何制作 Slices,使用 SliceViewer 工具查看您做好的 Slices。接下来,我们计划进一步拓展其使用场景,包括在其他 app 中展现您的 Slices。 · 通知智能回复 (Smart reply in notifications) 机器智能可以为用户体验带来非常积极的进化,Gmail 和 Inbox 里的智能回复功能已经成功地证明了这一点。在 Android P 中,通知消息也加入了智能回复功能,而且我们准备了 API 让您可以为用户带来更度身的使用感受。用来帮助您更轻松地在通知中生成回复的 ML Kit 很快就会到来,请 点击访问此网站 了解详情。 · 文本识别 (Text Classifier) 在 Android P 中,我们将识别文本的机器学习模型进行了扩展,使得它可以识别出诸如日期或航班号这样的信息,并通过 TextClassifier API 来让开发者使用到这些改进。我们还更新了 Linkify API 来利用文本识别的结果生成链接,并为用户提供了更多点击后的选项,从而让他们得以更快地进行下一步操作。当然,开发者也可以在给文本识别出来的信息添加链接时拥有更多的选项。智能 Linkify 在识别精准度以及速度上都有明显的提升。 这个模型现在正在通过 Google Play 进行更新,所以您的应用使用现有的 API 就可以享受到本次更新所带来的变化。在安装更新完的模型后,设备即可直接在本地识别文本里的各种信息,而且这些识别出来的信息只保存在您的手机上而不会通过网络流传出去。 请点击蓝色字体前往 “Android Developers 官方文档”查看详细说明 简洁 (Simplicity) 在 Android P,我们格外强调简洁,并据此改进 Android 的 UI 从而帮助用户们更流畅、更高效地完成操作。对开发者来说,简洁的系统则会帮助用户更容易查找、使用和管理您的应用。 · 全新系统导航 (New system navigation) 我们为 Android P 设计了全新的系统导航,只需使用下图中这个在所有界面中都能看到的小按钮,即可更轻松地访问手机主屏、概览页以及 Assistant。新导航系统也使多任务切换及发现关联应用变得更加简单。在概览页,用户可以拥有更大的视野来查看他们之前中断的操作,这自然也会让他们更容易找到并回到之前的应用中。概览页也提供了搜索、预测推荐应用以及上文提到的 App Actions,而且只需再多划一次即可进入所有应用的列表。 · 文字放大镜 (Text Magnifier) 在 Android P 中,我们加入了新的放大镜工具 (Magnifier widget),使选择文本和调整光标位置变得更加轻松。默认情况下,所有继承自 TextView 的类都会自动支持放大镜,但您也可以使用放大镜 API 将它添加到任何自定义的视图上,从而打造更多样化的体验。 · 后台限制 (Background restrictions) 用户可以更加简单地找到并管理那些在后台消耗电量的应用。通过 Android Vitals 积累下来的成果,Android 可以识别那些过度消耗电量的行为,如滥用唤醒锁定等。在 Android P 中,电池设置页面直接列出了这些过度消耗电量的应用,用户只需一次点击就可以限制它们在后台的活动。 一旦应用被限制,那么它的后台任务、警报、服务以及网络访问都会受限。想要避免被限制的话,请留意 Play Console 中的Android Vitals 控制面板,帮助您了解如何提高性能表现以及优化电量消耗。 后台限制能有效保护系统资源不被恶意消耗,从而确保开发者的应用在不同制造商的不同设备上也能拥有一个基础的合理的运行环境。虽然制造商可以在限制列表上额外添加限制的应用,但它们也必须在电池设置页面为用户开放这些限制的控制权。 我们添加了一个标准 API 来帮助应用知晓自己是否被限制,以及一个 ADB 命令来帮助开发者手动限制应用,从而进行测试。具体请参阅相关文档。接下来我们计划在 Play Console 的 Android Vitals 控制面板里添加一个统计数据,以展示应用受到限制的情况。 · 使用动态处理增强音频 (Enhanced audio with Dynamics Processing) Android P 在音频框架里加入了动态处理效果 (Dynamic Processing Effect) 来帮助开发者改善声音品质。通过动态处理,您可以分离出特定频率的声音,降低过大的音量,或者增强那些过小的音量。举例来说,即便说话者离麦克风较远,而且身处嘈杂或者被刺耳的各种环境音包围的地方,您的应用依然可以有效分离并增强他/她的细语。 动态处理 API 提供了多声场、多频段的动态处理效果,包括一个预均衡器、一个多频段压缩器,一个后均衡器以及一个串联的音量限制器。这样您就可以根据用户的喜好或者环境的变化来控制 Android 设备输出的声音。频段数量以及各个声场的开关都完全可控,大多数参数都支持实时控制,如增益、信号的压缩/释放 (attack/release) 时长,阈值等等。 请点击蓝色字体前往 “Android Developers 官方文档”查看详细说明 安全 (Security) · 用户识别提示 (Biometric prompt) Android P 为市面上涌现出来的各种用户识别机制在系统层面提供了统一的使用体验,应用们不再需要自行提供用户识别操作界面,而只需要使用统一的 BiometricPrompt API 即可。这套全新的 API 替代了 DP1 版本中的 FingerprintDialog API,且支持包括指纹识别 (包括屏幕下指纹识别)、面部识别以及虹膜识别,而且所有系统支持的用户识别需求都包含在一个 USE_BIOMETRIC 权限里。FingerprintManager 以及对应的 USE_FINGERPRINT 权限已经被废弃,请开发者尽快转用 BiometricPrompt。 · 受保护的确认操作 (Protected Confirmation) Android P 新增了受保护的确认操作 (Android Protected Confirmation),这个功能使用可信执行环境 (Trusted Execution Environment, TEE) 来确保一个显示出来的提示文本被真实用户确认。只有在用户确认之后,TEE 才会放行这个文本并可由应用去验证。 · 对私有密钥的增强保护 (Stronger protection for private keys) 我们添加了一个新的 KeyStore 类型,StrongBox。并提供对应的 API 来支持那些提供了防入侵硬件措施的设备,比如独立的 CPU,内存以及安全存储。您可以在 KeyGenParameterSpec 里决定您的密钥是否该交给 StrongBox 安全芯片来保存。 Android P Beta 为用户带来新版本的 Android 需要 Google、芯片供应商以及设备制造商和运营商的共同努力。这个过程中充满了技术挑战,并非一日之功 —— 为了让这个过程更加顺畅,去年我们启动了 Project Treble,并将其包含在 Android Oreo 中。我们与合作伙伴们一直在努力开发这个项目,也已经看到 Treble 所能带来的机遇。 我们宣布,以下 6 家顶级合作伙伴将和我们一起把 Android P Beta 带给全世界的用户,这些设备包括:索尼 Xperia XZ2, 小米 Mi Mix 2S, 诺基亚 7 Plus, Oppo R15 Pro, Vivo X21UD 和 X21, 以及 Essential PH‑1。此外,再加上 Pixel 2, Pixel 2 XL, Pixel 和 Pixel XL,我们希望来自世界各地的早期体验者以及开发者们都能通过这些设备体验到 Android P Beta。 您可查看今天推送的文章查阅支持 beta 体验的合作伙伴和 Pixel 设备清单,并能看到每款设备的详细配置说明。如果您使用 Pixel 设备,现在就可以加入 Android Beta program,然后自动获得最新的 Android P Beta。 马上开始在您喜欢的设备上体验 Android P Beta 吧,欢迎您向我们反馈意见和建议!并请继续关注 Project Treble 的最新动态。 确保 app 兼容 随着越来越多的用户开始体验 Android P Beta,是时候开始测试您 app 的兼容性,以尽早解决在测试中发现的问题并尽快发布更新。请查看迁移手册了解操作步骤以及 Android P 的时间推进表。 请从 Google Play 下载您的应用,并在运行 Android P Beta 的设备或模拟器上测试用户流程。确保您的应用体验良好,并正确处理 Android P 的行为变更。尤其注意动态电量管理、Wi-Fi 权限变化、后台调用摄像头以及传感器的限制、针对应用数据的 SELinux 政策、默认启用 TLS 的变化,以及 Build.SERIAL 限制。 · 公开 API 的兼容性 (Compatibility through public APIs) 针对非 SDK 接口的测试十分重要。正如我们之前所强调的,在 Android P 中,我们将逐渐收紧一些非 SDK 接口的使用,这也要求广大的开发者们,包括 Google 内部的应用团队,使用公开 API。 如果您的应用正在使用私有 Android API 或者库,您需要改为使用 Android SDK 或 NDK 公开的 API。我们在 DP1 里已经对使用私有接口的开发者发出了警告信息,从 Android P Beta 开始,调用非 SDK 接口将会报错 (部分被豁免的私有 API 除外) —— 也就是说您的应用将会遭遇异常,而不再只是警告了。 为了帮助您定位非 SDK API 的使用情况,我们在 StrictMode 里加入了两个新的方法。您可以使用 detectNonSdkApiUsage() 在应用通过反射或 JNI 调用非 SDK API 的时候收到警报,您还可以使用 permitNonSdkApiUsage() 来阻止 StrictMode 针对这些调用报错。这些方法都可助您了解应用调用非 SDK API 的情况,但请注意,即便调用的 API 暂时得到了豁免,最保险的做法依然是尽快放弃对它们的使用。 如果您确实遇到了公开 API 无法满足需求的情况,请立刻告知我们。更多详细内容请查看相关文档。 · 凹口屏测试 (Test with display cutout) 针对凹口屏测试您的应用也十分重要。现在您可以在运行 Android P Beta 的合作伙伴机型上测试,确保您的应用在凹口屏上表现良好。同时,您也可以在 Android P 设备的开发者选项里打开对凹口屏的模拟,对您的应用做相应测试。 体验 Android P 在准备好开发条件后,请深入了解 Android P 并学习可以在您的应用中使用到的全新功能和 API。为了帮助您更轻松地探索和使用新 API,请查阅 API 变化报告 (API 27->DP2, DP1->DP2) 以及 Android P API 文档。访问开发者预览版网站了解详情。 下载/更新 Android P 开发者预览版 SDK 和工具包至 Android Studio 3.1,或使用最新版本的 Android Studio 3.2。如果您手边没有 Android P Beta 设备 (或查看今天推送的次条文章),请使用 Android P 模拟器来运行和测试您的应用。 您的反馈一直都至关重要,我们欢迎您畅所欲言。如果您在开发或测试过程中遇到了问题,请在文章下方留言给我们。再次感谢大家一路以来的支持。 请点击蓝色字体前往 “Android Developers 官方文档”查看详细说明 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_34258782/article/details/87952581。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-10 18:19:36
338
转载
转载文章
...buntu系统ip的方法:右上角找到设置图标,选择network,点齿轮图标号,在ipv4下面设置地址192.168.1.x,子网掩码255.255.255.0,网关192.168.1.1(必须要使windows,ubuntu,开发板处于同一网段,能互相ping通) U盘连接到主机和UBUNTU相互转换:虚拟机右下角,右键连接or断开 shell常用指令 ls -a:显示所有目录,文件夹,隐藏文件/目录 ls -l:显示文件的权限、修改时间等 ls -al:上面两个结合 ls 目录:显示该目录下的文件 – cd /:进入linux根目录 cd ~:/home/jl – uname :查看系统信息 uname -a :查看全部系统信息 – cat 文件名:显示某文件内容 – sudo :临时切换root用户 sudo apt-get install 软件名 :装某软件 sudo su:直接切换root用户(少用) sudo su jl:切换回普通用户 – touch 文件名:创建文件 rm -r 目录/文件:删除文件/目录及它包含的所有内容 rm -f 文件:直接删除,无需确认 rm -i 文件:删除文件,会逐一询问是否删除 rmdir 目录:专门删除目录 mv :可以用来移动文件/目录,也可以用来重命名 – ifconfig:显示网络配置信息(lo:本地回环测试) ifconfig -a:显示所有网卡(上面只显示工作的,本条显示所有工作和未工作的) ifconfig eth0 up:打开eth0这个网卡 ifconfig eth0 down:关闭eth0这个网卡(0一般要sudo来执行) ifconfig eth0 你想设置的地址:重设eth0的ip地址 – 命令 --help:看看这个命令的帮助信息 reboot:重启 – sync:数据同步写入磁盘命令(一般来说,用户写的内容先保存在一个缓冲区,系统是隔一定时间像磁盘写入缓冲区内写入磁盘),用sync立刻写入 grep ”“ -i :搜索时忽略大小写 grep 默认是匹配字符, -w 选项默认匹配一个单词 例如我想匹配 “like”, 不加 -w 就会匹配到 “liker”, 加 -w 就不会匹配到 du 目录/文件 -sh : 查看某一文件/目录的大小,也可以到一个目录下du -sh,查看这个目录的大小 目录下使用du -sh 查看目录总的大小 du 文件名 -sh 查看指定文件的大小 df:检查linux服务器的文件系统磁盘空间占用情况,默认以kb为单位 gedit 文件:使用gedit软件打开一个文件(类似于windows下面的记事本) ps:查看您当前系统有哪些进程,ubuntu(多用户)下是ps -aux,嵌入式linux(单用户)下面是ps top:进程实时运行状态查询 file 文件名:查看文件类型 ubuntu的fs cd / :根目录,一切都是从根目录发散开来的 /bin:存放二进制可执行文件,比如一些命令 /boot:ubuntu的内核与启动文件 /cdrom:有光盘是存放光盘文件 /dev:存放设备驱动文件 /etc:存放配置文件,如账号和密码文件(加密后的) /home:系统默认的用户主文件夹 /lib:存放库文件 /lib64:存放库文件,. so时linux下面的动态库文件 /media:存放可插拔设备,如sd,u盘就是挂载到这个文件下面 /mnt:用户可使用的挂载点,和media类似,可以手动让可插拔设备挂载到/mnt /opt:可选的文件和程序存放目录,给第三方软件放置的目录 /proc:存放系统的运行信息,实在内存上的不是在flash上,如cat /proc/cpuinfo /root:系统管理员目录,root用户才能访问的文件 /sbin:和bin类似,存放一些二进制可执行文件,sbin下面一般是系统开机过程中所需要的命令 /srv:服务相关的目录,如网络服务 /sys:记录内核信息,是虚拟文件系统 /tmp:临时目录 /usr:不是user的缩写,而是UNIX Software Resource的缩写,存放系统用户有关的文件,占很大空间 /var:存放变化的文件,如日志文件 – 移植就是移植上面这些文件 磁盘管理 linux开发一定要选用FAT32格式的U盘或者SD卡 u盘在/dev中的名字是sd,要确定是哪个,拔了看少了哪个。