前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[Vuejs v-model指令在复选框状...]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
JSON
...在 假设你正在写一个应用程序,需要让用户输入一段多行的文字,比如他们的个人简介。哎,你说如果用户输入的内容里带换行符怎么办?难道直接一股脑儿扔进JSON里?但问题来了啊,JSON这小家伙自己也不太争气,它压根儿就不允许字符串里直接留着换行符呢!这可咋整?除非你用某种方式告诉它,“嘿,这可是真的换行哦!” 这就像是你在写信的时候,突然发现信纸不够宽,只能把一句话分成两行写。而你的朋友收到信后,还得脑补那些断开的部分重新组合起来。所以,我们得想个办法让JSON能够正确地解析这些换行符。 --- 四、解决方案 转义字符登场! 幸运的是,JSON提供了一种非常聪明的方式来解决这个问题——转义字符。具体来说,如果你想在JSON字符串中表示换行符,可以使用\n来代替。这里的\n是一个特殊的符号,代表一个换行操作。 举个例子: json { "poem": "静夜思\n床前明月光,\n疑是地上霜。\n举头望明月,\n低头思故乡。" } 在这个例子中,我们用\n来表示每一句诗之间的换行。当你把这个JSON解析出来时,程序会自动把这些\n替换成实际的换行符,于是输出的结果就会变成: 静夜思 床前明月光, 疑是地上霜。 举头望明月, 低头思故乡。 是不是很神奇?不过,这里有一个小技巧需要注意:如果你想要表示真正的反斜杠(\),那么你需要用双反斜杠(\\)来表示。因为单个反斜杠在JSON中会被认为是一个转义符。 --- 五、更复杂的情况 多段落文本 当然,现实中的情况往往比一首诗复杂得多。比如说,你得把一封邮件的内容存下来,而这封邮件的正文往往是由好几段话组成的,有长有短,啥样的都有。哎呀,光靠换行符 \n 可不一定行啊,毕竟你还得让每段之间留点空白,不然读起来就像一锅粥,分不清哪是哪呀! 在这种情况下,你可以继续使用\n,同时注意合理安排段落结构。例如: json { "email": "亲爱的李四:\n\n很高兴收到您的来信。以下是我的回复:\n\n第一段内容...\n第二段内容..." } 在这里,\n\n表示两个连续的换行符,从而形成了一段空行。用这种方法,就能把文章分得清清楚楚的,读起来也顺溜多了! --- 六、代码实践 从理论到实战 说了这么多理论,让我们动手试试看吧!下面是一些简单的代码示例,展示如何在JavaScript中生成和解析带有换行符的JSON数据。 示例1:生成JSON字符串 javascript const data = { poem: "静夜思\n床前明月光,\n疑是地上霜。\n举头望明月,\n低头思故乡。", email: "亲爱的李四:\n\n很高兴收到您的来信。以下是我的回复:\n\n第一段内容...\n第二段内容..." }; // 将对象转换为JSON字符串 const jsonString = JSON.stringify(data); console.log(jsonString); 运行这段代码后,你会看到类似这样的输出: json {"poem":"静夜思\\n床前明月光,\\n疑是地上霜。\\n举头望明月,\\n低头思故乡。","email":"亲爱的李四:\\n\\n很高兴收到您的来信。以下是我的回复:\\n\\n第一段内容...\\n第二段内容..."} 可以看到,在生成的JSON字符串中,所有的\n都被转义成了\\n。 示例2:解析JSON字符串 javascript const jsonString = '{"poem":"静夜思\\n床前明月光,\\n疑是地上霜。\\n举头望明月,\\n低头思故乡。","email":"亲爱的李四:\\n\\n很高兴收到您的来信。以下是我的回复:\\n\\n第一段内容...\\n第二段内容..."}'; // 将JSON字符串解析回对象 const parsedData = JSON.parse(jsonString); console.log(parsedData.poem); console.log(parsedData.email); 运行这段代码后,你会看到如下输出: 静夜思 床前明月光, 疑是地上霜。 举头望明月, 低头思故乡。 亲爱的李四: 很高兴收到您的来信。以下是我的回复: 第一段内容... 第二段内容... 瞧!我们的换行符终于生效啦! --- 七、总结与反思 好了,今天的分享就到这里啦!通过这篇文章,我们不仅了解了如何在JSON中处理多次换行的内容,还学习了一些实用的小技巧。虽然JSON看似简单,但它背后隐藏着很多有趣的细节。希望这些知识能帮助你在未来的编程旅程中更加游刃有余。 最后,我想说的是,编程不仅仅是冷冰冰的技术活儿,它也是一种艺术形式。每一次解决问题的过程,都充满了挑战和乐趣。所以,不管遇到什么困难,都别轻易放弃,试着去思考、去尝试,说不定下一个突破就在前方等着你呢! 祝大家 coding愉快! 😊
2025-04-02 15:38:06
51
时光倒流_
HessianRPC
...但它为理解如何在实际应用中集成安全措施提供了基础。 五、结论与展望 HessianRPC虽然在自动化安全检测方面存在一定的支持,但其核心依赖于开发者对安全实践的深入理解和实施。通过采用现代的编程模式、遵循最佳实践、利用现有的安全工具和技术,开发者可以显著提升HessianRPC服务的安全性。哎呀,未来啊,软件工程的那些事儿和安全技术就像开挂了一样突飞猛进。想象一下,HessianRPC这些好东西,还有它的好伙伴们,它们会变得超级厉害,能自动帮我们检查代码有没有啥安全隐患,就像个超级安全小卫士。这样一来,咱们开发分布式系统的时候,就不用那么担心安全问题了,可以更轻松地搞出既安全又高效的系统,爽歪歪! --- 通过上述内容,我们不仅深入探讨了HessianRPC在自动化安全检测方面的支持情况,还通过具体的代码示例展示了如何在实践中应用这些安全措施。嘿,小伙伴们!这篇小文的目的是要咱们一起嗨起来,共同关注分布式系统的安全性。咱们得动动脑筋,别让那些不怀好意的小家伙有机可乘。怎么样,是不是觉得有点热血沸腾?咱们要团结起来,探索更多新鲜有趣的安全策略和技术,让我们的代码更安全,世界更美好!一起加油吧,开发者们!
