前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[HTTP协议在HessianRPC中的应...]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
...转载内容。原文链接:https://blog.csdn.net/QXK2001/article/details/51292402。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 演讲者:黄涛 AWS高级技术讲师 下载地址:MP4完整视频下载 1. 邱洋的总结 AWS的服务和技术繁多,选择适合自己的方向,而不是什么都去学 AWS的学习资源异常丰富,包括视频、免费文档、在线实验、社区以及专家课程(收费) AWS的考试包括助理级和专家级,并且分别针对架构师、开发与运维人员 助理架构师考试主要针对:设计、实施部署、数据安全、故障排除等4个方面进行考核 AWS的架构师考试重点需要掌握7大“云设计架构”如:弹性原则、最小授权原则等等,熟悉这些非常有助于答题(就好比当初考车的文科一样,是有规律可循的) 多动手非常有助于通过考试,同时也是熟练掌握的不二法宝 助理架构师考试,建议考生拥有6个月AWS实战经验 专家级架构师考试,建议考生拥有2年的实战经验 2. 概述 2.1 AWS的服务列表概览 2.2 需要确定好自己的定位与方向 包括三个维度: - 什么行业 – (移动?视频?互联网?企业?金融?) - 解决什么问题 – 大规模分发?大数据?混合网络? - 使用哪些服务 – 虚拟主机?虚拟网络和安全?hadoop集群?数据仓库? 2.3 学习方法是以赛代练(步步实践,边学边用) 首先【观看自学视频】 然后听取【在线课堂】 理论差不多有,开始【动手实验室】(15个免费实验) 深入了解需要【详细查看文档】建议至少先从FAQ阅读,可以缩短很长时间 利用【免费AWS套餐】注意平时的理解和学习 再进行高级实验 需要了解各个服务之间的关联等,【听取讲师指导课程】,就可以高层次的了解服务内容 参加认证考试 2.4 AWS导师课程分类和级别 人员分类:解决方案师、开发人员、系统操作人员 课程分类:入门级、基础级、高级、专项 3. AWS认证的背景信息 3.1 认证的类型 助理级 – 助理架构师 – 助理开发人员 – 助理系统管理员 专家级 – 专家架构师 – 专家开发运维 认证共有5个,如果要参加专家级认证必须先通过助理级认证,其中“专家开发运维(devops)”的认证则通过任意(开发 or 运维)的助理级认证即可 3.2 获得认证后的收益? 对个人 – 可以证明个人在AWS平台上具备设计、部署和管理高可用、低成本、安全应用的能力 – 在工作上或社区中得到尊重和认可 – 可以把认证放到简历中,linkedin中整合了AWS认证徽章 对企业雇主 – 具备AWS上服务和工具的使用的认可 – 客户认可,降低AWS项目实施风险 – 增加客户满意度 3.3 再认证模式 因为AWS的服务在更新,因此每两年要重新认证(证件的有效期2年),再次参加考试时,题目、时间将会更少,且认证费用更低 3.4 助理架构师认证的知识领域 四大知识域 1 设计:高可用、高效率、可容错低、可扩展的系统 2 实施和部署:强调部署操作能力 3 数据安全性:在部署操作时,始终保持数据保存和传输的安全 4 排除故障:在系统出现问题时,可以快速找到问题并解决问题 知识权重 - 设计:60%的题目 - 实施和部署:10%的题目 - 数据安全:20%的题目 - 排除故障:10%的题目 PS:考试不会按照上面的次序、考试不会注明考试题目的分类 3.5 认证过程 需要在网上注册,找到距离家里比较近的地方考试(考点) 到了现场需要携带身份证,证明自己 并不允许带手机入场 证件上必须有照片 签署NDA保证不会泄露考题 考试中心的电脑中考试(80分钟,55个考题) 考试后马上知道分数和是否通过(不会看到每道题目是否正确) 通过后的成绩、认证证书等将发到email邮箱中 3.6 考试机制 助理级别考试的重点是:单一服务和小规模的组合服务的掌握程度 所有题目都是选择题(多选或单选) 不惩罚打错,所以留白没意义,可以猜一个 55道题 可以给不确定的题目打标签,没提交前都可以回来改答案 3.7 题目示例 单选题 多选题(会告诉你有多少个答案) 汇总查看答案以及mark(标记) 4 AWS架构的7大设计原则 4.1 松耦合 松耦合是容错、运维自动扩容的基础,在设计上应该尽量减少模块间的依赖性,将不会成为未来应用调整、发展的阻碍 松耦合模式的情况 不要标示(依赖)特定对象,依赖特定对象耦合性将非常高 – 使用负载均衡器 – 域名解析 – 弹性IP – 可以动态找到配合的对象,为松耦合带来方便,为应用将来的扩展带来好处 不要依赖其他模块的正确处理或及时的处理 – 使用尽量使用异步的处理,而不是同步的(SQS可以帮到用户) 4.2 模块出错后工作不会有问题 问问某个模块出了问题,应用会怎么样? 在设计的时候,在出了问题会有影响的模块,进行处理,建立自动恢复性 4.3 实现弹性 在设计上,不要假定模块是正常的、始终不变的 – 可以配合AutoScaling、EIP和可用区AZ来满足 允许模块的失败重启 – 无状态设计比有状态设计好 – 使用ELB、云监控去检测“实例”运行状态 有引导参数的实例(实现自动配置) – 例如:加入user data在启动的时候,告知它应该做的事情 在关闭实例的时候,保存其配置和个性化 – 例如用DynamoDB保存session信息 弹性后就不会为了超配资源而浪费钱了 4.4 安全是整体的事,需要在每个层面综合考虑 基础架构层 计算/网络架构层 数据层 应用层 4.5 最小授权原则 只付于操作者完成工作的必要权限 所有用户的操作必须授权 三种类型的权限能操作AWS – 主账户 – IAM用户 – 授权服务(主要是开发的app) 5 设计:高可用、高效率、可容错、可扩展的系统 本部分的目标是设计出高可用、高效率低成本、可容错、可扩展的系统架构 - 高可用 – 了解AWS服务自身的高可靠性(例如弹性负载均衡)—-因为ELB是可以多AZ部署的 – 用好这些服务可以减少可用性的后顾之忧 - 高效率(低成本) – 了解自己的容量需求,避免超额分配 – 利用不同的价格策略,例如:使用预留实例 – 尽量使用AWS的托管服务(如SNS、SQS) - 可容错 – 了解HA和容错的区别 – 如果说HA是结果,那么容错则是保障HA的一个重要策略 – HA强调系统不要出问题,而容错是在系统出了问题后尽量不要影响业务 - 可扩展性 – 需要了解AWS哪些服务自身就可以扩展,例如SQS、ELB – 了解自动伸缩组(AS) 运用好 AWS 7大架构设计原则的:松耦合、实现弹性 6 实施和部署设计 本部分的在设计的基础上找到合适的工具来实现 对比第一部分“设计”,第一章主要针对用什么,而第二章则讨论怎么用 主要考核AWS云的核心的服务目录和核心服务,包括: 计算机和网络 – EC2、VPC 存储和内容分发 – S3、Glacier 数据库相关分类 – RDS 部署和管理服务 – CloudFormation、CloudWatch、IAM 应用服务 – SQS、SNS 7 数据安全 数据安全的基础,是AWS责任共担的安全模型模型,必须要读懂 数据安全包括4个层面:基础设施层、计算/网络层、数据层、应用层 - 基础设施层 1. 基础硬件安全 2. 授权访问、流程等 - 计算/网络层 1. 主要靠VPC保障网络(防护、路由、网络隔离、易管理) 2. 认识安全组和NACLs以及他们的差别 安全组比ACL多一点,安全组可以针对其他安全组,ACL只能针对IP 安全组只允许统一,ACL可以设置拒绝 安全组有状态!很重要(只要一条入站规则通过,那么出站也可以自动通过),ACL没有状态(必须分别指定出站、入站规则) 安全组的工作的对象是网卡(实例)、ACL工作的对象是子网 认识4种网关,以及他们的差别 共有4种网关,支撑流量进出VPC internet gatway:互联网的访问 virtual private gateway:负责VPN的访问 direct connect:负责企业直连网络的访问 vpc peering:负责VPC的peering的访问 数据层 数据传输安全 – 进入和出AWS的安全 – AWS内部传输安全 通过https访问API 链路的安全 – 通过SSL访问web – 通过IP加密访问VPN – 使用直连 – 使用OFFLINE的导入导出 数据的持久化保存 – 使用EBS – 使用S3访问 访问 – 使用IAM策略 – 使用bucket策略 – 访问控制列表 临时授权 – 使用签名的URL 加密 – 服务器端加密 – 客户端加密 应用层 主要强调的是共担风险模型 多种类型的认证鉴权 给用户在应用层的保障建议 – 选择一种认证鉴权机制(而不要不鉴权) – 用安全的密码和强安全策略 – 保护你的OS(如打开防火墙) – 用强壮的角色来控制权限(RBAC) 判断AWS和用户分担的安全中的标志是,哪些是AWS可以控制的,那些不能,能的就是AWS负责,否则就是用户(举个例子:安全组的功能由AWS负责—是否生效,但是如何使用是用户负责—自己开放所有端口跟AWS无关) AWS可以保障的 用户需要保障的 工具与服务 操作系统 物理内部流程安全 应用程序 物理基础设施 安全组 网络设施 虚拟化设施 OS防火墙 网络规则 管理账号 8 故障排除 问题经常包括的类型: - EC2实例的连接性问题 - 恢复EC2实例或EBS卷上的数据 - 服务使用限制问题 8.1 EC2实例的连接性问题 经常会有多个原因造成无法连接 外部VPC到内部VPC的实例 – 网关(IGW–internet网关、VPG–虚拟私有网关)的添加问题 – 公司网络到VPC的路由规则设置问题 – VPC各个子网间的路由表问题 – 弹性IP和公有IP的问题 – NACLs(网络访问规则) – 安全组 – OS层面的防火墙 8.2 恢复EC2实例或EBS卷上的数据 注意EBS或EC2没有任何强绑定关系 – EBS是可以从旧实例上分离的 – 如有必要尽快做 将EBS卷挂载到新的、健康的实例上 执行流程可以针对恢复没有工作的启动卷(boot volume) – 将root卷分离出来 – 像数据一样挂载到其他实例 – 修复文件 – 重新挂载到原来的实例中重新启动 8.3 服务使用限制问题 AWS有很多软性限制 – 例如AWS初始化的时候,每个类型的EBS实例最多启动20个 还有一些硬性限制例如 – 每个账号最多拥有100个S3的bucket – …… 别的服务限制了当前服务 – 例如无法启动新EC2实例,原因可能是EBS卷达到上限 – Trusted Advisor这个工具可以根据服务水平的不同给出你一些限制的参考(从免费试用,到商业试用,和企业试用的建议) 常见的软性限制 公共的限制 – 每个用户最多创建20个实例,或更少的实例类型 – 每个区域最多5个弹性ip – 每个vpc最多100个安全组 – 最多20个负载均衡 – 最多20个自动伸缩组 – 5000个EBS卷、10000个快照,4w的IOPS和总共20TB的磁盘 – …更多则需要申请了 你不需要记住限制 – 知道限制,并保持数值敏感度就好 – 日后遇到问题时可以排除掉软限制的相关的问题 9. 总结 9.1 认证的主要目标是: 确认架构师能否搜集需求,并且使用最佳实践,在AWS中构建出这个系统 是否能为应用的整个生命周期给出指导意见 9.2 希望架构师(助理或专家级)考试前的准备: 深度掌握至少1门高级别语言(c,c++,java等) 掌握AWS的三份白皮书 – aws概览 – aws安全流程 – aws风险和应对 – 云中的存储选项 – aws的架构最佳实践 按照客户需求,使用AWS组件来部署混合系统的经验 使用AWS架构中心网站了解更多信息 9.3 经验方面的建议 助理架构师 – 至少6个月的实际操作经验、在AWS中管理生产系统的经验 – 学习过AWS的基本课程 专家架构师 – 至少2年的实际操作经验、在AWS中管理多种不同种类的复杂生产系统的经验(多种服务、动态伸缩、高可用、重构或容错) – 在AWS中执行构建的能力,架构的高级概念能力 9.4 相关资源 认证学习的资源地址 - 可以自己练习,模拟考试需要付费的 接下来就去网上报名参加考试 本篇文章为转载内容。原文链接:https://blog.csdn.net/QXK2001/article/details/51292402。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-29 22:08:40
270
转载
转载文章
...转载内容。原文链接:https://blog.csdn.net/W5AeN4Hhx17EDo1/article/details/99899011。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 申耀的科技观察 读懂科技,赢取未来! 1969年7月21日,阿波罗11号成功登陆月球表面,美国宇航员阿姆斯特朗扶着登月舱的阶梯踏上了月球,并说道:“这是我个人的一小步,但却是全人类的一大步。”此次成功登月,也实现了全人类数千年来盼望登上月球的梦想。 历史总是惊人的相似。随着全面云化时代的来临,企业级客户应用部署的范围也从传统数据中心扩展至公有云、私有云乃至混合云模式,其应用服务的复杂性和多样性随之快速上升,由此也带来了一系列巨大的挑战。所以,如何让上云更简单、更高效、更安全,更贴近业务,成为业界共同思考和关注的话题。 在此背景下,今年8月8日,华云数据正式发布了国产通用型云操作系统安超OS,这是一款具有应用创新特性的轻量级云创新平台,拥有全栈、安全、创新、无厂商锁定的特性,能够真正让政府和企业客户通过简单便捷的操作实现云部署和数字化转型。 更为关键的是,安超OS还是构建于生态开放基础之上的云操作系统,这让更多的合作伙伴也能借助这一创新的平台,和华云数据一起赋能数字中国,共同走向成功。因此,国产通用型云操作系统安超OS的发布,对于中国政府和企业更好的实现上云、应用云、管理云、优化云,无疑具有十分重要的价值和意义。 从这个角度来说,安超OS的“一小步”,也正是中国云的“一大步”。 安超OS应运而生背后 众所周知,随着数据量的不断增长和对IT系统安全性、可控性要求的不断提升,越来越多的企业发现无法通过单一的公有云或者私有云服务,满足其所有的工作负载和业务创新需求,特别是在中国这种情况更加的明显。 华云数据集团董事长、总裁许广彬 一方面,目前中国企业现有的IT基础设施架构,让他们很难“一步上公有云”,这也决定了私有云仍然会成为众多政府和企业在未来相当长一段时间采用云服务的主流模式。 来自IDC的数据从一个侧面也证实了这一现状,数据显示仅2018年中国的私有云IT基础设施架构市场的相关支出就增长了49.2%,同时过去6年中国在这方面支出的增长速度更是远高于全球市场,预测2023年中国将成为全球最大的私有云IT基础架构市场。 另一方面,无论是传统的私有云还是公有云厂商的专有云,同样也很难满足中国企业的具体需求。比如,传统私有云的定制化尽管满足了行业企业客户复杂的IT环境和利旧的需求,但存在碎片化、不可进化的问题,也无法达到公有云启用便捷、功能不断进化、统一运维、按需付费的消费级体验,成为传统私有云规模化增长的掣肘。 当然,过去几年国内外公有云巨头也纷纷推出面向私有云市场的专有云产品,但其设计思路是以公有云为核心,其价值更多在于公有云服务在防火墙内的延伸,其初衷是“将数据迁移到中心云上”,这同样不适合,更难以匹配中国企业希望“将云移动到数据上”的最终目标。 正是源于这些客户“痛点”和市场现状,让华云数据产生了打造一款通用型云操作系统的想法。今年3月1日,华云数据宣布对超融合软件厂商Maxta全部资产完成了合法合规收购。至此,华云数据将独家拥有Maxta的包括产品技术、专利软著、品牌、市场在内的全球范围的资产所有权。 在此基础上,华云数据又把Maxta与华云自身的优势产品相融合,正式推出了安超OS国产通用型云操作系统,并在国产化与通用型方向做了三个方面的重要演进: 首先,兼容国产服务器、CPU、操作系统。安超OS对代码进行了全新的架构扩展,创建并维护新的一套代码分支,从源码级完成众多底层的对国产服务器、CPU、操作系统的支持。 其次,扩展通用型云操作系统的易用性。安超OS以VM为核心做为管理理念,以业务应用的视觉管理基础设施,为云操作系统开发了生命周期管理系统(LCM),提供像服务器操作系统的光盘ISO安装方式,可以30分钟完成云操作系统的搭建,并具备一键集群启停、一键日志收集、一键运维巡检业务等通用型云操作系统所必备的易用性功能。 最后,增强国内行业、企业所需的安全性。安超OS的所有源代码都通过了相关部门的安全检查,确保没有“后门”等漏洞,杜绝安全隐患,并且通过了由中国数据中心联盟、云计算开源产业联盟组织,中国信息通信研究院(工信部电信研究院)测试评估的可信云认证。 不难看出,安超OS不仅具有全球领先的技术,同时又充分满足中国市场和中国客户的需求。正如华云数据集团董事长、总裁许广彬所言:“唯改革者进,唯创新者强,华云数据愿意用全球视野推动中国云计算发展,用云创新驱动数字经济挺进新纵深,植根中国,奉献中国,引领中国,腾飞中国。” 五大维度解读安超OS 那么,什么是云操作系统?安超OS通用型云操作系统又有什么与众不同之处呢? 华云数据集团联席总裁、首席技术官谭瑞忠 在华云数据集团联席总裁、首席技术官谭瑞忠看来,云操作系统是基于服务器操作系统,高度的融合了基础设施的资源,实现了资源弹性伸缩扩展,以及具备运维自动化智能化等云计算的特点。同时,云操作系统具有和计算机操作系统一样的高稳定性,高性能,高易用性等特征。 但是,相比计算机操作系统,云计算的操作系统会更为复杂,属于云计算后台数据中心的整体管理运营系统,是构架于服务器、存储、网络等基础硬件资源和PC操作系统、中间件、数据库等基础软件之上的、管理海量的基础硬件、软件资源的云平台综合管理系统。 更为关键的是,和国内外很多基础设备厂商基于自已的产品与理解推出了云操作系统不同,安超OS走的是通用型云操作系统的技术路线,它不是采用软硬件一体的封闭或半封闭的云操作系统平台,所以这也让安超OS拥有安全稳定、广泛兼容、业务优化、简洁运维、高性价比方面的特性,具体而言: 一是,在安全稳定方面,安超OS采用全容错架构设计,从数据一致性校验到磁盘损坏,从节点故障到区域性灾难,提供端到端的容错和灾备方案,为企业构筑高可用的通用型云环境,为企业的业务运营提供坚实与安全可靠的基础平台。 二是,在广泛兼容方面,安超OS所有产品技术、专利软著、品牌都拥有国内自主权,符合国家相关安全自主可信的规范要求,无服务器硬件锁定,支持国内外主流品牌服务器,同时适配大多数芯片、操作系统和中间件,支持利旧与升级,更新硬件时无需重新购买软件,为企业客户提供显著的投资保护,降低企业IT成本。 三是,在业务优化方面,安超OS具备在同一集群内提供混合业务负载的独特能力,可在一套安超OS环境内实现不同业务的优化:为每类应用定制不同的存储数据块大小,优化应用读写效率,提供更高的业务性能;数据可按组织架构逻辑隔离,部门拥有独立的副本而无需新建一套云环境,降低企业IT的成本与复杂度;数据重构优先级保证关键业务在故障时第一时间恢复,也能避免业务链启动错误的场景出现。 四是,在简捷运维方面,安超OS是一款轻量级云创新平台,其所有管理策略以虚拟机和业务为核心,不需要配置或管理卷、LUN、文件系统、RAID等需求,从根本上简化了云操作系统的管理。通过标准ISO安装,可实现30分钟平台极速搭建,1分钟业务快速部署,一键集群启停与一键运维巡检。降低企业IT技术门槛,使IT部门从技术转移并聚焦于业务推进和变革,助力企业实现软件定义数据中心。 五是,在高性价比方面,安超OS在设计之初,华云数据就考虑到它是一个小而美、大而全的产品,所以给客户提供组件化授权,方便用户按需购买,按需使用,避免一次性采购过度,产生配置浪费。并且安超OS提供在线压缩等容量优化方案,支持无限个数无损快照,无硬件绑定,支持License迁移。 由此可见,安超OS通用型云操作系统的本质,其实就是一款以安全可信为基础,以业务优化为核心的轻量级云创新平台,能够让中国政府和企业在数字化转型中,更好的发挥云平台的价值,同时也能有效的支持他们的业务创新。 生态之上的云操作系统 纵观IT发展的过程,每个时代都离不开通用型操作系统:在PC时代,通用型操作系统是Windows、Linux;在移动互联时代,通用型操作系统是安卓(Android),而这些通用型操作系统之所以能够成功,背后其实也离不开生态的开放和壮大。 如果以此类比的话,生态合作和生态开放同样也是华云安超OS产品的核心战略,这也让安超OS超越了传统意义上的云创新平台,是一款架构于生态开放之上的云操作系统。 华云数据集团副董事长、执行副总裁马杜 据华云数据集团副董事长、执行副总裁马杜介绍,目前华云数据正与业内众多合作伙伴建立了生态合作关系,覆盖硬件、软件、芯片、应用、方案等多个领域,通过生态合作,华云数据希望进一步完善云数据中心的产业链生态,与合作伙伴共建云计算生态圈。 其中,在基础架构方面,华云数据与飞腾、海光、申威等芯片厂商以及中标麒麟、银河麒麟等国产操作系统实现了互认证,与VMware、Dell EMC、广达、浪潮、曙光、长城、Citrix、Veeam、SevOne、XSKY、锐捷网络、上海仪电、NEXIFY等多家国内外知名IT厂商达成了战略合作,共同为中国政企用户提供基于云计算的通用行业解决方案与垂直行业解决方案,助推用户上云实现创新加速模式。 同时,在解决方案方面,华云数据也一直在完善自身的产业链,建立最广泛的生态体系。例如,PaaS平台领域的合作伙伴包括灵雀云、Daocloud、时速云、优创联动、长城超云、蓝云、星环科技、华夏博格、时汇信息、云赛、热璞科技、思捷、和信创天、酷站科技、至臻科技达成合作关系;数据备份领域有金蝶、爱数、Veeam、英方云、壹进制;安全领域有亚信安全、江南安全、绿盟、赛亚安全、默安科技;行业厂商包括善智互联、蓝美视讯、滴滴、天港集团、航天科工等合作伙伴,由此形成了非常有竞争力的整体解决方案。 不仅如此,华云数据与众多生态厂家共同完成了兼容性互认证测试,构建了一个最全面的基础架构生态体系,为推出的国产通用型云操作系统提供了一个坚实的基础。也让该系统提高了其包括架构优化能力、技术研发能力、资源整合能力、海量运营能力在内的综合能力,为客户提供稳定、可靠的上云服务,赋能产业变革。 值得一提的是,华云数据还发布了让利于合作伙伴的渠道合作策略,通过和合作伙伴的合作共赢,华云数据希望将安超OS推广到国内的全行业,让中国企业都能用上安全、放心的国产通用型云操作系统,并让安超OS真正成为未来中国企业上云的重要推手。 显而易见,数字化的转型与升级,以及数字经济的落地和发展,任重而道远,艰难而伟大,而华云数据正以安超OS云操作系统为核心构建的新生态模式和所释放的新能力,不仅会驱动华云数据未来展现出更多的可能性,激发出更多新的升维竞争力,更将会加速整个中国政府和企业的数字化转型步伐。 全文总结,在云计算落地中国的过程中,华云数据既是早期的探索者,也是落地的实践者,更是未来的推动者。特别是安超OS云操作系统的推出,背后正是华云凭借较强的技术驾驭能力,以及对中国企业用户痛点的捕捉,使得华云能够走出一条差异化的创新成长之路,也真正重新定义了“中国云”未来的发展壮大之路。 申耀的科技观察,由科技与汽车跨界媒体人申斯基(微信号:shenyao)创办,16年媒体工作经验,拥有中美两地16万公里自驾经验,专注产业互联网、企业数字化、渠道生态以及汽车科技内容的观察和思考。 本篇文章为转载内容。原文链接:https://blog.csdn.net/W5AeN4Hhx17EDo1/article/details/99899011。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-16 21:41:38
302
转载
转载文章
...转载内容。原文链接:https://blog.csdn.net/weixin_44168588/article/details/121208530。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 windows实用键盘快捷键 一、ctrl相关 二、alt、shift相关 三、win(windows徽标的简称)相关 四、其他快捷键 五、运行窗口快捷命令 先输入win+ R 六、小结 一、ctrl相关 Ctrl + X -> 剪切选定项 Ctrl + C(或 Ctrl + Insert) -> 复制选定项 Ctrl + V(或 Shift + Insert) -> 粘贴选定项 Ctrl + Z -> 撤消操作 Ctrl + Esc -> 打开“开始”屏幕 Ctrl + Shift + Esc -> 打开任务管理器 Ctrl + Shift -> 在提供了多个键盘布局时切换键盘布局 Ctrl + 空格键 -> 打开或关闭中文输入法编辑器 (IME) 二、alt、shift相关 Alt + Tab -> 在打开的应用之间切换 Alt + F4 -> 关闭活动项,或者退出活动应用 Shift + F10 -> 显示选定项的快捷菜单 Shift 加任意箭头键 -> 在窗口中或桌面上选择多个项目,或者在文档中选择文本 Shift + Delete -> 无需先将选定项移动到“回收站”,直接将其删除 三、win(windows徽标的简称)相关 win + L -> 锁定电脑 win + D -> 显示和隐藏桌面 win + E -> 打开“文件资源管理器” win + I -> 打开“设置” win + M -> 最小化所有窗口 win + Shift + M -> 将最小化的窗口还原到桌面 win + P -> 选择演示显示模式 win + K -> 打开“连接”快速操作 win + L -> 锁定电脑或切换帐户 win + Tab -> 打开“任务视图” win + R -> 打开运行窗口 四、其他快捷键 End -> 显示活动窗口的底端 Home -> 显示活动窗口的顶端 F11 -> 最大化或最小化活动窗口 五、运行窗口快捷命令 先输入win+ R 本小结转载地址:https://blog.csdn.net/qq_42402854/article/details/93162387 1.calc:启动计算器 2.appwiz.cpl:程序和功能 3.certmgr.msc:证书管理实用程序 4.charmap:启动字符映射表 5.chkdsk.exe:Chkdsk磁盘检查(管理员身份运行命令提示符) 6.cleanmgr: 打开磁盘清理工具 7.cliconfg:SQL SERVER 客户端网络实用工具 8.cmstp:连接管理器配置文件安装程序 9.cmd:CMD命令提示符 10.自动关机命令 Shutdown -s -t 600:表示600秒后自动关机 shutdown -a :可取消定时关机 Shutdown -r -t 600:表示600秒后自动重启 rundll32 user32.dll,LockWorkStation:表示锁定计算机 11.colorcpl:颜色管理,配置显示器和打印机等中的色彩 12.CompMgmtLauncher:计算机管理 13.compmgmt.msc:计算机管理 14.credwiz:备份或还原储存的用户名和密码 15.comexp.msc:打开系统组件服务 16.control:控制面版 17.dcomcnfg:打开系统组件服务 18.Dccw:显示颜色校准 19.devmgmt.msc:设备管理器 20.desk.cpl:屏幕分辨率 21.dfrgui:优化驱动器 Windows 7→dfrg.msc:磁盘碎片整理程序 22.dialer:电话拨号程序 23.diskmgmt.msc:磁盘管理 24.dvdplay:DVD播放器 25.dxdiag:检查DirectX信息 26.eudcedit:造字程序 27.eventvwr:事件查看器 28.explorer:打开资源管理器 29.Firewall.cpl:Windows防火墙 30.FXSCOVER:传真封面编辑器 31.fsmgmt.msc:共享文件夹管理器 32.gpedit.msc:组策略 33.hdwwiz.cpl:设备管理器 34.inetcpl.cpl:Internet属性 35.intl.cpl:区域 36.iexpress:木马捆绑工具,系统自带 37.joy.cpl:游戏控制器 38.logoff:注销命令 39.lusrmgr.msc:本地用户和组 40.lpksetup:语言包安装/删除向导,安装向导会提示下载语言包 41.lusrmgr.msc:本机用户和组 42.main.cpl:鼠标属性 43.mmsys.cpl:声音 44.magnify:放大镜实用程序 45.mem.exe:显示内存使用情况(如果直接运行无效,可以先管理员身份运行命令提示符,在命令提示符里输入mem.exe>d:a.txt 即可打开d盘查看a.txt,里面的就是内存使用情况了。当然什么盘什么文件名可自己决定。) 46.MdSched:Windows内存诊断程序 47.mmc:打开控制台 48.mobsync:同步命令 49.mplayer2:简易widnows media player 50.Msconfig.exe:系统配置实用程序 51.msdt:微软支持诊断工具 52.msinfo32:系统信息 53.mspaint:画图 54.Msra:Windows远程协助 55.mstsc:远程桌面连接 56.NAPCLCFG.MSC:客户端配置 57.ncpa.cpl:网络连接 58.narrator:屏幕“讲述人” 59.Netplwiz:高级用户帐户控制面板,设置登陆安全相关的选项 60.netstat : an(TC)命令检查接口 61.notepad:打开记事本 62.Nslookup:IP地址侦测器 63.odbcad32:ODBC数据源管理器 64.OptionalFeatures:打开“打开或关闭Windows功能”对话框 65.osk:打开屏幕键盘 66.perfmon.msc:计算机性能监测器 67.perfmon:计算机性能监测器 68.PowerShell:提供强大远程处理能力 69.printmanagement.msc:打印管理 70.powercfg.cpl:电源选项 71.psr:问题步骤记录器 72.Rasphone:网络连接 73.Recdisc:创建系统修复光盘 74.Resmon:资源监视器 75.Rstrui:系统还原 76.regedit.exe:注册表 77.regedt32:注册表编辑器 78.rsop.msc:组策略结果集 79.sdclt:备份状态与配置,就是查看系统是否已备份 80.secpol.msc:本地安全策略 81.services.msc:本地服务设置 82.sfc /scannow:扫描错误并复原/windows文件保护 83.sfc.exe:系统文件检查器 84.shrpubw:创建共享文件夹 85.sigverif:文件签名验证程序 86.slui:Windows激活,查看系统激活信息 87.slmgr.vbs -dlv :显示详细的许可证信息 88.snippingtool:截图工具,支持无规则截图 89.soundrecorder:录音机,没有录音时间的限制 90.StikyNot:便笺 91.sysdm.cpl:系统属性 92.sysedit:系统配置编辑器 93.syskey:系统加密,一旦加密就不能解开,保护系统的双重密码 94.taskmgr:任务管理器(旧版) 95.TM任务管理器(新版) 96.taskschd.msc:任务计划程序 97.timedate.cpl:日期和时间 98.UserAccountControlSettings用户账户控制设置 99.utilman:辅助工具管理器 100.wf.msc:高级安全Windows防火墙 101.WFS:Windows传真和扫描 102.wiaacmgr:扫描仪和照相机向导 103.winver:关于Windows 104.wmimgmt.msc:打开windows管理体系结构(WMI) 105.write:写字板 106.wscui.cpl:操作中心 107.wuapp:Windows更新 108.wscript:windows脚本宿主设置 六、小结 键盘快捷键会大大提高使用效率,让你在外行面前显得更酷。持续更新中…感谢点赞,评论与转发,谢谢! 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_44168588/article/details/121208530。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-01 13:38:26
91
转载
转载文章