就是哪个 /dev/sdb表示U盘,/dev/sdb1表示U盘的第一个分区,一般U盘 sd卡只有一个分区 df:显示linux系统的磁盘占用情况 在一个目录里使用du -sh:查看这个目录里面所有内容所占用的资源 du 文件名 -sh:一般用来看单个文件/目录的大小 du -h --max-depth=n:显示n级目录的大小 – 磁盘的挂载与取消挂载: mount 和 umount sudo mount /dev/sdb1 /media/jl/udisk sudo umount /media/jl/u盘名 (-f 强制取消挂载),如果u盘正在使用,如被另一个终端打开,那么该指令无效 mount挂载后中文显示乱码的解决方法 sudo mount -o iocharset=utf8 /dev/sdb1 udisk – 磁盘的分区和格式化 sudo fdisk -l /dev/sdb 查看所有分区信息(–help查看别的用法) sudo fdisk /dev/sdb1 ----> m ( 进入帮助 ) ----> d 删除该分区 ----> wq 保存并退出 mkfs -t vfat /dev/sdb1 mkfs -t vfat /dev/sdb2 mkfs -t vfat /dev/sdb3 给分区1,2,3分别格式化,完成后能在图形界面看见三个u盘图标 格式化u盘之前一定要先卸载u盘已经挂载的系统。 – 压缩和解压缩 linux下常用的压缩扩展名: .tar .tar.bz2 .tar.gz 后两个linux常用 windows下面用7zip软件 右键选中文件,选择7zip,添加到压缩包,压缩格式选择tar,仅存储 生成tar文件,这里只是打包,没有压缩 右键上面的tar文件,选择7zip,添加到压缩包,压缩格式选择bzip2,确定 生成.tar.bz2文件,把它放到ubuntu解压 ubuntu也支持解压.tar和.zip,但后面两个常用 – ubuntu下面的压缩工具时gzip 压缩文件 gzip 文件名:压缩文件,变成 原文件名.gz,原来的文件就不见了 解压缩文件 gzip -d .gz:还原 文件 gzip -r 目录:递归,将该目录里的各个文件压缩,不提供打包服务 – bzip2工具负责压缩和解压缩.bz2格式的压缩包 bzip2 -z 文件名,压缩成 文件名.bz2 bzip2 -d 文件名.bz2,解压缩成 文件名 bzip2不能压缩/解压缩 目录 – 打包工具 tar 常用参数 -f:使用归档文件(必须要在所有选项后面) -c:创建一个新归档 -x:从归档中解出文件 -j:使用bzip2压缩格式 -z:使用gzip压缩格式 -v:打印出命令执行过程 如以bzip2格式压缩,打包 tar -vcjf 目录名.tar.bz2 目录名 如将上面的压缩包解包 tar -vxjf 目录名.tar.bz2 – 其他压缩工具 rar工具 sudo apt-get install rar(用dhcp连不上阿里云的镜像) rar a test.rar test 把test压缩成test.rar rar x test.rar 把test.rar解压缩成test – zip工具 压缩 zip -rv test.zip test 解压缩 unzip test.zip – ubuntu的用户和用户组 linux是多用户的os,不同的用户有不同的权限,可以查看和操作不同的文件 有三种用户 1、初次用户 2、root用户 3、普通用户 root用户可以创建普通用户 linux用户记录在/etc/passwd这个文件内 linux用户密码记录在/etc/shadow这个文件内,不是以明文记录的 每个用户都有一个id,叫做UID – linux用户组 为了方便管理,将用户进行分组,每个用户可以属于多个组 可以设置非本组人员不能访问一些文件 用户和用户组的存在就是为了控制文件的访问权限的 每个用户组都有一个ID,叫做GID 用户组信息存储在/etc/group中 passwd 用户名:修改该用户的密码 – ubuntu文件权限 ls -al 文件名 如以b开头: -brwx - rwx - rwx -:b表示 块文件,设备文件里面可供存储的周边设备 以d开头是目录 以b是块设备文件 以-开头是普通文件 以 l 开头表示软连接文件 以c开头是设备文件里的串行端口设备 -rwx - rwx - rwx -:用户权限,用户组内其他成员,其它组用户 数字 1 表示链接数,包括软链接和硬链接 第三列 jl 表示文件的拥有者 第四列 jl 表示文件的用户组 第五列 3517 表示这个文件的大小,单位是字节 ls -l 显示的文件大小单位是字节 ls -lh 现实的文件大小单位是 M / G 第六七八列是最近修改时间 最后一列是文件名 – 修改文件权限命令 chmod 777 文件名 修改文件所属用户 sudo chown root 文件 修改文件用户组 sudo chown .root 文件 同时修改文件用户和用户组 sudo chown jl.jl 文件 修改目录的用户/用户组 sudo chown -r jl.jl 目录( root.root ) – linux连接文件 1、硬连接 2、符号连接(软连接) linux有两种连接文件,软连接/符号连接,硬连接 符号连接类似于windows下面的快捷方式 硬连接通过文件系统的inode连接来产生新文件名,而不是产生新文件 inode:记录文件属性,一个文件对应一个inode, inode相当于文件ID 查找文件要先找到inode,然后才能读到文件内容 – ln 命令用于创建连接文件 ln 【选项】源文件 目标文件 不加选项就是默认创建硬连接 -s 创建软连接 -f 强制创建连接文件,如果目标存在,就先删掉目标文件,再创建连接文件 – 硬连接:多个文件都指向同一个inode 具有向inode的多个文件互为硬连接文件,创建硬连接相当于文件实体多了入口 只有删除了源文件、和它所有的硬连接文件,晚间实体才会被删除 可以给文件创建硬连接来防止文件误删除 改了源文件还是硬连接文件,另一个文件的数据都会被改变 硬连接不能跨文件系统(另一个格式的u盘中的文件) 硬连接不能连接到目录 出于以上原因,硬连接不常用 ls -li:此时第一列显示的就是每个文件的inode – 软连接/符号连接 类似windows下面的快捷方式 使用较多 软连接相当于串联里一个独立的文件,该文件会让数据读取指向它连接的文件 ln -s 源文件 目标文件 特点: 可以连接到目录 可以跨文件系统 删除源文件,软连接文件也打不开了 软连接文件通过 “ -> ” 来指示具体的连接文件(ls -l) 创建软连接的时候,源文件一定要使用绝对路径给出,(硬连接无此要求) 软连接文件直接用cp复制到别的目录下,软连接文件就会变成实体文件,就算你把源文件删掉,该文件还是有效 正确的复制、移动软连接的用法是:cp -d 如果不用绝对路径,cp -d 软连接文件到别的目录,该软连接文件就会变红,失效 如果用了绝对路径,cp -d 软连接文件到别的目录,该软连接文件还是有效的,还是软连接文件 不用绝对路径,一拷贝就会出问题 – 软连接一个目录,也是可以用cp -d复制到其他位置的 – gedit 是基于图形界面的 vim有三种模式: 1、一般模式:默认模式,用vim打开一个文件就自动进入这个模式 2、编辑模式:按 i,a等进入,按esc回到一般模式 3、命令行/底行模式:在一般模式下输入:/ ?可进入命令行模式 ,按esc回到一般模式 一般模式下,dd删除光标所在的一整行; ndd,删除掉光标所在行和下面的一共n行 点 . 重复上一个操作 yy复制光标所在行 小p复制到光标下一行 大p复制到光标上一行n nyy复制光标所在往下n行 设置vim里的tab是四个空格:在/etc/vim/vimrc里面添加:set ts=4 设置vim中显示行号:在上面那个文件里添加:set nu – vscode是编辑器 gcc能编译汇编,c,cpp 电脑上的ubuntu自带的gcc用来编译x86架构的程序,而嵌入式设备的code要用针对于该芯片架构如arm的gcc编译器,又叫做交叉编译器(在一种架构的电脑上编译成另一种架构的代码) gcc -c 源文件:只编译不链接,编译成.o文件 -o 输出文件名( 默认名是 .out ) -O 对程序进行优化编译,这样产生的可执行文件执行效率更高 -O2:比-O幅度更大的优化,但编译速度会很慢 -v:显示编译的过程 gcc main.c 输出main.out的可执行文件 预处理 --> 编译 --> 汇编 --> 链接 – makefile里第一个目标默认是终极目标 其他目标的顺序可以变 makefile中的变量都是字符串 变量的引用方法 : $ ( 变量名 ) – Makefile中执行shell命令默认会把命令本身打印出来 如果在shell命令前加 @ ,那么shell’命令本身就不会被打印 – 赋值符:= 变量的有效值取决于他最后一次被赋值的值 : = 赋值时右边的值只是用前面已经定义好的,不会使用后面的 ?= 如果左边的前面没有被赋值,那么在这里赋值,佛则就用前面的赋值 + = 左边前面已经复制了一些字串,在这里添加右边的内容,用空格隔开 – 模式规则 % . o : % . c %在这里意思是通配符,只能用于模式规则 依赖中 % 的内容取决于目标 % 的内容 – CFLAGS:指定头文件的位置 LDFLAGS:用于优化参数,指定库文件的位置 LIBS:告诉链接器要链接哪些库文件 VPATH:特殊变量,指定源文件的位置,冒号隔开,按序查找源文件 vpath:关键字,三种模式,指定、清除 – 自动化变量 $ @ 规则中的目标集合 $ % 当目标是函数库的时候,表示规则中的目标成员名 $ < 依赖文件集合中的第一个文件,如果依赖文件是以 % 定义的,那么 $ < 就是符合模式的一系列文件的集合 $ ? 所有比目标新的依赖文件的集合,以空格分开 $ ^ 所有依赖文件的集合,用空格分开,如果有重复的依赖文件,只保留一次 $ + 和 $ ^ 类似,但有多少重复文件都会保留 $ 表明目标模式中 % 及其以前的部分 如果目标是 test/a.test.c,目标模式是 a.%.c,那么 $ 就表示 test/a.test – 常用的是 $@ , $< , $^ – Makefile的伪目标 不生成目标文件,只是执行它下面的命令 如果被错认为是文件,由于伪目标一般没有依赖,那么目标就被认为是最新的,那么它下面的命令就不会执行 。 如果目录下有同名文件,伪目标错认为是该文件,由于没有依赖,伪目标下面的指令不会被执行 伪目标声明方法 .PHONY : clean 那么就算目录下有伪目标同名文件,伪目标也同样会执行 – 条件判断 ifeq ifneq ifdef ifndef – makefile函数使用 shell脚本 类似于windoes的批处理文件 将连续执行的命令写成一个文件 shell脚本可以提供数组,循环,条件判断等功能 开头必须是:!/bin/bash 表示使用bash 脚本的扩展名:.sh – 交互式shell 有输入有输出 输入:read 第三行 name在这里作为变量,read输入这个变量 下一行使用这个变量直接是 $name,不用像 Makefile 里面那样子加括号 read -p “读取前你想打印的内容” 变量1 变量2 变量3… – 数值计算 第五行等于号两边不能有空格 右边计算的时候是 $( ( ) ),注意要两个括号 – test 测试命令 文件状态查询,字符、数字比较 && cmd1 && cmd2 当cmd1执行完并且正确,那么cmd2也执行 当cmd2执行完并且错误,那么cmd2不执行 || cmd1 || cmd2 当cmd1执行完并且正确,那么cmd2不执行 当cmd2执行完并且错误,那么cmd2也执行 查看一个文件是否存在 – 测试两个字符串是否相等 ==两边必须要有空格,如果不加空格,test这句就一直是对的。 – 中括号判断符 [ ] 作用和test类似 里面只能输入 == 或者 != 四个箭头所指必须用空格隔开 而且如果变量是字符串的话,一定要加双引号 – 默认变量 $0——shell脚本本身的命令 $——最后一个参数的标号(1,2,3,4…) $@——表示 $1 , $2 , $3 … $1 $2 $3 – shell 脚本的条件判断 if [ 条件判断 ];then //do something fi 红点处都要加空格 exit 0——表示退出 – if 条件判断;then //do something elif 条件判断;them //do something else //do something fi 红线处要加空格 – case 语句 case $var in “第一个变量的内容”) //do something ;; “第二个变量的内容”) // do something ;; . . . “第n个变量的内容”) //do something ;; esac 不能用 “”,否则就不是通配符的意思,而是表示字符 – shell 脚本函数 function fname(){ //函数代码段 } 其中function可以写也可以不写 调用函数的时候不要加括号 shell 脚本函数传参方式 – shell 循环 while[条件] //括号内的状态是判断式 do //循环代码段 done – until [条件] do //循环代码段 done – for循环,使用该循环可以知道有循环次数 for var con1 con2 con3 … … do //循环代码段 done – for 循环数值处理 for((初始值;限制值;执行步长)) do //循环代码段 done – 红点处必须要加空格!! loop 环 – – 注意变量有的地方用了 $ ,有的地方不需要 $ 这里的赋值号两边都不用加 空格 $(())数值运算 本篇文章为转载内容。原文链接:https://blog.csdn.net/engineer0/article/details/107965908。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-23 17:18:30
79
转载
转载文章