2024-09-08 16:12:35
102
岁月静好
Spark
...来搭建实时的数据流和应用再合适不过了。 2.3 Spark与Kafka集成的优势 - 实时处理:Spark可以实时处理Kafka中的数据。 - 灵活性:Spark支持多种编程语言,Kafka则提供丰富的API接口,两者结合让开发更加灵活。 - 高吞吐量:Spark的并行处理能力和Kafka的高吞吐量相结合,能够高效处理大规模数据流。 3. 实战准备 在开始之前,你需要先准备好环境。确保你的机器上已经安装了Java、Scala以及Spark。说到Kafka,你可以直接下载安装包,或者用Docker容器搞一个本地环境,超级方便!我推荐你用Docker,因为它真的超简单方便,还能随手搞出好几个实例来测试,特别实用。 bash 安装Docker sudo apt-get update sudo apt-get install docker.io 拉取Kafka镜像 docker pull wurstmeister/kafka 启动Kafka容器 docker run -d --name kafka -p 9092:9092 -e KAFKA_ADVERTISED_HOST_NAME=localhost wurstmeister/kafka 4. 集成实战 4.1 创建Kafka主题 首先,我们需要创建一个Kafka主题,以便后续的数据流能够被正确地发送和接收。 bash 进入容器 docker exec -it kafka /bin/bash 创建主题 kafka-topics.sh --create --topic test-topic --bootstrap-server localhost:9092 --replication-factor 1 --partitions 1 4.2 发送数据到Kafka 接下来,我们可以编写一个简单的脚本来向Kafka的主题中发送一些数据。这里我们使用Python的kafka-python库来实现。 python from kafka import KafkaProducer producer = KafkaProducer(bootstrap_servers='localhost:9092') for _ in range(10): message = "Hello, Kafka!".encode('utf-8') producer.send('test-topic', value=message) print("Message sent:", message.decode('utf-8')) producer.flush() producer.close() 4.3 使用Spark读取Kafka数据 现在,我们来编写一个Spark程序,用于读取刚才发送到Kafka中的数据。这里我们使用Spark的Structured Streaming API。 scala import org.apache.spark.sql.SparkSession val spark = SparkSession.builder.appName("SparkKafkaIntegration").getOrCreate() val df = spark.readStream .format("kafka") .option("kafka.bootstrap.servers", "localhost:9092") .option("subscribe", "test-topic") .load() val query = df.selectExpr("CAST(value AS STRING)") .writeStream .outputMode("append") .format("console") .start() query.awaitTermination() 这段代码会启动一个Spark应用程序,从Kafka的主题中读取数据,并将其打印到控制台。 4.4 实时处理 接下来,我们可以在Spark中对数据进行实时处理。例如,我们可以统计每秒钟接收到的消息数量。 scala import org.apache.spark.sql.functions._ val countDF = df.selectExpr("CAST(value AS STRING)") .withWatermark("timestamp", "1 minute") .groupBy( window($"timestamp", "1 minute"), $"value" ).count() val query = countDF.writeStream .outputMode("complete") .format("console") .start() query.awaitTermination() 这段代码会在每分钟的时间窗口内统计消息的数量,并将其输出到控制台。 5. 总结与反思 通过这次实战,我们成功地将Spark与Kafka进行了集成,并实现了数据的实时处理。虽然过程中遇到了一些挑战,但最终还是顺利完成了任务。这个经历让我明白,书本上的知识和实际动手做真是两码事。不一次次去试,根本没法真正搞懂怎么用这门技术。希望这次分享对你有所帮助,也期待你在实践中也能有所收获! 如果你有任何问题或想法,欢迎随时交流讨论。
2025-03-08 16:21:01
76
笑傲江湖
转载文章
...其在现代网络架构中的应用价值,可以参考以下延伸阅读内容: 近期,《计算机网络》期刊发表了一篇名为《NDN:未来互联网架构的关键驱动力》的研究文章,深入剖析了NDN这一基于数据命名而非IP寻址的新型网络范式如何革新数据传输模式,并详细阐述了ndn-cxx和NFD等开源工具在NDN开发与部署中的关键作用。文中还讨论了最新版本ndn-cxx中Interest报文默认前缀设定的改进及其对提升数据检索效率的影响。 此外,一项关于“基于NDN的物联网通信优化策略”的最新科研成果也值得关注。研究团队成功利用ndn-cxx和NFD构建了一个高效的NDN-IoT实验平台,并针对消费者警告问题进行了深度优化,有力证明了NDN在低功耗广域网环境下的优势和潜力。 与此同时,知名科技媒体TechCrunch报道了国际科研团队正积极研发基于NDN技术的安全通讯解决方案,旨在解决传统TCP/IP模型存在的安全漏洞,其中就涉及到了ndn-cxx库的重要更新以及NFD转发器在新型网络安全架构中的核心地位。 总之,对于已完成VMware环境中ndn-cxx和NFD搭建的读者来说,关注上述最新的研究成果、技术动态以及应用案例,将有助于深化理解NDN技术的内涵与应用场景,并为今后的项目实践提供有益指导。
2023-03-30 19:22:59
321
转载
Golang