...转载内容。原文链接:https://blog.csdn.net/qq_42847571/article/details/102686087。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 1.创建表:create table 表名(属性名 数据类型[约束条件],…); Paimary key 主键 auto_increment自增 foreign key 外键 references 另一表名(字段名).–>外键这个表连接着另外一个表的哪个键. 删除表: drop table 表名;–>表结构也删除了(也即是这个表没了) Truncate table 表名 --> 只删除表中数据,表结构不会删除. 2.In 与 not in 在或不在这个(1,3)里面,单个查询,只会查询(1或者3) 3.Between and 与 not … 和上面差不多,Between 1 and 3 但是这个是范围查询(1,3) 1-3 之间(包含1,3) 4.Like,模糊查询 “%” 代表任意字符,”_”代表单个字符. 5.Is Not null 与 is null 是否为空 6.And 与 or 一个是所有条件都要完成,or则是任何一个条件完成即可 7.Distinct 去重 8.Order by age asc 与 desc 排序,假如根据age排序,asc正序(升序默认),desc倒叙(降序) 9.Gruop by 分组查询,单独使用无意义,group_concat(字段),拼接,若是根据age group by 则会发现age一样的会出现在同一字段内 例如: : 最后要注意group by 后面的字段与所查字段的关系(一对一),当然还有having,having和where基本一样,只不过跟在group by后面. 10.Limit 分页查询 limit 0,5 .查询前5条数据,从0开始,5结束,但是5取不到,也即是取头不取尾. 11.聚合函数:count() 查询数据的总数据量 经常使用别名 例如:as total sum(字段)函数:求和…若字段为成绩,where条件或gruop by 为个人的id,那么查出的就是个人的成绩总分. AVG(字段),但是查的是平均分,min(字段)与max(字段) 查出最小或最大. 三者都类似sum(),当然max()与min()若是在最前面使用,就会当条件查询只会出来这一笔数据.例如: 12.Sql多表查询,内连接不只是inner join,平时写的from a表,b表 where 条件这也是内连接,意思就是两张表中数据都有才可以查询出来 13.而外连接分为左连接和右连接,意思是以左表或右表为主,假如两张表,左表数据多,右表数据少,且条件符合,则左连接的时候左表数据全部出来,右表没有的为null,反之也是一样. 14.Exist() 与 not exist() …()内的数据是否为空,若是为空则代表false,返回数据为空,若不为空,则代表true,正常查询. 15.Any 与 all 例如 age > any(age1,age2) 大于两者中的一个就可以,但是all的情况下则是全部大于.也就是相当于,any为大于最小的,all则是大于最大的就行了,当然若是小于号那就是另外一种情况了,另外分析. 16.Union,(也就是联合的意思,自带distinct,重复的去除)用法,例如两张表的id要全部查出来,则:select id from A union select id from B ,若Aid为1,2,3,Bid为1,2,4.则查出来的数据为1.2.3.4,若是union all,则不带distinct,用法一样,查出来以后为1.2.3.1.2.4. 17.给表取别名,表名 空格 别名 给字段取别名 字段名 as 别名. 18.Insert插入数据时若是使用insert into 表名 values();主键必须到写进去,当然与其他数据不相同即可,若是自增,可以写null.若是insert into 表名(字段)values(值),这时插入数据,字段不用写主键字段,写入其他数据字段名与值就可以完成数据的添加.(主键自己生成为前提,UUID,auto_increament都可以). 19.Insert into 插入多条数据时,其他与18一样,只不过由values()变成了values(),(),(); 20.索引是由数据库表中一列或多列组合而成,其作用提高对表数据的查询速度.像图书目录. 优缺点:优:提高了查询数据的效率.缺:创建和维护索引的时间增加了(内容改了,目录也要改). 21.索引分类:普通索引,唯一性索引UNIQUE(unique修饰,例如主键),全文索引FULLTEXT(创建在文本上,例如:char,varchar,varchar2等,mysql默认引擎不支持,),单列索引:单个字段建立索引,多列索引:多个字段创建一个索引,空间索引SPATIAL:不常用(mysql默认引擎不支持) 22.创建索引: index为关键字,或者key (1)可以index(字段名)–>普通索引 (2)Unique index(字段名)–>唯一索引 (3)Unique index 别名(字段名)–>取别名的唯一索引 (4)index 别名(字段名1,字段名2)–>取别名的多列索引 1.创建表的时候创建索引, 前三个为参数修饰,唯一性,全文,空间索引; 2.在已存在的表上创建索引,或者用ALTER TABLE 表名 ADD 索引,也就是用修改表的形式来创建索引 Create index 索引别名 on 表名(字段名) -->普通单列索引 Create index 索引别名 on 表名(字段名1,字段名2) -->多列索引 Create unique index 索引别名 on 表名(字段名) -->唯一单列索引 Alter table 表名 add +(1)|(2)|(3)|(4)即可. 23.删除索引: drop index 索引名 on 表名. 24.NOW(); mysql的函数,表示当前时间 25.视图:是一个虚拟的表,没有物理数据,是从其他表中导出的数据,当原表数据发生改变时,视图数据也会发生改变,反之也一样. (1)作用:操作简单化;增加数据安全性:不直接对表进行操作;提高表的逻辑性:原表修改字段对视图无影响. (2)创建视图:语法:create view 视图名 as 查询语句. 例如:create view vi as select id,name from user;–>这是把user中id,name字段的数据写入到vi视图中. 若是想自己定义字段名不用查出的字段名,可以如下面这样写. 例如:create view vi(vi_id,vi_name) as select id,name from user;–>这样的话id对应vi_id,name对应vi_name; 上面的都是单表的视图,多表的视图也是一样的,只不过后面的单表查询变成多表查询了. 建议创建视图后自己定义字段名,也即是定义别名. (3)查看视图: Describe(desc) 视图名–>查看视图基本信息 Show table status like ‘视图名’ --> 查看视图基本信息 Show create view 视图名 --> 视图详细信息,建表具体信息. 在view表中查看视图详细信息–>view 系统表 自带的. (4)修改视图:修改使徒的定义 Create or replace view 没有的话就创建,有的话就替换 例如:Create or replace view vi(id,name) as select语句. Alter view 只修改不能创建(也就是说视图必须存在的情况下才可修改) Alter view vi as select语句 (5)更新视图:视图是虚拟的,对视图进行的crud操作都会对原表的数据产生影响. 也就是说对视图的操作最后都会转换为对视图所连接那个表的操作. (6)删除视图:删除数据库中已存在的视图,视图为虚表,因此只会删除结构,不会删除数据. Drop view if exist 视图名. 26.触发器:由事件来触发某个操作,这些事件包括insert语句,update语句和delete语句.当数据库系统执行这些事件时,就会激活触发器执行相应的方法. 创建触发器:create trigger 触发器名 (before/after) 触发事件 on 表名 for each row sql语句. 这里的new是指代新插入的拿一条数据(更新的也算),若是old的话,指的是删除的那一条数据(更新之前的数据).(new和old属于过渡变量) 这条触发器的意思时:当t_book有插入数据时,就会根据新插入数据的id找到t_bookType的id,并试该条数据的bookNum加1. Begin与end写sql语句,中间可以写多条sql语句用分号;分隔开…也即是说语句要写完成,不能少分号. Delimiter | 设置分隔符,要不然好像只会执行begin与and之间的第一条sql语句. 查看触发器: 1.show triggers; 语句查看触发器信息.(查询所有的触发器) 2.在triggers表中查看触发器信息.(在数据库原始表triggers中可以查看) 删除触发器: Drop trigger 触发器名称 ; 27.函数: (1)日期函数: CURDATE()当前日期,CURTIME()当前时间,MONTH(d):返回日期d中的月份值,范围试1-12 (2)字符串函数:CHAR_LENGTH(s) 计算字段s值->字符串的长度.UPPER(s) 把该字段的值中所有英文都变成大写,LOWER(s) 和相面相反->把英文都变成小写. (3)数学函数:sum():求和,ABS(s) 求绝对值,SQRT(s):求平方根,mod(x,y),求余x/y (4)加密函数:PASSWORD(STR) 一般对密码加密 不可逆… MD5(STR) 普通加密 ,不可逆. ENCODE(str,pswd_str) 加密函数,结果是一个二进制文件,用blob类型的字段保存,pswd_str类似一个加密的钥匙,可以随便写. DECODE(被加密的值,pswd_str)–>对encode进行解密. 28.存储过程: (1)存储过程和函数:两者是在数据库中定义一些SQL语句的集合,然后直接调用这些存储过程和函数来执行已经定义好的SQL语句.存储过程和函数可以避免重复的写一些sql语句,而且存储过程是在mysql服务器中存储和执行的,减少客户端和服务器端的数据传输.(类似于java代码写的工具类.) (2)创建存储过程和函数: Create procedure 关键字 pro_book 存储过程名称, in 输入 bT 输入参数名称 int 输入参数类型 out 输出 count_num 输出参数名称 int 输入参数类型 Begin 过程开始 end过程结束 中间是sql语句, Delimiter 默认是分号,而他的作用就是若是遇见分号时就开始执行该过程(语句),但是一个存储过程可能有很多sql语句且以分号结束,若这样的情况下当第一条sql语句结束后就会开始执行该过程,产生的后果是创建过程时,执行到第一个分号就会开始创建,导致存储过程创建错误.(若是有多个参数,在多条sql中均有参数,第一条设置完执行了,而这时第二条的参数有可能还么有设置完成,导致sql执行失败.)因此,需要把默认执行过程的demiliter关键字的默认值改为其他的字符,例如上面的就是改为&&,(当然我认为上面就一条sql语句,改不改默认的demiliter的默认值都一样.) . 使用navicat的话不使用delimiter好像也是可以的. Reads sql data则是上面图片所提到的参数指定存储过程的特性.(这个是指读数据,当然还有写输入与读写数据专用的参数类型.)看下图 经常用contains sql (应该是可以读,) 这个是调用上面的存储过程,1为入参,@total相当于全局变量,为出参. 这是一个存储函数,create function 为关键字,fun_book为函数名称, 括号里面为传入的参数名(值)以及入参的类型.RETURNS 为返回的关键字,后面接返回的类型. BEGIN函数开始,END函数结束.中间是return 以及查询数据的sql语句, 这里是指把bookId 传进去,通过存储函数返回对应的书本名字, ---------存储函数的调用和调用系统函数一样 例如:select 存储函数名称(入参值) Select 为查询 func_book 为存储函数名 2为入参值. (3)变量的使用:declaer:声明变量的值 Delimiter && Create procedure user() Begin Declare a,b varchar2(20) ; — a,b有默认的值,为空 Insert into user values(a,b); End && Delimiter ; Set 可以用来赋值,例如: 可以从其他表中查询出对应的值插入到另一个表中.例如: 从t_user2中查询出username2与password2放入到变量a,b中,然后再插入到t_user表中.(当然这只是创建存储过程),创建完以后,需要用CALL 存储过程名(根据过程参数描写.)来调用存储过程.注意:这一种的写法只可以插入单笔数据,若是select查询出多笔数据,因为无循环故而会插入不进去语句,会导致倒致存储过程时出错.下面的游标也是如此. (4)游标的使用.查询语句可能查询出多条记录,在存储过程和函数中使用游标逐条读取查询结果集中的记录.游标的使用包括声明游标,打开游标,使用游标和关闭游标.游标必须声明到处理程序之前,并且声明在变量和条件之后. 声明:declare 游标名 curson for 查询sql语句. 打开:open 游标名 使用:fetch 游标名 into x, 关闭:close 游标名 ----- 游标只能保存单笔数据. 类似于这一个,意思就是先查询出来username2,与password2的值放入到cur_t_user2的游标中(声明,类似于赋值),然后开启->使用.使用的意思就是把游标中存储的值分别赋值到a,b中,然后执行sql语句插入到t_user表中.最后关闭游标. (5)流程控制的使用:mysql可以使用:IF 语句 CASE语句 LOOP语句 LEAVE语句 ITERATE 语句 REPEAT语句与WHILE语句. 这个过程的意思是,查询t_user表中是否存在id等于我们入参时所写的id,若有的情况下查出有几笔这样的数据并且把数值给到全局变量@num中,if判断是否这样的数据是否存在,若是存在执行THEN后面的语句,即使更新该id对应的username,若没有则插入一条新的数据,最后注意END IF. 相当于java中的switch case.例如: 这里想当然于,while(ture){ break; } 这里的意思是,参数一个int类型的参数,loop aaa循环,把参数当做主键id插入到t_user表中,每循环一次参入的参数值减一,直到参数值为0,跳出循环(if判断,leave实现.) 相当于java的continue. 比上面的多了一个当totalNum = 3时,结束本次循环,下面的语句不在执行,直接执行下一次循环,也即是说插入的数据没有主键为3的数据. 和上面的差不多,只不过当执行到UNTIL时满足条件时,就跳出循环.就如上面那一个意思就是当执行到totalNum = 1时,跳出循环,也就是说不会插入主键为0的那一笔数据 当while条件判断为true时,执行do后面的语句,否则就不再执行. (6)调用存储过程和函数 CALL 存储过程名字(参数值1,参数值2,…) 存储函数名称(参数值1,参数值2,…) (7)查看存储过程和函数. Show procedure status like ‘存储过程名’ --只能查看状态 Show create procedure ‘存储过程名’ – 查看定义(使用频率高). 存储函数查看也和上面的一样. 当然还可以从information_schema.Routines中(系统数据库表)查看存储过程与函数. (8)修改存储过程与函数: 修改存储过程comment属性的值 ALTER procedure 存储过程名 comment ‘新值’; (9)删除存储过程与函数: DROP PROCEDURE 存储过程名; DROP function 存储函数名; 29.数据备份与还原: (1)数据备份:数据备份可以保证数据库表的安全性,数据库管理员需要定期的进行数据库备份. 命令:使用mysqldump(下图),或者使用图形工具 Mysqldump在msql文件夹+bin+mysqldump.exe中,相当于一个小软件.执行的话是在dos命令窗操作的. 其实就是导出数据库数据,在navacat中可以如下图导出 (2)数据还原: 若是从navacat中就是把外部的.sql文件数据导入到数据库中去.如下图 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_42847571/article/details/102686087。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-26 19:09:16
83
转载
转载文章
...转载内容。原文链接:https://blog.csdn.net/weixin_39611037/article/details/109984124。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 code小生,一个专注 Android 领域的技术平台 公众号回复 Android 加入我的安卓技术群 作者:小村医 链接:https://www.jianshu.com/p/f7deb4fe6427 声明:本文已获小村医授权发表,转发等请联系原作者授权 伴生对象 在 Kotlin 中并不没有 static 这个关键字,该如何处理呢?这里需要用到 Kotlin 的伴生对象来处理。 类内部的对象声明可以用 companion 关键字标记: class MyClass { 该伴生对象的成员可通过只使用类名作为限定符来调用: val instance = MyClass.create() 可以省略伴生对象的名称,在这种情况下将使用名称 Companion: class MyClass { 伴生对象的作用 类似于 Java 中使用类访问静态成员的语法。因为 Kotlin 取消了 static 关键字,所以 Kotlin 引入伴生对象来弥补没有静态成员的不足。可见,伴生对象的主要作用就是为其所在的外部类模拟静态成员。 在 Java 代码中调用伴生对象 如何在 Java 代码中调用 Kotlin 的伴生对象呢? public static void main(String[] args) { 如果声明伴生对象有名称,则使用: 类名.伴生对象名.方法名() 类名.半生对象名.属性的setter,getter方法 如果声明伴生对象无名称,则采用 Companion 关键字调用: .Companion.方法名() @JvmField 和 @JvmStatic 的使用 在上面的例子中,我们知道了可以在 Java 代码中调用 Kotlin 中伴生对象的成员,类似于 Java 类中的静态成员。但是看上去和 Java 中的还是略有区别,因为类名和方法名/属性setter,getter方法名之间多了个伴生对象的名称或者 Companion 关键字。如何使其在调用的时候与 Java 中的调用看上去一样呢? Kotlin 为我们提供了 @JvmField 和 @JvmStatic 两个注解。@JvmField 使用在属性上,@JvmStatic 使用在方法上。如: class Test { 这样我们在 Java 代码中调用的时候就和 Java 类调用静态成员的形式一致了,Kotlin 代码调用方式不变: System.out.println(Test.flag); System.out.println(Test.add(1, 2)); const 关键字 在伴生对象中,我们可能需要声明一个常量,目的是等同于 Java 中的静态常量。有两种方式,一种是上面所提到的使用 @JvmField 注解,另一种则是使用 const 关键字修饰。这两种声明方式都等同于 Java 中 static final 所修饰的变量。如下代码: companion 扩展属性和扩展方法 扩展函数 Kotlin的扩展函数可以让你作为一个类成员进行调用的函数,但是是定义在这个类的外部。这样可以很方便的扩展一个已经存在的类,为它添加额外的方法 下面我们为String添加一个toInt的方法 package com.binzi.kotlin 在这个扩展函数中,你可以直接访问你扩展的类的函数和属性,就像定义在这个类中的方法一样,但是扩展函数并不允许你打破封装。跟定义在类中方法不同,它不能访问那些私有的、受保护的方法和属性。 扩展函数的导入 我们直接在包里定义扩展函数。这样我们就可以在整个包里面使用这些扩展,如果我们要使用其他包的扩展,我们就需要导入它。导入扩展函数跟导入类是一样的方式。 import 有时候,可能你引入的第三方包都对同一个类型进行了相同函数名扩展,为了解决冲突问题,你可以使用下面的方式对扩展函数进行改名 import com.binzi.kotlin.toInt as toInteger 扩展函数不可覆盖 扩展方法的原理 Kotlin 中类的扩展方法并不是在原类的内部进行拓展,通过反编译为Java代码,可以发现,其原理是使用装饰模式,对源类实例的操作和包装,其实际相当于我们在 Java中定义的工具类方法,并且该工具类方法是使用调用者为第一个参数的,然后在工具方法中操作该调用者 如: fun String?.toInt(): 反编译为对应的Java代码: public 扩展属性 类的扩展属性原理其实与扩展方法是一样的,只是定义的形式不同,扩展属性必须定义get和set方法 为MutableList扩展一个firstElement属性: var 反编译后的java代码如下: public static final Object getFirstElement(@NotNull List $this$firstElement) { 内部类 kotlin的内部类与java的内部类有点不同java的内部类可以直接访问外部类的成员,kotlin的内部类不能直接访问外部类的成员,必须用inner标记之后才能访问外部类的成员 没有使用inner标记的内部类 class A{ 反编译后的java代码 public 用inner标记的内部类 class A{ 反编译后的java代码 public 从上面可以看出,没有使用inner标记的内部类最后生成的是静态内部类,而使用inner标记的生成的是非静态内部类 匿名内部类 匿名内部类主要是针对那些获取抽象类或者接口对象而来的。最常见的匿名内部类View点击事件: //java,匿名内部类的写法 上面这个是java匿名内部类的写法,kotlin没有new关键字,那么kotlin的匿名内部类该怎么写呢? object : View.OnClickListener{ 方法的参数是一个匿名内部类,先写object:,然后写你的参数类型View.OnClickListener{} kotlin还有一个写法lambda 表达式,非常之方便: print( 数据类 在Java中没有专门的数据类,常常是通过JavaBean来作为数据类,但在Kotlin中提供了专门的数据类。 Java public 从上面的例子中可以看到,如果要使用数据类,需要手动写相应的setter/getter方法(尽管IDE也可以批量生成),但是从代码阅读的角度来说,在属性较多的情况下,诸多的seeter/getter方法还是不利于代码的阅读和维护。 Kotlin 在Kotlin中,可以通过关键字data来生成数据类: data 即在class关键字之前添加data关键字即可。编译器会根据主构造函数中的参数生成相应的数据类。自动生成setter/getter、toString、hashCode等方法 要声明一个数据类,需要满足: 主构造函数中至少有一个参数 主构造函数中所有参数需要标记为val或var 数据类不能是抽象、开发、密封和内部的 枚举类 枚举类是一种特殊的类,kotlin可以通过enum class关键字定义枚举类。 枚举类可以实现0~N个接口; 枚举类默认继承于kotlin.Enum类(其他类最终父类都是Any),因此kotlin枚举类不能继承类; 非抽象枚举类不能用open修饰符修饰,因此非抽象枚举类不能派生子类; 抽象枚举类不能使用abstract关键字修饰enum class,抽象方法和抽象属性需要使用; 枚举类构造器只能使用private修饰符修饰,若不指定,则默认为private; 枚举类所有实例在第一行显式列出,每个实例之间用逗号隔开,整个声明以分号结尾; 枚举类是特殊的类,也可以定义属性、方法、构造器; 枚举类应该设置成不可变类,即属性值不允许改变,这样更安全; 枚举属性设置成只读属性后,最好在构造器中为枚举类指定初始值,如果在声明时为枚举指定初始值,会导致所有枚举值(或者说枚举对象)的该属性都一样。 定义枚举类 / 定义一个枚举类 / 枚举类实现接口 枚举值分别实现接口的抽象成员 enum 枚举类统一实现接口的抽象成员 enum 分别实现抽象枚举类抽象成员 enum 委托 委托模式 是软件设计模式中的一项基本技巧。在委托模式中,有两个对象参与处理同一个请求,接受请求的对象将请求委托给另一个对象来处理。委托模式是一项基本技巧,许多其他的模式,如状态模式、策略模式、访问者模式本质上是在更特殊的场合采用了委托模式。委托模式使得我们可以用聚合来替代继承。 Java中委托: interface Printer { Kotlin: interface Printer { by表示 p 将会在 PrintImpl 中内部存储, 并且编译器将自动生成转发给 p 的所有 Printer 的方法。 委托属性 有一些常见的属性类型,虽然我们可以在每次需要的时候手动实现它们, 但是如果能够为大家把他们只实现一次并放入一个库会更好。例如包括: 延迟属性(lazy properties): 其值只在首次访问时计算; 可观察属性(observable properties): 监听器会收到有关此属性变更的通知; 把多个属性储存在一个映射(map)中,而不是每个存在单独的字段中。 为了涵盖这些(以及其他)情况,Kotlin 支持 委托属性 。 委托属性的语法是: var : 在 by 后面的表达式是该 委托, 因为属性对应的 get()(和 set())会被委托给它的 getValue() 和 setValue() 方法。 标准委托: Kotlin 标准库为几种有用的委托提供了工厂方法。 延迟属性 Lazy lazy() 接受一个 lambda 并返回一个 Lazy 实例的函数,返回的实例可以作为实现延迟属性的委托:第一次调用 get() 会执行已传递给 lazy() 的 lambda 表达式并记录结果, 后续调用 get() 只是返回记录的结果。例如: val lazyValue: String 可观察属性 Observable Delegates.observable() 接受两个参数:初始值和修改时处理程序(handler)。每当我们给属性赋值时会调用该处理程序(在赋值后执行)。它有三个参数:被赋值的属性、旧值和新值: class User { 如果想拦截赋的新值,并根据你是不是想要这个值来决定是否给属性赋新值,可以使用 vetoable() 取代 observable(),接收的参数和 observable 一样,不过处理程序 返回值是 Boolean 来决定是否采用新值,即在属性被赋新值生效之前 会调用传递给 vetoable 的处理程序。例如: class User { 把属性存在map 中 一个常见的用例是在一个映射(map)里存储属性的值。这经常出现在像解析 JSON 或者做其他“动态”事情的应用中。在这种情况下,你可以使用映射实例自身作为委托来实现委托属性。 例如: class User(map: Map 在上例中,委托属性会从构造函数传入的map中取值(通过字符串键——属性的名称),如果遇到声明的属性名在map 中找不到对应的key 名,或者key 对应的value 值的类型与声明的属性的类型不一致,会抛出异常。 内联函数 当一个函数被声明为inline时,它的函数体是内联的,也就是说,函数体会被直接替换到函数被调用地方 inline函数(内联函数)从概念上讲是编译器使用函数实现的真实代码来替换每一次的函数调用,带来的最直接的好处就是节省了函数调用的开销,而缺点就是增加了所生成字节码的尺寸。基于此,在代码量不是很大的情况下,我们是否有必要将所有的函数定义为内联?让我们分两种情况进行说明: 将普通函数定义为内联:众所周知,JVM内部已经实现了内联优化,它会在任何可以通过内联来提升性能的地方将函数调用内联化,并且相对于手动将普通函数定义为内联,通过JVM内联优化所生成的字节码,每个函数的实现只会出现一次,这样在保证减少运行时开销的同时,也没有增加字节码的尺寸;所以我们可以得出结论,对于普通函数,我们没有必要将其声明为内联函数,而是交给JVM自行优化。 将带有lambda参数的函数定义为内联:是的,这种情况下确实可以提高性能;但在使用的过程中,我们会发现它是有诸多限制的,让我们从下面的例子开始展开说明: inline 假如我们这样调用doSomething: fun main(args: Array<String>) { 上面的调用会被编译成: fun main(args: Array<String>) { 从上面编译的结果可以看出,无论doSomething函数还是action参数都被内联了,很棒,那让我们换一种调用方式: fun main(args: Array<String>) { 上面的调用会被编译成: fun main(args: Array<String>) { doSomething函数被内联,而action参数没有被内联,这是因为以函数型变量的形式传递给doSomething的lambda在函数的调用点是不可用的,只有等到doSomething被内联后,该lambda才可以正常使用。 通过上面的例子,我们对lambda表达式何时被内联做一下简单的总结: 当lambda表达式以参数的形式直接传递给内联函数,那么lambda表达式的代码会被直接替换到最终生成的代码中。 当lambda表达式在某个地方被保存起来,然后以变量形式传递给内联函数,那么此时的lambda表达式的代码将不会被内联。 上面对lambda的内联时机进行了讨论,消化片刻后让我们再看最后一个例子: inline 上面的例子是否有问题?是的,编译器会抛出“Illegal usage of inline-parameter”的错误,这是因为Kotlin规定内联函数中的lambda参数只能被直接调用或者传递给另外一个内联函数,除此之外不能作为他用;那我们如果确实想要将某一个lambda传递给一个非内联函数怎么办?我们只需将上述代码这样改造即可: inline 很简单,在不需要内联的lambda参数前加上noinline修饰符就可以了。 以上便是我对内联函数的全部理解,通过掌握该特性的运行机制,相信大家可以做到在正确的时机使用该特性,而非滥用或因恐惧弃而不用。 Kotlin下单例模式 饿汉式实现 //Java实现 懒汉式 //Java实现 上述代码中,我们可以发现在Kotlin实现中,我们让其主构造函数私有化并自定义了其属性访问器,其余内容大同小异。 如果有小伙伴不清楚Kotlin构造函数的使用方式。请点击 - - - 构造函数 不清楚Kotlin的属性与访问器,请点击 - - -属性和字段 线程安全的懒汉式 //Java实现 大家都知道在使用懒汉式会出现线程安全的问题,需要使用使用同步锁,在Kotlin中,如果你需要将方法声明为同步,需要添加@Synchronized注解。 双重校验锁式 //Java实现 哇!小伙伴们惊喜不,感不感动啊。我们居然几行代码就实现了多行的Java代码。其中我们运用到了Kotlin的延迟属性 Lazy。 Lazy内部实现 public 观察上述代码,因为我们传入的mode = LazyThreadSafetyMode.SYNCHRONIZED, 那么会直接走 SynchronizedLazyImpl,我们继续观察SynchronizedLazyImpl。 Lazy接口 SynchronizedLazyImpl实现了Lazy接口,Lazy具体接口如下: public 继续查看SynchronizedLazyImpl,具体实现如下: SynchronizedLazyImpl内部实现 private 通过上述代码,我们发现 SynchronizedLazyImpl 覆盖了Lazy接口的value属性,并且重新了其属性访问器。其具体逻辑与Java的双重检验是类似的。 到里这里其实大家还是肯定有疑问,我这里只是实例化了SynchronizedLazyImpl对象,并没有进行值的获取,它是怎么拿到高阶函数的返回值呢?。这里又涉及到了委托属性。 委托属性语法是:val/var : by 。在 by 后面的表达式是该 委托, 因为属性对应的 get()(和 set())会被委托给它的 getValue() 和 setValue() 方法。属性的委托不必实现任何的接口,但是需要提供一个 getValue() 函数(和 setValue()——对于 var 属性)。 而Lazy.kt文件中,声明了Lazy接口的getValue扩展函数。故在最终赋值的时候会调用该方法。 internal.InlineOnly 静态内部类式 //Java实现 静态内部类的实现方式,也没有什么好说的。Kotlin与Java实现基本雷同。 补充 在该篇文章结束后,有很多小伙伴咨询,如何在Kotlin版的Double Check,给单例添加一个属性,这里我给大家提供了一个实现的方式。(不好意思,最近才抽出时间来解决这个问题) class SingletonDemo private constructor( 其中关于?:操作符,如果 ?: 左侧表达式非空,就返回其左侧表达式,否则返回右侧表达式。请注意,当且仅当左侧为空时,才会对右侧表达式求值。 Kotlin 智能类型转换 对于子父类之间的类型转换 先看这样一段 Java 代码 public 尽管在 main 函数中,对 person 这个对象进行了类型判断,但是在使用的时候还是需要强制转换成 Student 类型,这样是不是很不智能? 同样的情况在 Kotlin 中就变得简单多了 fun main(args: Array<String>) { 在 Kotlin 中,只要对类型进行了判断,就可以直接通过父类的对象去调用子类的函数了 安全的类型转换 还是上面的那个例子,如果我们没有进行类型判断,并且直接进行强转,会怎么样呢? public static void main(String[] args) { 结果就只能是 Exception in thread "main" java.lang.ClassCastException 那么在 Kotlin 中是不是会有更好的解决方法呢? val person: Person = Person() 在转换操作符后面添加一个 ?,就不会把程序 crash 掉了,当转化失败的时候,就会返回一个 null 在空类型中的智能转换 需要提前了解 Kotlin 类型安全的相关知识(Kotlin 中的类型安全(对空指针的优化处理)) String? = aString 在定义的时候定义成了有可能为 null,按照之前的写法,我们需要这样写 String? = 但是已经进行了是否为 String 类型的判断,所以就一定 不是 空类型了,也就可以直接输出它的长度了 T.()->Unit 、 ()->Unit 在做kotlin开发中,经常看到一些系统函数里,用函数作为参数 public .()-Unit与()->Unit的区别是我们调用时,在代码块里面写this,的时候,两个this代表的含义不一样,T.()->Unit里的this代表的是自身实例,而()->Unit里,this代表的是外部类的实例。 推荐阅读 对 Kotlin 与 Java 编程语言的思考 使用 Kotlin 做开发一个月后的感想 扫一扫 关注我的公众号如果你想要跟大家分享你的文章,欢迎投稿~ 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_39611037/article/details/109984124。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-23 23:56:14