...数的C++程序 三、调用构造函数和析构函数的顺序 1.同一类存储类别的对象 2.全局范围内定义的对象 3.局部自动对象 4.静态局部对象 5.例 四、对象数组 1.含义 2.【例3.6】 五、对象指针 1.指向对象的指针 2.指向对象成员的指针 (1)含义 (2)指向对象公有数据成员的指针 (3)指向对象成员函数的指针 (4)【例3.7】有关对象指针的使用方法 3.this指针 六、共用数据的保护 1.常对象 2.常对象成员 (1)常数据成员 (2)常成员函数 3.指向对象的常指针 4.指向常对象的指针变量 5.对象的常引用 (1)含义 (2)格式 (3)【例3.8】对象的引用 6.const型数据小结 编辑 七、对象的动态建立与释放——动态建立对象 八、对象的赋值和复制 1.对象的赋值 (1)含义 (2)【例3.9】对象的赋值 (3)说明 2.对象的复制 (1)含义 (2)【例】用复制对象的方法创建Box类的对象(用默认复制构造函数) (3)说明 九、静态成员 1.静态数据成员 (1)定义格式 (2)特性 (3)说明 (4)【例3.10】引用静态数据成员 2.静态成员函数 (1)含义 (2)【例3.11】关于引用非静态成员和静态成员的具体方法 (3)【例】具有静态数据成员的point类 (4)静态成员函数举例 (5)具有静态数据、函数成员的Point类 (6)静态成员函数、静态数组及其初始化 十、友元 1.友元函数 (1)含义 (2)格式 (3)【例3.12】将普通函数声明为友元函数 (4)友元成员函数 2.友元类 十一、类模板 1.含义 2.定义类模板的格式 3.在类模板外定义成员函数的语法 4.使用类模板时,定义对象的格式 5.【例3.14】声明类模板,实现两个整数、浮点数和字符的比较,求出大数和小数 前言 通过第二章的学习,已经对类和对象有了初步了解。本章将对类和对象进行进一步讨论。 一、构造函数 如果定义一个变量,而程序未对其进行初始化的话,这个变量的值是不确定的,因为C和C++不会自觉地去为它赋值。与此相似,如果定义一个对象,而程序未对其数据成员进行初始化的话,这个对象的值也是不确定的。 1.对象的初始化 在定义一个类时,不能对其数据成员赋初值,因为类是一种类型,系统不会为它分配内存空间。在建立一个对象时,需要对其数据成员赋初值。如果一个数据成员未被赋初值,则它的值是不确定的。因为系统为对象分配内存时,保持了内存单元的原状,它就成为数据成员的初值。这个值是随机的。 C++提供了构造函数机制,用来为对象的数据成员进行初始化。在前面的学习中一直未讲这个概念,其实如果你未设计构造函数,系统在创建对象时,会自动提供一个默认的构造函数,而它只为对象分配内存空间其他什么也不做。 如果类中的所有数据成员是公有的,可以在定义对象时对其数据成员初始化。例如: class Time{public:int hour;int minute;int sec;};Time t1{15,36,26}; 在一个打括号内顺序列出各个公有数据成员的值,在两个值之间用逗号分隔。注意这只能用于数据成员都是共有的情况。 在前面的例子里,是用成员函数对对象的数据成员赋初值,如果一个类定义了多个对象,对每个对象都要调用成员函数对数据成员赋初值,那么程序就会变得繁琐,所以用成员函数为数据成员赋初值不是一个好办法。 2.构造函数的作用 构造函数用于为对象分配空间和进行初始化,它属于某一个类,可以由系统自动生成。也可以由程序员编写,程序员根据初始化的要求设计构造函数及函数参数。 构造函数是一种特殊的成员函数,在程序中不需要写调用语句,在系统建立对象时由系统自觉调用执行。 构造函数的特点: 构造函数的名字与它的类名必须相同 它没有类型,也不返回值 它可以带参数,也可以不带参数 include <iostream>using namespace std;class Time {public:Time() {hour = 0;minute = 0;sec = 0;}void set_time();void show_time();private:int hour;int minute;int sec;};int main() {Time t1;t1.set_time();t1.show_time();Time t2;t2.show_time();return 0;}void Time::set_time() {cin >> hour;cin >> minute;cin >> sec;}void Time::show_time() {cout << hour << ":" << minute << ":" << sec << endl;} 在类Time中定义了构造函数Time,它与所在的类同名。在建立对象时自动执行构造函数,该函数的作用是为对象中的每个数据成员赋初值0。注意只有执行构造函数时才能为数据成员赋初值。 程序运行时首先建立对象t1,并对t1中的数据成员赋初值0,然后执行t1.set_time函数,从键盘输入新值给对象t1的数据成员,再输出t1的数据成员的值。接着建立对象t2,同时对t2中的数据成员赋初值0,最后输出t2的数据成员的初值。程序运行情况如下: 也可以在类内声明构造函数然后在类外定义构造函数。将程序修改为Time();然后在类外定义构造函数: Time::Time() {hour = 0;minute = 0;sec = 0;} 关于构造函数的使用,说明如下: 什么时候调用构造函数?当函数执行到对象定义语句时建立对象,此时就要调用构造函数,对象就有了自己的作用域,对象的生命周期开始了。 构造函数没有返回值,因此不需要在定义中声明类型。 构造函数不需要显式地调用,构造函数是在建立对象时由系统自动执行的,且只执行以此。构造函数一般定义为public。 在构造函数中除了可以对数据成员赋初值,还可以使用其他语句。 如果用户没有定义构造函数,C++系统会自动生成一个构造函数,而这个函数体是空的,不执行初始化操作。 3.带形参数的构造函数 (1)含义 可以采用带形参数的构造函数,在调用不同对象的构造函数时,从外边将不同的数据传递给构造函数,实现不同对象的初始化。 构造函数的首部的一般格式为:构造函数名(类型 形参1,类型 形参2,……)。在定义对象时指定实参,定义对象的格式为:类名 对象名(实参1,实参2,……)。 (2)【例3.2】 有两个长方柱,其长、宽、高分别为:(1)12,25,30(2)15,30,21编写程序,在类中用带参数的构造函数,计算它们的体积。 分析:可以在类中定义一个计算长方体体积的成员函数计算对象的体积。 include<iostream>using namespace std;class Box{public:Box(int,int,int); //声明int volume();private:int height;int width;int length;};Box::Box(int h,int w,int len) //长方体构造函数{height=h;width=w;length=len;}int Box::volume() //计算长方体体积{return(heightwidthlength);}int main(){Box box1(12,25,30); //定义对象box1cout<<"box1体积="<<box1.volume()<<endl;Box box2(15,30,21); //定义对象box2cout<<"box2体积="<<box2.volume()<<endl;return 0;} 【注】 带形参的构造函数在定义对象时必须指定实参 用这种方法可以实现不同对象的初始化 4.用参数初始化表对数据成员初始化 C++提供了参数初始化表的方法对数据成员初始化。这种方法不必再构造函数内对数据成员初始化,在函数的首部就能实现数据成员初始化。 函数名(类型1 形参1,类型2 形参2): 成员名1(形参1),成员名2(形参2){ } 功能:执行构造函数时,将形参1的值赋予成员1,将形参2的值赋予成员2,形参的值由定义对象时的实参值决定。此时定义对象的格式依然是带实参的形式:类名 对象名(实参1,实参2); 例:定义带形参初始化表的构造函数 Box::Box(int h,int w,int len):height(h),width(w),length(len){}//定义对象:Box box1(12,25,30);//……Box box2(15,30,21); 5.构造函数的重载 (1)含义 构造函数也可以重载。一个类可以有多个同名构造函数,函数参数的个数、参数的类型各不相同。 (2)【例3.3】 在【例3.2】的基础上定义两个构造函数,其中一个无参数,另一个有参数 include <iostream>using namespace std;class Box {public:Box();Box(int h, int w, int len): height(h), width(w), length(len) {}int volume();private:int height;int width;int length;};Box::Box() {height = 10;width = 10;length = 10;}int Box::volume() {return (height width length);}int main() {Box box1;cout << "box1 体积" << box1.volume() << endl;Box box2(15, 30, 25);cout << "box2 体积" << box2.volume() << endl;return 0;} (3)说明 不带形参的构造函数为默认构造函数,每个类只有一个默认构造函数,如果是系统自动给的默认构造函数,其函数体是空的 虽然每个类可以包含多个构造函数,但是创建对象时,系统仅执行其中一个 6.使用默认参数值的构造函数 (1)含义 C++允许在构造函数里为形参指定默认值,如果创建对象时,未给出相应的实参时,系统将用形参的默认值为形参赋值。 (2)格式 函数名(类型 形参1=常数,类型 形参2=常数,……); (3)【例3.4】 将【例3.3】中的构造函数改用带默认值的参数,长、宽、高的默认值都是10 include <iostream>using namespace std;class Box {public:Box(int w = 10, int h = 10, int len = 10);int volume();private:int height;int width;int length;};Box::Box(int w, int h, int len) {height = h;width = w;length = len;}int Box::volume() {return (height width length);}int main() {Box box1;cout << "box1 体积" << box1.volume() << endl;Box box2(15);cout << "box2 体积" << box2.volume() << endl;Box box3(15, 30);cout << "box3 体积" << box3.volume() << endl;Box box4(15, 30, 20);cout << "box4 体积" << box4.volume() << endl;return 0;} (4)说明 如果在类外定义构造函数,应该在声明构造函数时指定默认参数值,再定以函数时不再指定默认参数值 在声明构造函数时,形参名可以省略。例如:Box(int 10,int 10,int 10); 如果构造函数的所有形参都指定了默认值,在定义对象时,可以指定实参也可不指定实参。由于不指定实参也可以调用构造函数,因此全部形参都指定了默认值的构造函数也属于默认构造函数。为了避免歧义,不允许同时定义不带形参的构造函数和全部形参都指定默认值的构造函数。 不能同时使用重载构造函数和带默认值的构造函数 二、析构函数 1.含义 析构函数也是个特殊的成员函数,它的作用与构造函数相反,当对象的生命周期结束时,系统自动调用析构函数,收回对象占用的内存空间。 2.执行析构函数的时机 在一个函数内定义的对象当这个函数结束时,自动执行析构函数释放对象 static局部对象要到main函数结束或执行exit命令时才自动执行析构函数释放对象 全局对象(在函数外定义的对象)当main函数结束或执行exit命令时自动执行析构函数释放对象 如果用new建立动态对象,用delete时自动执行析构函数释放对象 3.特征 以~符号开始后跟类名 析构函数没有数据类型、返回值、形参。由于没有形参所以析构函数不能重载。一个类只有一个析构函数 如果程序员没有定义析构函数,C++编译系统会自动生成一个析构函数 【注】析构函数除了释放对象(资源)外,还可以执行程序员在最后一次适用对象后希望执行的任何操作。例如输出有关的信息。 4.【例3.5】包含构造函数和析构函数的C++程序 include <iostream>include <string>using namespace std;class Student {public:Student(int n, string nam, char s) {num = n;name = nam;sex = s;cout << "Constructor called." << endl;}~Student() {cout << "Destructor called." << endl;}void display() {cout << "num:" << num << endl;cout << "name:" << name << endl;cout << "sex:" << sex << endl;}private:int num;string name;char sex;};int main() {Student stud1(10010, "wang_li", 'f');stud1.display();Student stud2(10011, "zhang_han", 'm');stud2.display();return 0;}//main函数前声明的类其作用域是全局的 三、调用构造函数和析构函数的顺序 1.同一类存储类别的对象 一般情况下,调用析构函数的次序与调用构造函数的次序恰好相反:最先调用构造函数的对象,最后调用析构函数;最后调用构造函数的对象,最先调用析构函数。可简记为:先构造的后析构,后构造的先析构。它相当于一个栈,后进先出。 2.全局范围内定义的对象 在全局范围内定义的对象(在所有函数之外定义的对象),在文件中的所有函数(包括主函数)执行前调用构造函数。当主函数结束或执行exit函数时,调用析构函数。 3.局部自动对象 如果定义局部自动对象(在函数内定义对象),在创建对象时调用构造函数。如多次调用对象所在的函数,则每次创建对象时都调用构造函数。在函数调用结束时调用析构函数。 4.静态局部对象 如果在函数中定义静态局部对象,则在第一次调用该函数建立对象时调用构造函数,但在主函数结束或调用exit函数时才调用析构函数。 5.例 void fun(){student st1; //定义局部自动对象static student st2; //定义静态局部对象...} 对象st1是每次调用函数fun时调用构造函数。在函数fun结束时调用析构函数。 对象st2是第一次调用函数fun时调用构造函数,在函数fun结束时并不调用析构函数,到主函数结束时才调用析构函数 四、对象数组 1.含义 类是一种特殊的数据类型,它当然是C++的合法类型,自然可以定义对象数组。在一个对象数组中各个元素都是同类对象。例如一个班级有50个同学,每个学生有学号、年龄、成绩等属性,可以为这个班级建立一个对象数组,数组包括了50个元素:student std[50];。 可以这样建立构造函数:student::student(int 1001,int 18,int 60);。 在建立数组时,同样要调用构造函数。