... 实际场景中的应用 在实际开发中,遇到“未实现”的情况并不罕见。想象一下,你正在搭建一个超级酷的系统,这个系统能通过API(一种让不同程序沟通的语言)来和其他各种第三方服务对话。就像是在和一群性格迥异的朋友聊天,有的朋友喜欢分享照片,有的则热衷于音乐推荐。在这个过程中,你需要了解每个朋友的喜好,知道什么时候该问他们问题,什么时候该听他们说话,这样才能让整个交流流畅自然。所以,当开发者在构建这种系统的时候,他们就得学会如何与这些“朋友”打交道,确保信息的顺利传递。想象一下,你有个工具箱里放着一把超级多功能的瑞士军刀,但你只需要个简单的螺丝刀。如果你硬是用那把大刀去拧螺丝,肯定搞不定,还可能把螺丝刀弄坏。同理,如果一个API提供了复杂查询的功能,但你的项目只需要简单地拿数据,直接去用那些复杂查询方法,就可能会遇到“未实现”的问题,就像你拿着个高级的多功能工具去做一件只需要基本工具就能搞定的事一样。所以,选择合适的工具很重要! 如何解决“未实现” 1. 明确需求与功能优先级 在开始编码之前,确保对项目的整体需求有清晰的理解,并优先实现那些对业务至关重要的功能。对于非核心需求,可以考虑在未来版本中添加或作为可选特性。 2. 使用空实现或占位符 在设计接口或类时,为未实现的方法提供一个空实现或占位符,这样可以避免运行时的“未实现”错误,同时为未来的实现提供清晰的接口定义。 3. 错误处理与日志记录 在调用可能引发“未实现”错误的代码块前,添加适当的错误检查和日志记录。这不仅有助于调试,也能在问题发生时为用户提供有意义的反馈。 4. 模块化与解耦 通过将功能拆分为独立的模块或服务,可以降低不同部分之间的依赖关系,从而更容易地处理“未实现”的情况。当某个模块的实现发生变化时,其他模块受到的影响也会减少。 5. 持续集成与自动化测试 通过自动化测试,可以在早期阶段捕获“未实现”的错误,确保代码的稳定性和一致性。同时,持续集成流程可以帮助团队及时发现并修复这类问题。 结语 面对“未实现”的挑战,重要的是保持灵活性和前瞻性。哎呀,搞定这个问题得靠点心思呢!首先,你得搞清楚问题的根本原因,这就像解谜一样,得一步步来。然后,安排功能实现的顺序就挺像编排一场精彩的节目,得有头有尾,不能乱套。最后,别忘了设置有效的错误处理策略,就像是给你的项目上了一份保险,万一出啥状况也能从容应对。这样一来,整个过程就能流畅多了,避免了很多不必要的麻烦。在不断学习和实践中,开发者能够更好地适应变化,提升软件质量和用户体验。嘿,听好了!每次碰到那些没搞定的事情,那可是个大好机会,能让你学东西,还能把事情做得更好呢!就像是在玩游戏,遇到难关了,你就得想办法突破,对吧?这不就是升级打怪嘛!所以,别灰心,每一步小小的失败都是通往更牛逼、更灵活的软件系统的必经之路!
2024-07-26 15:58:24
421
素颜如水
Saiku
...否能够顺利恢复到正常状态。 5. 代码示例 为了让大家更好地理解,下面我会给出几个具体的代码示例,展示如何使用Saiku API来进行数据恢复操作。 示例1:连接到Saiku服务器 java import org.saiku.service.datasource.IDatasourceService; import org.saiku.service.datasource.MondrianDatasource; public class SaikuConnectionExample { public static void main(String[] args) { // 假设我们已经有了一个名为"myDataSource"的数据源实例 MondrianDatasource myDataSource = new MondrianDatasource(); myDataSource.setName("myDataSource"); // 使用datasource服务保存数据源配置 IDatasourceService datasourceService = ...; // 获取datasource服务实例 datasourceService.save(myDataSource); } } 示例2:从备份文件中恢复数据 这里假设你已经有一个包含所有必要信息的备份文件,比如SQL脚本。 java import java.io.BufferedReader; import java.io.FileReader; import java.sql.Connection; import java.sql.DriverManager; import java.sql.Statement; public class RestoreFromBackupExample { public static void main(String[] args) { try (Connection conn = DriverManager.getConnection("jdbc:mysql://localhost:3306/mydb", "username", "password")) { Statement stmt = conn.createStatement(); // 读取备份文件内容并执行 BufferedReader reader = new BufferedReader(new FileReader("/path/to/backup/file.sql")); String line; StringBuilder sql = new StringBuilder(); while ((line = reader.readLine()) != null) { sql.append(line); if (line.trim().endsWith(";")) { stmt.execute(sql.toString()); sql.setLength(0); // 清空StringBuilder } } reader.close(); } catch (Exception e) { e.printStackTrace(); } } } 6. 结语 好了,到这里我们的讨论就告一段落了。希望今天聊的这些能让大家更看重系统恢复计划,也赶紧动手做点啥来提高自己的数据安全,毕竟防患于未然嘛。记住,预防总是胜于治疗,提前做好准备总比事后补救要好得多! 最后,如果你有任何想法或建议,欢迎随时与我交流。数据分析的世界充满了无限可能,让我们一起探索吧! --- 以上就是本次关于“Saiku的系统恢复计划不充分”的全部内容。希望这篇文章能够对你有所帮助,也欢迎大家提出宝贵的意见和建议。
2024-11-18 15:31:47
36
寂静森林
c++