470
转载
转载文章
...转载内容。原文链接:https://blog.csdn.net/wh8_2011/article/details/52373213。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 一 mmap系统调用 1.内存映射 所谓的内存映射就是把物理内存映射到进程的地址空间之内,这些应用程序就可以直接使用输入输出的地址空间,从而提高读写的效率。Linux提供了mmap()函数,用来映射物理内存。在驱动程序中,应用程序以设备文件为对象,调用mmap()函数,内核进行内存映射的准备工作,生成vm_area_struct结构体,然后调用设备驱动程序中定义的mmap函数。 2.mmap系统调用 mmap将一个文件或者其它对象映射进内存。文件被映射到多个页上,如果文件的大小不是所有页的大小之和,最后一个页不被使用的空间将会清零。munmap执行相反的操作,删除特定地址区域的对象映射。 当使用mmap映射文件到进程后,就可以直接操作这段虚拟地址进行文件的读写等操作,不必再调用read,write等系统调用.但需注意,直接对该段内存写时不会写入超过当前文件大小的内容. 采用共享内存通信的一个显而易见的好处是效率高,因为进程可以直接读写内存,而不需要任何数据的拷贝。对于像管道和消息队列等通信方式,则需要在内核和用户空间进行四次的数据拷贝,而共享内存则只拷贝两次数据:一次从输入文件到共享内存区,另一次从共享内存区到输出文件。实际上,进程之间在共享内存时,并不总是读写少量数据后就解除映射,有新的通信时,再重新建立共享内存区域。而是保持共享区域,直到通信完毕为止,这样,数据内容一直保存在共享内存中,并没有写回文件。共享内存中的内容往往是在解除映射时才写回文件的。因此,采用共享内存的通信方式效率是非常高的。 基于文件的映射,在mmap和munmap执行过程的任何时刻,被映射文件的st_atime可能被更新。如果st_atime字段在前述的情况下没有得到更新,首次对映射区的第一个页索引时会更新该字段的值。用PROT_WRITE 和 MAP_SHARED标志建立起来的文件映射,其st_ctime 和 st_mtime在对映射区写入之后,但在msync()通过MS_SYNC 和 MS_ASYNC两个标志调用之前会被更新。 用法: include <sys/mman.h> void mmap(void start, size_t length, int prot, int flags, int fd, off_t offset); int munmap(void start, size_t length); 返回说明: 成功执行时,mmap()返回被映射区的指针,munmap()返回0。失败时,mmap()返回MAP_FAILED[其值为(void )-1],munmap返回-1。errno被设为以下的某个值 EACCES:访问出错 EAGAIN:文件已被锁定,或者太多的内存已被锁定 EBADF:fd不是有效的文件描述词 EINVAL:一个或者多个参数无效 ENFILE:已达到系统对打开文件的限制 ENODEV:指定文件所在的文件系统不支持内存映射 ENOMEM:内存不足,或者进程已超出最大内存映射数量 EPERM:权能不足,操作不允许 ETXTBSY:已写的方式打开文件,同时指定MAP_DENYWRITE标志 SIGSEGV:试着向只读区写入 SIGBUS:试着访问不属于进程的内存区 参数: start:映射区的开始地址。 length:映射区的长度。 prot:期望的内存保护标志,不能与文件的打开模式冲突。是以下的某个值,可以通过or运算合理地组合在一起 PROT_EXEC //页内容可以被执行 PROT_READ //页内容可以被读取 PROT_WRITE //页可以被写入 PROT_NONE //页不可访问 flags:指定映射对象的类型,映射选项和映射页是否可以共享。它的值可以是一个或者多个以下位的组合体 MAP_FIXED //使用指定的映射起始地址,如果由start和len参数指定的内存区重叠于现存的映射空间,重叠部分将会被丢弃。如果指定的起始地址不可用,操作将会失败。并且起始地址必须落在页的边界上。 MAP_SHARED //与其它所有映射这个对象的进程共享映射空间。对共享区的写入,相当于输出到文件。直到msync()或者munmap()被调用,文件实际上不会被更新。 MAP_PRIVATE //建立一个写入时拷贝的私有映射。内存区域的写入不会影响到原文件。这个标志和以上标志是互斥的,只能使用其中一个。 MAP_DENYWRITE //这个标志被忽略。 MAP_EXECUTABLE //同上 MAP_NORESERVE //不要为这个映射保留交换空间。当交换空间被保留,对映射区修改的可能会得到保证。当交换空间不被保留,同时内存不足,对映射区的修改会引起段违例信号。 MAP_LOCKED //锁定映射区的页面,从而防止页面被交换出内存。 MAP_GROWSDOWN //用于堆栈,告诉内核VM系统,映射区可以向下扩展。 MAP_ANONYMOUS //匿名映射,映射区不与任何文件关联。 MAP_ANON //MAP_ANONYMOUS的别称,不再被使用。 MAP_FILE //兼容标志,被忽略。 MAP_32BIT //将映射区放在进程地址空间的低2GB,MAP_FIXED指定时会被忽略。当前这个标志只在x86-64平台上得到支持。 MAP_POPULATE //为文件映射通过预读的方式准备好页表。随后对映射区的访问不会被页违例阻塞。 MAP_NONBLOCK //仅和MAP_POPULATE一起使用时才有意义。不执行预读,只为已存在于内存中的页面建立页表入口。 fd:有效的文件描述词。如果MAP_ANONYMOUS被设定,为了兼容问题,其值应为-1。 offset:被映射对象内容的起点。 3.munmap系统调用 include <sys/mman.h> int munmap( void addr, size_t len ) 该调用在进程地址空间中解除一个映射关系,addr是调用mmap()时返回的地址,len是映射区的大小。当映射关系解除后,对原来映射地址的访问将导致段错误发生。 4.msync系统调用 include <sys/mman.h> int msync ( void addr , size_t len, int flags) 一般说来,进程在映射空间的对共享内容的改变并不直接写回到磁盘文件中,往往在调用munmap()后才执行该操作。可以通过调用msync()实现磁盘上文件内容与共享内存区的内容一致。 二 系统调用mmap()用于共享内存的两种方式 (1)使用普通文件提供的内存映射:适用于任何进程之间;此时,需要打开或创建一个文件,然后再调用mmap();典型调用代码如下: [cpp] view plaincopy fd=open(name, flag, mode); if(fd<0) ... ptr=mmap(NULL, len , PROT_READ|PROT_WRITE, MAP_SHARED , fd , 0); 通过mmap()实现共享内存的通信方式有许多特点和要注意的地方 (2)使用特殊文件提供匿名内存映射:适用于具有亲缘关系的进程之间;由于父子进程特殊的亲缘关系,在父进程中先调用mmap(),然后调用fork()。那么在调用fork()之后,子进程继承父进程匿名映射后的地址空间,同样也继承mmap()返回的地址,这样,父子进程就可以通过映射区域进行通信了。注意,这里不是一般的继承关系。一般来说,子进程单独维护从父进程继承下来的一些变量。而mmap()返回的地址,却由父子进程共同维护。 对于具有亲缘关系的进程实现共享内存最好的方式应该是采用匿名内存映射的方式。此时,不必指定具体的文件,只要设置相应的标志即可. 三 mmap进行内存映射的原理 mmap系统调用的最终目的是将,设备或文件映射到用户进程的虚拟地址空间,实现用户进程对文件的直接读写,这个任务可以分为以下三步: 1.在用户虚拟地址空间中寻找空闲的满足要求的一段连续的虚拟地址空间,为映射做准备(由内核mmap系统调用完成) 每个进程拥有3G字节的用户虚存空间。但是,这并不意味着用户进程在这3G的范围内可以任意使用,因为虚存空间最终得映射到某个物理存储空间(内存或磁盘空间),才真正可以使用。 那么,内核怎样管理每个进程3G的虚存空间呢?概括地说,用户进程经过编译、链接后形成的映象文件有一个代码段和数据段(包括data段和bss段),其中代码段在下,数据段在上。数据段中包括了所有静态分配的数据空间,即全局变量和所有申明为static的局部变量,这些空间是进程所必需的基本要求,这些空间是在建立一个进程的运行映像时就分配好的。除此之外,堆栈使用的空间也属于基本要求,所以也是在建立进程时就分配好的,如图3.1所示: 图3.1 进程虚拟空间的划分 在内核中,这样每个区域用一个结构struct vm_area_struct 来表示.它描述的是一段连续的、具有相同访问属性的虚存空间,该虚存空间的大小为物理内存页面的整数倍。可以使用 cat /proc/<pid>/maps来查看一个进程的内存使用情况,pid是进程号.其中显示的每一行对应进程的一个vm_area_struct结构. 下面是struct vm_area_struct结构体的定义: [cpp] view plaincopy struct vm_area_struct { struct mm_struct vm_mm; / The address space we belong to. / unsigned long vm_start; / Our start address within vm_mm. / unsigned long vm_end; / The first byte after our end address within vm_mm. / / linked list of VM areas per task, sorted by address / struct vm_area_struct vm_next, vm_prev; pgprot_t vm_page_prot; / Access permissions of this VMA. / unsigned long vm_flags; / Flags, see mm.h. / struct rb_node vm_rb; / For areas with an address space and backing store, linkage into the address_space->i_mmap prio tree, or linkage to the list of like vmas hanging off its node, or linkage of vma in the address_space->i_mmap_nonlinear list. / union { struct { struct list_head list; void parent; / aligns with prio_tree_node parent / struct vm_area_struct head; } vm_set; struct raw_prio_tree_node prio_tree_node; } shared; / A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma list, after a COW of one of the file pages. A MAP_SHARED vma can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack or brk vma (with NULL file) can only be in an anon_vma list. / struct list_head anon_vma_chain; / Serialized by mmap_sem & page_table_lock / struct anon_vma anon_vma; / Serialized by page_table_lock / / Function pointers to deal with this struct. / const struct vm_operations_struct vm_ops; / Information about our backing store: / unsigned long vm_pgoff; / Offset (within vm_file) in PAGE_SIZE units, not PAGE_CACHE_SIZE / struct file vm_file; / File we map to (can be NULL). / void vm_private_data; / was vm_pte (shared mem) / unsigned long vm_truncate_count;/ truncate_count or restart_addr / ifndef CONFIG_MMU struct vm_region vm_region; / NOMMU mapping region / endif ifdef CONFIG_NUMA struct mempolicy vm_policy; / NUMA policy for the VMA / endif }; 通常,进程所使用到的虚存空间不连续,且各部分虚存空间的访问属性也可能不同。所以一个进程的虚存空间需要多个vm_area_struct结构来描述。在vm_area_struct结构的数目较少的时候,各个vm_area_struct按照升序排序,以单链表的形式组织数据(通过vm_next指针指向下一个vm_area_struct结构)。但是当vm_area_struct结构的数据较多的时候,仍然采用链表组织的化,势必会影响到它的搜索速度。针对这个问题,vm_area_struct还添加了vm_avl_hight(树高)、vm_avl_left(左子节点)、vm_avl_right(右子节点)三个成员来实现AVL树,以提高vm_area_struct的搜索速度。 假如该vm_area_struct描述的是一个文件映射的虚存空间,成员vm_file便指向被映射的文件的file结构,vm_pgoff是该虚存空间起始地址在vm_file文件里面的文件偏移,单位为物理页面。 图3.2 进程虚拟地址示意图 因此,mmap系统调用所完成的工作就是准备这样一段虚存空间,并建立vm_area_struct结构体,将其传给具体的设备驱动程序 2 建立虚拟地址空间和文件或设备的物理地址之间的映射(设备驱动完成) 建立文件映射的第二步就是建立虚拟地址和具体的物理地址之间的映射,这是通过修改进程页表来实现的.mmap方法是file_opeartions结构的成员: int (mmap)(struct file ,struct vm_area_struct ); linux有2个方法建立页表: (1) 使用remap_pfn_range一次建立所有页表. int remap_pfn_range(struct vm_area_struct vma, unsigned long virt_addr, unsigned long pfn, unsigned long size, pgprot_t prot); 返回值: 成功返回 0, 失败返回一个负的错误值 参数说明: vma 用户进程创建一个vma区域 virt_addr 重新映射应当开始的用户虚拟地址. 这个函数建立页表为这个虚拟地址范围从 virt_addr 到 virt_addr_size. pfn 页帧号, 对应虚拟地址应当被映射的物理地址. 这个页帧号简单地是物理地址右移 PAGE_SHIFT 位. 对大部分使用, VMA 结构的 vm_paoff 成员正好包含你需要的值. 这个函数影响物理地址从 (pfn<<PAGE_SHIFT) 到 (pfn<<PAGE_SHIFT)+size. size 正在被重新映射的区的大小, 以字节. prot 给新 VMA 要求的"protection". 驱动可(并且应当)使用在vma->vm_page_prot 中找到的值. (2) 使用nopage VMA方法每次建立一个页表项. struct page (nopage)(struct vm_area_struct vma, unsigned long address, int type); 返回值: 成功则返回一个有效映射页,失败返回NULL. 参数说明: address 代表从用户空间传过来的用户空间虚拟地址. 返回一个有效映射页. (3) 使用方面的限制: remap_pfn_range不能映射常规内存,只存取保留页和在物理内存顶之上的物理地址。因为保留页和在物理内存顶之上的物理地址内存管理系统的各个子模块管理不到。640 KB 和 1MB 是保留页可能映射,设备I/O内存也可以映射。如果想把kmalloc()申请的内存映射到用户空间,则可以通过mem_map_reserve()把相应的内存设置为保留后就可以。 (4) remap_pfn_range与nopage的区别 remap_pfn_range一次性建立页表,而nopage通过缺页中断找到内核虚拟地址,然后通过内核虚拟地址找到对应的物理页 remap_pfn_range函数只对保留页和物理内存之外的物理地址映射,而对常规RAM,remap_pfn_range函数不能映射,而nopage函数可以映射常规的RAM。 3 当实际访问新映射的页面时的操作(由缺页中断完成) (1) page cache及swap cache中页面的区分:一个被访问文件的物理页面都驻留在page cache或swap cache中,一个页面的所有信息由struct page来描述。struct page中有一个域为指针mapping ,它指向一个struct address_space类型结构。page cache或swap cache中的所有页面就是根据address_space结构以及一个偏移量来区分的。 (2) 文件与 address_space结构的对应:一个具体的文件在打开后,内核会在内存中为之建立一个struct inode结构,其中的i_mapping域指向一个address_space结构。这样,一个文件就对应一个address_space结构,一个 address_space与一个偏移量能够确定一个page cache 或swap cache中的一个页面。因此,当要寻址某个数据时,很容易根据给定的文件及数据在文件内的偏移量而找到相应的页面。 (3) 进程调用mmap()时,只是在进程空间内新增了一块相应大小的缓冲区,并设置了相应的访问标识,但并没有建立进程空间到物理页面的映射。因此,第一次访问该空间时,会引发一个缺页异常。 (4) 对于共享内存映射情况,缺页异常处理程序首先在swap cache中寻找目标页(符合address_space以及偏移量的物理页),如果找到,则直接返回地址;如果没有找到,则判断该页是否在交换区 (swap area),如果在,则执行一个换入操作;如果上述两种情况都不满足,处理程序将分配新的物理页面,并把它插入到page cache中。进程最终将更新进程页表。 注:对于映射普通文件情况(非共享映射),缺页异常处理程序首先会在page cache中根据address_space以及数据偏移量寻找相应的页面。如果没有找到,则说明文件数据还没有读入内存,处理程序会从磁盘读入相应的页面,并返回相应地址,同时,进程页表也会更新. (5) 所有进程在映射同一个共享内存区域时,情况都一样,在建立线性地址与物理地址之间的映射之后,不论进程各自的返回地址如何,实际访问的必然是同一个共享内存区域对应的物理页面。 四 总结 1.对于mmap的内存映射,是将物理内存映射到进程的虚拟地址空间中去,那么进程对文件的访问就相当于直接对内存的访问,从而加快了读写操作的效率。在这里,remap_pfn_range函数是一次性的建立页表,而nopage函数是根据page fault产生的进程虚拟地址去找到内核相对应的逻辑地址,再通过这个逻辑地址去找到page。完成映射过程。remap_pfn_range不能对常规内存映射,只能对保留的内存与物理内存之外的进行映射。 2.在这里,要分清几个地址,一个是物理地址,这个很简单,就是物理内存的实际地址。第二个是内核虚拟地址,即内核可以直接访问的地址,如kmalloc,vmalloc等内核函数返回的地址,kmalloc返回的地址也称为内核逻辑地址。内核虚拟地址与实际的物理地址只有一个偏移量。第三个是进程虚拟地址,这个地址处于用户空间。而对于mmap函数映射的是物理地址到进程虚拟地址,而不是把物理地址映射到内核虚拟地址。而ioremap函数是将物理地址映射为内核虚拟地址。 3.用户空间的进程调用mmap函数,首先进行必要的处理,生成vma结构体,然后调用remap_pfn_range函数建立页表。而用户空间的mmap函数返回的是映射到进程地址空间的首地址。所以mmap函数与remap_pfn_range函数是不同的,前者只是生成mmap,而建立页表通过remap_pfn_range函数来完成。 本篇文章为转载内容。原文链接:https://blog.csdn.net/wh8_2011/article/details/52373213。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-20 22:49:12
464
转载
转载文章
...转载内容。原文链接:https://blog.csdn.net/weixin_34258782/article/details/87952581。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 I/O 大会的第一天,我们公布了下一个版本的 Android,也就是 Android P 的 beta 版本。Android P 将 AI 定位为操作系统的核心,并侧重于提供智能且简洁的体验。让我们一起来了解下这个版本带来了哪些全新功能。 Android P Beta 为开发者提供了丰富的方法来使用这些全新的、智能化的功能,并且更好地提升用户参与度。 您可在 Pixel 设备上立刻参与 Android P Beta的体验。另外,得益于 Project Treble,您也可在我们合作伙伴推出的高端机型 (请查看今天推送的文章) 上体验到这个全新版本,如 Essential、诺基亚、Oppo、索尼、Vivo 和小米,更多机型也即将加入体验阵营。 请 点击访问此网站 了解支持本次体验的全部设备,以及如何在这些设备上安装 Android P Beta。想要为 Android P Beta 开发应用,请 点击访问此网站。 请点击蓝色字体前往 “Android Developers 官方文档”查看详细说明 以机器学习为核心,打造 “更加智能的” 智能手机 Android P 让智能手机可以学习用户、适应用户,从而使 “智能” 更为智能。现在您的应用可以借助本地硬件中的机器学习成果,来触达更多受众,并为他们提供前所未有的体验。 · 动态电量管理 (Adaptive Battery) 无论用户们使用的是何种手机,电量一直都是他们最为关心问题。在 Android P 中,我们和 DeepMind 合作推出了一个全新功能,即动态电量管理 (Adaptive Battery),来优化各个应用的电量使用。 动态电量管理通过机器学习来管理用户们最关心的那些应用所能占用的系统资源。各个应用会被划分到四个不同的群组里,这些群组对系统资源调用有不同的限制,我们称之为 “应用待机群组 (App Standby buckets)”。随着用户的使用,应用会在这四个群组里切换,那些不在 “活跃 (active)” 组里的应用在包括任务 (jobs)、警报、网络以及高优先级的 Firebase Cloud Messages 等资源调用上会受到相应的限制。 如果您的应用已经针对 Doze, App Standby 和后台运行限制做过优化,那么它就应该已经能和动态电量管理完美配合。我们建议您在四个应用待机群组中都对自己的 app 进行测试,请阅读相关文档了解详情。 · App Actions 当用户想要做一个操作的时候,App Actions 会推荐能帮助他们完成这个操作的 app,而且这个推荐的功能会覆盖整个操作系统中的重要交互环节,比如启动器 (Launcher)、智能文本选择、Google Play、Google Search 应用,以及 Assistant。 App Actions 通过机器学习来分析用户最近的行为或使用场景,从而筛选出需要推荐的应用。由于这些推荐与用户当前想要做的事情高度关联,所以这套机制非常利于拓展新用户以及促活现有用户。 只需将您应用中的各个功能定义为语义意图 (semantic intent),便可以充分享受 App Actions 带来的好处。App Actions 中的意图和我们早些时候在 Google Assistant 上推出的语音对谈式动作 (Conversational Action) 是使用同一套通用意图分类,这个分类支持语音控制的音箱、智能屏幕、车载系统、电视、耳机等设备。由于不需要额外的 API 接口,所以只要用户的 Android 平台版本支持,App Actions 就可以正常使用了。 App Actions 很快就会面向开发者发布,如果您希望收到这方面的通知,请点击这里找到相关链接参与订阅。 · Slices 和 App Actions 一同到来的新功能还有 Slices,这个功能可以让您的应用以模块化、富交互的形式插入到多个使用场景中,比如 Google Search 和 Assistant。Slices 支持的交互包括 actions、开关、滑动条、滑动内容等等。 Slices 是让内容与用户联系的极佳方式,所以我们希望它可以在更多的场景中出现。除了在 Android P 上对这个功能进行了平台级别的整合外, Slices 的 API 和模板也加入到了 Android Jetpack 里。Android Jetpack 是我们全新打造的一套创建优秀应用的工具和库,通过 Android Jetpack,您制作的 Slices 能在 Kitkat (API 等级 19) 及更高版本上使用 —— 这覆盖了 95% 的已激活 Android 设备。我们也会定期更新 Slices 的模板来支持更多类型的场景和交互 (比如文本输入)。 请查阅上手指南以了解如何制作 Slices,使用 SliceViewer 工具查看您做好的 Slices。接下来,我们计划进一步拓展其使用场景,包括在其他 app 中展现您的 Slices。 · 通知智能回复 (Smart reply in notifications) 机器智能可以为用户体验带来非常积极的进化,Gmail 和 Inbox 里的智能回复功能已经成功地证明了这一点。在 Android P 中,通知消息也加入了智能回复功能,而且我们准备了 API 让您可以为用户带来更度身的使用感受。用来帮助您更轻松地在通知中生成回复的 ML Kit 很快就会到来,请 点击访问此网站 了解详情。 · 文本识别 (Text Classifier) 在 Android P 中,我们将识别文本的机器学习模型进行了扩展,使得它可以识别出诸如日期或航班号这样的信息,并通过 TextClassifier API 来让开发者使用到这些改进。我们还更新了 Linkify API 来利用文本识别的结果生成链接,并为用户提供了更多点击后的选项,从而让他们得以更快地进行下一步操作。当然,开发者也可以在给文本识别出来的信息添加链接时拥有更多的选项。智能 Linkify 在识别精准度以及速度上都有明显的提升。 这个模型现在正在通过 Google Play 进行更新,所以您的应用使用现有的 API 就可以享受到本次更新所带来的变化。在安装更新完的模型后,设备即可直接在本地识别文本里的各种信息,而且这些识别出来的信息只保存在您的手机上而不会通过网络流传出去。 请点击蓝色字体前往 “Android Developers 官方文档”查看详细说明 简洁 (Simplicity) 在 Android P,我们格外强调简洁,并据此改进 Android 的 UI 从而帮助用户们更流畅、更高效地完成操作。对开发者来说,简洁的系统则会帮助用户更容易查找、使用和管理您的应用。 · 全新系统导航 (New system navigation) 我们为 Android P 设计了全新的系统导航,只需使用下图中这个在所有界面中都能看到的小按钮,即可更轻松地访问手机主屏、概览页以及 Assistant。新导航系统也使多任务切换及发现关联应用变得更加简单。在概览页,用户可以拥有更大的视野来查看他们之前中断的操作,这自然也会让他们更容易找到并回到之前的应用中。概览页也提供了搜索、预测推荐应用以及上文提到的 App Actions,而且只需再多划一次即可进入所有应用的列表。 · 文字放大镜 (Text Magnifier) 在 Android P 中,我们加入了新的放大镜工具 (Magnifier widget),使选择文本和调整光标位置变得更加轻松。默认情况下,所有继承自 TextView 的类都会自动支持放大镜,但您也可以使用放大镜 API 将它添加到任何自定义的视图上,从而打造更多样化的体验。 · 后台限制 (Background restrictions) 用户可以更加简单地找到并管理那些在后台消耗电量的应用。通过 Android Vitals 积累下来的成果,Android 可以识别那些过度消耗电量的行为,如滥用唤醒锁定等。在 Android P 中,电池设置页面直接列出了这些过度消耗电量的应用,用户只需一次点击就可以限制它们在后台的活动。 一旦应用被限制,那么它的后台任务、警报、服务以及网络访问都会受限。想要避免被限制的话,请留意 Play Console 中的Android Vitals 控制面板,帮助您了解如何提高性能表现以及优化电量消耗。 后台限制能有效保护系统资源不被恶意消耗,从而确保开发者的应用在不同制造商的不同设备上也能拥有一个基础的合理的运行环境。虽然制造商可以在限制列表上额外添加限制的应用,但它们也必须在电池设置页面为用户开放这些限制的控制权。 我们添加了一个标准 API 来帮助应用知晓自己是否被限制,以及一个 ADB 命令来帮助开发者手动限制应用,从而进行测试。具体请参阅相关文档。接下来我们计划在 Play Console 的 Android Vitals 控制面板里添加一个统计数据,以展示应用受到限制的情况。 · 使用动态处理增强音频 (Enhanced audio with Dynamics Processing) Android P 在音频框架里加入了动态处理效果 (Dynamic Processing Effect) 来帮助开发者改善声音品质。通过动态处理,您可以分离出特定频率的声音,降低过大的音量,或者增强那些过小的音量。举例来说,即便说话者离麦克风较远,而且身处嘈杂或者被刺耳的各种环境音包围的地方,您的应用依然可以有效分离并增强他/她的细语。 动态处理 API 提供了多声场、多频段的动态处理效果,包括一个预均衡器、一个多频段压缩器,一个后均衡器以及一个串联的音量限制器。这样您就可以根据用户的喜好或者环境的变化来控制 Android 设备输出的声音。频段数量以及各个声场的开关都完全可控,大多数参数都支持实时控制,如增益、信号的压缩/释放 (attack/release) 时长,阈值等等。 请点击蓝色字体前往 “Android Developers 官方文档”查看详细说明 安全 (Security) · 用户识别提示 (Biometric prompt) Android P 为市面上涌现出来的各种用户识别机制在系统层面提供了统一的使用体验,应用们不再需要自行提供用户识别操作界面,而只需要使用统一的 BiometricPrompt API 即可。这套全新的 API 替代了 DP1 版本中的 FingerprintDialog API,且支持包括指纹识别 (包括屏幕下指纹识别)、面部识别以及虹膜识别,而且所有系统支持的用户识别需求都包含在一个 USE_BIOMETRIC 权限里。FingerprintManager 以及对应的 USE_FINGERPRINT 权限已经被废弃,请开发者尽快转用 BiometricPrompt。 · 受保护的确认操作 (Protected Confirmation) Android P 新增了受保护的确认操作 (Android Protected Confirmation),这个功能使用可信执行环境 (Trusted Execution Environment, TEE) 来确保一个显示出来的提示文本被真实用户确认。只有在用户确认之后,TEE 才会放行这个文本并可由应用去验证。 · 对私有密钥的增强保护 (Stronger protection for private keys) 我们添加了一个新的 KeyStore 类型,StrongBox。并提供对应的 API 来支持那些提供了防入侵硬件措施的设备,比如独立的 CPU,内存以及安全存储。您可以在 KeyGenParameterSpec 里决定您的密钥是否该交给 StrongBox 安全芯片来保存。 Android P Beta 为用户带来新版本的 Android 需要 Google、芯片供应商以及设备制造商和运营商的共同努力。这个过程中充满了技术挑战,并非一日之功 —— 为了让这个过程更加顺畅,去年我们启动了 Project Treble,并将其包含在 Android Oreo 中。我们与合作伙伴们一直在努力开发这个项目,也已经看到 Treble 所能带来的机遇。 我们宣布,以下 6 家顶级合作伙伴将和我们一起把 Android P Beta 带给全世界的用户,这些设备包括:索尼 Xperia XZ2, 小米 Mi Mix 2S, 诺基亚 7 Plus, Oppo R15 Pro, Vivo X21UD 和 X21, 以及 Essential PH‑1。此外,再加上 Pixel 2, Pixel 2 XL, Pixel 和 Pixel XL,我们希望来自世界各地的早期体验者以及开发者们都能通过这些设备体验到 Android P Beta。 您可查看今天推送的文章查阅支持 beta 体验的合作伙伴和 Pixel 设备清单,并能看到每款设备的详细配置说明。如果您使用 Pixel 设备,现在就可以加入 Android Beta program,然后自动获得最新的 Android P Beta。 马上开始在您喜欢的设备上体验 Android P Beta 吧,欢迎您向我们反馈意见和建议!并请继续关注 Project Treble 的最新动态。 确保 app 兼容 随着越来越多的用户开始体验 Android P Beta,是时候开始测试您 app 的兼容性,以尽早解决在测试中发现的问题并尽快发布更新。请查看迁移手册了解操作步骤以及 Android P 的时间推进表。 请从 Google Play 下载您的应用,并在运行 Android P Beta 的设备或模拟器上测试用户流程。确保您的应用体验良好,并正确处理 Android P 的行为变更。尤其注意动态电量管理、Wi-Fi 权限变化、后台调用摄像头以及传感器的限制、针对应用数据的 SELinux 政策、默认启用 TLS 的变化,以及 Build.SERIAL 限制。 · 公开 API 的兼容性 (Compatibility through public APIs) 针对非 SDK 接口的测试十分重要。正如我们之前所强调的,在 Android P 中,我们将逐渐收紧一些非 SDK 接口的使用,这也要求广大的开发者们,包括 Google 内部的应用团队,使用公开 API。 如果您的应用正在使用私有 Android API 或者库,您需要改为使用 Android SDK 或 NDK 公开的 API。我们在 DP1 里已经对使用私有接口的开发者发出了警告信息,从 Android P Beta 开始,调用非 SDK 接口将会报错 (部分被豁免的私有 API 除外) —— 也就是说您的应用将会遭遇异常,而不再只是警告了。 为了帮助您定位非 SDK API 的使用情况,我们在 StrictMode 里加入了两个新的方法。您可以使用 detectNonSdkApiUsage() 在应用通过反射或 JNI 调用非 SDK API 的时候收到警报,您还可以使用 permitNonSdkApiUsage() 来阻止 StrictMode 针对这些调用报错。这些方法都可助您了解应用调用非 SDK API 的情况,但请注意,即便调用的 API 暂时得到了豁免,最保险的做法依然是尽快放弃对它们的使用。 如果您确实遇到了公开 API 无法满足需求的情况,请立刻告知我们。更多详细内容请查看相关文档。 · 凹口屏测试 (Test with display cutout) 针对凹口屏测试您的应用也十分重要。现在您可以在运行 Android P Beta 的合作伙伴机型上测试,确保您的应用在凹口屏上表现良好。同时,您也可以在 Android P 设备的开发者选项里打开对凹口屏的模拟,对您的应用做相应测试。 体验 Android P 在准备好开发条件后,请深入了解 Android P 并学习可以在您的应用中使用到的全新功能和 API。为了帮助您更轻松地探索和使用新 API,请查阅 API 变化报告 (API 27->DP2, DP1->DP2) 以及 Android P API 文档。访问开发者预览版网站了解详情。 下载/更新 Android P 开发者预览版 SDK 和工具包至 Android Studio 3.1,或使用最新版本的 Android Studio 3.2。如果您手边没有 Android P Beta 设备 (或查看今天推送的次条文章),请使用 Android P 模拟器来运行和测试您的应用。 您的反馈一直都至关重要,我们欢迎您畅所欲言。如果您在开发或测试过程中遇到了问题,请在文章下方留言给我们。再次感谢大家一路以来的支持。 请点击蓝色字体前往 “Android Developers 官方文档”查看详细说明 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_34258782/article/details/87952581。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-10 18:19:36
338
转载
转载文章
...转载内容。原文链接:https://blog.csdn.net/m0_37758063/article/details/131128967。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 目录 1. 作者介绍 2. 算法介绍 2.1 阿里云介绍 2.2 证件照生成背景 2.3 图像分割算法 3.调用阿里云API进行证件照生成实例 3.1 准备工作 3.2 实验代码 3.3 实验结果与分析 参考(可供参考的链接和引用文献) 1. 作者介绍 王逸腾,男,西安工程大学电子信息学院,2022级硕士研究生 研究方向:三维手部姿态和网格估计 电子邮件:2978558373@qq.com 路治东,男,西安工程大学电子信息学院,2022级研究生,张宏伟人工智能课题组 研究方向:机器视觉与人工智能 电子邮件:2063079527@qq.com 2. 算法介绍 2.1 阿里云介绍 阿里云创立于2009年,是全球领先的云计算及人工智能科技公司,致力于以在线公共服务的方式,提供安全、可靠的计算和数据处理能力,让计算和人工智能成为普惠科技。阿里云服务着制造、金融、政务、交通、医疗、电信、能源等众多领域的领军企业,包括中国联通、12306、中石化、中石油、飞利浦、华大基因等大型企业客户,以及微博、知乎、锤子科技等明星互联网公司。在天猫双11全球狂欢节、12306春运购票等极富挑战的应用场景中,阿里云保持着良好的运行纪录 阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本 猿辅导、中泰证券、小米、媛福达、Soul和当贝,这些我们耳熟能详的APP或企业中,阿里云给他们提供了性能强大、安全、稳定的云产品与服务。 计算,容器,存储,网络与CDN,安全、中间件、数据库、大数据计算、人工智能与机器学习、媒体服务、企业服务与云通信、物联网、开发工具、迁移与运维管理和专有云等方面,阿里云都做的很不错。 2.2 证件照生成背景 传统做法:通常是人工进行P图,不仅费时费力,而且效果也很难保障,容易有瑕疵。 机器学习做法:通常利用边缘检测算法进行人物轮廓提取。 深度学习做法:通常使用分割算法进行人物分割。例如U-Net网络。 2.3 图像分割算法 《BiHand: Recovering Hand Mesh with Multi-stage Bisected Hourglass Networks》里的SeedNet网络是很经典的网络,它把分割任务转变成多个任务。作者的思想是:尽可能的通过多任务学习收拢语义,这样或许会分割的更好或姿态估计的更好。其实这个模型就是多阶段学习网络的一部分,作者想通过中间监督来提高网络的性能。 我提取bihand网络中的SeedNet与训练权重,进行分割结果展示如下 我是用的模型不是全程的,是第一阶段的。为了可视化出最好的效果,我把第一阶段也就是SeedNet网络的输出分别采用不同的方式可视化。 从左边数第一张图为原图,第二张图为sigmoid后利用plt.imshow(colored_mask, cmap=‘jet’)进行彩色映射。第三张图为网络输出的张量经过sigmoid后,二色分割图,阀闸值0.5。第四张为网络的直接输出,利用直接产生的张量图进行颜色映射。第五张为使用sigmoid处理张量后进行的颜色映射。第六张为使用sigmoid处理张量后进行0,1分割掩码映射。使用原模型和网络需要添加很多代码。下面为修改后的的代码: 下面为修改后的net_seedd代码: Copyright (c) Lixin YANG. All Rights Reserved.r"""Networks for heatmap estimation from RGB images using Hourglass Network"Stacked Hourglass Networks for Human Pose Estimation", Alejandro Newell, Kaiyu Yang, Jia Deng, ECCV 2016"""import numpy as npimport torchimport torch.nn as nnimport torch.nn.functional as Ffrom skimage import io,transform,utilfrom termcolor import colored, cprintfrom bihand.models.bases.bottleneck import BottleneckBlockfrom bihand.models.bases.hourglass import HourglassBisectedimport bihand.utils.func as funcimport matplotlib.pyplot as pltfrom bihand.utils import miscimport matplotlib.cm as cmdef color_mask(output_ok): 颜色映射cmap = plt.cm.get_cmap('jet') 将张量转换为numpy数组mask_array = output_ok.detach().numpy() 创建彩色图像cmap = cm.get_cmap('jet')colored_mask = cmap(mask_array)return colored_mask 可视化 plt.imshow(colored_mask, cmap='jet') plt.axis('off') plt.show()def two_color(mask_tensor): 将张量转换为numpy数组mask_array = mask_tensor.detach().numpy() 将0到1之间的值转换为二值化掩码threshold = 0.5 阈值,大于阈值的为白色,小于等于阈值的为黑色binary_mask = np.where(mask_array > threshold, 1, 0)return binary_mask 可视化 plt.imshow(binary_mask, cmap='gray') plt.axis('off') plt.show()class SeedNet(nn.Module):def __init__(self,nstacks=2,nblocks=1,njoints=21,block=BottleneckBlock,):super(SeedNet, self).__init__()self.njoints = njointsself.nstacks = nstacksself.in_planes = 64self.conv1 = nn.Conv2d(3, self.in_planes, kernel_size=7, stride=2, padding=3, bias=True)self.bn1 = nn.BatchNorm2d(self.in_planes)self.relu = nn.ReLU(inplace=True)self.maxpool = nn.MaxPool2d(2, stride=2)self.layer1 = self._make_residual(block, nblocks, self.in_planes, 2self.in_planes) current self.in_planes is 64 2 = 128self.layer2 = self._make_residual(block, nblocks, self.in_planes, 2self.in_planes) current self.in_planes is 128 2 = 256self.layer3 = self._make_residual(block, nblocks, self.in_planes, self.in_planes)ch = self.in_planes 256hg2b, res1, res2, fc1, _fc1, fc2, _fc2= [],[],[],[],[],[],[]hm, _hm, mask, _mask = [], [], [], []for i in range(nstacks): 2hg2b.append(HourglassBisected(block, nblocks, ch, depth=4))res1.append(self._make_residual(block, nblocks, ch, ch))res2.append(self._make_residual(block, nblocks, ch, ch))fc1.append(self._make_fc(ch, ch))fc2.append(self._make_fc(ch, ch))hm.append(nn.Conv2d(ch, njoints, kernel_size=1, bias=True))mask.append(nn.Conv2d(ch, 1, kernel_size=1, bias=True))if i < nstacks-1:_fc1.append(nn.Conv2d(ch, ch, kernel_size=1, bias=False))_fc2.append(nn.Conv2d(ch, ch, kernel_size=1, bias=False))_hm.append(nn.Conv2d(njoints, ch, kernel_size=1, bias=False))_mask.append(nn.Conv2d(1, ch, kernel_size=1, bias=False))self.hg2b = nn.ModuleList(hg2b) hgs: hourglass stackself.res1 = nn.ModuleList(res1)self.fc1 = nn.ModuleList(fc1)self._fc1 = nn.ModuleList(_fc1)self.res2 = nn.ModuleList(res2)self.fc2 = nn.ModuleList(fc2)self._fc2 = nn.ModuleList(_fc2)self.hm = nn.ModuleList(hm)self._hm = nn.ModuleList(_hm)self.mask = nn.ModuleList(mask)self._mask = nn.ModuleList(_mask)def _make_fc(self, in_planes, out_planes):bn = nn.BatchNorm2d(in_planes)conv = nn.Conv2d(in_planes, out_planes, kernel_size=1, bias=False)return nn.Sequential(conv, bn, self.relu)def _make_residual(self, block, nblocks, in_planes, out_planes):layers = []layers.append( block( in_planes, out_planes) )self.in_planes = out_planesfor i in range(1, nblocks):layers.append(block( self.in_planes, out_planes))return nn.Sequential(layers)def forward(self, x):l_hm, l_mask, l_enc = [], [], []x = self.conv1(x) x: (N,64,128,128)x = self.bn1(x)x = self.relu(x)x = self.layer1(x)x = self.maxpool(x) x: (N,128,64,64)x = self.layer2(x)x = self.layer3(x)for i in range(self.nstacks): 2y_1, y_2, _ = self.hg2b[i](x)y_1 = self.res1[i](y_1)y_1 = self.fc1[i](y_1)est_hm = self.hm[i](y_1)l_hm.append(est_hm)y_2 = self.res2[i](y_2)y_2 = self.fc2[i](y_2)est_mask = self.mask[i](y_2)l_mask.append(est_mask)if i < self.nstacks-1:_fc1 = self._fc1[i](y_1)_hm = self._hm[i](est_hm)_fc2 = self._fc2[i](y_2)_mask = self._mask[i](est_mask)x = x + _fc1 + _fc2 + _hm + _maskl_enc.append(x)else:l_enc.append(x + y_1 + y_2)assert len(l_hm) == self.nstacksreturn l_hm, l_mask, l_encif __name__ == '__main__':a = torch.randn(10, 3, 256, 256) SeedNetmodel = SeedNet() output1,output2,output3 = SeedNetmodel(a) print(output1,output2,output3)total_params = sum(p.numel() for p in SeedNetmodel.parameters())/1000000print("Total parameters: ", total_params)pretrained_weights_path = 'E:/bihand/released_checkpoints/ckp_seednet_all.pth.tar'img_rgb_path=r"E:\FreiHAND\training\rgb\00000153.jpg"img=io.imread(img_rgb_path)resized_img = transform.resize(img, (256, 256), anti_aliasing=True)img256=util.img_as_ubyte(resized_img)plt.imshow(resized_img)plt.axis('off') 关闭坐标轴plt.show()''' implicit HWC -> CHW, 255 -> 1 '''img1 = func.to_tensor(img256).float() 转换为张量并且进行标准化处理''' 0-mean, 1 std, [0,1] -> [-0.5, 0.5] '''img2 = func.normalize(img1, [0.5, 0.5, 0.5], [1, 1, 1])img3 = torch.unsqueeze(img2, 0)ok=img3print(img.shape)SeedNetmodel = SeedNet()misc.load_checkpoint(SeedNetmodel, pretrained_weights_path)加载权重output1, output2, output3 = SeedNetmodel(img3)mask_tensor = torch.rand(1, 64, 64)output=output2[1] 1,1,64,64output_1=output[0] 1,64,64output_ok=torch.sigmoid(output_1[0])output_real=output_1[0].detach().numpy()直接产生的张量图color_mask=color_mask(output_ok) 显示彩色分割图two_color=two_color(output_ok)显示黑白分割图see=output_ok.detach().numpy() 使用Matplotlib库显示分割掩码 plt.imshow(see, cmap='gray') plt.axis('off') plt.show() print(output1, output2, output3)images = [resized_img, color_mask, two_color,output_real,see,see]rows = 1cols = 4 创建子图并展示图像fig, axes = plt.subplots(1, 6, figsize=(30, 5)) 遍历图像列表,并在每个子图中显示图像for i, image in enumerate(images):ax = axes[i] if cols > 1 else axes 如果只有一列,则直接使用axesif i ==5:ax.imshow(image, cmap='gray')else:ax.imshow(image)ax.imshowax.axis('off') 调整子图之间的间距plt.subplots_adjust(wspace=0.1, hspace=0.1) 展示图像plt.show() 上述的代码文件是在bihand/models/net_seed.py中,全部代码链接在https://github.com/lixiny/bihand。 把bihand/models/net_seed.p中的代码修改为我提供的代码即可使用作者训练好的模型和进行各种可视化。(预训练模型根据作者代码提示下载) 3.调用阿里云API进行证件照生成实例 3.1 准备工作 1.找到接口 进入下面链接即可快速访问 link 2.购买试用包 3.查看APPcode 4.下载代码 5.参数说明 3.2 实验代码 !/usr/bin/python encoding: utf-8"""===========================证件照制作接口==========================="""import requestsimport jsonimport base64import hashlibclass Idphoto:def __init__(self, appcode, timeout=7):self.appcode = appcodeself.timeout = timeoutself.make_idphoto_url = 'https://idp2.market.alicloudapi.com/idphoto/make'self.headers = {'Authorization': 'APPCODE ' + appcode,}def get_md5_data(self, body):"""md5加密:param body_json::return:"""md5lib = hashlib.md5()md5lib.update(body.encode("utf-8"))body_md5 = md5lib.digest()body_md5 = base64.b64encode(body_md5)return body_md5def get_photo_base64(self, file_path):with open(file_path, 'rb') as fp:photo_base64 = base64.b64encode(fp.read())photo_base64 = photo_base64.decode('utf8')return photo_base64def aiseg_request(self, url, data, headers):resp = requests.post(url=url, data=data, headers=headers, timeout=self.timeout)res = {"status_code": resp.status_code}try:res["data"] = json.loads(resp.text)return resexcept Exception as e:print(e)def make_idphoto(self, file_path, bk, spec="2"):"""证件照制作接口:param file_path::param bk::param spec::return:"""photo_base64 = self.get_photo_base64(file_path)body_json = {"photo": photo_base64,"bk": bk,"with_photo_key": 1,"spec": spec,"type": "jpg"}body = json.dumps(body_json)body_md5 = self.get_md5_data(body=body)self.headers.update({'Content-MD5': body_md5})data = self.aiseg_request(url=self.make_idphoto_url, data=body, headers=self.headers)return dataif __name__ == "__main__":file_path = "图片地址"idphoto = Idphoto(appcode="你的appcode")d = idphoto.make_idphoto(file_path, "red", "2")print(d) 3.3 实验结果与分析 原图片 背景为红色生成的证件照 背景为蓝色生成的证件照 另外尝试了使用柴犬照片做实验,也生成了证件照 原图 背景为红色生成的证件照 参考(可供参考的链接和引用文献) 1.参考:BiHand: Recovering Hand Mesh with Multi-stage Bisected Hourglass Networks(BMVC2020) 论文链接:https://arxiv.org/pdf/2008.05079.pdf 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_37758063/article/details/131128967。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-11 23:36:51
131
转载
转载文章