上面的数组有50个元素,要调用50次构造函数。如果构造函数有多个参数,C++要求:在等号后的花括号中为每个对象分别写出构造函数并指定实参。格式为: student st[n]={ student(实参1,实参2,实参3); …… student(实参1,实参2,实参3); }; 假定对象有三个数据成员:学号、年龄、成绩。下面定义有三个学生的对象数组: student st[3]={ student(1001,18,87); student(1002,19,76); student(1003,18,80); };//构造函数带实参 在建立对象数组时,分别调用构造函数,对每个对象初始化。每个元素的实参用括号括起来,实参的位置与构造函数形参的位置一一对应,不会混淆。 2.【例3.6】 include <iostream>using namespace std;class Box {public:Box(int h = 10, int w = 12, int len = 15): height(h), width(w), length(len) {} //int volume();private:int height;int width;int length;};int Box::volume() {return (height width length);}int main() {Box a[3] = {Box(10, 12, 15), Box(15, 18, 20), Box(16, 20, 26)};cout << "a[0]的体积是" << a[0].volume() << endl;cout << "a[1]的体积是" << a[1].volume() << endl;cout << "a[2]的体积是" << a[2].volume() << endl;return 0;}//每个数组元素是一个对象 五、对象指针 指针的含义是内存单元的地址,可以指向一般的变量,也可以指向对象。 1.指向对象的指针 对象要占据一片连续的内存空间,CPU实际都是按地址访问内存,所以对象在内存的其实地址是CPU确定对象在内存中位置的依据。这个起始地址称为对象指针。 C++的对象也可以参加取地址运算:&对象名。运算的结果是该对象的起始地址,也称对象的指针,要用与对象类型相同的指针变量保存运算的结果。 C++中定义对象的指针变量与定义其他的指针变量相似,格式如下:类名 变量名表。类名表示对象所属的类,变量名按标识符规则取名,两个变量名之间用逗号分隔。定义好指针变量后,必须先给赋予合法的地址后才能使用。 例如定义如下一个类: class Time {public:Time() {hour = 0;minute = 0;sec = 0;}void set_time();void show_time();private:int hour;int minute;int sec;};void Time::set_time() {cin >> hour;cin >> minute;cin >> sec;}void Time::show_time() {cout << hour << ":" << minute << ":" << sec << endl;} 在此基础上,有如下语句: Time pt; //定义pt是指向Time类对象的指针Time t1; //定义Time类对象t1pt=&t1; //将对象t1的地址赋予pt 程序在此基础上就可以用指针变量访问对象的成员。 (pt).hour;pt->hour;(pt).show_time();pt->show_time(); 2.指向对象成员的指针 (1)含义 对象由成员组成。对象占据的内存区是各个数据成员占据的内存区的总和。对象成员也有地址,即指针。这指针分指向数据成员的指针和指向成员函数的指针。 (2)指向对象公有数据成员的指针 定义数据成员的指针变量:数据类型 指针变量名(这里的数据类型是数据成员的数据类型) 计算公有数据成员的地址:&对象名.成员名 Time t1;int p1; //定义一个指向整型数据的指针变量p1=&t1.hour; //假定hour是公有成员cout<<p1<<endl; (3)指向对象成员函数的指针 定义指向成员函数的指针变量:数据类型(类名::变量名)(形参表); 数据类型是成员函数的类型;类名是对象所属的类;变量名按标识符取名;形参表:指定成员函数的形参表(形参个数、类型) 取成员函数的地址:&类名::成员函数名 给指针变量赋初值:指针变量名=&类名::成员函数名; 用指针变量调用成员函数:(对象名.指针变量名)([实参表]); 对象名:指定调用成员函数的对象;:明确其后的是一个指针变量;实参表:与成员函数的形参表对应,如无形参,可以省略实参表 (4)【例3.7】有关对象指针的使用方法 include <iostream>using namespace std;class Time {public:Time(int, int, int);int hour;int minute;int sec;void get_time();};Time::Time(int h, int m, int s) {hour = h;minute = m;sec = s;}void Time::get_time() {cout << hour << ":" << minute << ":" << sec << endl;}int main() {Time t1(10, 13, 56);int p1 = &t1.hour; //定义指向数据成员的指针p1cout << p1 << endl;t1.get_time(); //调用成员函数Time p2 = &t1; //定义指向对象t1的指针p2p2->get_time(); //用对象指针调用成员函数void(Time::p3)(); //定义指向成员函数的指针p3 = &Time::get_time; //给成员函数的指针赋初值(t1.p3)(); //用指向成员函数的指针调用成员函数return 0;} 【注】代码的34,35行可合并为:void(Time::p3)=&Time::get_time; 3.this指针 一个类的成员函数只有一个内存拷贝。类中不论哪个对象调用某个成员函数,调用的都是内存中同一个成员函数代码。例如Time类一个成员函数: void Time::get_time(){cout<<hour<<":"<<minute<<":"<<sec<<endl;}t1.get_time();t2.get_time(); 当不同对象的成员函数访问数据成员时,怎么保证访问的就是指定对象的数据成员?其实每个成员函数中都包含一个特殊的指针,他的名字是this指针。它是指向本类对象的指针。当对象调用成员函数时,它的值就是该对象的起始地址。所以为了区分不同对象访问成员函数,语法要求的调用成员函数的格式是:对象名.成员函数名(实参表)。从语法上明确是对象名所指的对象调用成员函数。This指针是隐式使用的,在调用成员函数时C++把对象的地址作为实参传递给this指针。例如成员函数定义如下: int Box::volume(){return(heightwidthlength);} C++编译成: int Box::volume(this){return(this->heightthis->widththis->length);} 对于计算长方体体积的成员函数volume,当对象调用它时,就把对象地址给this指针,编译程序将的地址作为实参调用成员函数:a.volume(&a);。实际上函数是计算(this->height)(this->width)(this->length),这时就等价计算(a.height)(a.width)(a.length)。 可以用(this)表示调用成员函数的对象。(this)就是this所指的对象。如前面的计算长方体体积的函数中return语句可以写成:return((this).height(this).width(this).length);注意,this两侧的括号不能省略。 C++通过编译程序,在对象调用成员函数时,把对象的地址赋予this指针,用this指针指向对象,实现了用同一个成员函数访问不同对象的数据成员。 六、共用数据的保护 如果既希望数据在一定范围内共享,又不愿它被随意修改,从技术上可以把数据指定为只读型的。C++提供const手段,将数据、对象、成员函数指定为常量,从而实现了只读要求,达到保护数据的目的。 1.常对象 定义格式: const 类名 对象名(实参表);或 类名 const 对象名(实参表); 把对象定义为常对象,对象中的数据成员就是常变量,在定义时必须带实参作为数据成员的初值,在程序中不允许修改常对象的数据成员值。 如果一个常对象的成员函数未被定义为常成员函数(除构造函数和析构函数外),则对象不能调用这样的函数。 const Time t1(10,16,36);t1.get_time();//错误,不能调用 为了访问常对象中的数据成员,要定义常成员函数。 void get_time() const 如果在常对象中要修改某个数据成员,C++提供了指定可变的数据成员方法。 格式:mutable 类型 数据成员 在定义数据成员时加mutable后,将数据成员声明为可变的数据成员,就可以用声明为const的成员函数修改它的值。 2.常对象成员 可以在声明普通对象时将数据成员或成员函数声明为常数据成员或常成员函数。 (1)常数据成员 格式: const 类型 数据成员名 将类中的数据成员定义为具有只读的性质。注意只能通过带参数初始表的构造函数对常数据成员进行初始化。例如: const int hour;Time::Time(int h){hour=h;...//错误}Time::Time(int h):hour(h){}//正确 在类中声明了某个常数据成员后,该类中每个对象的这个数据成员的值都是只读的,而每个对象的这个数据成员的值可以不同,由定义对象时给出。 (2)常成员函数 定义格式:类型 函数名 (形参表)const const是函数类型的一部分,在声明函数原型和定义函数时都要用const关键字。 【注1】const是函数类型的一个组成部分,因此在函数的实现部分也要使用关键字const。常成员函数不能修改对象的数据成员,也不能调用该类中没有由关键字const修饰的成员函数,从而保证了在常成员函数中不会修改数据成员的值。如果一个对象被说明为常对象,则通过该对象只能调用它的常成员函数。 【注2】一般成员函数可以访问或修改本类中非const数据成员。而常成员函数只能读本类中的数据成员,而不能写他们。 数据成员 非const成员函数 const成员函数 非const的数据成员 可以引用,也可以改变值 可以引用,但不可以改变值 const数据成员 可以引用,但不可以改变值 可以引用,但不可以改变值 const对象的数据成员 不允许引用和改变值 可以引用,但不可以改变值 常成员函数的使用: 如果类中有部分数据成员的值要求为只读,可以将它们声明为const,这样成员函数只能读这些数据成员的值,但不能修改它们的值 如果所有数据成员的值为只读,可将对象声明为const,在类中必须声明const成员函数,常对象只能通过常成员函数读数据成员 常对象不能调用非const成员函数 【注】如果常对象的成员函数未加const,编译系统将其当作非const成员函数;常成员函数不能调用非const成员函数 3.指向对象的常指针 如果在定义指向对象的指针时,使用了关键字const,他就是一个常指针,必须在定义时对其初始化,并且在程序运行中不能再修改指针的值。 格式:const 指针变量名=对象地址 Time t1(10,12,15),t2;Time const p1=&t1;//在此后,不能修改p1Time const p1=&t2;//错误语句 指向对象的常指针,在程序运行中始终指向的是同一个对象。即指针变量的值始终不变,但它所指对象的数据成员值可以修改。当需要将一个指针变量固定地与一个对象相联系时,就可将指针变量指定为const。往往用常指针作为函数的形参,目的是不允许在函数中修改指针变量的值,让它始终指向原来的对象。 4.指向常对象的指针变量 5.对象的常引用 (1)含义 前面学过引用是传递参数的有效方法。用引用形参时,形参变量与实参变量是同一个变量,在函数内修改引用形参也就是修改实参变量。如果用引用形参又不想让函数修改实参,可以使用常引用机制。 (2)格式 const 类名 &形参变量名 (3)【例3.8】对象的引用 include <iostream>using namespace std;class Time {public:Time(int, int, int);int hour;int minute;int sec;};Time::Time(int h, int m, int s) {hour = h;minute = m;sec = s;}void fun(Time &t) {t.hour = 18;}int main() {Time t1(10, 13, 56);fun(t1);cout << t1.hour << endl;return 0;} //如果用引用形参又不想让函数修改实参,可以使用常引用机制include <iostream>using namespace std;class Time {public:Time(int, int, int);void fun(int &t) {hour = t;t = 18;}int hour;int minute;int sec;};Time::Time(int h, int m, int s) {hour = h;minute = m;sec = s;}int main(int argc, char argc[]) {int x = 15;Time t1(10, 13, 56);t1.fun(x);cout << t1.hour << endl;cout << x << endl;return 0;} 6.const型数据小结 七、对象的动态建立与释放——动态建立对象 C++提供了new和delete运算符,实现动态分配、回收内存。他们也可以用来动态建立对象和释放对象。 格式:new 类名; 功能:在堆里分配内存,建立指定类的一个对象。如果分配成功,将返回动态对象的起始地址(指针);如不成功,返回0.为了保存这个指针,必须事先建立以类名为类型的指针变量。 格式:类名 指针变量名 Box pt;pt=new Box;//如果分配成功,就可以用指针变量pt访问动态对象的数据成员cout<<pt->height;cout<<pt->volume(); 当不再需要使用动态变量时,必须用delete运算符释放内存。 格式:delete 指针变量(存放的是用new运算返回的指针) 八、对象的赋值和复制 1.对象的赋值 (1)含义 如果一个类定义了两个或多个对象,则这些同类对象之间可以相互赋值。这里所指的对象的值含义是对象中所有数据成员的值。对象1、对象2都是已建立好的同类对象。 