...这个系统包括客户信息管理、存款和取款等功能。 4.1 客户类定义 首先,我们定义一个Customer类,包含客户的姓名、账户余额等信息: cpp class Customer { private: string name; double balance; public: Customer(string n, double b) : name(n), balance(b) {} void deposit(double amount) { balance += amount; cout << name << "'s account has been credited with $" << amount << "." << endl; } void withdraw(double amount) { if (balance >= amount) { balance -= amount; cout << name << "'s account has been debited with $" << amount << "." << endl; } else { cout << name << " does not have sufficient funds." << endl; } } void displayBalance() const { cout << name << "'s current balance: $" << balance << endl; } }; 4.2 主程序实现 接着,我们在主程序中创建几个客户并进行操作: cpp int main() { Customer john("John Doe", 1000); Customer jane("Jane Smith", 500); john.deposit(200); jane.withdraw(300); john.displayBalance(); jane.displayBalance(); return 0; } 运行结果如下: John Doe's account has been credited with $200. Jane Smith's account has been debited with $300. John Doe's current balance: $1200 Jane Smith's current balance: $200 看到没?通过类、对象和函数,我们已经成功实现了一个简单的银行系统! --- 5. 总结 深入与否取决于需求 好了,朋友们,到这里我们差不多可以下结论了。如果你的目标只是做一些小型项目或者练习题,那么只用类、对象和函数确实足够了。不过呢,要是你想捣鼓那种超大又复杂的玩意儿,像游戏引擎或者那些企业专用的软件,那可得好好琢磨琢磨C++的各种花招了,什么指针啊、模板啊、STL啥的,这些东西绝对躲不掉,学精了才好办事! 记住,编程是一门艺术,也是一门科学。它既需要逻辑思维,也需要创造力。所以,与其纠结于要不要深入学习,不如问问自己:“我的目标是什么?”如果答案是“做一个有趣的小项目”,那么你就大胆地去尝试吧! 最后,祝大家在编程之路上越走越远,早日成为编程高手!如果你有任何疑问,欢迎随时来找我讨论哦~ 😊 --- 希望这篇文章对你有所帮助!
2025-03-25 15:39:59
10
幽谷听泉_
HBase
...,一直致力于为企业级应用场景提供可靠的数据存储解决方案。正如Apache基金会主席比尔·霍普金斯所说:“HBase的成功离不开全球开发者社区的支持。”未来,随着5G、边缘计算等新技术的普及,HBase有望在更多新兴领域发挥重要作用,成为企业数字化转型不可或缺的一部分。
2025-04-14 16:00:01
63
落叶归根
转载文章
...UI自动化测试方面的应用越来越广泛。其中,PyAutoGUI作为一款基于Python的图形用户界面自动化库,不仅能够模拟鼠标和键盘操作,还支持跨平台使用,对于Windows、Mac OS X及Linux系统均能提供一致的操作接口。 与此同时,针对更复杂的交互场景如游戏或三维设计软件,一些高级模拟技术如Robot Framework、Appium也开始受到广泛关注。这些框架不仅能模拟基本的键盘鼠标输入,还能处理更精细的触屏手势操作,并能适应各种移动设备和桌面环境,极大提高了自动化测试的覆盖率和效率。 另外,在安全性方面,研究人员正不断探索如何防止恶意软件通过模拟合法用户的键盘和鼠标操作进行攻击。例如,某些安全软件已开始采用行为分析和机器学习算法来识别并阻止非人类产生的异常输入模式,确保只有真实的用户交互才能触发敏感操作。 总之,Python win32api提供的键盘鼠标模拟功能为自动化测试与脚本编写打开了新世界的大门,而结合最新的自动化测试技术和安全防护手段,我们不仅可以更高效地实现UI自动化,还能在保障用户体验的同时,有效抵御潜在的安全威胁。未来,随着相关技术的持续发展和完善,这一领域的应用场景将更加丰富多元。
2023-06-07 19:00:58
54
转载
ElasticSearch
...领域的数据资产元数据管理、数据血缘上可谓是专家,也涉及资产搜索的特性,它的实现思路就是:从搜索库中做搜索、拿到key、再去存储库中做查询。 搜索库:上图右下角,可以看到使用的是elasticsearch、solr或lucene,多个选一个 存储库:上图左下角,可以看到使用的是Cassandra、HBase或BerkeleyDB,多个选一个 虽然apache atlas在只有搜索库或只有存储库的时候也可以很好的工作,但只针对于数据量并不大的场景。 搜索库,擅长搜索!存储库,擅长海量存储!搜索库多样化搜索,然后去存储库做点查。 当你的数据达到海量的时候,es+hbase也是一种很好的解决方案,不在这里展开说明了。
2024-01-27 17:49:04
537
admin-tim
转载文章
...学创作等多个领域均有应用。例如,在DNA序列分析中,回文结构往往关联着基因调控的重要区域;在密码学中,特定类型的回文串可用于构建加密算法的关键部分。深入理解并熟练掌握回文串的相关性质及处理方法,无疑有助于我们在这些领域取得更多的技术突破。 总之,从基础的编程题出发,我们可以洞察到字符串处理与算法优化在前沿科研和实际应用中的深远影响。通过持续关注和学习此类问题的最新研究成果与应用案例,我们能够不断提升自身的算法设计和问题解决能力。
2023-10-05 13:54:12
228
转载
转载文章