...转载内容。原文链接:https://blog.csdn.net/engineer0/article/details/107965908。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 主流的嵌入式处理器家族有三个:arm ,intel_x86,MIPS。 arm主要面向手机、平板,功耗低 arm和x86的运算力、性能好,MIPS相对较弱 嵌入式常用的非易失存储包括:nor flash,nand flash,emmc nand flash:价低,速快,有坏块 nor flash:价高,速慢,无坏块 emmc:相当于nand 和 nor的结合,内置坏块管理系统;价高 USB四线接口简单介绍 开发电脑选择:核心越多越好,主频越高越好----->编译工程快 设置ubuntu系统ip的方法:右上角找到设置图标,选择network,点齿轮图标号,在ipv4下面设置地址192.168.1.x,子网掩码255.255.255.0,网关192.168.1.1(必须要使windows,ubuntu,开发板处于同一网段,能互相ping通) U盘连接到主机和UBUNTU相互转换:虚拟机右下角,右键连接or断开 shell常用指令 ls -a:显示所有目录,文件夹,隐藏文件/目录 ls -l:显示文件的权限、修改时间等 ls -al:上面两个结合 ls 目录:显示该目录下的文件 – cd /:进入linux根目录 cd ~:/home/jl – uname :查看系统信息 uname -a :查看全部系统信息 – cat 文件名:显示某文件内容 – sudo :临时切换root用户 sudo apt-get install 软件名 :装某软件 sudo su:直接切换root用户(少用) sudo su jl:切换回普通用户 – touch 文件名:创建文件 rm -r 目录/文件:删除文件/目录及它包含的所有内容 rm -f 文件:直接删除,无需确认 rm -i 文件:删除文件,会逐一询问是否删除 rmdir 目录:专门删除目录 mv :可以用来移动文件/目录,也可以用来重命名 – ifconfig:显示网络配置信息(lo:本地回环测试) ifconfig -a:显示所有网卡(上面只显示工作的,本条显示所有工作和未工作的) ifconfig eth0 up:打开eth0这个网卡 ifconfig eth0 down:关闭eth0这个网卡(0一般要sudo来执行) ifconfig eth0 你想设置的地址:重设eth0的ip地址 – 命令 --help:看看这个命令的帮助信息 reboot:重启 – sync:数据同步写入磁盘命令(一般来说,用户写的内容先保存在一个缓冲区,系统是隔一定时间像磁盘写入缓冲区内写入磁盘),用sync立刻写入 grep ”“ -i :搜索时忽略大小写 grep 默认是匹配字符, -w 选项默认匹配一个单词 例如我想匹配 “like”, 不加 -w 就会匹配到 “liker”, 加 -w 就不会匹配到 du 目录/文件 -sh : 查看某一文件/目录的大小,也可以到一个目录下du -sh,查看这个目录的大小 目录下使用du -sh 查看目录总的大小 du 文件名 -sh 查看指定文件的大小 df:检查linux服务器的文件系统磁盘空间占用情况,默认以kb为单位 gedit 文件:使用gedit软件打开一个文件(类似于windows下面的记事本) ps:查看您当前系统有哪些进程,ubuntu(多用户)下是ps -aux,嵌入式linux(单用户)下面是ps top:进程实时运行状态查询 file 文件名:查看文件类型 ubuntu的fs cd / :根目录,一切都是从根目录发散开来的 /bin:存放二进制可执行文件,比如一些命令 /boot:ubuntu的内核与启动文件 /cdrom:有光盘是存放光盘文件 /dev:存放设备驱动文件 /etc:存放配置文件,如账号和密码文件(加密后的) /home:系统默认的用户主文件夹 /lib:存放库文件 /lib64:存放库文件,. so时linux下面的动态库文件 /media:存放可插拔设备,如sd,u盘就是挂载到这个文件下面 /mnt:用户可使用的挂载点,和media类似,可以手动让可插拔设备挂载到/mnt /opt:可选的文件和程序存放目录,给第三方软件放置的目录 /proc:存放系统的运行信息,实在内存上的不是在flash上,如cat /proc/cpuinfo /root:系统管理员目录,root用户才能访问的文件 /sbin:和bin类似,存放一些二进制可执行文件,sbin下面一般是系统开机过程中所需要的命令 /srv:服务相关的目录,如网络服务 /sys:记录内核信息,是虚拟文件系统 /tmp:临时目录 /usr:不是user的缩写,而是UNIX Software Resource的缩写,存放系统用户有关的文件,占很大空间 /var:存放变化的文件,如日志文件 – 移植就是移植上面这些文件 磁盘管理 linux开发一定要选用FAT32格式的U盘或者SD卡 u盘在/dev中的名字是sd,要确定是哪个,拔了看少了哪个。就是哪个 /dev/sdb表示U盘,/dev/sdb1表示U盘的第一个分区,一般U盘 sd卡只有一个分区 df:显示linux系统的磁盘占用情况 在一个目录里使用du -sh:查看这个目录里面所有内容所占用的资源 du 文件名 -sh:一般用来看单个文件/目录的大小 du -h --max-depth=n:显示n级目录的大小 – 磁盘的挂载与取消挂载: mount 和 umount sudo mount /dev/sdb1 /media/jl/udisk sudo umount /media/jl/u盘名 (-f 强制取消挂载),如果u盘正在使用,如被另一个终端打开,那么该指令无效 mount挂载后中文显示乱码的解决方法 sudo mount -o iocharset=utf8 /dev/sdb1 udisk – 磁盘的分区和格式化 sudo fdisk -l /dev/sdb 查看所有分区信息(–help查看别的用法) sudo fdisk /dev/sdb1 ----> m ( 进入帮助 ) ----> d 删除该分区 ----> wq 保存并退出 mkfs -t vfat /dev/sdb1 mkfs -t vfat /dev/sdb2 mkfs -t vfat /dev/sdb3 给分区1,2,3分别格式化,完成后能在图形界面看见三个u盘图标 格式化u盘之前一定要先卸载u盘已经挂载的系统。 – 压缩和解压缩 linux下常用的压缩扩展名: .tar .tar.bz2 .tar.gz 后两个linux常用 windows下面用7zip软件 右键选中文件,选择7zip,添加到压缩包,压缩格式选择tar,仅存储 生成tar文件,这里只是打包,没有压缩 右键上面的tar文件,选择7zip,添加到压缩包,压缩格式选择bzip2,确定 生成.tar.bz2文件,把它放到ubuntu解压 ubuntu也支持解压.tar和.zip,但后面两个常用 – ubuntu下面的压缩工具时gzip 压缩文件 gzip 文件名:压缩文件,变成 原文件名.gz,原来的文件就不见了 解压缩文件 gzip -d .gz:还原 文件 gzip -r 目录:递归,将该目录里的各个文件压缩,不提供打包服务 – bzip2工具负责压缩和解压缩.bz2格式的压缩包 bzip2 -z 文件名,压缩成 文件名.bz2 bzip2 -d 文件名.bz2,解压缩成 文件名 bzip2不能压缩/解压缩 目录 – 打包工具 tar 常用参数 -f:使用归档文件(必须要在所有选项后面) -c:创建一个新归档 -x:从归档中解出文件 -j:使用bzip2压缩格式 -z:使用gzip压缩格式 -v:打印出命令执行过程 如以bzip2格式压缩,打包 tar -vcjf 目录名.tar.bz2 目录名 如将上面的压缩包解包 tar -vxjf 目录名.tar.bz2 – 其他压缩工具 rar工具 sudo apt-get install rar(用dhcp连不上阿里云的镜像) rar a test.rar test 把test压缩成test.rar rar x test.rar 把test.rar解压缩成test – zip工具 压缩 zip -rv test.zip test 解压缩 unzip test.zip – ubuntu的用户和用户组 linux是多用户的os,不同的用户有不同的权限,可以查看和操作不同的文件 有三种用户 1、初次用户 2、root用户 3、普通用户 root用户可以创建普通用户 linux用户记录在/etc/passwd这个文件内 linux用户密码记录在/etc/shadow这个文件内,不是以明文记录的 每个用户都有一个id,叫做UID – linux用户组 为了方便管理,将用户进行分组,每个用户可以属于多个组 可以设置非本组人员不能访问一些文件 用户和用户组的存在就是为了控制文件的访问权限的 每个用户组都有一个ID,叫做GID 用户组信息存储在/etc/group中 passwd 用户名:修改该用户的密码 – ubuntu文件权限 ls -al 文件名 如以b开头: -brwx - rwx - rwx -:b表示 块文件,设备文件里面可供存储的周边设备 以d开头是目录 以b是块设备文件 以-开头是普通文件 以 l 开头表示软连接文件 以c开头是设备文件里的串行端口设备 -rwx - rwx - rwx -:用户权限,用户组内其他成员,其它组用户 数字 1 表示链接数,包括软链接和硬链接 第三列 jl 表示文件的拥有者 第四列 jl 表示文件的用户组 第五列 3517 表示这个文件的大小,单位是字节 ls -l 显示的文件大小单位是字节 ls -lh 现实的文件大小单位是 M / G 第六七八列是最近修改时间 最后一列是文件名 – 修改文件权限命令 chmod 777 文件名 修改文件所属用户 sudo chown root 文件 修改文件用户组 sudo chown .root 文件 同时修改文件用户和用户组 sudo chown jl.jl 文件 修改目录的用户/用户组 sudo chown -r jl.jl 目录( root.root ) – linux连接文件 1、硬连接 2、符号连接(软连接) linux有两种连接文件,软连接/符号连接,硬连接 符号连接类似于windows下面的快捷方式 硬连接通过文件系统的inode连接来产生新文件名,而不是产生新文件 inode:记录文件属性,一个文件对应一个inode, inode相当于文件ID 查找文件要先找到inode,然后才能读到文件内容 – ln 命令用于创建连接文件 ln 【选项】源文件 目标文件 不加选项就是默认创建硬连接 -s 创建软连接 -f 强制创建连接文件,如果目标存在,就先删掉目标文件,再创建连接文件 – 硬连接:多个文件都指向同一个inode 具有向inode的多个文件互为硬连接文件,创建硬连接相当于文件实体多了入口 只有删除了源文件、和它所有的硬连接文件,晚间实体才会被删除 可以给文件创建硬连接来防止文件误删除 改了源文件还是硬连接文件,另一个文件的数据都会被改变 硬连接不能跨文件系统(另一个格式的u盘中的文件) 硬连接不能连接到目录 出于以上原因,硬连接不常用 ls -li:此时第一列显示的就是每个文件的inode – 软连接/符号连接 类似windows下面的快捷方式 使用较多 软连接相当于串联里一个独立的文件,该文件会让数据读取指向它连接的文件 ln -s 源文件 目标文件 特点: 可以连接到目录 可以跨文件系统 删除源文件,软连接文件也打不开了 软连接文件通过 “ -> ” 来指示具体的连接文件(ls -l) 创建软连接的时候,源文件一定要使用绝对路径给出,(硬连接无此要求) 软连接文件直接用cp复制到别的目录下,软连接文件就会变成实体文件,就算你把源文件删掉,该文件还是有效 正确的复制、移动软连接的用法是:cp -d 如果不用绝对路径,cp -d 软连接文件到别的目录,该软连接文件就会变红,失效 如果用了绝对路径,cp -d 软连接文件到别的目录,该软连接文件还是有效的,还是软连接文件 不用绝对路径,一拷贝就会出问题 – 软连接一个目录,也是可以用cp -d复制到其他位置的 – gedit 是基于图形界面的 vim有三种模式: 1、一般模式:默认模式,用vim打开一个文件就自动进入这个模式 2、编辑模式:按 i,a等进入,按esc回到一般模式 3、命令行/底行模式:在一般模式下输入:/ ?可进入命令行模式 ,按esc回到一般模式 一般模式下,dd删除光标所在的一整行; ndd,删除掉光标所在行和下面的一共n行 点 . 重复上一个操作 yy复制光标所在行 小p复制到光标下一行 大p复制到光标上一行n nyy复制光标所在往下n行 设置vim里的tab是四个空格:在/etc/vim/vimrc里面添加:set ts=4 设置vim中显示行号:在上面那个文件里添加:set nu – vscode是编辑器 gcc能编译汇编,c,cpp 电脑上的ubuntu自带的gcc用来编译x86架构的程序,而嵌入式设备的code要用针对于该芯片架构如arm的gcc编译器,又叫做交叉编译器(在一种架构的电脑上编译成另一种架构的代码) gcc -c 源文件:只编译不链接,编译成.o文件 -o 输出文件名( 默认名是 .out ) -O 对程序进行优化编译,这样产生的可执行文件执行效率更高 -O2:比-O幅度更大的优化,但编译速度会很慢 -v:显示编译的过程 gcc main.c 输出main.out的可执行文件 预处理 --> 编译 --> 汇编 --> 链接 – makefile里第一个目标默认是终极目标 其他目标的顺序可以变 makefile中的变量都是字符串 变量的引用方法 : $ ( 变量名 ) – Makefile中执行shell命令默认会把命令本身打印出来 如果在shell命令前加 @ ,那么shell’命令本身就不会被打印 – 赋值符:= 变量的有效值取决于他最后一次被赋值的值 : = 赋值时右边的值只是用前面已经定义好的,不会使用后面的 ?= 如果左边的前面没有被赋值,那么在这里赋值,佛则就用前面的赋值 + = 左边前面已经复制了一些字串,在这里添加右边的内容,用空格隔开 – 模式规则 % . o : % . c %在这里意思是通配符,只能用于模式规则 依赖中 % 的内容取决于目标 % 的内容 – CFLAGS:指定头文件的位置 LDFLAGS:用于优化参数,指定库文件的位置 LIBS:告诉链接器要链接哪些库文件 VPATH:特殊变量,指定源文件的位置,冒号隔开,按序查找源文件 vpath:关键字,三种模式,指定、清除 – 自动化变量 $ @ 规则中的目标集合 $ % 当目标是函数库的时候,表示规则中的目标成员名 $ < 依赖文件集合中的第一个文件,如果依赖文件是以 % 定义的,那么 $ < 就是符合模式的一系列文件的集合 $ ? 所有比目标新的依赖文件的集合,以空格分开 $ ^ 所有依赖文件的集合,用空格分开,如果有重复的依赖文件,只保留一次 $ + 和 $ ^ 类似,但有多少重复文件都会保留 $ 表明目标模式中 % 及其以前的部分 如果目标是 test/a.test.c,目标模式是 a.%.c,那么 $ 就表示 test/a.test – 常用的是 $@ , $< , $^ – Makefile的伪目标 不生成目标文件,只是执行它下面的命令 如果被错认为是文件,由于伪目标一般没有依赖,那么目标就被认为是最新的,那么它下面的命令就不会执行 。 如果目录下有同名文件,伪目标错认为是该文件,由于没有依赖,伪目标下面的指令不会被执行 伪目标声明方法 .PHONY : clean 那么就算目录下有伪目标同名文件,伪目标也同样会执行 – 条件判断 ifeq ifneq ifdef ifndef – makefile函数使用 shell脚本 类似于windoes的批处理文件 将连续执行的命令写成一个文件 shell脚本可以提供数组,循环,条件判断等功能 开头必须是:!/bin/bash 表示使用bash 脚本的扩展名:.sh – 交互式shell 有输入有输出 输入:read 第三行 name在这里作为变量,read输入这个变量 下一行使用这个变量直接是 $name,不用像 Makefile 里面那样子加括号 read -p “读取前你想打印的内容” 变量1 变量2 变量3… – 数值计算 第五行等于号两边不能有空格 右边计算的时候是 $( ( ) ),注意要两个括号 – test 测试命令 文件状态查询,字符、数字比较 && cmd1 && cmd2 当cmd1执行完并且正确,那么cmd2也执行 当cmd2执行完并且错误,那么cmd2不执行 || cmd1 || cmd2 当cmd1执行完并且正确,那么cmd2不执行 当cmd2执行完并且错误,那么cmd2也执行 查看一个文件是否存在 – 测试两个字符串是否相等 ==两边必须要有空格,如果不加空格,test这句就一直是对的。 – 中括号判断符 [ ] 作用和test类似 里面只能输入 == 或者 != 四个箭头所指必须用空格隔开 而且如果变量是字符串的话,一定要加双引号 – 默认变量 $0——shell脚本本身的命令 $——最后一个参数的标号(1,2,3,4…) $@——表示 $1 , $2 , $3 … $1 $2 $3 – shell 脚本的条件判断 if [ 条件判断 ];then //do something fi 红点处都要加空格 exit 0——表示退出 – if 条件判断;then //do something elif 条件判断;them //do something else //do something fi 红线处要加空格 – case 语句 case $var in “第一个变量的内容”) //do something ;; “第二个变量的内容”) // do something ;; . . . “第n个变量的内容”) //do something ;; esac 不能用 “”,否则就不是通配符的意思,而是表示字符 – shell 脚本函数 function fname(){ //函数代码段 } 其中function可以写也可以不写 调用函数的时候不要加括号 shell 脚本函数传参方式 – shell 循环 while[条件] //括号内的状态是判断式 do //循环代码段 done – until [条件] do //循环代码段 done – for循环,使用该循环可以知道有循环次数 for var con1 con2 con3 … … do //循环代码段 done – for 循环数值处理 for((初始值;限制值;执行步长)) do //循环代码段 done – 红点处必须要加空格!! loop 环 – – 注意变量有的地方用了 $ ,有的地方不需要 $ 这里的赋值号两边都不用加 空格 $(())数值运算 本篇文章为转载内容。原文链接:https://blog.csdn.net/engineer0/article/details/107965908。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-23 17:18:30
79
转载
转载文章
...转载内容。原文链接:https://blog.csdn.net/weixin_34126557/article/details/90592502。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 饿了么:云端调度,饭来张口 “云栖奖”获奖人:饿了么CTO 张雪峰 作者:阿里云研究中心 田丰 外卖送餐市场近几年都保持了超过200%的高增长速度。有如团购市场、共享出行市场的“百团大战”,网络订餐经历了低门槛遍地开花、砸钱补贴吸引用户量、精益运营降本增效三个重要阶段。据比达咨询市场分析数据显示,2016年中国第三方餐饮外卖市场格局中,饿了么位居第一,市场份额为34.6%,美团外卖(33.6%)、百度外卖(18.5%)紧随其后,在“白领市场”、“社区市场”、“校园市场”的细分领域中,饿了么均占据榜首位置。截至2016年12月,饿了么业务覆盖1400多个城市,用户超过1亿,各地加盟餐厅超过100万家,日订单量突破900万,旗下“蜂鸟配送”日配送单量超过450万。 在 “独角兽”的成长道路上,饿了么面对人工成本高制约业务快速扩张、人工派单速度慢导致高峰期积压订单严重、人工派单随机性强引起订单配送时效性差等现实问题,而阿里云通过智能派单系统,基于海量历史订单数据、餐厅数据、骑手数据、用户数据等信息实现智能派单,逐步替代调度员的大部分工作。智能派单系统整体全面上线后将释放90%以上人工派单的人力,每年节省人力支出预计超过亿元。 饿了么的IT系统架构伴随业务量飙升,进行了三次重大升级。 1)起步期(2009至2013年):饿了么由上海交通大学创始团队起家,发展至35人规模,日订单量维持在十万量级,由“IDC+Python”技术组合支撑业务运营,但面临Python人才难觅等困扰。 2)成长期(2014年至2015年):14年8至9月短短2个月内日均订单量增长10倍,从10万迅猛飙升至100万,业务规模主攻全国200个城市,原有IT系统架构压力极大,依靠人肉运维举步维艰,故障波动影响业务,创始人与核心技术团队坚守机房运维一线,才勉强扛住100万量级业务订单。开始借鉴阿里淘宝架构模式,人员团队也涨至500人,技术生态从Python扩展至“Java+Python”开发体系,从“人肉”支撑百万订单运营到自动化运维,并筹备同城异地容灾体系。 3)规模期(2015年至2017年):2015年7至8月,日均订单量从200万翻倍,以往积压的问题都暴露出来,技术架构面临大考验,坚定了架构上云的方案,团队扩展至1000人,架构要承载数百万量级业务时,出现峰值成本、灾备切换、IDC远程运维等种种挑战,全面战略转型采用“IDC+云计算”的混合云架构。在2016年12月25日圣诞节日订单量迎来前所未有的900万单,因此在技术架构上探索多活部署等创新性研发。 为什么选择架构转型上云?据饿了么CTO张雪峰先生所说,技术架构从IDC经典模式发展至混合云模式,主要原因是三个关键因素让管理层下定决心上云: 1) 脉冲计算:从技术架构配套业务发展分析,网络订餐业务具有明显的“脉冲计算”特征,在每日上午10:00至13:00、晚间16:00至19:00业务高峰值出现,而其他时间则业务量很低,暑假是业务高峰季,2016年5.17大促,饿了么第一次做“秒杀”,一秒订单15000笔,巨大的波峰波谷计算差异,引发了自建数据中心容量不可调和的两难处境,如果大规模投入服务器满足6小时的高峰业务量,则其余18个小时的业务低谷计算资源闲置,若满足平均业务量,则无法跟上业务快速发展节奏,落后于竞争对手;搞电商大促时,计算资源投入巨大,大促之后计算峰值下降,采用自建机房利用率仅10%,所以技术团队摸索出用云计算扛营销大促峰值的新模式,采用混合云架构满足 “潮汐业务”峰值计算,阿里云海量云计算资源弹性随需满足巨大的脉冲计算力缺口,这与每年“双11” 淘宝引入阿里云形成全球最大混合云架构具有异曲同工的创新价值。 2) 数据量爆炸:伴随饿了么近五年业务量呈几何级数的爆发式发展,数据量增速更加令人吃惊,是业务量增速的5倍,每日增量数据接近100TB,2015年短短2个月内业务量增长10倍,数据量增长了50倍,上海主生产机房不堪重负。30GB的DDoS攻击对业务系统造成较大风险,上云成为承载大数据、抗网络攻击的好方法。 3) 高可用性挑战:众所周知,IDC自建系统运维要承担从底层硬件到上层应用的“全栈运维”运营能力与维修能力,当2015年夏天上海数据中心故障发生,主核心交换机宕机时,备核心交换机Bug同时被触发,从事故发生到硬件厂商携维修设备打车赶往现场维修的整个过程中,饥饿的消费者无法订餐吃饭,技术团队第一次经历业务中断而束手无策,才下定决心大笔投入混合云灾备的建设,“吃一堑,长一智”,持续向淘宝学习电商云生产与灾备架构,以自动化运维替代人肉运维,从灾备向多活演进,成为饿了么企业架构转型的必经之路。 4) 大数据精益运营:不论网络打车还是网络订餐,共享服务平台脱颖而出的关键成功要素是智能调度算法,以大数据训练算法提升调度效率,饿了么在高峰时段内让百万“骑士”(送餐快递员)完成更多订单是算法持续优化的目标,而这背后隐藏着诸多复杂因素,包括考虑餐厅、骑士、消费者三者的实时动态位置关系,把新订单插入现有“骑士”的行进路线中,估计每家餐厅出餐时间,每个骑手的行进速度、道路熟悉程度各不相同,新老消费者获客成本、高价低价订单的优先级皆不相同。种种考量因素合并到一起,对于人类调度员来说,每天中午和晚上的高峰都是巨大的挑战。以上海商城路配送站为例,一个调度员每6秒钟就要调度1单,他需要考虑骑手已有订单量、路线熟悉度等。因此可以说,这份工作已经完全不适合人类。但对人工智能而言,阿里云ET则非常擅长处理这类超复杂、大规模、实时性要求高的“非人”问题。 饿了么是中国最大的在线外卖和即时配送平台,日订单量900万单、180万骑手、100万家餐饮店,既是史无前例的计算存储挑战,又是人无我有的战略发展机遇。饿了么携手阿里云人工智能团队,通过海量数据训练优化全球最大实时智能调度系统。在基础架构层,云计算解决弹性支撑业务量波动的基础生存问题,在数据智能层,利用大数据训练核心调度算法、提升餐饮店的商业价值,才是业务决胜的“技术神器”。 在针对大数据资源的“专家+机器”运营分析中,不断发现新的特征: 1) 区域差异性:饿了么与阿里云联合研发小组测试中发现有2个配送站点出现严重超时问题。后来才知道:2个站点均在成都,当地人民喜欢早、中餐一起吃,高峰从11点就开始了。习惯了北上广节奏的ET到成都就懵了。据阿里云人工智能专家闵万里分析:“不存在一套通用的算法可以适配所有站点,所以我们需要让ET自己学习或者向人类运营专家请教当地的风土人情、饮食习惯”。除此之外,饿了么覆盖的餐厅不仅有高大上的连锁店,还有大街小巷的各类难以琢磨的特色小吃,难度是其他智能调度业务的数倍。 2) 复杂路径规划:吃一口热饭有多难?送餐路径规划比驾车出行路径规划难度更高,要考虑“骑士”地图熟悉程度、天气状况、拼单效率、送餐顺序、时间对客户满意度影响、送达写字楼电梯等待时间等各种实际情况,究竟ET是如何实现智能派单并确保效率最优的呢?简单来说,ET会将配送站新接订单插入到每个骑手已有的任务中,重新规划一轮最短配送路径,对比哪个骑手新增时间最短。为了能够准确预估新增时间,ET需要知道全国100万家餐厅的出餐速度、超过180万骑手各自的骑行速度、每个顾客坐电梯下楼取餐的时间。一般来说,餐厅出餐等待时间占到了整个送餐时间的三分之一。ET要想提高骑手效率,必须准确预估出餐时间以减少骑手等待,但又不能让餐等人,最后饭凉了。饿了么旗下蜂鸟配送“准时达”服务单均配送时长缩短至30分钟以内。 3) 天气特殊影响:天气等环境因素对送餐响应时间影响显著,要想计算骑手的送餐路程时间,ET需要知道每个骑手在不同区域、不同天气下的送餐速度。如果北京雾霾,ET能看见吗?双方研发团队为ET内置了恶劣天气的算法模型。通常情况下,每逢恶劣天气,外卖订单将出现大涨,对应的餐厅出餐速度和骑手骑行速度都将受到影响,这些ET都会考虑在内。如果顾客在下雪天点个火锅呢?ET也知道,将自动识别其为大单,锁定某一个骑手专门完成配送。 4) 餐饮营销顾问:饿了么整体业务涉及C端(消费者)、B端(餐饮商户)、D端(物流配送)、BD端(地推营销),以往区域业务开拓考核新店数量,现在会重点关注餐饮外卖“健康度”,对于营业额忽高忽低、在线排名变化的餐饮店,都需要BD专家根据大数据帮助餐饮店经营者找出原因并给出解决建议,避免新店外卖刚开始就淹没在区域竞争中,销量平平的新店会离开平台,通过机器学习把餐饮运营专家的经验、以及人看不到的隐含规律固化下来,以数据决策来发现餐饮店经营问题、产品差异定位,让餐饮商户尝到甜头,才愿意继续经营。举个例子,饿了么员工都喜欢楼下一家鸡排店的午餐,但大数据发现这家店的外卖营收并不如实体店那么火爆,9元“鸡排+酸梅汁”是所有人都喜欢的爆款产品,可为什么同样菜品遭遇“线下火、线上冷”呢?数据预警后,BD顾问指出线上外卖鸡排产品没有写明“含免费酸梅汁一杯”的关键促销内容,导致大多数外卖消费者订一份鸡排一杯酸梅汁,却收到一份鸡排两杯酸梅汁,体验自然不好。 饿了么是数据驱动、智能算法调度的自动化生活服务平台,通过O2O数据的在线实时分析,与阿里云人工智能团队不断改进算法,以“全局最优”取代“局部最优”,保证平台上所有餐饮商户都能享受到数据智能的科技红利。 “上云用数”的外部价值诸多,从饿了么内部反馈来看,上云不仅没有让运维团队失去价值,反而带来了“云原生应用”(Cloud Native Application)、“云上多活”、“CDN云端压测”、“安全风控一体化”等创新路径与方案,通过敏捷基础设施(IaaS)、微服务架构(PaaS和SaaS)、持续交付管理、DevOps等云最佳实践,摆脱“人肉”支撑的种种困境,进而实现更快的上线速度、细致的故障探测和发现、故障时能自动隔离、故障时能够自动恢复、方便的水平扩容。饿了么CTO张雪峰先生说:“互联网平台型组织,业务量涨数倍,企业人数稳定降低,才是技术驱动的正确商业模式。” 在不久的将来,你每天订餐、出行、娱乐、工作留下的大数据,会“驯养”出无处不在、无所不能的智能机器人管家,家庭助理帮你点菜,无人机为你送餐,聊天机器人接受你的投诉……当然这个无比美妙的“未来世界”背后,皆有阿里云的数据智能母体“ET”。 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_34126557/article/details/90592502。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-31 14:48:26
343
转载
转载文章