格式:对象1=对象2; (2)【例3.9】对象的赋值 include <iostream>using namespace std;class Box {public:Box(int = 10, int = 10, int = 10);int volume();private:int height;int width;int length;};Box::Box(int h, int w, int len) {height = h;width = w;length = len;}int Box::volume() {return (height width length);}int main() {Box box1(15, 30, 25), box2;cout << "box1 体积=" << box1.volume() << endl;box2 = box1;cout << "box2 体积=" << box2.volume() << endl;return 0;} (3)说明 对象的赋值只对数据成员操作 数据成员中不能含有动态分配的数据成员 2.对象的复制 (1)含义 对象赋值的前提是对象1和对象2是已经建立的对象。C++还可以按照一个对象克隆出另一个对象(从无到有),这就是复制对象。复制对象是创建对象的另一种方法(以前学过的是定义对象)。创建对象必须调用构造函数,复制对象要调用复制构造函数。以Box类为例,复制构造函数的形式是: Box::Box(const Box &b){height=b.height;width=b.width;length=b.length;} 复制构造函数只有一个参数,这个参数是本类的对象,且采用引用对象形式。为了防止修改数据,加const限制。构造函数的内容就是将实参对象的数据成员值赋予新对象对应的数据成员,如果程序中未定义复制构造函数,编译系统将提供默认的复制构造函数,复制类中的数据成员。 复制对象有两种格式: 类名 对象2(对象1);按对象1复制对象2 类名 对象2=对象1,对象3=对象1,……按对象1复制对象2、对象3 (2)【例】用复制对象的方法创建Box类的对象(用默认复制构造函数) //include "stdafx.h"include <iostream>using namespace std;class Box {public:Box(int = 10, int = 10, int = 10);int volume();private:int height;int width;int length;};Box::Box(int h, int w, int len) {height = h;width = w;length = len;}int Box::volume() {return (height width length);}int main() {Box box1(15, 30, 25);cout << "box1 体积=" << box1.volume() << endl;//Box box2=box1,box3=box2;Box box2(box1), box3(box2);cout << "box2 体积=" << box2.volume() << endl;cout << "box3 体积=" << box3.volume() << endl;return 0;} (3)说明 在以下情况调用复制构造函数: 在程序里用复制对象格式创建对象 当函数的参数是对象。调用函数时,需要将实参对象复制给形参对象,在此系统将调用复制构造函数 void fun(Box b){...}int main(){Box box1(12,15,18);fun(box1);return 0;} 在函数返回值是类的对象时,需要将函数里的对象复制一个临时对象当作函数值返回 Box f(){Box box1(12,15,18);return box1;}int main(){Box box2;box2=f();} 九、静态成员 C++用const保护数据对象不被修改,在实际中还需要共享数据,C++怎样提供数据共享机制?C++静态成员、友元实现对象之间、类之间的数据共享。 1.静态数据成员 (1)定义格式 static 类型 数据成员名 class Box{public:Box(int=10,int=10,int=10);int volume();private:static int height;int width;int length;}; (2)特性 设Box有n个对象box1..boxn。这n个对象的height成员在内存中共享一个整型数据空间。如果某个对象修改了height成员的值,其他n-1个对象的height成员值也被改变,从而达到n个对象共享height成员值的目的。 (3)说明 由于一个类的所有对象共享静态数据成员,所以不能用构造函数为静态数据成员初始化,只能在类外专门对其初始化。如果程序未对静态数据成员赋初值,则编译系统自动用0为它赋初值 格式:数据类型 类名::静态数据成员名=初值; 即可已用对象名引用静态成员,也可以用类名引用静态成员 静态数据成员在对象外单独开辟内存空间,只要在类中定义了静态成员,即使不定义对象,系统也为静态成员分配内存空间,可以被引用 在程序开始时为静态成员分配内存空间,直到程序结束才释放内存空间 静态数据成员作用域是它的类的作用域(如果在一个函数内定义类,他的静态数据成员作用域就是这个函数)在此范围内可以用“类名::静态成员名”的形式访问静态数据成员 (4)【例3.10】引用静态数据成员 include <iostream>using namespace std;class Box {public:Box(int, int);int volume();static int height;int width;int length;};Box::Box(int w, int len) {width = w;length = len;}int Box::volume() {return (height width length);}int Box::height = 10;int main() {Box a(15, 20), b(25, 30);cout << a.height << endl;cout << b.height << endl;cout << Box::height << endl;cout << a.volume() << endl;cout << b.volume() << endl;return 0;} 2.静态成员函数 (1)含义 C++提供静态成员函数,用它访问静态数据成员,静态成员函数不属于某个对象而属于类。 类中的非静态成员函数可以访问类中所有数据成员;而静态成员函数可以直接访问类的静态成员,不能直接访问非静态成员。 静态成员函数定义格式: static 类型 成员函数(形参表){……} 调用公有静态成员函数格式: 类名::成员函数(实参表) 引用方式 静态数据成员 非静态数据成员 静态成员函数 成员名 对象名.成员名 非静态成员函数 成员名 成员名 【注】静态成员函数不带this指针,所以必须用对象名和成员运算符.访问非静态成员;而普通成员函数有this指针,可以在函数中直接引用成员名。 (2)【例3.11】关于引用非静态成员和静态成员的具体方法 class Student {private:int num;int age;float score;static float sum;static int count;public:Student(int, int, int);void total();static float average();};Student::Student(int m, int a, int s) {num = m;age = a;score = s;}void Student::total() {sum += score;count++;}float Student::average() {return (sum / count);}float Student::sum = 0;int Student::count = 0;int main() {Student stud[3] = {Student(1001, 18, 70), Student(1002, 19, 79), Student(1005, 20, 98)};int n;cout << "请输入学生的人数:";cin >> n;for (int i = 1; i < n; i++)stud[i].total();cout << n << "个学生的平均成绩是:"cout << Student::average() << endl;return 0;} (3)【例】具有静态数据成员的point类 include <iostream>using namespace std;class Point {private:int X, Y;static int countP;public:Point(int xx = 0, int yy = 0) {X = xx;Y = yy;countP++;}Point(Point &p); //复制构造函数int GetX() {return X;}int GetY() {return Y;}int GetC() {cout << "Object id=" << countP << endl;return 0;} };Point::Point(Point &p) {X = p.X;Y = p.Y;countP++;}int Point::countP = 0;int main() {Point A(4, 5);cout << "Point A," << A.GetC() << "," << A.GetY();A.GetC();Point B(A);cout << "Point B," << B.GetC() << "," << B.GetY();B.GetC();return 0;} (4)静态成员函数举例 include <iostream>using namespace std;class application {private:static int global;public:static void f();static void g();};int application::global = 0;void application::f() {global = 5;}void application::g() {cout << global << endl;}int main() {application::f();application::g();return 0;} class A{private:int x; //非静态成员public:static void f(A a);};void A::f(A a){cout<<x; //对x的引用是错误的cout<<a.x; //正确} (5)具有静态数据、函数成员的Point类 include <iostream>using namespace std;class Point { //point类声明private: //私有数据成员int X, Y;static int countP;public: //外部接口Point(int xx = 0, int yy = 0) {X = xx;Y = yy;countP++;}Point(Point &p); //复制构造函数int GetX() {return X;}int GetY() {return Y;}static int GetC() {cout << "Object id=" << countP << endl;return 0;} };Point::Point(Point &p) {X = p.X;Y = p.Y;countP++;}int Point::countP = 0;int main() //主函数实现{ Point A(4, 5); //声明对象Acout << "Point A," << A.GetC() << "," << A.GetY();A.GetC(); //输出对象号,对象名引用Point B(A); //声明对象Bcout << "Point B," << B.GetC() << "," << B.GetY();Point::GetC(); //输出对象号,类名引用return 0;} (6)静态成员函数、静态数组及其初始化 include <iostream>include <stdio.h>using namespace std;class A {static int a[20];int x;public:A(int xx = 0) {x = xx;}static void in();static void out();void show() {cout << "x=" << x << endl;} };int A::a[20] = {0, 0};void A::in() {cout << "input a[20]:" << endl;for (int i = 0; i < 20; ++i)cin >> a[i];}void A::out() {for (int i = 0; i < 20; ++i)cout << "a[" << i << "]=" << a[i] << endl;}int main() {A::in();A::out();A a;a.out();a.show();return 0;} 十、友元 除了在同类对象之间共享数据外,类和类之间也可以共享数据。类的私有成员只能被类的成员函数访问,但是有时需要在类的外部访问类的私有成员,C++通过友元的手段实现这一特殊要求。友元可以是不属于任何类的一般函数,也可以是另一个类的成员函数,还可以是整个的一个类(这个类中的所有成员函数都可以成为友元函数)。 友元是C++提供的一种破坏数据封装和数据隐藏的机制。为了保证数据的完整性及数据封装与隐藏的原则,建议尽量不使用或少使用友元。 1.友元函数 (1)含义 如果在A类外定义一个函数(它可以是另一个类的成员函数,也可以是一个普通函数),在A类中声明该函数是A的友元函数后,这个函数就能访问A类中的所有成员。 (2)格式 friend 类型 类1::成员函数x(类2 &对象); friend 类型 函数y(类2 &对象); //类1是另一个类的类名,类2是本类的类名 功能:第一种形式在类2中声明类1的成员函数x为友元函数。第二种形式在类2中声明一个普通函数y是友元函数。 友元函数内访问对象的格式: 对象名.成员名 因为友元不是成员函数,它不属于类,所以它访问对象时必须冠以对象名。定义友元函数时形参通过定义引用对象,这样在友元函数内就能访问实参对象了。 (3)【例3.12】将普通函数声明为友元函数 include <iostream>using namespace std;class Time {public:Time(int, int, int);friend void display(Time &);private:int hour;int minute;int sec;};Time::Time(int h, int m, int s) {hour = h;minute = m;sec = s;}void display(Time &t) {cout << t.hour << ":" << t.minute << ":" << t.sec << endl;}int main() {Time t1(10, 13, 56);display(t1);return 0;} 【例】使用友元函数计算两点距离 include <iostream>include <cmath>using namespace std;class Point {public:Point(int xx = 0, int yy = 0) {X = xx;Y = yy;}int GetX() {return X;}int GetY() {return Y;}friend double Distance(Point &a, Point &b);private:int X, Y;};double Distance(Point &a, Point &b) {double dx = a.X - b.X;double dy = b.Y - b.Y;return sqrt(dx dx + dy dy);}int main() {Point p1(3.0, 5.0), p2(4.0, 6.0);double d = Distance(p1, p2);cout << "The distance is " << d << endl;return 0;} include <iostream>include <math.h>using namespace std;class TPoint {private:double x, y;public:TPoint(double a, double b) {x = a;y = b;cout << "点:(" << x << "," << y << ")" << endl;}friend double distance(TPoint &a, TPoint &b) {return sqrt((a.x - b.x) (a.x - b.x) + (a.y - b.y) (a.y - b.y));} };int main(int argc, char argv[]) {TPoint myp1(2.1, 1.3), myp2(5.4, 6.5);cout << "两点之间的距离为:";cout << distance(myp1, myp2) << endl;return 0;} (4)友元成员函数 【例3.13】将成员函数声明为友元函数 例子中有两个类Time和Date。其中Time类里定义了成员函数void display(Date &),他除了显示时间外还要显示日期,这个日期通过引用形参访问。在Date类中将Time类的display成员函数定义为友元函数,允许display访问Date类的所有私有数据成员。 include <iostream>using namespace std;class Date;class Time {private:int hour;int minute;int sec;public:Time(int, int, int);void display(const Date &);};class Date {private:int month;int day;int year;public:Date(int, int, int);friend void Time::display(const Date &);};Time::Time(int h, int m, int s) hour = h;minute = m;sec = s;}void Time::display(const Date &da) {cout << da.month << "/" << da.day << "/" << da.year << endl;cout << hour << ":" << minute << ":" << sec << endl;}Date::Date(int m, int d, int y) {month = m;day = d;year = y;}int main() {Time t1(10, 13, 56);Date d1(12, 25, 2004);t1.display(d1);return 0;} 【注1】友元是单向的,此例中声明Time的成员函数display是Date类的友元,允许它访问Date类的所有成员,但不等于说Date类的成员函数也是Time类的友元。 【注2】一个函数(包括普通函数和成员函数)可以被多个类声明为“朋友”,这样就可以引用多个类中的私有数据 【注3】例如可以将例3.13程序中的display函数作为类外的普通函数,分别在Time和Date类中将display声明为友元。Display就可以分别引用Time和Date类的对象的私有数据成员。输出年月日和时分秒。 2.友元类 C++允许将一个类声明为另一个类的友元。假定A类是B类的友元类,A类中所有的成员函数都是B类的友元函数,在B类中声明A类为友元类的格式:friend A; 【注1】友元关系是单向的,不是双向的 【注2】友元关系不能传递 【注3】实际中一般不把整个类声明友元类,而只是将确有需要的成员函数声明为友元函数 include <iostream>include <math.h>using namespace std;class B;class A {private:int x;public:A() {x = 3;}friend class B;};class B {public:void disp1(A temp) {temp.x++;cout << "disp1:x" << temp.x << endl;}void disp2(A temp) {temp.x--;cout << "disp2:x" << temp.x << endl;} };int main(int argc, char argv[]) {A a;B b;b.disp1(a);b.disp2(a);return 0;} class Student; //前向声明,类名声明class Teacher{privated:int noOfStudents;Student pList[100];public:void assignGrades(Student &s); //赋成绩void adjustHours(Student &s); //调整学时数};class Student{privated:int hours;float gpa;public:friend class Teacher;};void Teacher::assignGrades(Student &s){...};void Teacher::adjustHours(Student &s){...}; //函数定义必须在Student定义之后 十一、类模板 1.含义 对于功能相同而只是数据类型不同的函数,不必须定义出所有函数,我们定义一个可对任何类型变量操作的函数模板。对于功能相同的类而数据类型不同,不必定义出所有类,只要定义一个可对任何类进行操作的类模板。 例如定义比较两个整数的类和比较两个浮点数的类,这两个类做的工作是相似的,所以可以用类模板,减少工作量。 class Compare_int{private:int x,y;public:Compare_int(int a,int b){x=a;y=b;}int max(){return (x>y)?x:y;}int min(){return (x<y)?x:y;} };class Compare_float{private:float x,y;public:Compare_float(float a,float b){x=a;y=b;}float max(){return (x>y)?x:y;}float min(){return (x<y)?x:y;} }; 2.定义类模板的格式 template <class 类型参数名> class 类模板名 {……} 类型参数名:按标识符取名。如有多个类型参数,每个类型参数都要以class为前导,两个类型参数之间用逗号分隔 类模板名:按标识符取名 类模板{...}内定义数据成员和成员函数的规则:用类型参数作为数据类型,用类模板名作为类 template<class numtype>class Compare{private:numtype x,y;public:Compare(numtype a,numtype b){x=a,y=b;}numtype max(){return (x>y)?x:y;}numtype min(){return (x<y)?x:y;} }; 3.在类模板外定义成员函数的语法 类型参数 类模板名<类型参数>::成员函数名(形参表){……} 例如在类模板外定义max和min成员函数 template<class numtype>class Compare{public:Compare(numtype a,numtype b){x=a,y=b;}numtype max();numtype min();private:numtype x,y;};numtype Compare<numtype>::max(){return(x>y)?x:y;}numtype Compare<numtype>::min(){return(x<y)?x:y;} 4.使用类模板时,定义对象的格式 类模板名 <实际类型名>对象名; 类模板名 <实际类型名>对象名(实参表); 例如:Compare <int>cmp2(4,7) 在编译时, 编译系统用int取代类模板中的类型参数numtype,就把类模板具体化了。这时Compare<int>将相当于Compare_int类。 5.【例3.14】声明类模板,实现两个整数、浮点数和字符的比较,求出大数和小数 include <iostream>using namespace std;template<class numtype>class Compare {private:numtype x, y;public:Compare(numtype a, numtype b) {x = a;y = b;}numtype max() {return (x > y) ? x : y;}numtype min() {return (x < y) ? x : y;} };int main() {Compare<int>cmp1(3, 7);cout << cmp1.max() << "是两个整数中的大数." << endl;cout << cmp1.min() << "是两个整数中的小数." << endl;Compare<float>cmp2(45.78, 93.6);cout << cmp2.max() << "是两个浮点数中的大数." << endl;cout << cmp2.min() << "是两个浮点数中的小数." << endl;Compare<char>cmp3('a', 'A');cout << cmp3.max() << "是两个字符中的大者." << endl;cout << cmp3.min() << "是两个字符中的小者." << endl;return 0;} 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_72318954/article/details/127064376。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-01-29 12:38:23
544
转载
转载文章
...ttp rest接口调用时,后端读取到APP端传过来的参数有中文乱码问题; ... ... 那么,对于乱码这个看似不起眼,但并不是一两话能讲清楚的问题,是很有必要从根源了解字符集和编码原理,知其然知其所以然显然是一个优秀码农的基本素养,所以,便有了本文,希望能帮助到你。 推荐阅读:关于字符编码知识的详细讲解请见《字符编码那点事:快速理解ASCII、Unicode、GBK和UTF-8》。 学习交流: - 即时通讯/推送技术开发交流5群:215477170 [推荐] - 移动端IM开发入门文章:《新手入门一篇就够:从零开发移动端IM》 (本文同步发布于:http://www.52im.net/thread-2868-1-1.html) 2、关于作者 卢钧轶:爱捣腾Linux的DBA。曾任职于大众点评网DBA团队,主要关注MySQL、Memcache、MMM等产品的高性能和高可用架构。 个人微博:米雪儿侬好的cenalulu Github地址:https://github.com/cenalulu 3、系列文章 本文是IM开发干货系列文章中的第21篇,总目录如下: 《IM消息送达保证机制实现(一):保证在线实时消息的可靠投递》 《IM消息送达保证机制实现(二):保证离线消息的可靠投递》 《如何保证IM实时消息的“时序性”与“一致性”?》 《IM单聊和群聊中的在线状态同步应该用“推”还是“拉”?》 《IM群聊消息如此复杂,如何保证不丢不重?》 《一种Android端IM智能心跳算法的设计与实现探讨(含样例代码)》 《移动端IM登录时拉取数据如何作到省流量?》 《通俗易懂:基于集群的移动端IM接入层负载均衡方案分享》 《浅谈移动端IM的多点登陆和消息漫游原理》 《IM开发基础知识补课(一):正确理解前置HTTP SSO单点登陆接口的原理》 《IM开发基础知识补课(二):如何设计大量图片文件的服务端存储架构?》 《IM开发基础知识补课(三):快速理解服务端数据库读写分离原理及实践建议》 《IM开发基础知识补课(四):正确理解HTTP短连接中的Cookie、Session和Token》 《IM群聊消息的已读回执功能该怎么实现?》 《IM群聊消息究竟是存1份(即扩散读)还是存多份(即扩散写)?》 《IM开发基础知识补课(五):通俗易懂,正确理解并用好MQ消息队列》 《一个低成本确保IM消息时序的方法探讨》 《IM开发基础知识补课(六):数据库用NoSQL还是SQL?读这篇就够了!》 《IM里“附近的人”功能实现原理是什么?如何高效率地实现它?》 《IM开发基础知识补课(七):主流移动端账号登录方式的原理及设计思路》 《IM开发基础知识补课(八):史上最通俗,彻底搞懂字符乱码问题的本质》(本文) 4、正文概述 字符集和编码无疑是IT菜鸟甚至是各种大神的头痛问题。当遇到纷繁复杂的字符集,各种火星文和乱码时,问题的定位往往变得非常困难。 本文内容就将会从原理方面对字符集和编码做个简单的科普介绍,同时也会介绍一些通用的乱码故障定位的方法以方便读者以后能够更从容的定位相关问题。 在正式介绍之前,先做个小申明:如果你希望非常精确的理解各个名词的解释,那么可以详细阅读这篇《字符编码那点事:快速理解ASCII、Unicode、GBK和UTF-8》。 本文是博主通过自己理解消化后并转化成易懂浅显的表述后的介绍,会尽量以简单明了的文字来从要源讲解字符集、字符编码的概念,以及在遭遇乱码时的一些常用诊断技巧,希望能助你对于“乱码”问题有更深地理解。 5、什么是字符集 在介绍字符集之前,我们先了解下为什么要有字符集。 我们在计算机屏幕上看到的是实体化的文字,而在计算机存储介质中存放的实际是二进制的比特流。那么在这两者之间的转换规则就需要一个统一的标准,否则把我们的U盘插到老板的电脑上,文档就乱码了;小伙伴QQ上传过来的文件,在我们本地打开又乱码了。 于是为了实现转换标准,各种字符集标准就出现了。 简单的说:字符集就规定了某个文字对应的二进制数字存放方式(编码)和某串二进制数值代表了哪个文字(解码)的转换关系。 那么为什么会有那么多字符集标准呢? 这个问题实际非常容易回答。问问自己为什么我们的插头拿到英国就不能用了呢?为什么显示器同时有DVI、VGA、HDMI、DP这么多接口呢?很多规范和标准在最初制定时并不会意识到这将会是以后全球普适的准则,或者处于组织本身利益就想从本质上区别于现有标准。于是,就产生了那么多具有相同效果但又不相互兼容的标准了。 说了那么多我们来看一个实际例子,下面就是“屌”这个字在各种编码下的十六进制和二进制编码结果,怎么样有没有一种很屌的感觉? 6、什么是字符编码 字符集只是一个规则集合的名字,对应到真实生活中,字符集就是对某种语言的称呼。例如:英语,汉语,日语。 