...注如何将这一原则有效应用到个人成长、团队协作和企业培训实践中。近期,《哈佛商业评论》发表了一篇题为《实践的力量:重新审视学习与发展的70/20/10框架》的文章,文中引用了众多跨国公司的人力资源发展案例,对721法则进行了深度解读。作者强调,在数字化时代,虽然在线教育和远程学习方式的兴起让“10%的培训与学习”部分变得更加便捷,但实践经验(70%)和人际互动交流(20%)的价值并未因此减弱,反而更加凸显其不可替代性。 同时,一项由LinkedIn Learning于今年发布的《职场技能报告》显示,全球范围内,超过80%的企业领导者认为,员工通过实际项目锻炼和跨部门合作获得的能力提升最为显著,这恰好印证了721法则中关于实践重要性的理念。此外,该报告还倡导企业在构建内部培训体系时,应重视搭建分享交流平台,鼓励知识和经验的流动,以实现20%交流反馈环节的高效运作。 值得一提的是,不少科技巨头如Google和Microsoft已开始推行“ Growth Mindset(成长型思维模式)”的文化建设,提倡员工勇于尝试、敢于失败,这无疑是对721法则中实践精神的有力践行。在这样的企业文化氛围下,员工不仅能从错误中汲取宝贵经验,而且能够在团队协作中不断提升自身能力,从而形成良性循环,推动企业和个人共同发展。 总结来说,721法则不仅是一种理论指导,更应在现实工作场景中灵活运用。无论是组织架构设计,还是个人职业规划,都应充分认识到实践、交流和学习三者相辅相成的重要性,以适应不断变化的工作环境和挑战。
2023-06-04 23:38:21
105
转载
转载文章
...面向对象特性以及广泛应用于互联网后台服务端开发而受到业界青睐。 六险一金 , 六险一金是中国大陆地区较为全面的社会保险和住房公积金福利制度的简称。它包括养老保险、医疗保险、失业保险、工伤保险、生育保险、补充医疗保险(部分公司提供)以及住房公积金。在本文中,各家公司为吸引优秀人才,均提供了包含六险一金在内的综合福利待遇。 年终奖 , 年终奖是指企业在每年度末向员工发放的一种奖金形式,用于表彰员工一年来的工作业绩和贡献。文中提到的多家公司都提到了年终奖作为其福利待遇的一部分,这不仅是对员工工作成果的认可,也是激励员工积极工作的有效手段。 股票期权 , 股票期权是一种长期激励机制,允许员工在未来特定时间内以预先约定的价格购买公司股票的权利。在本文所述的互联网公司中,很多公司向员工提供股票期权作为福利之一,旨在让员工分享公司的成长收益,增强归属感,并鼓励员工与公司共同长期发展。
2023-01-11 22:59:19
529
转载
Hive
...极探索数据压缩技术的应用。阿里云团队开发了一种名为“智能压缩”的新技术,可以根据数据特征动态调整压缩算法,以达到最佳的压缩效果。这一技术已经在多个企业的生产环境中得到了验证,结果显示,与传统的固定压缩方式相比,智能压缩可以将存储成本降低30%以上,同时提升查询性能约20%。 此外,开源社区也在不断推进相关技术的发展。例如,Apache Arrow项目最近发布了一个新版本,该版本引入了对多种压缩算法的原生支持,包括Zstandard(zstd)和LZ4。这些算法以其高效性和灵活性受到广泛关注,未来有望成为大数据处理领域的主流选择。 值得注意的是,尽管这些新技术带来了诸多好处,但在实际应用中仍需注意潜在的风险。例如,过度依赖压缩可能会影响数据的安全性,尤其是在涉及敏感信息的情况下。因此,在采用新的压缩技术时,企业需要仔细评估其安全性、兼容性和维护成本,确保技术的实际效益最大化。总之,随着技术的不断进步,数据压缩正成为大数据领域的一个重要研究方向,未来还有很大的发展空间。
2025-04-19 16:20:43
45
翡翠梦境
转载文章
...了解HTML5的主流应用1 在很多人眼里,HTML5与互联网营销密切相关,但其实从开发者的角度而言,它是一种网页标准,定义了浏览器语言的编写规范.伴随HTML5标准尘埃落定,浏览器对HTML5特性的逐步支持,再加上国内对HTML ... 【转帖】39个让你受益的HTML5教程 39个让你受益的HTML5教程 闲话少说,本文作者为大家收集了网上学习HTML5的资源,期望它们可以帮助大家更好地学习HTML5. 好人啊! 不过,作者原来说的4 ... 【特别推荐】Web 开发人员必备的经典 HTML5 教程 对于我来说,Web 前端开发是最酷的职业之一,因为你可以用新的技术发挥,创造出一些惊人的东西.唯一的问题是,你需要跟上这个领域的发展脚步,因此,你必须不断的学习,不断的前进.本文将分享能够帮助您快速掌 ... HTML5教程之本地存储SessionStorage SessionStorage: 将数据保存在session对象中,所谓session是指用户在浏览某个网站时,从进入网站到浏览器关闭所经过的这段时间会话,也就是用户浏览这个网站所花费的时间就是sess ... 随机推荐 【转】MySQL索引背后的数据结构及算法原理 摘要 本文以MySQL数据库为研究对象,讨论与数据库索引相关的一些话题.特别需要说明的是,MySQL支持诸多存储引擎,而各种存储引擎对索引的支持也各不相同,因此MySQL数据库支持多种索引类型,如BT ... IIS7 / IIS7.5 URL 重写 HTTP 重定向到 HTTPS(转) 转自: http://www.cnblogs.com/yipu/p/3880518.html 1.购买SSL证书,参考:http://www.cnblogs.com/yipu/p/3722135. ... OpenGL的glViewPort窗口设置函数实现分屏 之前实现过全景图片查看(OpenGL的几何变换3之内观察全景图),那么我们需要进行分屏该如何实现呢?如下图: 没错就是以前提过的glViewPort函数,废话不多说了,我直接上代码: //从这里开始进 ... hdu 4764 Stone (巴什博弈,披着狼皮的羊,小样,以为换了身皮就不认识啦) 今天(2013/9/28)长春站,最后一场网络赛! 3~5分钟后有队伍率先发现伪装了的签到题(博弈) 思路: 与取石头的巴什博弈对比 题目要求第一个人取数字在[1,k]间的某数x,后手取x加[1,k] ... android报表图形引擎(AChartEngine)demo解析与源码 AchartEngine支持多种图表样式,本文介绍两种:线状表和柱状表. AchartEngine有两种启动的方式:一种是通过ChartFactory.getView()方式来直接获取到view ... CSS长度单位及区别 em ex px pt in 1. css相对长度单位 Ø em 元素的字体高度 Ø ex 字体x的高度 Ø px ... es6的箭头函数 1.使用语法 : 参数 => 函数语句; 分为以下几种形式 : (1) ()=>语句 ( )=> statement 这是一种简写方法省略了花括号和return 相当于 ()=&g ... pdfplumber库解析pdf格式 参考地址:https://github.com/jsvine/pdfplumber 简单的pdf转换文本: import pdfplumber with pdfplumber.open(path) a ... KMP替代算法——字符串Hash 很久以前写的... 今天来谈谈一种用来替代KMP算法的奇葩算法--字符串Hash 例题:给你两个字符串p和s,求出p在s中出现的次数.(字符串长度小于等于1000000) 字符串的Hash 根据字面意 ... SSM_CRUD新手练习(5)测试mapper 上一篇我们使用逆向工程生成了所需要的bean.dao和对应的mapper.xml文件,并且修改好了我们需要的数据库查询方法. 现在我们来测试一下DAO层,在test包下新建一个MapperTest.j ... 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_35666639/article/details/118169985。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-16 11:42:34