...转载内容。原文链接:https://blog.csdn.net/m0_46978034/article/details/110190352。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 文章目录 一.DOM简介 1.什么是DOM 2.DOM 树 二.获取元素的方法 1.根据ID获取 2.根据标签名获取 3.通过 HTML5 新增的方法获取(注意兼容) 4.获取特殊元素(body,html) 三.事件基础 1.事件概述 2.执行事件的步骤 3.常见的鼠标事件 四.操作元素 1.操作元素内容(改变元素内容) 2. 操作常见元素属性 3.操作表单元素属性 4.操作元素样式属性 5.自定义属性的操作 6.H5自定义属性 五.节点操作 1.为什么要学习节点操作 2.节点概述 3.节点层级 一.DOM简介 1.什么是DOM 文档对象模型(简称DOM) 是W3C组织推荐的处理可扩展标记语言的标准编程接口 W3C已经定义来一系列DOM接口,通过这些DOM接口可以改变网页的内容、结构样式。 2.DOM 树 文档:一个页面就是一个文档,DOM 中使用 document 表示 元素:页面中的所有标签都是元素,DOM 中使用 element 表示 节点:网页中的所有内容都是节点(标签、属性、文本、注释等),DOM 中使用 node 表示 文档树(Dom树):以html为根节点,形成的一颗倒立的树状结构,我们成为DOM树;这个树上所有的东西都叫节点,节点有很多类,比如文本节点,元素节点等等,这些节点如果我们通过DOM方法去获取或者其他的操作去使用就叫做DOM对象,所有节点都是DOM对象 二.获取元素的方法 1.获取页面中的元素可以使用以下几种方式 根据ID获取 根据标签名获取 通过HTML5新增的方法获取 特殊元素获取 1.根据ID获取 使用getElementByld()方法可以获取带有ID的元素对象 getElementByld(),是document下的一个方法 代码演示 <body><div id="time">2020-11-26</div><script>// 1.因为我们文档页面从上往下加载,所以先得有标签 所以我们的script写在标签下面// 2. document文档 get 获得 element 元素 by 通过 驼峰命名法// 3.参数 id是大小写敏感的字符串// 4.返回的是一个对象var timer = document.getElementById('time');console.log(timer);// 5.console.dir 打印我们返回得的元素对象 更好的查看里面的属性和方法console.dir(timer);</script></body> 2.根据标签名获取 使用getElementsByTagName()方法可以返回带有指定标签名的对象的集合 语法如下 document.getElementsByTagName('标签名') 注意: 1.因为得到的是一个对象的集合,使用我们想要操作里面的元素就需要遍历 得到元素对象是动态的 代码演示 <body><ul><li>我们的征程是星辰大海</li><li>我们的征程是星辰大海</li><li>我们的征程是星辰大海</li><li>我们的征程是星辰大海</li><li>我们的征程是星辰大海</li></ul><ul id="nav"><li>心存感恩,所遇皆美好~</li><li>心存感恩,所遇皆美好~</li><li>心存感恩,所遇皆美好~</li><li>心存感恩,所遇皆美好~</li><li>心存感恩,所遇皆美好~</li></ul><script>// 1.返回的是 获取过来元素对象的集合 以伪数组的形式存储的var lis = document.getElementsByTagName('li')console.log(lis);// 2.如果想要依次打印里面的元素对象我们可以采取遍历方式for (var i = 0; i < lis.length; i++) {console.log(lis[i]);}// 3.这里可以是可以获取标签的.getElementsByTagName()可以得到这个元素里面的某些标签var nav1 = document.getElementById('nav') //这个获取nav元素var navli = nav.getElementsByTagName('li') //这里是获取nav 里面的li标签 要先获取 nav元素在获取里面的liconsole.log(navli);</script></body> 3.通过 HTML5 新增的方法获取(注意兼容) 1. document.getElementsByClassName(‘类名’);// 根据类名返回元素对象集合 2. document.querySelector('选择器'); // 根据指定选择器返回第一个元素对象 3. document.querySelectorAll('选择器'); // 根据指定选择器返回所有元素对象集合 注意:querySelector 和 querySelectorAll里面的选择器需要加符号,比如:document.querySelector(’nav’); 代码演示 <body><div class="box">盒子1</div><div class="box">盒子2</div><div id="nav"><ul><li>首页</li><li>产品</li></ul></div><script>// 1. getElementsByClassName 根据类名获得某些元素集合var boxs = document.getElementsByClassName('box');console.log(boxs);// 2. querySelector 返回指定选择器的第一个元素对象 切记 里面的选择器需要加符号 .box navvar firstBox = document.querySelector('.box');console.log(firstBox);var nav = document.querySelector('nav');console.log(nav);var li = document.querySelector('li');console.log(li);// 3. querySelectorAll()返回指定选择器的所有元素对象集合var allBox = document.querySelectorAll('.box');console.log(allBox);var lis = document.querySelectorAll('li');console.log(lis);</script> 4.获取特殊元素(body,html) 获取body元素 - doucumnet.body // 返回body元素对象 获取html元素 . document.documentElement // 返回html元素对象 代码演示 <body><script>// 获取bdoy元素var bodyEle = document.bodyconsole.log(bodyEle); //返回body元素// 获取html元素var htmlEle = document.documentElementconsole.log(htmlEle); //返回html元素</script></body> 三.事件基础 1.事件概述 JavaScript 使我们有能力创建动态页面,而事件是可以被 JavaScript 侦测到的行为。 简单理解: 触发— 响应机制。 网页中的每个元素都可以产生某些可以触发 JavaScript 的事件,例如,我们可以在用户点击某按钮时产生一个 事件,然后去执行某些操作。 代码演示 <body><button id="btn">浩哥</button><script>// 点击一个按钮,弹出一个对话框// 1.事件是有三部分组成的 1.事件源 2.事件类型 3.事件处理程序 也称为事件三要素// (1).事件源 事件被触发的对象 var but = document.getElementById('btn')// (2).事件类型 如何触发 什么事件 比如鼠标点击(onclick) 还是鼠标经过还是????// (3).事件处理程序 通过一个函数赋值的方式 完成 因为函数就是实现某种功能的but.onclick = function() {alert('浩哥爱编程')}</script></body> 2.执行事件的步骤 1. 获取事件源DOM对象(意思是你要获取那个元素) 2. 注册事件(绑定事件 意思是通过什么方式来处理比如是鼠标经过还是鼠标点击等等行为) 3. 添加事件处理程序(采取函数赋值形式 意思是你想做啥) 代码演示 <body><div>123</div><script>// 事件执行步骤 点击div 控制台输出我被选中了// 1.获取事件源var div = document.querySelector('div')// 2.绑定事件 注册事件// div.onclick// 3.添加事件处理程序div.onclick = function() {console.log('我被点击了');}</script></body> 3.常见的鼠标事件 onmouseenter鼠标移入事件 onmouseleave鼠标移出事件 四.操作元素 JS的DOM操作可以改变网页内容、结构和样式,利用DOM操作元素来改变元素里面的内容、属性等。注意以下都是属性 1.操作元素内容(改变元素内容) elemeny.innerText 从起始位置到终止位置的内容,但它去除html标签,同时空格和换行也会去掉 elemernt.innerHTML 起始位置到终止位置的全部内容,包括html标签,同时保留空格和换行 elemernt.Content可以获取隐藏元素的文本,包含换行和空白 代码演示 <title>Document</title><style>div,p {height: 30px;width: 300px;line-height: 30px;text-align: center;color: fff;background-color: pink;}</style></head><body><button>显示当前系统时间</button><div>某个时间</div><p>123</p><script>// 当我们点击了按钮,div里面的文字会发生变化// 1.获取元素 注意这里的按钮 和div都要获取到 因为 点击按钮div里面要发生变化所以都要获取var but = document.querySelector('button');var div = document.querySelector('div');// 2.绑定事件// but.onclick// 3.程序处理but.onclick = function() {// 改变元素内容 element(元素).innerTextdiv.innerText = '2020-11-27'}// 4.我们元素可以不用添加事件,就可以直接显示日期var p = document.querySelector('p');p.innerText = '2020-11-27';</script> elemeny.innerText和elemeny.innerHTML的区别 代码演示 <body><div></div><p></p><ul><li> 文字</li><li>123</li></ul><script>// innertText 和 innertHTML 的区别// 1. innerText 不识别html标签 非标准 去除空格和换行var div = document.querySelector('div');div.innerText = '<strong>今天是:</strong> 2020';// 2.innertHTML 识别html标签 W3C标准 保留空格和换行的 推荐尽量使用这个 因为这个是标准var p = document.querySelector('p')p.innerHTML = '<strong>今天是:</strong> 2020';// 3.这俩个属性是可读写的 意思是 除了改变内容还可以元素读取里面的内容的var ul = document.querySelector('ul')console.log(ul.innerText);console.log(ul.innerHTML);// .4innerHtml innerText 之间的区别:设置内容的时候,如果内容当中包含标签字符串 innerHtml会有标签的特性,也就是说标签会在页面上生效如果内容当中包含标签字符串 innerText会把标签原样展示在页面上,不会让标签生效读取内容的时候,如果标签内部还有其它标签,innerHtml会把标签内部带着其它的标签全部输出如果标签内部还有其它标签,innerText只会输出所有标签里面的内容或者文本,不会输出标签如果标签内部没有其它标签,他们两个一致;都是读取文本内容,innerHtml会带空白和换行</script></body> 2. 操作常见元素属性 innerText、innerHTML 改变元素内容 src、href id、alt、title 代码演示 <body><button id="ldh">刘德华</button><button id="zxy">张学友</button><br><img src="./images/ldh.jpg" alt="" width="200px" height="200px" title="刘德华" id="img"><script>// 修改属性 src// 我们可以操作元素得方法 来修改元素得属性 就是 元素的是什么属性 在重新给值就可以完成相应的赋值操作了// 1.获取元素var ldh = document.getElementById('ldh')var zxy = document.getElementById('zxy')var img = document.getElementById('img')// 2.注册事件 程序处理zxy.onclick = function() {// 当我们点击了图片的时候图片路径就发生变化 这里的.表示 的 得意思 img对象下的src属性img.src = './images/zxy.jpg';// 当我们变换图片得同时里面得title也要跟着变 所以前面要加上img.img.title = '张学友';}ldh.onclick = function() {img.src = './images/ldh.jpg';img.title = '刘德华';}</script> 3.操作表单元素属性 利用DOM可以操作如下表单元素的属性 type、value、checked、selected、disabled 代码演示: <body><button>按钮</button><input type="text" value="输入内容"><script>// 我想把value里面的输入内容改变为 被点击了// 1.获取元素var but = document.querySelector('button')var input = document.querySelector('input')// 2.注册事件 处理程序but.onclick = function() {// input.innerHTML = '被点击了'; 这个是 普通盒子 比如 div 标签里面的内容// 表单里面的值 文字内容是通过value来修改的input.value = '被点击了'// 如果需要某个表单被禁用 不能再点击了使用 disabled 我们想要这个按钮 button禁用// but.disabled = true// 还有一种写法// this指向的是事件函数的调用者 谁调用就指向谁 这里调用者是btnthis.disabled = true}</script></body> 4.操作元素样式属性 我们可以通过 JS 修改元素的大小、颜色、位置等样式。 1.element.style 行内样式操作 注意: JS 里面的样式采取驼峰命名法 比如 fontSize、 backgroundColor JS 修改 style 样式操作,产生的是行内样式,所以行内式比内嵌式高 代码演示 <style>div {width: 200px;height: 200px;background-color: red;}</style></head><body><div></div><script>// 要求点击div变成粉色 height变为250px// 1.获取元素var div = document.querySelector('div');// 2.注册事件 处理程序div.onclick = function() {// div.style里面的属性 采取的是驼峰命名法// this等于div this调用者 谁调用谁执行this.style.backgroundColor = 'pink'this.style.height = '250px'}</script> 2.element.className 类名样式操作 注意: 如果样式修改较多,可以采取操作类名方式更改元素样式。 class因为是个保留字,因此使用className来操作元素类名属性 className 会直接更改元素的类名,会覆盖原先的类名。 代码演示 <style>div {width: 100px;height: 100px;background-color: pink;}.change {background-color: purple;color: fff;font-size: 25px;margin-top: 100px;}</style></head><body><div class="first">文本</div><script>// 1. 使用 element.style 获得修改元素样式 如果样式比较少 或者 功能简单的情况下使用var test = document.querySelector('div');test.onclick = function() {// this.style.backgroundColor = 'purple';// this.style.color = 'fff';// this.style.fontSize = '25px';// this.style.marginTop = '100px';// 让我们当前元素的类名改为了 change// 2. 我们可以通过 修改元素的className更改元素的样式 适合于样式较多或者功能复杂的情况 如果想继续添加样式即在change添加即可// 3. 如果想要保留原先的类名,我们可以这么做 多类名选择器// this.className = 'change';this.className = 'first change';}</script> 5.自定义属性的操作 js给我们规定了可以自己添加属性 在操作元素属性的时候,元素.语法只能操作元素天生具有的属性,如果是自定义的属性,通过.语法是无法操作的只能通过getAttribute和setAttribute去操作,他俩是通用的方法,无论元素天生的还是自定义的都可以可以操作 1.获取属性值 element.属性 获取属性值。 element.getAttribute(‘属性’); 区别: element.属性 获取内置属性值(元素本身自带的属性 如果是自定义属性不能被获取) element.getAttribute(‘属性’);主要获得自定义的属性 (标准) 我们自定义的属性 2.设置属性值 element.属性 = ‘值’ 设置内置属性值 element.setAttribute(‘属性’,‘值’) 区别: element.属性 设置内置属性值 element.setAttribute(‘属性’);主要设置自定义的属性(标准) 3.移除属性 element.removeAttribute(‘属性’); 代码演示 <body><div id="demo" index="1" class="nav"></div><script>var div = document.querySelector('div');// 1.获取元素的属性值// (1) element.属性console.log(div.id);// (2) element.getAttribute('属性') get获取得到 attribute属性的意思 我们自己添加的属性称之为自定义属性console.log(div.getAttribute('id')); //democonsole.log(div.getAttribute('index')); // 1// 2.设置元素的属性值// (1) element.属性 = '值' div.id = 'test'div.className = 'navs'// (2) element.setAttribute('属性','值')div.setAttribute('index', 2);div.setAttribute('class', 'footer') //这里就是class 不是className 比较特殊// 3.移除属性 removeAttribute(属性)div.removeAttribute('index');</script></body> 只要是自定义属性最好都是用element.setAttribute(‘属性’,‘值’)来设置 如果是自带属性用element.属性来设置 6.H5自定义属性 自定义属性的目的:第一、是为了保存属性 第二、并且使用数据。有一些数据可以保存到页面中而不用保存到数据库中。 自定义属性获取是通过getAttribute(‘属性’) 获取的 但是有些自定义属性很容易引起歧义,不容易判断是元素还是自定义属性 H5给我们新增了自定义属性: 1.设置H5自定义属性 H5规定自定义属性data-开头做为属性名并且赋值 比如<div data-index:“1”> 或者使用JS设置element.setAttribute(‘deta-index’,2) 2.获取H5自定义属性 兼容性获取 element.getAttribute(‘data-index’) 推荐开发中使用这个 H5新增element.dataset.index 或者element.datase[‘index’] ie 11以上才支持 代码演示 <body><div getTime="10" data-index="20" data-name-list="40"></div><script>// 获取元素var div = document.querySelector('div');console.log(div.geTime); //undefined getTime是自定义属性不能直接通过元素的属性来获取 而是用自定义属性来获取的getAttribute(‘属性’)console.log(div.getAttribute('getTime')); //10// H5添加自定义属性的写法以data-开头div.setAttribute('data-time', 30)// 1.兼容性获取H5自定义属性console.log(div.getAttribute('data-time')); // 30// 2.H5新增的获取自定义属性的方法 它只能获取data-开头的// dataset 是一个集合的意思存放了所有以data开头的自定义属性 如果你想取其中的某一个只需要在dataset.的后面加上自定义属性名即可console.log(div.dataset);console.log(div.dataset.time); // 30// 还有一种方法dataset['属性']console.log(div.dataset['time']); // 30// 如果自定义属性里面有多个-链接的单词 我们获取的时候采取驼峰命名法 不用要-了console.log(div.dataset.nameList); // 40console.log(div.dataset['nameList']); // 40</script></body> 五.节点操作 1.为什么要学习节点操作 获取元素通常使用俩种方式 (1)利用DOM提供的方法获取元素 但是逻辑性不强 繁琐 (2)利用节点层级关系获取元素 如 利用父子,兄弟关系获取元素 逻辑性强,但是兼容性不怎么好 2.节点概述 网页中的所有内容都是节点(标签、属性、文本、注释等等) ,在DOM中,节点使用node表示。HTML DOM 树中的所有节点均可通过javascript进行访问,所有HTML元素(节点) 均可被修改,也可以创建或删除 一般地,节点至少拥有nade Type(节点类型)、nodeName(节点名称)和nodeValue(节点值) 这三个基本属性 元素节点 nodeType 为 1 属性节点 node Name为 2 文本节点 nodeValue为 3 (文本节点包含文字、空格、换行等等) 实际开发中,节点操作主要操作的是元素节点 3.节点层级 利用DOM树可以把节点划分为不同得层级关系,常见得是父子兄层级关系 1.父级节点 1.node.parentNode parenNode属性可以返回某节点得父节点,注意是最近的父节点哟!!! 如果指定的节点没有父节点就返回null 代码演示 <body><div class="box"><div class="box1"></div></div><script>var box1 = document.querySelector('.box1')// 得到的是离元素最近的父节点(亲爸爸) 得不到就返回得是nullconsole.log(box1.parentNode); // parentNode 翻译过来就是父亲的节点</script></body> 2.子级节点操作 1.parentNode.children(非标准) parentNode.children 是一个只读属性,返回所有的子元素节点。它只返回子元素节点,其余节点不返回(重点记住这个就好,以后重点使用) 虽然children是一个非标准,但是得到了各个浏览器的支持,我们大胆使用即可!!! 代码演示 <body><ul><li>1</li><li>1</li><li>1</li><li>1</li></ul><script>// DOM 提供的方法(APL)获取 这样获取比较麻烦var ul = document.querySelector('ul')var lis = ul.querySelectorAll('li')// children子节点获取 ul里面所有的小li 放心使用没有限制兼容性 实际开发中经常使用的console.log(ul.children);</script> 如何返回子节点的第一个和最后一个? 2.parentNode.firstElementChild firstElementChild返回第一个子元素节点,找不到则返回unll 3.parentNode.lastElementChild lastElementChild返回最后一个子元素节点,找不到则返回null 注意:这俩个方法有兼容性问题,IE9以上才支持 谨慎使用 但是我们有解决方案 如果想要第一个子元素节点,可以使用 parentNode.chilren[0] 如果想要最后一个子元素节点,可以使用 parentNode.chilren[parentNode.chilren.length - 1] 代码演示 <body><ul><li>1</li><li>2</li><li>3</li><li>4</li><li>5</li></ul><script>var ul = document.querySelector('ul')// 1.firstElementChild 返回第一个子元素节点 ie9 以上才支持注意兼容console.log(ul.firstElementChild);// 2.lastElementChild返回最后一个子元素节点console.log(ul.lastElementChild);// 3.实际开发中用到的既没有兼容性问题又可以返回子节点的第一个和最后一个console.log(ul.children[0]);console.log(ul.children[ul.children.length - 1]); //ul.children.length - 1获取的永远是子节点最后一个</script></body> 3.兄弟节点 1.node.nextSibling nextSibling 返回当前元素的下一个兄弟节点,找不到则返回null。注意包含所有的节点 2.node.previousSibling previousSibling 返回当前元素上一个兄弟节点,找不到则返回null。注意包含所以有的节点 代码演示 <body><div>我是div</div><span>我是span</span><script>var div = document.querySelector('div')// 返回当前元素的下一个兄弟节点nextSibling,找不到返回null。注意包含元素节点或者文本节点等等console.log(div.nextSibling); //这里返回的是text 因为它的下一个兄弟节点是换行// 返回的是当前元素的上一个节点previousSibling,找不到返回null。注意包含元素节点或者文本节点等等console.log(div.previousSibling); //这里返回的是text 因为它的上一个兄弟节点是换行</script></body> 3.node.nexElementSibling nexElementSibling 返回当前元素下一个兄弟元素节点,找不到返回null 4.node.previousElementSibling previousElementSibling返回当前元素上一个兄弟节点,找不到返回null 注意:这俩个方法有兼容性问题,IE9以上才支持 代码演示 <body><div>我是div</div><span>我是span</span><script>var div = document.querySelector('div')// nextElementSiblingd得到下一个兄弟元素节点console.log(div.nextElementSibling); // span // previousElementSibling 得到的是上一个兄弟元素节点console.log(div.previousElementSibling); // null 因为它上面没有兄弟元素了返回空的</script></body> 怎么解决兼容性问题呢? 可以封装一个兼容性函数(简单了解即可 在实际开发中用的不多) function getNextElementSibling(element) {var el = element;while (el = el.nextSibling) {if (el.nodeType === 1) {return el;} }return null;} 4.创建节点 1.document.createElement('tagName') document.createElement( ) 方法创建由 tagName 指定的 HTML 元素。因为这些元素原先不存在的是根据我们的需求动态生成的,所有我们也称为动态创建元素节点 我们创建了节点要给添加到节点里面去 称为 添加节点 1.node.appendChild(child) node.appendChild( )方法将一个节点添加到指定父节点的子节点列表末尾 2.node.insertBefore(child,指定添加元素位置) node.insertBefore( ) 方法将一个节点添加到父节点的指定子节点前面 代码演示 <body><ul><li>1</li></ul><script>// 1.创建节点 createElementvar li = document.createElement('li')// 2.添加节点 创建了节点要添加到某一个元素身上去 叫添加节点 node.appendChild(child) done 父级 child 子级 如果前面有元素了则在后面追加元素类似数组中的push依次追加var ul = document.querySelector('ul')ul.appendChild(li)// 3.添加节点 node.insertBefore(child,指定元素) 在子节点前面添加子节点 child子级你要添加的元素var lili = document.createElement('li')ul.insertBefore(lili, ul.children[0]) //ul.children 这句话的意思是添加到ul父亲的子节点第一个// 总结 如果想在页面中添加元素分为俩步骤1.创建元素 2.添加元素</script></body> 5.删除节点 node.removeChild(child) node.removeChlid()方法从DOM 中删除一个子节点,返回删除的节点 简单点就是从父元素中删除某一个孩子node就是父亲child就是孩子 删除的节点.remove(没有参数) 注意:ie不支持 代码演示 <body><button>按钮</button><ul><li>熊大</li><li>熊二</li><li>熊三</li></ul><script>// 1.获取元素var ul = document.querySelector('ul')var but = document.querySelector('button');// 2.删除元素// but.onclick = function() {// ul.removeChild(ul.children[0])// }// 3.点击按钮键依次删除,最后没有删除内容了 就禁用按钮 disabled = true 禁用按钮语法but.onclick = function() {if (ul.children.length == 0) {this.disabled = true} else {ul.removeChild(ul.children[0])} }</script></body> 6.复制节点(克隆节点) node.cloneNode() node.dloneNode()方法返回调用该方法节点得一个副本,也称为克隆节点/拷贝节点 注意 1.如果括号参数为空或者为false,则是浅拷贝,只复制里面得标签,不复制内容 2.如果括号参数为true,则是深度拷贝,会复制节点本身以及里面所有的内容 代码演示 <body><ul><li>1</li><li>2</li><li>3</li></ul><script>// 1.获取元素var ul = document.querySelector('ul');// 2.复制元素 node.cloneNode() 如果参数括号为空或者false则只会复制元素不会复制内容,如果待有参数true则内容和元素都会被复制var lis = ul.children[0].cloneNode(true);// 3.获取元素ul.appendChild(lis)</script></body> 7.替换(改)节点 node.replaceChild(新节点,替换到什么位置) 代码演示 <body><ul class="list"><li>1</li><li>2</li></ul><script>// 替换(改)节点 父节点.replaceChild(新元素, 替换到什么位置)// (1)获取父元素var ulNode = document.querySelector('.list');// (2)创建新的元素var liRead = document.createElement('li')// (3)给新元素添加内容liRead.innerHTML = '5';// (4)替换元素ulNode.replaceChild(liRead, ulNode.children[1])</script></body> 8.三种动态创建元素区别 document.write() element.innerHTML document.createElement() 区别 document.write()是直接将内容写入页面的内容流,但是文档流执行完毕,它则会导致页面全部重绘 element.innerHTML是将内容写入某个DOM节点,不会导致页面全部重绘 element.innerHTML 创建多个元素效率更高(不要拼接字符串,采取数组形式拼接),结果有点复杂 createElement()创建多个元素效率低一点点,但是结果更加清晰 总结:不同浏览器下,innerHTML效率要比createElement()高 代码演示 <body><button>点击</button><p>abc</p><div class="inner"></div><div class="create"></div><script>// window.onload = function() {// document.write('<div>123</div>');// }// 三种创建元素方式区别 // 1. document.write() 创建元素 如果页面文档流加载完毕,再调用这句话会导致页面重绘// var btn = document.querySelector('button');// btn.onclick = function() {// document.write('<div>123</div>');// }// 2. innerHTML 创建元素var inner = document.querySelector('.inner');// for (var i = 0; i <= 100; i++) {// inner.innerHTML += '<a href="">百度</a>'// }var arr = [];for (var i = 0; i <= 100; i++) {arr.push('<a href="">百度</a>');}inner.innerHTML = arr.join('');// 3. document.createElement() 创建元素var create = document.querySelector('.create');for (var i = 0; i <= 100; i++) {var a = document.createElement('a');create.appendChild(a);}</script></body> 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_46978034/article/details/110190352。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-08-04 13:36:05