对于一个字符集来说要正确编码转码一个字符需要三个关键元素: 1)字库表(character repertoire):是一个相当于所有可读或者可显示字符的数据库,字库表决定了整个字符集能够展现表示的所有字符的范围; 2)编码字符集(coded character set):即用一个编码值code point来表示一个字符在字库中的位置; 3)字符编码(character encoding form):将编码字符集和实际存储数值之间的转换关系。 一般来说都会直接将code point的值作为编码后的值直接存储。例如在ASCII中“A”在表中排第65位,而编码后A的数值是 0100 0001 也即十进制的65的二进制转换结果。 看到这里,可能很多读者都会有和我当初一样的疑问:字库表和编码字符集看来是必不可少的,那既然字库表中的每一个字符都有一个自己的序号,直接把序号作为存储内容就好了。为什么还要多此一举通过字符编码把序号转换成另外一种存储格式呢? 其实原因也比较容易理解:统一字库表的目的是为了能够涵盖世界上所有的字符,但实际使用过程中会发现真正用的上的字符相对整个字库表来说比例非常低。例如中文地区的程序几乎不会需要日语字符,而一些英语国家甚至简单的ASCII字库表就能满足基本需求。而如果把每个字符都用字库表中的序号来存储的话,每个字符就需要3个字节(这里以Unicode字库为例),这样对于原本用仅占一个字符的ASCII编码的英语地区国家显然是一个额外成本(存储体积是原来的三倍)。算的直接一些,同样一块硬盘,用ASCII可以存1500篇文章,而用3字节Unicode序号存储只能存500篇。于是就出现了UTF-8这样的变长编码。在UTF-8编码中原本只需要一个字节的ASCII字符,仍然只占一个字节。而像中文及日语这样的复杂字符就需要2个到3个字节来存储。 关于字符编码知识的详细讲解请见:《字符编码那点事:快速理解ASCII、Unicode、GBK和UTF-8》。 7、UTF-8和Unicode的关系 看完上面两个概念解释,那么解释UTF-8和Unicode的关系就比较简单了。 Unicode就是上文中提到的编码字符集,而UTF-8就是字符编码,即Unicode规则字库的一种实现形式。 随着互联网的发展,对同一字库集的要求越来越迫切,Unicode标准也就自然而然的出现。它几乎涵盖了各个国家语言可能出现的符号和文字,并将为他们编号。详见:Unicode百科介绍。 Unicode的编号从 0000 开始一直到10FFFF 共分为17个Plane,每个Plane中有65536个字符。而UTF-8则只实现了第一个Plane,可见UTF-8虽然是一个当今接受度最广的字符集编码,但是它并没有涵盖整个Unicode的字库,这也造成了它在某些场景下对于特殊字符的处理困难(下文会有提到)。 8、UTF-8编码简介 为了更好的理解后面的实际应用,我们这里简单的介绍下UTF-8的编码实现方法。即UTF-8的物理存储和Unicode序号的转换关系。 UTF-8编码为变长编码,最小编码单位(code unit)为一个字节。一个字节的前1-3个bit为描述性部分,后面为实际序号部分: 1)如果一个字节的第一位为0,那么代表当前字符为单字节字符,占用一个字节的空间。0之后的所有部分(7个bit)代表在Unicode中的序号; 2)如果一个字节以110开头,那么代表当前字符为双字节字符,占用2个字节的空间。110之后的所有部分(5个bit)加上后一个字节的除10外的部分(6个bit)代表在Unicode中的序号。且第二个字节以10开头; 3)如果一个字节以1110开头,那么代表当前字符为三字节字符,占用3个字节的空间。110之后的所有部分(5个bit)加上后两个字节的除10外的部分(12个bit)代表在Unicode中的序号。且第二、第三个字节以10开头; 4)如果一个字节以10开头,那么代表当前字节为多字节字符的第二个字节。10之后的所有部分(6个bit)和之前的部分一同组成在Unicode中的序号。 具体每个字节的特征可见下表,其中“x”代表序号部分,把各个字节中的所有x部分拼接在一起就组成了在Unicode字库中的序号。如下图所示。 我们分别看三个从一个字节到三个字节的UTF-8编码例子: 细心的读者不难从以上的简单介绍中得出以下规律: 1)3个字节的UTF-8十六进制编码一定是以E开头的; 2)2个字节的UTF-8十六进制编码一定是以C或D开头的; 3)1个字节的UTF-8十六进制编码一定是以比8小的数字开头的。 9、为什么会出现乱码 乱码也就是英文常说的mojibake(由日语的文字化け音译)。 简单的说乱码的出现是因为:编码和解码时用了不同或者不兼容的字符集。 对应到真实生活中:就好比是一个英国人为了表示祝福在纸上写了bless(编码过程)。而一个法国人拿到了这张纸,由于在法语中bless表示受伤的意思,所以认为他想表达的是受伤(解码过程)。这个就是一个现实生活中的乱码情况。 在计算机科学中一样:一个用UTF-8编码后的字符,用GBK去解码。由于两个字符集的字库表不一样,同一个汉字在两个字符表的位置也不同,最终就会出现乱码。 我们来看一个例子,假设我们用UTF-8编码存储“很屌”两个字,会有如下转换: 于是我们得到了E5BE88E5B18C这么一串数值,而显示时我们用GBK解码进行展示,通过查表我们获得以下信息: 解码后我们就得到了“寰堝睂”这么一个错误的结果,更要命的是连字符个数都变了。 10、如何识别乱码的本来想要表达的文字 要从乱码字符中反解出原来的正确文字需要对各个字符集编码规则有较为深刻的掌握。但是原理很简单,这里用以MySQL数据库中的数据操纵中最常见的UTF-8被错误用GBK展示时的乱码为例,来说明具体反解和识别过程。 10.1 第1步:编码 假设我们在页面上看到“寰堝睂”这样的乱码,而又得知我们的浏览器当前使用GBK编码。那么第一步我们就能先通过GBK把乱码编码成二进制表达式。 当然查表编码效率很低,我们也可以用以下SQL语句直接通过MySQL客户端来做编码工作: mysql [localhost] {msandbox} > selecthex(convert('寰堝睂'using gbk)); +-------------------------------------+ | hex(convert('寰堝睂'using gbk)) | +-------------------------------------+ | E5BE88E5B18C | +-------------------------------------+ 1 row inset(0.01 sec) 10.2 第2步:识别 现在我们得到了解码后的二进制字符串E5BE88E5B18C。然后我们将它按字节拆开。 然后套用之前UTF-8编码介绍章节中总结出的规律,就不难发现这6个字节的数据符合UTF-8编码规则。如果整个数据流都符合这个规则的话,我们就能大胆假设乱码之前的编码字符集是UTF-8。 10.3 第3步:解码 然后我们就能拿着 E5BE88E5B18C 用UTF-8解码,查看乱码前的文字了。 当然我们可以不查表直接通过SQL获得结果: mysql [localhost] {msandbox} ((none)) > selectconvert(0xE5BE88E5B18C using utf8); +------------------------------------+ | convert(0xE5BE88E5B18C using utf8) | +------------------------------------+ | 很屌 | +------------------------------------+ 1 row inset(0.00 sec) 11、常见的IM乱码问题处理之MySQL中的Emoji字符 所谓Emoji就是一种在Unicode位于 \u1F601-\u1F64F 区段的字符。这个显然超过了目前常用的UTF-8字符集的编码范围 \u0000-\uFFFF。Emoji表情随着IOS的普及和微信的支持越来越常见。 下面就是几个常见的Emoji(IM聊天软件中经常会被用到): 那么Emoji字符表情会对我们平时的开发运维带来什么影响呢? 最常见的问题就在于将他存入MySQL数据库的时候。一般来说MySQL数据库的默认字符集都会配置成UTF-8(三字节),而utf8mb4在5.5以后才被支持,也很少会有DBA主动将系统默认字符集改成utf8mb4。 那么问题就来了,当我们把一个需要4字节UTF-8编码才能表示的字符存入数据库的时候就会报错:ERROR 1366: Incorrect string value: '\xF0\x9D\x8C\x86' for column 。 如果认真阅读了上面的解释,那么这个报错也就不难看懂了:我们试图将一串Bytes插入到一列中,而这串Bytes的第一个字节是 \xF0 意味着这是一个四字节的UTF-8编码。但是当MySQL表和列字符集配置为UTF-8的时候是无法存储这样的字符的,所以报了错。 那么遇到这种情况我们如何解决呢? 有两种方式: 1)升级MySQL到5.6或更高版本,并且将表字符集切换至utf8mb4; 2)在把内容存入到数据库之前做一次过滤,将Emoji字符替换成一段特殊的文字编码,然后再存入数据库中。之后从数据库获取或者前端展示时再将这段特殊文字编码转换成Emoji显示。 第二种方法我们假设用 --1F601-- 来替代4字节的Emoji,那么具体实现python代码可以参见Stackoverflow上的回答。 12、参考文献 [1] 如何配置Python默认字符集 [2] 字符编码那点事:快速理解ASCII、Unicode、GBK和UTF-8 [3] Unicode中文编码表 [4] Emoji Unicode Table [5] Every Developer Should Know About The Encoding 附录:更多IM开发方面的文章 [1] IM开发综合文章: 《新手入门一篇就够:从零开发移动端IM》 《移动端IM开发者必读(一):通俗易懂,理解移动网络的“弱”和“慢”》 《移动端IM开发者必读(二):史上最全移动弱网络优化方法总结》 《从客户端的角度来谈谈移动端IM的消息可靠性和送达机制》 《现代移动端网络短连接的优化手段总结:请求速度、弱网适应、安全保障》 《腾讯技术分享:社交网络图片的带宽压缩技术演进之路》 《小白必读:闲话HTTP短连接中的Session和Token》 《IM开发基础知识补课:正确理解前置HTTP SSO单点登陆接口的原理》 《移动端IM开发需要面对的技术问题》 《开发IM是自己设计协议用字节流好还是字符流好?》 《请问有人知道语音留言聊天的主流实现方式吗?》 《一个低成本确保IM消息时序的方法探讨》 《完全自已开发的IM该如何设计“失败重试”机制?》 《通俗易懂:基于集群的移动端IM接入层负载均衡方案分享》 《微信对网络影响的技术试验及分析(论文全文)》 《即时通讯系统的原理、技术和应用(技术论文)》 《开源IM工程“蘑菇街TeamTalk”的现状:一场有始无终的开源秀》 《QQ音乐团队分享:Android中的图片压缩技术详解(上篇)》 《QQ音乐团队分享:Android中的图片压缩技术详解(下篇)》 《腾讯原创分享(一):如何大幅提升移动网络下手机QQ的图片传输速度和成功率》 《腾讯原创分享(二):如何大幅压缩移动网络下APP的流量消耗(上篇)》 《腾讯原创分享(三):如何大幅压缩移动网络下APP的流量消耗(下篇)》 《如约而至:微信自用的移动端IM网络层跨平台组件库Mars已正式开源》 《基于社交网络的Yelp是如何实现海量用户图片的无损压缩的?》 《腾讯技术分享:腾讯是如何大幅降低带宽和网络流量的(图片压缩篇)》 《腾讯技术分享:腾讯是如何大幅降低带宽和网络流量的(音视频技术篇)》 《字符编码那点事:快速理解ASCII、Unicode、GBK和UTF-8》 《全面掌握移动端主流图片格式的特点、性能、调优等》 《子弹短信光鲜的背后:网易云信首席架构师分享亿级IM平台的技术实践》 《微信技术分享:微信的海量IM聊天消息序列号生成实践(算法原理篇)》 《自已开发IM有那么难吗?手把手教你自撸一个Andriod版简易IM (有源码)》 《融云技术分享:解密融云IM产品的聊天消息ID生成策略》 《适合新手:从零开发一个IM服务端(基于Netty,有完整源码)》 《拿起键盘就是干:跟我一起徒手开发一套分布式IM系统》 >> 更多同类文章 …… [2] 有关IM架构设计的文章: 《浅谈IM系统的架构设计》 《简述移动端IM开发的那些坑:架构设计、通信协议和客户端》 《一套海量在线用户的移动端IM架构设计实践分享(含详细图文)》 《一套原创分布式即时通讯(IM)系统理论架构方案》 《从零到卓越:京东客服即时通讯系统的技术架构演进历程》 《蘑菇街即时通讯/IM服务器开发之架构选择》 《腾讯QQ1.4亿在线用户的技术挑战和架构演进之路PPT》 《微信后台基于时间序的海量数据冷热分级架构设计实践》 《微信技术总监谈架构:微信之道——大道至简(演讲全文)》 《如何解读《微信技术总监谈架构:微信之道——大道至简》》 《快速裂变:见证微信强大后台架构从0到1的演进历程(一)》 《17年的实践:腾讯海量产品的技术方法论》 《移动端IM中大规模群消息的推送如何保证效率、实时性?》 《现代IM系统中聊天消息的同步和存储方案探讨》 《IM开发基础知识补课(二):如何设计大量图片文件的服务端存储架构?》 《IM开发基础知识补课(三):快速理解服务端数据库读写分离原理及实践建议》 《IM开发基础知识补课(四):正确理解HTTP短连接中的Cookie、Session和Token》 《WhatsApp技术实践分享:32人工程团队创造的技术神话》 《微信朋友圈千亿访问量背后的技术挑战和实践总结》 《王者荣耀2亿用户量的背后:产品定位、技术架构、网络方案等》 《IM系统的MQ消息中间件选型:Kafka还是RabbitMQ?》 《腾讯资深架构师干货总结:一文读懂大型分布式系统设计的方方面面》 《以微博类应用场景为例,总结海量社交系统的架构设计步骤》 《快速理解高性能HTTP服务端的负载均衡技术原理》 《子弹短信光鲜的背后:网易云信首席架构师分享亿级IM平台的技术实践》 《知乎技术分享:从单机到2000万QPS并发的Redis高性能缓存实践之路》 《IM开发基础知识补课(五):通俗易懂,正确理解并用好MQ消息队列》 《微信技术分享:微信的海量IM聊天消息序列号生成实践(算法原理篇)》 《微信技术分享:微信的海量IM聊天消息序列号生成实践(容灾方案篇)》 《新手入门:零基础理解大型分布式架构的演进历史、技术原理、最佳实践》 《一套高可用、易伸缩、高并发的IM群聊、单聊架构方案设计实践》 《阿里技术分享:深度揭秘阿里数据库技术方案的10年变迁史》 《阿里技术分享:阿里自研金融级数据库OceanBase的艰辛成长之路》 《社交软件红包技术解密(一):全面解密QQ红包技术方案——架构、技术实现等》 《社交软件红包技术解密(二):解密微信摇一摇红包从0到1的技术演进》 《社交软件红包技术解密(三):微信摇一摇红包雨背后的技术细节》 《社交软件红包技术解密(四):微信红包系统是如何应对高并发的》 《社交软件红包技术解密(五):微信红包系统是如何实现高可用性的》 《社交软件红包技术解密(六):微信红包系统的存储层架构演进实践》 《社交软件红包技术解密(七):支付宝红包的海量高并发技术实践》 《社交软件红包技术解密(八):全面解密微博红包技术方案》 《社交软件红包技术解密(九):谈谈手Q红包的功能逻辑、容灾、运维、架构等》 《即时通讯新手入门:一文读懂什么是Nginx?它能否实现IM的负载均衡?》 《即时通讯新手入门:快速理解RPC技术——基本概念、原理和用途》 《多维度对比5款主流分布式MQ消息队列,妈妈再也不担心我的技术选型了》 《从游击队到正规军(一):马蜂窝旅游网的IM系统架构演进之路》 《从游击队到正规军(二):马蜂窝旅游网的IM客户端架构演进和实践总结》 《IM开发基础知识补课(六):数据库用NoSQL还是SQL?读这篇就够了!》 《瓜子IM智能客服系统的数据架构设计(整理自现场演讲,有配套PPT)》 《阿里钉钉技术分享:企业级IM王者——钉钉在后端架构上的过人之处》 >> 更多同类文章 …… (本文同步发布于:http://www.52im.net/thread-2868-1-1.html) 本篇文章为转载内容。原文链接:https://blog.csdn.net/hellojackjiang2011/article/details/103586305。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-04-29 12:29:21