252
转载
Sqoop
...ion,它们在数据流管理和实时处理方面展现出了更强的能力。NiFi以其直观的图形界面和灵活的数据路由功能受到开发者的青睐,而Talend则提供了更为全面的企业级支持和服务。这些工具不仅提升了数据迁移的效率,还增强了数据的安全性和可靠性,为企业在数字化转型过程中提供了更多选择。 此外,随着云计算的普及,云原生数据迁移工具也逐渐成为主流趋势。例如,AWS Database Migration Service(DMS)和Google Cloud Data Transfer Service等服务,允许用户在不同的云平台之间无缝迁移数据,同时提供自动化的监控和故障恢复机制。这种云原生解决方案大幅降低了传统本地部署工具的复杂度,使得中小企业也能轻松实现大规模数据迁移。 值得注意的是,数据隐私法规的变化对数据迁移工具提出了更高的合规要求。欧盟的《通用数据保护条例》(GDPR)和美国加州的《消费者隐私法》(CCPA)等法律框架,都对企业如何收集、存储和传输个人数据作出了严格规定。因此,企业在选用数据迁移工具时,不仅要考虑技术层面的兼容性和稳定性,还需要确保工具符合最新的法律法规,以避免潜在的法律风险。 在未来,随着人工智能和机器学习技术的进步,数据迁移工具将进一步智能化。例如,利用AI算法预测数据迁移过程中可能出现的问题,并提前采取措施优化流程,将成为行业发展的新方向。同时,开源社区的持续贡献也将推动工具的创新,为企业提供更多低成本、高效率的解决方案。总之,数据迁移领域的技术创新正在加速演进,为企业的数据管理带来了前所未有的机遇和挑战。
2025-03-22 15:39:31
93
风中飘零
转载文章
这篇文章详细介绍了通过抓包分析斗鱼视频链接,发现并利用手机端接口获取playlist.m3u8文件地址,进而批量下载.ts片段的方法。针对PC端签名(sign)问题,文章提出了有效解决方案,并通过Python实现合并.ts文件为完整视频的流程。同时,使用MongoDB进行存储管理以过滤重复下载。整个过程中涉及的关键技术点包括:斗鱼视频、下载、playlist.m3u8、.ts文件、签名(sign)、手机端接口、合并、Python实现、抓包分析及MongoDB存储。
2023-12-18 11:34:00
119
转载
转载文章
...能,进一步满足企业级应用对数据导入导出高效稳定的需求。此外,随着云原生和微服务架构的普及,JSON作为跨语言的数据交换格式,其解析库如Fastjson也积极跟进,强化安全性的同时提升解析速度。 对于IDEA这类集成开发环境,JetBrains官方及社区开发者们也在不断丰富和完善各种插件的功能,如Lombok插件已兼容至最新Java版本,提供更多便捷的注解生成方式,并且有更多新颖实用的插件(如SonarLint for IntelliJ)帮助开发者遵循编码规范、提高代码质量。 总之,紧跟时代步伐,关注技术动态,通过阅读最新的博客文章、官方文档或参与开发者论坛讨论,能让我们更好地理解和掌握上述技术工具的最新进展,从而在实际项目开发中更加游刃有余。
2023-05-26 23:30:52
268
转载
转载文章
...行识别足够了。但想要应用于更广泛的情况,应该寻找更大的数据集,所以我找到了国外手写数字的数据集MNIST。建议四个文件都下载 数据链接:MINIST数据集 2.对数据进行调整 2.1 将ubyte格式转为jpg格式 代码参考链接:python将ubyte格式的MNIST数据集转成jpg图片格式并保存 import numpy as npimport cv2import osimport structdef trans(image, label, save):image位置,label位置和转换后的数据保存位置if 'train' in os.path.basename(image):prefix = 'train'else:prefix = 'test'labelIndex = 0imageIndex = 0i = 0lbdata = open(label, 'rb').read()magic, nums = struct.unpack_from(">II", lbdata, labelIndex)labelIndex += struct.calcsize('>II')imgdata = open(image, "rb").read()magic, nums, numRows, numColumns = struct.unpack_from('>IIII', imgdata, imageIndex)imageIndex += struct.calcsize('>IIII')for i in range(nums):label = struct.unpack_from('>B', lbdata, labelIndex)[0]labelIndex += struct.calcsize('>B')im = struct.unpack_from('>784B', imgdata, imageIndex)imageIndex += struct.calcsize('>784B')im = np.array(im, dtype='uint8')img = im.reshape(28, 28)save_name = os.path.join(save, '{}_{}_{}.jpg'.format(prefix, i, label))cv2.imwrite(save_name, img)if __name__ == '__main__':需要更改的文件路径!!!!!!