247
转载
转载文章
...转载内容。原文链接:https://blog.csdn.net/gongxifacai_believe/article/details/108286196。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 1、时间与日期 ECMAScript 提供了 Date 类型来处理时间和日期。Date 类型内置一系列获取和设置日期时间信息的方法。 Date 类型 ECMAScript 中的 Date 类型是在早期 Java 中 java.util.Date 类基础上构建的。为此,Date 类型使用 UTC(Coordinated Universal Time,国际协调时间[又称世界统一时间])1970 年 1 月 1 日午夜(零时)开始经过的毫秒来保存日期。在使用这种数据存储格式的条件下,Date 类型保存的日期能够精确到 1970 年 1 月 1 日之前或之后的 285616 年。 创建一个日期对象,使用 new 运算符和 Date 构造方法(构造函数)即可。 var box = new Date(); // 创建一个日期对象 在调用 Date 构造方法而不传递参数的情况下,新建的对象自动获取当前的时间和日期。 alert(box); // 不同浏览器显示不同 ECMAScript 提供了两个方法,Date.parse()和 Date.UTC()。Date.parse()方法接收一个表示日期的字符串参数,然后尝试根据这个字符串返回相应的毫秒数。ECMA-262 没有定义 Date.parse()应该支持哪种日期格式,因此方法的行为因实现而异,因地区而异。默认通常接收的日期格式如下: ‘月/日/年’,如 6/13/2011; ‘英文月名 日, 年’,如 May 25, 2004; ‘英文星期几 英文月名 日 年 时:分:秒 时区’,如 Tue May 25 2004 00:00:00 GMT-070 alert(Date.parse('6/13/2011')); // 1307894400000 如果 Date.parse()没有传入或者不是标准的日期格式,那么就会返回 NaN。 alert(Date.parse()); // NaN 如果想输出指定的日期,那么把 Date.parse()传入 Date 构造方法里。 var box = new Date(Date.parse('6/13/2011')); // Mon Jun 13 2011 00:00:00 GMT+0800var box = new Date('6/13/2011'); // 直接传入,Date.parse()后台被调用 Date 对象及其在不同浏览器中的实现有许多奇怪的行为。其中有一种倾向是将超出的范围的值替换成当前的值,以便生成输出。例如,在解析“January 32, 2007”时,有的浏览器会将其解释为“February 1, 2007”。而 Opera 则倾向与插入当前月份的当前日期。 Date.UTC()方法同样也返回表示日期的毫秒数,但它与 Date.parse()在构建值时使用不同的信息。(年份,基于 0 的月份[0 表示 1 月,1 表示 2 月],月中的哪一天[1-31],小时数[0-23] ,分钟,秒以及毫秒)。只有前两个参数是必须的。如果没有提供月数,则天数为 1;如果省略其他参数,则统统为 0。 alert(Date.UTC(2011,11)); // 1322697600000 如果 Date.UTC()参数传递错误,那么就会出现负值或者 NaN 等非法信息。 alert(Date.UTC()); // 负值或者 NaN 如果要输出指定日期,那么直接把 Date.UTC()传入 Date 构造方法里即可。 var box = new Date(Date.UTC(2011,11, 5, 15, 13, 16)); 通用的方法 与其他类型一样,Date 类型也重写了 toLocaleString()、toString()和 valueOf()方法;但这些方法返回值与其他类型中的方法不同。 var box = new Date(Date.UTC(2011,11, 5, 15, 13, 16));alert('toString:' + box.toString());alert('toLocaleString:' + box.toLocaleString()); // 按本地格式输出 这两个方法在不同浏览器显示的效果又不一样,但不用担心,这两个方法只是在调试比较有用,在显示时间和日期上,没什么价值。valueOf()方法显示毫秒数。 日期格式化方法 Date 类型还有一些专门用于将日期格式化为字符串的方法。 var box = new Date();alert(box.toDateString()); // 以特定的格式显示星期几、月、日和年alert(box.toTimeString()); // 以特定的格式显示时、分、秒和时区alert(box.toLocaleDateString()); // 以特定地区格式显示星期几、月、日和年alert(box.toLocaleTimeString()); // 以特定地区格式显示时、分、秒和时区alert(box.toUTCString()); // 以特定的格式显示完整的 UTC 日期 组件方法 组件方法,是为我们单独获取你想要的各种时间/日期而提供的方法。需要注意的时候 ,这些方法中,有带 UTC 的,有不带 UTC 的。UTC 日期指的是在没有时区偏差的情况下的日期值。 alert(box.getTime()); // 获取日期的毫秒数,和 valueOf()返回一致alert(box.setTime(100)); // 以毫秒数设置日期,会改变整个日期alert(box.getFullYear()); // 获取四位年份alert(box.setFullYear(2012)); // 设置四位年份,返回的是毫秒数alert(box.getMonth()); // 获取月份,没指定月份,从 0 开始算起alert(box.setMonth(11)); // 设置月份alert(box.getDate()); // 获取日期alert(box.setDate(8)); // 设置日期,返回毫秒数alert(box.getDay()); // 返回星期几,0 表示星期日,6 表示星期六alert(box.setDay(2)); // 设置星期几alert(box.getHours()); // 返回时alert(box.setHours(12)); // 设置时alert(box.getMinutes()); // 返回分钟alert(box.setMinutes(22)); // 设置分钟alert(box.getSeconds()); // 返回秒数alert(box.setSeconds(44)); // 设置秒数alert(box.getMilliseconds()); // 返回毫秒数alert(box.setMilliseconds()); // 设置毫秒数alert(box.getTimezoneOffset()); // 返回本地时间和 UTC 时间相差的分钟数 以上方法除了 getTimezoneOffset(),其他都具有 UTC 功能,例如 setDate()及 getDate()获取星期几,那么就会有 setUTCDate()及getUTCDate(),表示世界协调时间。 2、正则表达式 假设用户需要在 HTML 表单中填写姓名、地址、出生日期等。那么在将表单提交到服务器进一步处理前,JavaScript 程序会检查表单以确认用户确实输入了信息并且这些信息是符合要求的。 什么是正则表达式 正则表达式(regular expression)是一个描述字符模式的对象。ECMAScript 的 RegExp 类表示正则表达式,而 String 和 RegExp 都定义了使用正则表达式进行强大的模式匹配和文本检索与替换的函数。 正则表达式主要用来验证客户端的输入数据。用户填写完表单单击按钮之后,表单就会被发送到服务器,在服务器端通常会用 PHP、ASP.NET 等服务器脚本对其进行进一步处理 。因为客户端验证,可以节约大量的服务器端的系统资源,并且提供更好的用户体验。 创建正则表达式 创建正则表达式和创建字符串类似,创建正则表达式提供了两种方法,一种是采用 new 运算符,另一个是采用字面量方式。 两种创建方式 var box = new RegExp('box'); // 第一个参数字符串var box = new RegExp('box', 'ig'); // 第二个参数可选模式修饰符 模式修饰符的可选参数 参数 含义 i 忽略大小写 g 全局匹配 m 多行匹配 var box = /box/; // 直接用两个反斜杠var box = /box/ig; // 在第二个斜杠后面加上模式修饰符 测试正则表达式 RegExp 对象包含两个方法:test()和 exec(),功能基本相似,用于测试字符串匹配。test()方法在字符串中查找是否存在指定的正则表达式并返回布尔值,如果存在则返回 true,不存在则返回 false。exec()方法也用于在字符串中查找指定正则表达式,如果 exec()方法执行成功,则返回包含该查找字符串的相关信息数组。如果执行失败,则返回 null。 RegExp 对象的方法 方法 功能 test 在字符串中测试模式匹配,返回 true 或 false exec 在字符串中执行匹配搜索,返回结果数组 // 使用 new 运算符的 test 方法示例var pattern = new RegExp('box', 'i'); // 创建正则模式,不区分大小写var str = 'This is a Box!'; // 创建要比对的字符串alert(pattern.test(str)); // 通过 test()方法验证是否匹配// 使用字面量方式的 test 方法示例var pattern = /box/i; // 创建正则模式,不区分大小写var str = 'This is a Box!';alert(pattern.test(str));// 使用一条语句实现正则匹配alert(/box/i.test('This is a Box!')); // 模式和字符串替换掉了两个变量// 使用 exec 返回匹配数组var pattern = /box/i;var str = 'This is a Box!';alert(pattern.exec(str)); // 匹配了返回数组,否则返回 null 使用字符串的正则表达式方法 除了 test()和 exec()方法,String 对象也提供了 4 个使用正则表达式的方法。 String 对象中的正则表达式方法 方法 含义 match(pattern) 返回 pattern 中的子串或 null replace(pattern, replacement) 用 replacement 替换 pattern search(pattern) 返回字符串中 pattern 开始位置 split(pattern) 返回字符串按指定 pattern 拆分的数组 // 使用 match 方法获取获取匹配数组var pattern = /box/ig; // 全局搜索var str = 'This is a Box!,That is a Box too';alert(str.match(pattern)); // 匹配到两个 Box,Boxalert(str.match(pattern).length); // 获取数组的长度// 使用 search 来查找匹配数据var pattern = /box/ig;var str = 'This is a Box!,That is a Box too';alert(str.search(pattern)); // 查找到返回位置,否则返回-1 因为 search 方法查找到即返回,也就是说无需 g 全局。 // 使用 replace 替换匹配到的数据var pattern = /box/ig;var str = 'This is a Box!,That is a Box too';alert(str.replace(pattern, 'Tom')); // 将 Box 替换成了 Tom// 使用 split 拆分成字符串数组var pattern = / /ig;var str = 'This is a Box!,That is a Box too';alert(str.split(pattern)); // 将空格拆开分组成数组 RegExp 对象的静态属性 属性 短名 含义 input $_ 当前被匹配的字符串 lastMatch $& 最后一个匹配字符串 lastParen $+ 最后一对圆括号内的匹配子串 leftContext $ 最后一次匹配前的子串 multiline $ 用于指定是否所有的表达式都用于多行的布尔值 rightContext $’ 在上次匹配之后的子串 // 使用静态属性var pattern = /(g)oogle/;var str = 'This is google!';pattern.test(str); // 执行一下alert(RegExp.input); // This is google!alert(RegExp.leftContext); // This isalert(RegExp.rightContext); // !alert(RegExp.lastMatch); // googlealert(RegExp.lastParen); // galert(RegExp.multiline); // false Opera 不支持 input、lastMatch、lastParen 和 multiline 属性。IE 不支持 multiline 属性。所有的属性可以使用短名来操作。RegExp.input 可以改写成 RegExp['$_'],依次类推。但 RegExp.input 比较特殊,它还可以写成 RegExp.$_。 RegExp 对象的实例属性 属性 含义 global Boolean 值,表示 g 是否已设置 ignoreCase Boolean 值,表示 i 是否已设置 lastIndex 整数,代表下次匹配将从哪里字符位置开始 multiline Boolean 值,表示 m 是否已设置 Source 正则表达式的源字符串形式 // 使用实例属性var pattern = /google/ig;alert(pattern.global); // true,是否全局了alert(pattern.ignoreCase); // true,是否忽略大小写alert(pattern.multiline); // false,是否支持换行alert(pattern.lastIndex); // 0,下次的匹配位置alert(pattern.source); // google,正则表达式的源字符串var pattern = /google/g;var str = 'google google google';pattern.test(str); // google,匹配第一次alert(pattern.lastIndex); // 6,第二次匹配的位 以上基本没什么用。并且 lastIndex 在获取下次匹配位置上 IE 和其他浏览器有偏差 ,主要表现在非全局匹配上。lastIndex 还支持手动设置,直接赋值操作。 获取控制 正则表达式元字符是包含特殊含义的字符。它们有一些特殊功能,可以控制匹配模式的方式。反斜杠后的元字符将失去其特殊含义。 字符类:单个字符和数字 元字符/元符号 匹配情况 . 匹配除换行符外的任意字符 [a-z0-9] 匹配括号中的字符集中的任意字符 [^a-z0-9] 匹配任意不在括号中的字符集中的字符 \d 匹配数字 \D 匹配非数字,同[^0-9]相同 \w 匹配字母和数字及_ \W 匹配非字母和数字及_ 字符类:空白字符 元字符/元符号 匹配情况 \0 匹配 null 字符 \b 匹配空格字符 \f 匹配进纸字符 \n 匹配换行符 \r 匹配回车字符 \t 匹配制表符 \s 匹配空白字符、空格、制表符和换行符 \S 匹配非空白字符 字符类:锚字符 元字符/元符号 匹配情况 ^ 行首匹配 $ 行尾匹配 \A 只有匹配字符串开始处 \b 匹配单词边界,词在[]内时无效 \B 匹配非单词边界 \G 匹配当前搜索的开始位置 \Z 匹配字符串结束处或行尾 \z 只匹配字符串结束处 字符类:重复字符 元字符/元符号 匹配情况 x? 匹配 0 个或 1 个 x x 匹配 0 个或任意多个 x x+ 匹配至少一个 x (xyz)+ 匹配至少一个(xyz) x{m,n} 匹配最少 m 个、最多 n 个 x 字符类:替代字符 元字符/元符号 匹配情况 this where 字符类:记录字符 元字符/元符号 匹配情况 (string) 用于反向引用的分组 \1 或$1 匹配第一个分组中的内容 \2 或$2 匹配第二个分组中的内容 \3 或$3 匹配第三个分组中的内容 // 使用点元字符var pattern = /g..gle/; // .匹配一个任意字符var str = 'google';alert(pattern.test(str));// 重复匹配var pattern = /g.gle/; // .匹配 0 个一个或多个var str = 'google'; //,?,+,{n,m}alert(pattern.test(str));// 使用字符类匹配var pattern = /g[a-zA-Z_]gle/; // [a-z]表示任意个 a-z 中的字符var str = 'google';alert(pattern.test(str));var pattern = /g[^0-9]gle/; // [^0-9]表示任意个非 0-9 的字符var str = 'google';alert(pattern.test(str));var pattern = /[a-z][A-Z]+/; // [A-Z]+表示 A-Z 一次或多次var str = 'gOOGLE';alert(pattern.test(str));// 使用元符号匹配var pattern = /g\wgle/; // \w匹配任意多个所有字母数字_var str = 'google';alert(pattern.test(str));var pattern = /google\d/; // \d匹配任意多个数字var str = 'google444';alert(pattern.test(str));var pattern = /\D{7,}/; // \D{7,}匹配至少 7 个非数字var str = 'google8';alert(pattern.test(str));// 使用锚元字符匹配var pattern = /^google$/; // ^从开头匹配,$从结尾开始匹配var str = 'google';alert(pattern.test(str));var pattern = /goo\sgle/; // \s 可以匹配到空格var str = 'goo gle';alert(pattern.test(str));var pattern = /google\b/; // \b 可以匹配是否到了边界var str = 'google';alert(pattern.test(str));// 使用或模式匹配var pattern = /google|baidu|bing/; // 匹配三种其中一种字符串var str = 'google';alert(pattern.test(str));// 使用分组模式匹配var pattern = /(google){4,8}/; // 匹配分组里的字符串 4-8 次var str = 'googlegoogle';alert(pattern.test(str));var pattern = /8(.)8/; // 获取 8..8 之间的任意字符var str = 'This is 8google8';str.match(pattern);alert(RegExp.$1); // 得到第一个分组里的字符串内容var pattern = /8(.)8/;var str = 'This is 8google8';var result = str.replace(pattern,'<strong>$1</strong>'); // 得到替换的字符串输出document.write(result);var pattern = /(.)\s(.)/;var str = 'google baidu';var result = str.replace(pattern, '$2 $1'); // 将两个分组的值替换输出document.write(result); 贪婪 惰性 + +? ? ?? ? {n} {n}? {n,} {n,}? {n,m} {n,m}? // 关于贪婪和惰性var pattern = /[a-z]+?/; // ?号关闭了贪婪匹配,只替换了第一个var str = 'abcdefjhijklmnopqrstuvwxyz';var result = str.replace(pattern, 'xxx');alert(result);var pattern = /8(.+?)8/g; // 禁止了贪婪,开启的全局var str = 'This is 8google8, That is 8google8, There is 8google8';var result = str.replace(pattern,'<strong>$1</strong>');document.write(result);var pattern = /8([^8])8/g; // 另一种禁止贪婪var str = 'This is 8google8, That is 8google8, There is 8google8';var result = str.replace(pattern,'<strong>$1</strong>');document.write(result);// 使用 exec 返回数组var pattern = /^[a-z]+\s[0-9]{4}$/i;var str = 'google 2012';alert(pattern.exec(str)); // 返回整个字符串var pattern = /^[a-z]+/i; // 只匹配字母var str = 'google 2012';alert(pattern.exec(str)); // 返回 googlevar pattern = /^([a-z]+)\s([0-9]{4})$/i; // 使用分组var str = 'google 2012';alert(pattern.exec(str)[0]); // google 2012alert(pattern.exec(str)[1]); // googlealert(pattern.exec(str)[2]); // 2012// 捕获性分组和非捕获性分组var pattern = /(\d+)([a-z])/; // 捕获性分组var str = '123abc';alert(pattern.exec(str));var pattern = /(\d+)(?:[a-z])/; // 非捕获性分组var str = '123abc';alert(pattern.exec(str));// 使用分组嵌套var pattern = /(A?(B?(C?)))/; // 从外往内获取var str = 'ABC';alert(pattern.exec(str));// 使用前瞻捕获var pattern = /(goo(?=gle))/; // goo 后面必须跟着 gle 才能捕获var str = 'google';alert(pattern.exec(str));// 使用特殊字符匹配var pattern = /\.\[\/b\]/; // 特殊字符,用\符号转义即可var str = '.[/b]';alert(pattern.test(str));// 使用换行模式var pattern = /^\d+/mg; // 启用了换行模式var str = '1.baidu\n2.google\n3.bing';var result = str.replace(pattern, '');alert(result); 常用的正则 检查邮政编码 var pattern = /[1-9][0-9]{5}/; // 共 6 位数字,第一位不能为 0var str = '224000';alert(pattern.test(str)); 检查文件压缩包 var pattern = /[\w]+\.zip|rar|gz/; // \w 表示所有数字和字母加下划线var str = '123.zip'; // \.表示匹配.,后面是一个选择alert(pattern.test(str)); 删除多余空格 var pattern = /\s/g; // g 必须全局,才能全部匹配var str = '111 222 333';var result = str.replace(pattern,''); // 把空格匹配成无空格alert(result); 删除首尾空格 var pattern = /^\s+/; // 强制首var str = ' goo gle ';var result = str.replace(pattern, '');pattern = /\s+$/; // 强制尾result = result.replace(pattern, '');alert('|' + result + '|');var pattern = /^\s(.+?)\s$/; // 使用了非贪婪捕获var str = ' google ';alert('|' + pattern.exec(str)[1] + '|');var pattern = /^\s(.+?)\s$/;var str = ' google ';alert('|' + str.replace(pattern, '$1') + '|'); // 使用了分组获取 简单的电子邮件验证 var pattern = /^([a-zA-Z0-9_\.\-]+)@([a-zA-Z0-9_\.\-]+)\.([a-zA-Z]{2,4})$/;var str = 'yc60.com@gmail.com';alert(pattern.test(str));var pattern = /^([\w\.\-]+)@([\w\.\-]+)\.([\w]{2,4})$/;var str = 'yc60.com@gmail.com';alert(pattern.test(str)); 3、Function类型 在 ECMAScript 中,Function(函数)类型实际上是对象。每个函数都是 Function 类型的实例,而且都与其他引用类型一样具有属性和方法。由于函数是对象,因此函数名实际上也是一个指向函数对象的指针。 函数的声明方式 普通的函数声明 function box(num1, num2) {return num1+ num2;} 使用变量初始化函数 var box= function(num1, num2) {return num1 + num2;}; 使用 Function 构造函数 var box= new Function('num1', 'num2' ,'return num1 + num2'); 第三种方式我们不推荐,因为这种语法会导致解析两次代码(第一次解析常规 ECMAScript 代码,第二次是解析传入构造函数中的字符串),从而影响性能。但我们可以通过这种语法来理解"函数是对象,函数名是指针"的概念。 作为值的函数 ECMAScript 中的函数名本身就是变量,所以函数也可以作为值来使用。也就是说,不仅可以像传递参数一样把一个函数传递给另一个函数,而且可以将一个函数作为另一个函数的结果返回。 function box(sumFunction, num) {return sumFunction(num); // someFunction}function sum(num) {return num + 10;}var result = box(sum, 10); // 传递函数到另一个函数里 函数内部属性 在函数内部,有两个特殊的对象:arguments 和 this。arguments 是一个类数组对象,包含着传入函数中的所有参数,主要用途是保存函数参数。但这个对象还有一个名叫 callee 的属性,该属性是一个指针,指向拥有这个 arguments 对象的函数。 function box(num) {if (num <= 1) {return 1;} else {return num box(num-1); // 一个简单的的递归} } 对于阶乘函数一般要用到递归算法,所以函数内部一定会调用自身;如果函数名不改变是没有问题的,但一旦改变函数名,内部的自身调用需要逐一修改。为了解决这个问题,我们可以使用 arguments.callee 来代替。 function box(num) {if (num <= 1) {return 1;} else {return num arguments.callee(num-1); // 使用 callee 来执行自身} } 函数内部另一个特殊对象是 this,其行为与 Java 和 C中的 this 大致相似。换句话说 ,this 引用的是函数据以执行操作的对象,或者说函数调用语句所处的那个作用域。当在全局作用域中调用函数时,this 对象引用的就是 window。 // 便于理解的改写例子window.color = '红色的'; // 全局的,或者 var color = '红色的';也行alert(this.color); // 打印全局的 colorvar box = {color : '蓝色的', // 局部的 colorsayColor : function () {alert(this.color); // 此时的 this 只能 box 里的 color} };box.sayColor(); // 打印局部的 coloralert(this.color); // 还是全局的// 引用教材的原版例子window.color = '红色的'; // 或者 var color = '红色的';也行var box = {color : '蓝色的'};function sayColor() {alert(this.color); // 这里第一次在外面,第二次在 box 里面}getColor();box.sayColor = sayColor; // 把函数复制到 box 对象里,成为了方法box.sayColor(); 函数属性和方法 ECMAScript 中的函数是对象,因此函数也有属性和方法。每个函数都包含两个属性 :length 和 prototype。其中,length 属性表示函数希望接收的命名参数的个数。 function box(name, age) {alert(name + age);}alert(box.length); // 2 对于 prototype 属性,它是保存所有实例方法的真正所在,也就是原型。这个属性 ,我们将在面向对象一章详细介绍。而 prototype 下有两个方法:apply()和 call(),每个函数都包含这两个非继承而来的方法。这两个方法的用途都在特定的作用域中调用函数,实际上等于设置函数体内 this 对象的值。 function box(num1, num2) {return num1 + num2; // 原函数}function sayBox(num1, num2) {return box.apply(this, [num1, num2]); // this 表示作用域,这里是 window} // []表示 box 所需要的参数function sayBox2(num1, num2) {return box.apply(this, arguments); // arguments 对象表示 box 所需要的参数}alert(sayBox(10,10)); // 20alert(sayBox2(10,10)); // 20 call()方法于 apply()方法相同,他们的区别仅仅在于接收参数的方式不同。对于 call()方法而言,第一个参数是作用域,没有变化,变化只是其余的参数都是直接传递给函数的。 function box(num1, num2) {return num1 + num2;}function callBox(num1, num2) {return box.call(this, num1, num2); // 和 apply 区别在于后面的传参}alert(callBox(10,10)); 事实上,传递参数并不是 apply()和 call()方法真正的用武之地;它们经常使用的地方是能够扩展函数赖以运行的作用域。 var color = '红色的'; // 或者 window.color = '红色的';也行var box = {color : '蓝色的'};function sayColor() {alert(this.color);}sayColor(); // 作用域在 windowsayColor.call(this); // 作用域在 windowsayColor.call(window); // 作用域在 windowsayColor.call(box); // 作用域在 box,对象冒充 这个例子是之前作用域理解的例子修改而成,我们可以发现当我们使用 call(box)方法的时候,sayColor()方法的运行环境已经变成了 box 对象里了。 使用 call()或者 apply()来扩充作用域的最大好处,就是对象不需要与方法发生任何耦合关系(耦合,就是互相关联的意思,扩展和维护会发生连锁反应)。也就是说,box 对象和 sayColor()方法之间不会有多余的关联操作,比如 box.sayColor = sayColor;。 本篇文章为转载内容。原文链接:https://blog.csdn.net/gongxifacai_believe/article/details/108286196。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-24 13:01:25