522
转载
转载文章
...可靠的发布的软件工程方法 与持续集成相比,持续交付的重点在于 交付,其核心对象不在于代码,而在于可交付的产物。 由于持续集成仅仅针对于新旧代码的集成过程执行来了一定的测试,其变动到持续交付后还需要一些额外的流程 持续交付可以看作为是持续集成的下一步,它强调的是,不敢怎么更新,软件是随时随快可以交付的 有图可看出,持续交付在持续集成的基础上,将集成后的代码部署到更贴近真实的运行环境的[类生产环境]中 目的 持续交付永爱确保让代码能够快速、安全的部署到产品环境中,它通过将每一次改动都会提交到一个模拟产品环境中,使用严格的自动化测试,确保业务应用和服务能符合预期 好处 持续交付和持续集成的好处非常相似: 快速发布。能够应对业务需求,并更快地实现软件价值 编码→测试→上线→交付的频繁迭代周期缩短,同时获得迅速反馈 高质量的软件发布标准。整个交付过程标准化、可重复、可靠 整个交付过程进度可视化,方便团队人员了解项目完成度 更先进的团队协作方式。从需求分析、产品的用户体验到交互、设计、开发、测试、运维等角色密切协作,相比于传统的瀑布式软件团队,更少浪费 持续部署 简述 持续部署 意味着:通过自动化部署的手段将软件功能频繁的进行交付 持续部署是持续交付的下一步,指的是代码通过审批以后,自动化部署到生产环境。 持续部署是持续交付的最高阶段,这意味着,所有通过了一系列的自动化测试的改动都将自动部署到生产环境。它也可以被称为“Continuous Release” 持续化部署的目标是:代码在任何时候都是可部署的,可以进入生产阶段。 持续部署的前提是能自动化完成测试、构建、部署等步骤 注:持续交付不等于持续集成 与持续交付以及持续集成相比,持续部署强调了通过 automated deployment 的手段,对新的软件功能进行集成 目标 持续部署的目标是:代码在任何时刻都是可部署的,可以进入生产阶段 有很多的业务场景里,一种业务需要等待另外的功能特征出现才能上线,这是的持续部署成为不可能。虽然使用功能切换能解决很多这样的情况,但并不是没每次都会这样。所以,持续部署是否适合你的公司是基于你们的业务需求——而不是技术限制 优点 持续部署主要的好处是:可以相对独立地部署新的功能,并能快速地收集真实用户的反馈 敏捷开发 简述 敏捷开发就是一种以人为核心、迭代循环渐进的开发方式。 在敏捷开发中,软件仙姑的构建被切分成多个子项目,各个子项目的成果都经过测试,具备集成和可运行的特征。 简单的说就是把一个大的项目分为多个相互联系,但也可以独立运行的小项目,并分别完成,在此过程中软件一直处于可使用状态 注意事项 敏捷开的就是一种面临迅速变化的需求快速开发的能力,要注意一下几点: 敏捷开发不仅仅是一个项目快速完成,而是对整个产品领域需求的高效管理 敏捷开发不仅仅是简单的快,而是短周期的不断改进、提高和调整 敏捷开发不仅仅是一个版本只做几个功能,而是突出重点、果断放弃当前的非重要点 敏捷开发不仅仅是随时增加需求,而是每个迭代周期对需求的重新审核和排序 如何进行敏捷开发 1、组织建设 也就是团队建设,建立以产品经理为主导,包含产品、设计、前后台开发和测试的team,快速进行产品迭代开发;扁平化的团队管理,大家都有共同目标,更有成就感; 2、敏捷制度 要找准适合自身的敏捷开发方式,主要是制定一个完善的效率高的设计、开发、测试、上线流程,制定固定的迭代周期,让用户更有期待; 3、需求收集 这个任何方式下都需要有,需求一定要有交互稿,评审通过后,一定要确定功能需求列表、责任人、工作量、责任人等; 4、工具建设 是指能够快速完成某项事情的辅助工具,比如开发环境的一键安装,各种底层的日志、监控等平台,发布、打包工具等; 5、系统架构 略为超前架构设计:支持良好的扩容性和可维护性;组件化基础功能模块:代码耦合度低,模块间的依赖性小;插件化业务模块:降低营销活动与业务耦合度,自升级、自维护;客户端预埋逻辑;技术预研等等; 6、数据运营与灰度发布 点击率分析、用户路径分析、渠道选择、渠道升级控制等等 原则、特点和优势 敏捷开发技术的12个原则: 1.我们最优先要做的是通过尽早的、持续的交付有价值的软件来使客户满意。 2.即使到了开发的后期,也欢迎改变需求。 3.经常性地交付可以工作的软件,交付的间隔可以从几周到几个月,交付的时间间隔越短越好。 4.在整个项目开发期间,业务人员和开发人员必须天天都在一起工作。 5.围绕被激励起来的个人来构建项目。 6.在团队内部,最具有效果并且富有效率的传递信息的方法,就是面对面的交谈。 7.工作的软件是首要的进度度量标准。 8.敏捷过程提倡可持续的开发速度。 9.不断地关注优秀的技能和好的设计会增强敏捷能力。 10.简单使未完成的工作最大化。 11.最好的构架、需求和设计出自于自组织的团队。 12.每隔一定时间,团队会在如何才能更有效地工作方面进行反省,然后相应地对自己的行为进行调整。 特点: 个体和交互胜过过程和工具 可以工作的软件胜过面面俱到的文档 客户合作胜过合同谈判 响应变化胜过遵循计划 优势总结: 敏捷开发确实是项目进入实质开发迭代阶段,用户很快可以看到一个基线架构班的产品。敏捷注重市场快速反应能力,也即具体应对能力,客户前期满意度高 适用范围: 项目团队的人不能太多 项目经常发生变更 高风险的项目实施 开发人员可以参与决策 劣势总结: 敏捷开发注重人员的沟通 忽略文档的重要性 若项目人员流动太大,维护的时候很难 项目存在新手的比较多的时候,老员工会比较累 需要项目中存在经验较强的人,要不然大项目中容易遇到瓶颈问题 Open-falcon 简述 open-falcon是小米的监控系统,是一款企业级、高可用、可扩展的开源监控解决方案 公司用open-falcon来监控调度系统各种信息,便于监控各个节点的调度信息。在服务器安装了falcon-agent自动采集各项指标,主动上报 特点 强大灵活的数据采集 (自动发现,支持falcon-agent、snmp、支持用户主动push、用户自定义插件支持、opentsdb data model like(timestamp、endpoint、metric、key-value tags) ) 水平扩展能力 (支持每个周期上亿次的数据采集、告警判定、历史数据存储和查询 ) 高效率的告警策略管理 (高效的portal、支持策略模板、模板继承和覆盖、多种告警方式、支持callback调用 ) 人性化的告警设置 (最大告警次数、告警级别、告警恢复通知、告警暂停、不同时段不同阈值、支持维护周期 ) 高效率的graph组件 (单机支撑200万metric的上报、归档、存储(周期为1分钟) ) 高效的历史数据query组件 (采用rrdtool的数据归档策略,秒级返回上百个metric一年的历史数据 ) dashboard(面向用户的查询界面,可以看到push到graph中的所有数据,并查看数据发展趋势 ) (对维度的数据展示,用户自定义Screen) 高可用 (整个系统无核心单点,易运维,易部署,可水平扩展) 开发语言 (整个系统的后端,全部golang编写,portal和dashboard使用python编写。 ) 监控范围 Open-Falcon支持系统基础监控,第三方服务监控,JVM监控,业务应用监控 基础监控指的是Linux系统的指标监控,包括CPU、load、内存、磁盘、IO、网络等, 这些指标由Openfalcon的agent节点直接支持,无需插件 第三方服务监控指的是一些常见的服务监控,包括Mysql、Redis、Nginx等 OpenFalcon官网提供了很多第三方服务的监控插件,也可以自己实现插件,定义采集指标。而采集到的指标,也是通过插件先发送给agent,再由agent发送到OpenFalcon。 JVM监控主要通过插件完成,插件通过JVM开放的JMX通信端口,获取到JVM参数指标,并推送到agent节点,再由agent发送到OpenFalcon。 业务应用监控就是监控企业自主开发的应用服务 主要通过插件完成,插件通过JVM开放的JMX通信端口,获取到JVM参数指标,并推送到agent节点,再由agent发送到OpenFalcon。 数据流向 常见的OpenFalcon包含transfer、hbs、agent、judge、graph、API几个进程 以下是各个节点的数据流向图,主数据流向是agent -> transfer -> judge/graph: SNMP 简述 SNMP:简单网络管理协议,是TCP/IP协议簇 的一个应用层协议,由于SNMP的简单性,在Internet时代得到了蓬勃的发展 ,1992年发布了SNMPv2版本,以增强SNMPv1的安全性和功能。现在,已经有了SNMPv3版本(它对网络管理最大的贡献在于其安全性。增加了对认证和密文传输的支持 )。 一套完整的SNMP系统主要包括:管理信息库(MIB)、管理信息结构(SMI)和 SNMP报文协议 为什么要用SNMP 作为运维人员,我们很大一部分的工作就是为了保证我们的网络能够正常、稳定的运行。因此监控,控制,管理各种网络设备成了我们日常的工作 优点和好处 优点: 简单易懂,部署的开销成本也小 ,正因为它足够简单,所以被广泛的接受,事实上它已经成为了主要的网络管理标准。在一个网络设备上实现SNMP的管理比绝大部分其他管理方式都简单直接。 好处: 标准化的协议:SNMP是TCP/IP网络的标准网络管理协议。 广泛认可:所有主流供应商都支持SNMP。 可移植性:SNMP独立于操作系统和编程语言。 轻量级:SNMP增强对设备的管理能力的同时不会对设备的操作方式或性能产生冲击。 可扩展性:在所有SNMP管理的设备上都会支持相同的一套核心操作集。 广泛部署:SNMP是最流行的管理协议,最为受设备供应商关注,被广泛部署在各种各样的设备上。 MIB、SMI和SNMP报文 MIB 管理信息库MIB:任何一个被管理的资源都表示成一个对象,称为被管理的对象。 MIB是被管理对象的集合。 它定义了被管理对象的一系列属性:对象的名称、对象的访问权限和对象的数据类型等。 每个SNMP设备(Agent)都有自己的MIB。 MIB也可以看作是NMS(网管系统)和Agent之间的沟通桥梁。 MIB文件中的变量使用的名字取自ISO和ITU管理的对象表示符命名空间,他是一个分级数的结构 SMI SMI定义了SNNMP框架多用信息的组织、组成和标识,它还未描述MIB对象和表述协议怎么交换信息奠定了基础 SMI定义的数据类型: 简单类型(simple): Integer:整型是-2,147,483,648~2,147,483,647的有符号整数 octet string: 字符串是0~65535个字节的有序序列 OBJECT IDENTIFIER: 来自按照ASN.1规则分配的对象标识符集 简单结构类型(simple-constructed ): SEQUENCE 用于列表。这一数据类型与大多数程序设计语言中的“structure”类似。一个SEQUENCE包括0个或更多元素,每一个元素又是另一个ASN.1数据类型 SEQUENCE OF type 用于表格。这一数据类型与大多数程序设计语言中的“array”类似。一个表格包括0个或更多元素,每一个元素又是另一个ASN.1数据类型。 应用类型(application-wide): IpAddress: 以网络序表示的IP地址。因为它是一个32位的值,所以定义为4个字节; counter:计数器是一个非负的整数,它递增至最大值,而后回零。在SNMPv1中定义的计数器是32位的,即最大值为4,294,967,295; Gauge :也是一个非负整数,它可以递增或递减,但达到最大值时保持在最大值,最大值为232-1; time ticks:是一个时间单位,表示以0.01秒为单位计算的时间; SNMP报文 SNMP规定了5种协议数据单元PDU(也就是SNMP报文),用来在管理进程和代理之间的交换。 get-request操作:从代理进程处提取一个或多个参数值。 get-next-request操作:从代理进程处提取紧跟当前参数值的下一个参数值。 set-request操作:设置代理进程的一个或多个参数值。 get-response操作:返回的一个或多个参数值。这个操作是由代理进程发出的,它是前面三种操作的响应操作。 trap操作:代理进程主动发出的报文,通知管理进程有某些事情发生。 操作命令 SNMP协议之所以易于使用,这是因为它对外提供了三种用于控制MIB对象的基本操作命令。它们是:Get、Set 和 Trap。 Get:管理站读取代理者处对象的值 Set:管理站设置代理者处对象的值 Trap: 代理者主动向管理站通报重要事件 SLA 简述 SLA(服务等级协议):是关于网络服务供应商和客户之间的一份合同,其中定义了服务类型、服务质量和客户付款等术语 一个完整的SLA同时也是一个合法的文档,包括所涉及的当事人、协定条款(包含应用程序和支持的服务)、违约的处罚、费用和仲裁机构、政策、修改条款、报告形式和双方的义务等。同样服务提供商可以对用户在工作负荷和资源使用方面进行规定。 KPI 简述 KPI(关键绩效指标):是通过对组织内部流程的输入端、输出端的关键参数进行设置、取样、计算、分析,衡量流程绩效的一种目标式量化管理指标,是把企业的战略目标分解为可操作的工作目标的工具,是企业绩效管理的基础。 KPI可以是部门主管明确部门的主要责任,并以此为基础,明确部门人员的业绩衡量指标,建立明确的切实可行的KPI体系,是做好绩效管理的关键。 KPI(关键绩效指标)是用于衡量工作人员工作绩效表现的量化指标,是绩效计划的重要组成部分 转载于:https://www.cnblogs.com/woshinideyugegea/p/11242034.html 本篇文章为转载内容。原文链接:https://blog.csdn.net/anqiongsha8211/article/details/101592137。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-19 16:00:05
45
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
clear 或 Ctrl+L
- 清除终端屏幕内容。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"