此处是原始数据集位置train_images = 'C:/Users/ASUS/Desktop/train-images.idx3.ubyte'train_labels = 'C:/Users/ASUS/Desktop/train-labels.idx1.ubyte'test_images ='C:/Users/ASUS/Desktop/t10k-images.idx3.ubyte'test_labels = 'C:/Users/ASUS/Desktop/t10k-labels.idx1.ubyte'此处是我们将转化后的数据集保存的位置save_train ='C:/Users/ASUS/Desktop/MNIST/train_images/'save_test ='C:/Users/ASUS/Desktop/MNIST/test_images/'if not os.path.exists(save_train):os.makedirs(save_train)if not os.path.exists(save_test):os.makedirs(save_test)trans(test_images, test_labels, save_test)trans(train_images, train_labels, save_train) 2.2 将图片按照标签分类到具体文件夹 文章参考链接:python实现根据文件名自动分类转移至不同的文件夹 注意:为了适合这个数据集和我的win11系统对代码进行了一点调整,由于数据很多如果只需要部分数据一定要将那些数据单独放在一个文件夹。 导入库import osimport shutil 当前文件夹所在的路径,使用时需要进行修改current_path = 'C:/Users/ASUS/Desktop/MNIST/test'print('当前文件夹为:' + current_path) 读取该路径下的文件filename_list = os.listdir(current_path) 建立文件夹并且进行转移 假设原图片名称 test_001_2.jpgfor filename in filename_list:name1, name2, name3 = filename.split('_') name1 = test name2 = 001 name3 = 2.jpgname4, name5 = name3.split('.') name4 = 2 name5 = jpgif name5 == 'jpg' or name5 == 'png':try:os.mkdir(current_path+'/'+name4)print('成功建立文件夹:'+name4)except:passtry:shutil.move(current_path+'/'+filename, current_path+'/'+name4[:])print(filename+'转移成功!')except Exception as e:print('文件 %s 转移失败' % filename)print('转移错误原因:' + e)print('整理完毕!') 2.3 数据存在的缺陷 数据集内的图片数量很多,由于后面介绍的云端训练的限制,只能采用部分数据(本人采用的是1000张,大家可以自行增减数目)。 数据集为国外的数据集,很多数字写的跟我们不一样。如果想要更好的适用于我们国内的场景,可以对数据集进行手动的筛选。下面是他们写的数字2: 可以看出跟我们的不一样,不过数据集中仍然存在跟常规书写的一样的,我们需要进行人为的筛选。 2.4 优化建议(核心) 分析发现,部分数字精度不高的原因主要是国外手写很随意,我们可以通过调整网络参数(如下)、人为筛选数据(如上)、增大数据集等方式进行优化。 二、模型训练 主要参考文章:通过云端自动生成openmv的神经网络模型,进行目标检测 !!!唯一不同的点是我图像参数设置的是灰度而不是上述文章的RGB。 下面是我模型训练时的参数设置(仅供参考): 通过混淆矩阵可以看出,主要的错误在于数字2、6、8。我们可以通过查看识别错误的数字来分析可能的原因。 三、项目实现 !!!我们需要先将上述步骤中导出文件中的所有内容复制粘贴带OpenMV中自带的U盘中。然后将其中的.py文件名称改为main 1. 代码实现 本人修改后的完整代码展示如下,使用的是OpenMV IDE(官网下载): 数字识别后控制直流电机转速from pyb import Pin, Timerimport sensor, image, time, os, tf, math, random, lcd, uos, gc 根据识别的数字输出不同占比的PWM波def run(number):if inverse == True:ain1.low()ain2.high()else:ain1.high()ain2.low()ch1.pulse_width_percent(abs(number10)) 具体参数调整自行搜索sensor.reset() 初始化感光元件sensor.set_pixformat(sensor.GRAYSCALE) set_pixformat : 设置像素模式(GRAYSCALSE : 灰色; RGB565 : 彩色)sensor.set_framesize(sensor.QQVGA2) set_framesize : 设置处理图像的大小sensor.set_windowing((128, 160)) set_windowing : 设置提取区域大小sensor.skip_frames(time = 2000) skip_frames :跳过2000ms再读取图像lcd.init() 初始化lcd屏幕。inverse = False True : 电机反转 False : 电机正转ain1 = Pin('P1', Pin.OUT_PP) 引脚P1作为输出ain2 = Pin('P4', Pin.OUT_PP) 引脚P4作为输出ain1.low() P1初始化低电平ain2.low() P4初始化低电平tim = Timer(2, freq = 1000) 采用定时器2,频率为1000Hzch1 = tim.channel(4, Timer.PWM, pin = Pin('P5'), pulse_width_percent = 100) 输出通道1 配置PWM模式下的定时器(高电平有效) 端口为P5 初始占空比为100%clock = time.clock() 设置一个时钟用于追踪FPS 加载模型try:net = tf.load("trained.tflite", load_to_fb=uos.stat('trained.tflite')[6] > (gc.mem_free() - (641024)))except Exception as e:print(e)raise Exception('Failed to load "trained.tflite", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')') 加载标签try:labels = [line.rstrip('\n') for line in open("labels.txt")]except Exception as e:raise Exception('Failed to load "labels.txt", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')') 不断的进行运行while(True):clock.tick() 更新时钟img = sensor.snapshot().binary([(0,64)]) 抓取一张图像以灰度图显示lcd.display(img) 拍照并显示图像for obj in net.classify(img, min_scale=1.0, scale_mul=0.8, x_overlap=0.5, y_overlap=0.5): 初始化最大值和标签max_num = -1max_index = -1print("\nPredictions at [x=%d,y=%d,w=%d,h=%d]" % obj.rect())img.draw_rectangle(obj.rect()) 预测值和标签写成一个列表predictions_list = list(zip(labels, obj.output())) 输出各个标签的预测值,找到最大值进行输出for i in range(len(predictions_list)):print('%s 的概率为: %f' % (predictions_list[i][0], predictions_list[i][1]))if predictions_list[i][1] > max_num:max_num = predictions_list[i][1]max_index = int(predictions_list[i][0])run(max_index)print('该数字预测为:%d' % max_index)print('FPS为:', clock.fps())print('PWM波占空比为: %d%%' % (max_index10)) 2. 采用器件 使用的器件为OpenMV4 H7 Plus和L298N以及常用的直流电机。关键是找到器件的引脚图,再进行简单的连线即可。 参考文章:【L298N驱动模块学习笔记】–openmv驱动 参考文章:【openmv】原理图 引脚图 2. 注意事项 上述代码中我用到了lcd屏幕,主要是为了方便离机操作。使用过程中,OpenMV的lcd初始化时会重置端口,所有我们在输出PWM波的时候一定不要发生引脚冲突。我们可以在OpenMV官网查看lcd用到的端口: 可以看到上述用到的是P0、P2、P3、P6、P7和P8。所有我们输出PWM波时要避开这些端口。下面是OpenMV的PWM资源: 总结 本人第一次自己做东西也是第一次使用python,所以代码和项目写的都很粗糙,只是简单的识别数字控制直流电机。我也是四处借鉴修改后写下的大小,这篇文章主要是为了给那些像我一样的小白们提供一点帮助,减少大家查找资料的时间。模型的缺陷以及改进方法上述中已经说明,如果我有写错或者大家有更好的方法欢迎大家告诉我,大家一起进步! 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_57100435/article/details/130740351。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-01-10 08:44:41
282
转载
转载文章
...强对保研工作的规范化管理,不仅要求各高校公开透明地公布保研细则与流程,还强调对于学生品德修养、学术诚信等方面的考察。同时,为促进教育资源均衡分配,一些“双一流”大学正逐步扩大接收外校推免生的比例,为更多非顶尖高校的优秀学子提供了更广阔的发展平台。 与此同时,针对个人准备层面,专家建议有意向保研的同学应提前至少一年进行规划布局,扎实专业知识基础,积极参与科研实践,提高论文发表与竞赛获奖的含金量。此外,合理定位自身并积极拓宽信息获取渠道,了解心仪高校与导师的研究方向及团队氛围,同样至关重要。 综上所述,保研不仅是对过往学业成果的检验,更是对未来学术生涯的前瞻布局。广大有志于深造的学子需紧跟政策导向,全面提升自我,才能在这场无声的竞争中脱颖而出,成功走向理想的学术殿堂。
2023-05-02 23:03:36
120
转载
转载文章
...技术的最新发展动态与应用场景。近年来,随着Web前端技术的飞速进步,DOM操作在现代JavaScript框架如React、Vue.js和Angular中扮演着至关重要的角色。例如,React通过虚拟DOM实现高效的UI更新策略,大大提升了网页渲染性能。 同时,在Web组件化开发领域,Custom Elements V1规范已得到广泛支持,开发者可以通过自定义HTML元素并扩展其行为,这背后离不开DOM API的强力支撑。例如,借助MutationObserver接口可以监听DOM树的变化,实现实时响应式布局。 此外,无障碍性(Accessibility)也是当前Web开发的重要考量因素之一,正确且高效的DOM操作有助于提升网站对屏幕阅读器等辅助技术的支持,确保信息能够无障碍地传达给所有用户。 近期,W3C还在持续推动DOM标准的发展,如Shadow DOM v1规范让组件样式和DOM结构更加独立和可控,对于构建复杂Web应用具有重要意义。了解和掌握这些前沿技术和标准,将有助于开发者更好地利用DOM API创建高性能、可维护且符合现代Web标准的页面和应用。
2023-08-04 13:36:05
247
转载
转载文章
...表达式在实际项目中的应用,可以查阅一些近期开发者博客或技术文章,了解他们在表单验证、URL解析、文本搜索替换等方面的实战案例。例如,一篇名为“利用正则表达式优化用户输入验证策略”的文章详尽探讨了如何结合现代浏览器特性,如约束验证API,配合正则表达式进行高效的数据校验。 此外,对于正则表达式的性能优化也是值得关注的话题。有研究指出,在处理大量数据时,某些复杂的正则可能导致性能瓶颈。阅读相关的性能分析报告和技术分享,可以帮助开发者掌握编写高性能正则表达式的技巧,并避免潜在的性能陷阱。 最后,关于UTC时间戳在跨时区开发中的重要性,可参考有关国际协作项目中如何妥善处理时间问题的文章,了解如何借助JavaScript Date对象正确转换和处理不同时区的时间信息,从而确保在全球范围内应用程序的正常运行。尤其在当前全球化的互联网环境下,理解和掌握这一技能愈发关键。
2023-01-24 13:01:25
529
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
tar -cvzf archive.tar.gz dir
- 压缩目录至gzip格式的tar包。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"