529
转载
转载文章
...转载内容。原文链接:https://blog.csdn.net/m0_72318954/article/details/127064376。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 目录 前言 一、构造函数 1.对象的初始化 2.构造函数的作用 3.带形参数的构造函数 (1)含义 (2)【例3.2】 4.用参数初始化表对数据成员初始化 5.构造函数的重载 (1)含义 (2)【例3.3】 (3)说明 6.使用默认参数值的构造函数 (1)含义 (2)格式 (3)【例3.4】 (4)说明 二、析构函数 1.含义 2.执行析构函数的时机 3.特征 4.【例3.5】包含构造函数和析构函数的C++程序 三、调用构造函数和析构函数的顺序 1.同一类存储类别的对象 2.全局范围内定义的对象 3.局部自动对象 4.静态局部对象 5.例 四、对象数组 1.含义 2.【例3.6】 五、对象指针 1.指向对象的指针 2.指向对象成员的指针 (1)含义 (2)指向对象公有数据成员的指针 (3)指向对象成员函数的指针 (4)【例3.7】有关对象指针的使用方法 3.this指针 六、共用数据的保护 1.常对象 2.常对象成员 (1)常数据成员 (2)常成员函数 3.指向对象的常指针 4.指向常对象的指针变量 5.对象的常引用 (1)含义 (2)格式 (3)【例3.8】对象的引用 6.const型数据小结 编辑 七、对象的动态建立与释放——动态建立对象 八、对象的赋值和复制 1.对象的赋值 (1)含义 (2)【例3.9】对象的赋值 (3)说明 2.对象的复制 (1)含义 (2)【例】用复制对象的方法创建Box类的对象(用默认复制构造函数) (3)说明 九、静态成员 1.静态数据成员 (1)定义格式 (2)特性 (3)说明 (4)【例3.10】引用静态数据成员 2.静态成员函数 (1)含义 (2)【例3.11】关于引用非静态成员和静态成员的具体方法 (3)【例】具有静态数据成员的point类 (4)静态成员函数举例 (5)具有静态数据、函数成员的Point类 (6)静态成员函数、静态数组及其初始化 十、友元 1.友元函数 (1)含义 (2)格式 (3)【例3.12】将普通函数声明为友元函数 (4)友元成员函数 2.友元类 十一、类模板 1.含义 2.定义类模板的格式 3.在类模板外定义成员函数的语法 4.使用类模板时,定义对象的格式 5.【例3.14】声明类模板,实现两个整数、浮点数和字符的比较,求出大数和小数 前言 通过第二章的学习,已经对类和对象有了初步了解。本章将对类和对象进行进一步讨论。 一、构造函数 如果定义一个变量,而程序未对其进行初始化的话,这个变量的值是不确定的,因为C和C++不会自觉地去为它赋值。与此相似,如果定义一个对象,而程序未对其数据成员进行初始化的话,这个对象的值也是不确定的。 1.对象的初始化 在定义一个类时,不能对其数据成员赋初值,因为类是一种类型,系统不会为它分配内存空间。在建立一个对象时,需要对其数据成员赋初值。如果一个数据成员未被赋初值,则它的值是不确定的。因为系统为对象分配内存时,保持了内存单元的原状,它就成为数据成员的初值。这个值是随机的。 C++提供了构造函数机制,用来为对象的数据成员进行初始化。在前面的学习中一直未讲这个概念,其实如果你未设计构造函数,系统在创建对象时,会自动提供一个默认的构造函数,而它只为对象分配内存空间其他什么也不做。 如果类中的所有数据成员是公有的,可以在定义对象时对其数据成员初始化。例如: class Time{public:int hour;int minute;int sec;};Time t1{15,36,26}; 在一个打括号内顺序列出各个公有数据成员的值,在两个值之间用逗号分隔。注意这只能用于数据成员都是共有的情况。 在前面的例子里,是用成员函数对对象的数据成员赋初值,如果一个类定义了多个对象,对每个对象都要调用成员函数对数据成员赋初值,那么程序就会变得繁琐,所以用成员函数为数据成员赋初值不是一个好办法。 2.构造函数的作用 构造函数用于为对象分配空间和进行初始化,它属于某一个类,可以由系统自动生成。也可以由程序员编写,程序员根据初始化的要求设计构造函数及函数参数。 构造函数是一种特殊的成员函数,在程序中不需要写调用语句,在系统建立对象时由系统自觉调用执行。 构造函数的特点: 构造函数的名字与它的类名必须相同 它没有类型,也不返回值 它可以带参数,也可以不带参数 include <iostream>using namespace std;class Time {public:Time() {hour = 0;minute = 0;sec = 0;}void set_time();void show_time();private:int hour;int minute;int sec;};int main() {Time t1;t1.set_time();t1.show_time();Time t2;t2.show_time();return 0;}void Time::set_time() {cin >> hour;cin >> minute;cin >> sec;}void Time::show_time() {cout << hour << ":" << minute << ":" << sec << endl;} 在类Time中定义了构造函数Time,它与所在的类同名。在建立对象时自动执行构造函数,该函数的作用是为对象中的每个数据成员赋初值0。注意只有执行构造函数时才能为数据成员赋初值。 程序运行时首先建立对象t1,并对t1中的数据成员赋初值0,然后执行t1.set_time函数,从键盘输入新值给对象t1的数据成员,再输出t1的数据成员的值。接着建立对象t2,同时对t2中的数据成员赋初值0,最后输出t2的数据成员的初值。程序运行情况如下: 也可以在类内声明构造函数然后在类外定义构造函数。将程序修改为Time();然后在类外定义构造函数: Time::Time() {hour = 0;minute = 0;sec = 0;} 关于构造函数的使用,说明如下: 什么时候调用构造函数?当函数执行到对象定义语句时建立对象,此时就要调用构造函数,对象就有了自己的作用域,对象的生命周期开始了。 构造函数没有返回值,因此不需要在定义中声明类型。 构造函数不需要显式地调用,构造函数是在建立对象时由系统自动执行的,且只执行以此。构造函数一般定义为public。 在构造函数中除了可以对数据成员赋初值,还可以使用其他语句。 如果用户没有定义构造函数,C++系统会自动生成一个构造函数,而这个函数体是空的,不执行初始化操作。 3.带形参数的构造函数 (1)含义 可以采用带形参数的构造函数,在调用不同对象的构造函数时,从外边将不同的数据传递给构造函数,实现不同对象的初始化。 构造函数的首部的一般格式为:构造函数名(类型 形参1,类型 形参2,……)。在定义对象时指定实参,定义对象的格式为:类名 对象名(实参1,实参2,……)。 (2)【例3.2】 有两个长方柱,其长、宽、高分别为:(1)12,25,30(2)15,30,21编写程序,在类中用带参数的构造函数,计算它们的体积。 分析:可以在类中定义一个计算长方体体积的成员函数计算对象的体积。 include<iostream>using namespace std;class Box{public:Box(int,int,int); //声明int volume();private:int height;int width;int length;};Box::Box(int h,int w,int len) //长方体构造函数{height=h;width=w;length=len;}int Box::volume() //计算长方体体积{return(heightwidthlength);}int main(){Box box1(12,25,30); //定义对象box1cout<<"box1体积="<<box1.volume()<<endl;Box box2(15,30,21); //定义对象box2cout<<"box2体积="<<box2.volume()<<endl;return 0;} 【注】 带形参的构造函数在定义对象时必须指定实参 用这种方法可以实现不同对象的初始化 4.用参数初始化表对数据成员初始化 C++提供了参数初始化表的方法对数据成员初始化。这种方法不必再构造函数内对数据成员初始化,在函数的首部就能实现数据成员初始化。 函数名(类型1 形参1,类型2 形参2): 成员名1(形参1),成员名2(形参2){ } 功能:执行构造函数时,将形参1的值赋予成员1,将形参2的值赋予成员2,形参的值由定义对象时的实参值决定。此时定义对象的格式依然是带实参的形式:类名 对象名(实参1,实参2); 例:定义带形参初始化表的构造函数 Box::Box(int h,int w,int len):height(h),width(w),length(len){}//定义对象:Box box1(12,25,30);//……Box box2(15,30,21); 5.构造函数的重载 (1)含义 构造函数也可以重载。一个类可以有多个同名构造函数,函数参数的个数、参数的类型各不相同。 (2)【例3.3】 在【例3.2】的基础上定义两个构造函数,其中一个无参数,另一个有参数 include <iostream>using namespace std;class Box {public:Box();Box(int h, int w, int len): height(h), width(w), length(len) {}int volume();private:int height;int width;int length;};Box::Box() {height = 10;width = 10;length = 10;}int Box::volume() {return (height width length);}int main() {Box box1;cout << "box1 体积" << box1.volume() << endl;Box box2(15, 30, 25);cout << "box2 体积" << box2.volume() << endl;return 0;} (3)说明 不带形参的构造函数为默认构造函数,每个类只有一个默认构造函数,如果是系统自动给的默认构造函数,其函数体是空的 虽然每个类可以包含多个构造函数,但是创建对象时,系统仅执行其中一个 6.使用默认参数值的构造函数 (1)含义 C++允许在构造函数里为形参指定默认值,如果创建对象时,未给出相应的实参时,系统将用形参的默认值为形参赋值。 (2)格式 函数名(类型 形参1=常数,类型 形参2=常数,……); (3)【例3.4】 将【例3.3】中的构造函数改用带默认值的参数,长、宽、高的默认值都是10 include <iostream>using namespace std;class Box {public:Box(int w = 10, int h = 10, int len = 10);int volume();private:int height;int width;int length;};Box::Box(int w, int h, int len) {height = h;width = w;length = len;}int Box::volume() {return (height width length);}int main() {Box box1;cout << "box1 体积" << box1.volume() << endl;Box box2(15);cout << "box2 体积" << box2.volume() << endl;Box box3(15, 30);cout << "box3 体积" << box3.volume() << endl;Box box4(15, 30, 20);cout << "box4 体积" << box4.volume() << endl;return 0;} (4)说明 如果在类外定义构造函数,应该在声明构造函数时指定默认参数值,再定以函数时不再指定默认参数值 在声明构造函数时,形参名可以省略。例如:Box(int 10,int 10,int 10); 如果构造函数的所有形参都指定了默认值,在定义对象时,可以指定实参也可不指定实参。由于不指定实参也可以调用构造函数,因此全部形参都指定了默认值的构造函数也属于默认构造函数。为了避免歧义,不允许同时定义不带形参的构造函数和全部形参都指定默认值的构造函数。 不能同时使用重载构造函数和带默认值的构造函数 二、析构函数 1.含义 析构函数也是个特殊的成员函数,它的作用与构造函数相反,当对象的生命周期结束时,系统自动调用析构函数,收回对象占用的内存空间。 2.执行析构函数的时机 在一个函数内定义的对象当这个函数结束时,自动执行析构函数释放对象 static局部对象要到main函数结束或执行exit命令时才自动执行析构函数释放对象 全局对象(在函数外定义的对象)当main函数结束或执行exit命令时自动执行析构函数释放对象 如果用new建立动态对象,用delete时自动执行析构函数释放对象 3.特征 以~符号开始后跟类名 析构函数没有数据类型、返回值、形参。由于没有形参所以析构函数不能重载。一个类只有一个析构函数 如果程序员没有定义析构函数,C++编译系统会自动生成一个析构函数 【注】析构函数除了释放对象(资源)外,还可以执行程序员在最后一次适用对象后希望执行的任何操作。例如输出有关的信息。 4.【例3.5】包含构造函数和析构函数的C++程序 include <iostream>include <string>using namespace std;class Student {public:Student(int n, string nam, char s) {num = n;name = nam;sex = s;cout << "Constructor called." << endl;}~Student() {cout << "Destructor called." << endl;}void display() {cout << "num:" << num << endl;cout << "name:" << name << endl;cout << "sex:" << sex << endl;}private:int num;string name;char sex;};int main() {Student stud1(10010, "wang_li", 'f');stud1.display();Student stud2(10011, "zhang_han", 'm');stud2.display();return 0;}//main函数前声明的类其作用域是全局的 三、调用构造函数和析构函数的顺序 1.同一类存储类别的对象 一般情况下,调用析构函数的次序与调用构造函数的次序恰好相反:最先调用构造函数的对象,最后调用析构函数;最后调用构造函数的对象,最先调用析构函数。可简记为:先构造的后析构,后构造的先析构。它相当于一个栈,后进先出。 2.全局范围内定义的对象 在全局范围内定义的对象(在所有函数之外定义的对象),在文件中的所有函数(包括主函数)执行前调用构造函数。当主函数结束或执行exit函数时,调用析构函数。 3.局部自动对象 如果定义局部自动对象(在函数内定义对象),在创建对象时调用构造函数。如多次调用对象所在的函数,则每次创建对象时都调用构造函数。在函数调用结束时调用析构函数。 4.静态局部对象 如果在函数中定义静态局部对象,则在第一次调用该函数建立对象时调用构造函数,但在主函数结束或调用exit函数时才调用析构函数。 5.例 void fun(){student st1; //定义局部自动对象static student st2; //定义静态局部对象...} 对象st1是每次调用函数fun时调用构造函数。在函数fun结束时调用析构函数。 对象st2是第一次调用函数fun时调用构造函数,在函数fun结束时并不调用析构函数,到主函数结束时才调用析构函数 四、对象数组 1.含义 类是一种特殊的数据类型,它当然是C++的合法类型,自然可以定义对象数组。在一个对象数组中各个元素都是同类对象。例如一个班级有50个同学,每个学生有学号、年龄、成绩等属性,可以为这个班级建立一个对象数组,数组包括了50个元素:student std[50];。 可以这样建立构造函数:student::student(int 1001,int 18,int 60);。 在建立数组时,同样要调用构造函数。上面的数组有50个元素,要调用50次构造函数。如果构造函数有多个参数,C++要求:在等号后的花括号中为每个对象分别写出构造函数并指定实参。格式为: student st[n]={ student(实参1,实参2,实参3); …… student(实参1,实参2,实参3); }; 假定对象有三个数据成员:学号、年龄、成绩。下面定义有三个学生的对象数组: student st[3]={ student(1001,18,87); student(1002,19,76); student(1003,18,80); };//构造函数带实参 在建立对象数组时,分别调用构造函数,对每个对象初始化。每个元素的实参用括号括起来,实参的位置与构造函数形参的位置一一对应,不会混淆。 2.【例3.6】 include <iostream>using namespace std;class Box {public:Box(int h = 10, int w = 12, int len = 15): height(h), width(w), length(len) {} //int volume();private:int height;int width;int length;};int Box::volume() {return (height width length);}int main() {Box a[3] = {Box(10, 12, 15), Box(15, 18, 20), Box(16, 20, 26)};cout << "a[0]的体积是" << a[0].volume() << endl;cout << "a[1]的体积是" << a[1].volume() << endl;cout << "a[2]的体积是" << a[2].volume() << endl;return 0;}//每个数组元素是一个对象 五、对象指针 指针的含义是内存单元的地址,可以指向一般的变量,也可以指向对象。 1.指向对象的指针 对象要占据一片连续的内存空间,CPU实际都是按地址访问内存,所以对象在内存的其实地址是CPU确定对象在内存中位置的依据。这个起始地址称为对象指针。 C++的对象也可以参加取地址运算:&对象名。运算的结果是该对象的起始地址,也称对象的指针,要用与对象类型相同的指针变量保存运算的结果。 C++中定义对象的指针变量与定义其他的指针变量相似,格式如下:类名 变量名表。类名表示对象所属的类,变量名按标识符规则取名,两个变量名之间用逗号分隔。定义好指针变量后,必须先给赋予合法的地址后才能使用。 例如定义如下一个类: class Time {public:Time() {hour = 0;minute = 0;sec = 0;}void set_time();void show_time();private:int hour;int minute;int sec;};void Time::set_time() {cin >> hour;cin >> minute;cin >> sec;}void Time::show_time() {cout << hour << ":" << minute << ":" << sec << endl;} 在此基础上,有如下语句: Time pt; //定义pt是指向Time类对象的指针Time t1; //定义Time类对象t1pt=&t1; //将对象t1的地址赋予pt 程序在此基础上就可以用指针变量访问对象的成员。 (pt).hour;pt->hour;(pt).show_time();pt->show_time(); 2.指向对象成员的指针 (1)含义 对象由成员组成。对象占据的内存区是各个数据成员占据的内存区的总和。对象成员也有地址,即指针。这指针分指向数据成员的指针和指向成员函数的指针。 (2)指向对象公有数据成员的指针 定义数据成员的指针变量:数据类型 指针变量名(这里的数据类型是数据成员的数据类型) 计算公有数据成员的地址:&对象名.成员名 Time t1;int p1; //定义一个指向整型数据的指针变量p1=&t1.hour; //假定hour是公有成员cout<<p1<<endl; (3)指向对象成员函数的指针 定义指向成员函数的指针变量:数据类型(类名::变量名)(形参表); 数据类型是成员函数的类型;类名是对象所属的类;变量名按标识符取名;形参表:指定成员函数的形参表(形参个数、类型) 取成员函数的地址:&类名::成员函数名 给指针变量赋初值:指针变量名=&类名::成员函数名; 用指针变量调用成员函数:(对象名.指针变量名)([实参表]); 对象名:指定调用成员函数的对象;:明确其后的是一个指针变量;实参表:与成员函数的形参表对应,如无形参,可以省略实参表 (4)【例3.7】有关对象指针的使用方法 include <iostream>using namespace std;class Time {public:Time(int, int, int);int hour;int minute;int sec;void get_time();};Time::Time(int h, int m, int s) {hour = h;minute = m;sec = s;}void Time::get_time() {cout << hour << ":" << minute << ":" << sec << endl;}int main() {Time t1(10, 13, 56);int p1 = &t1.hour; //定义指向数据成员的指针p1cout << p1 << endl;t1.get_time(); //调用成员函数Time p2 = &t1; //定义指向对象t1的指针p2p2->get_time(); //用对象指针调用成员函数void(Time::p3)(); //定义指向成员函数的指针p3 = &Time::get_time; //给成员函数的指针赋初值(t1.p3)(); //用指向成员函数的指针调用成员函数return 0;} 【注】代码的34,35行可合并为:void(Time::p3)=&Time::get_time; 3.this指针 一个类的成员函数只有一个内存拷贝。类中不论哪个对象调用某个成员函数,调用的都是内存中同一个成员函数代码。例如Time类一个成员函数: void Time::get_time(){cout<<hour<<":"<<minute<<":"<<sec<<endl;}t1.get_time();t2.get_time(); 当不同对象的成员函数访问数据成员时,怎么保证访问的就是指定对象的数据成员?其实每个成员函数中都包含一个特殊的指针,他的名字是this指针。它是指向本类对象的指针。当对象调用成员函数时,它的值就是该对象的起始地址。所以为了区分不同对象访问成员函数,语法要求的调用成员函数的格式是:对象名.成员函数名(实参表)。从语法上明确是对象名所指的对象调用成员函数。This指针是隐式使用的,在调用成员函数时C++把对象的地址作为实参传递给this指针。例如成员函数定义如下: int Box::volume(){return(heightwidthlength);} C++编译成: int Box::volume(this){return(this->heightthis->widththis->length);} 对于计算长方体体积的成员函数volume,当对象调用它时,就把对象地址给this指针,编译程序将的地址作为实参调用成员函数:a.volume(&a);。实际上函数是计算(this->height)(this->width)(this->length),这时就等价计算(a.height)(a.width)(a.length)。 可以用(this)表示调用成员函数的对象。(this)就是this所指的对象。如前面的计算长方体体积的函数中return语句可以写成:return((this).height(this).width(this).length);注意,this两侧的括号不能省略。 C++通过编译程序,在对象调用成员函数时,把对象的地址赋予this指针,用this指针指向对象,实现了用同一个成员函数访问不同对象的数据成员。 六、共用数据的保护 如果既希望数据在一定范围内共享,又不愿它被随意修改,从技术上可以把数据指定为只读型的。C++提供const手段,将数据、对象、成员函数指定为常量,从而实现了只读要求,达到保护数据的目的。 1.常对象 定义格式: const 类名 对象名(实参表);或 类名 const 对象名(实参表); 把对象定义为常对象,对象中的数据成员就是常变量,在定义时必须带实参作为数据成员的初值,在程序中不允许修改常对象的数据成员值。 如果一个常对象的成员函数未被定义为常成员函数(除构造函数和析构函数外),则对象不能调用这样的函数。 const Time t1(10,16,36);t1.get_time();//错误,不能调用 为了访问常对象中的数据成员,要定义常成员函数。 void get_time() const 如果在常对象中要修改某个数据成员,C++提供了指定可变的数据成员方法。 格式:mutable 类型 数据成员 在定义数据成员时加mutable后,将数据成员声明为可变的数据成员,就可以用声明为const的成员函数修改它的值。 2.常对象成员 可以在声明普通对象时将数据成员或成员函数声明为常数据成员或常成员函数。 (1)常数据成员 格式: const 类型 数据成员名 将类中的数据成员定义为具有只读的性质。注意只能通过带参数初始表的构造函数对常数据成员进行初始化。例如: const int hour;Time::Time(int h){hour=h;...//错误}Time::Time(int h):hour(h){}//正确 在类中声明了某个常数据成员后,该类中每个对象的这个数据成员的值都是只读的,而每个对象的这个数据成员的值可以不同,由定义对象时给出。 (2)常成员函数 定义格式:类型 函数名 (形参表)const const是函数类型的一部分,在声明函数原型和定义函数时都要用const关键字。 【注1】const是函数类型的一个组成部分,因此在函数的实现部分也要使用关键字const。常成员函数不能修改对象的数据成员,也不能调用该类中没有由关键字const修饰的成员函数,从而保证了在常成员函数中不会修改数据成员的值。如果一个对象被说明为常对象,则通过该对象只能调用它的常成员函数。 【注2】一般成员函数可以访问或修改本类中非const数据成员。而常成员函数只能读本类中的数据成员,而不能写他们。 数据成员 非const成员函数 const成员函数 非const的数据成员 可以引用,也可以改变值 可以引用,但不可以改变值 const数据成员 可以引用,但不可以改变值 可以引用,但不可以改变值 const对象的数据成员 不允许引用和改变值 可以引用,但不可以改变值 常成员函数的使用: 如果类中有部分数据成员的值要求为只读,可以将它们声明为const,这样成员函数只能读这些数据成员的值,但不能修改它们的值 如果所有数据成员的值为只读,可将对象声明为const,在类中必须声明const成员函数,常对象只能通过常成员函数读数据成员 常对象不能调用非const成员函数 【注】如果常对象的成员函数未加const,编译系统将其当作非const成员函数;常成员函数不能调用非const成员函数 3.指向对象的常指针 如果在定义指向对象的指针时,使用了关键字const,他就是一个常指针,必须在定义时对其初始化,并且在程序运行中不能再修改指针的值。 格式:const 指针变量名=对象地址 Time t1(10,12,15),t2;Time const p1=&t1;//在此后,不能修改p1Time const p1=&t2;//错误语句 指向对象的常指针,在程序运行中始终指向的是同一个对象。即指针变量的值始终不变,但它所指对象的数据成员值可以修改。当需要将一个指针变量固定地与一个对象相联系时,就可将指针变量指定为const。往往用常指针作为函数的形参,目的是不允许在函数中修改指针变量的值,让它始终指向原来的对象。 4.指向常对象的指针变量 5.对象的常引用 (1)含义 前面学过引用是传递参数的有效方法。用引用形参时,形参变量与实参变量是同一个变量,在函数内修改引用形参也就是修改实参变量。如果用引用形参又不想让函数修改实参,可以使用常引用机制。 (2)格式 const 类名 &形参变量名 (3)【例3.8】对象的引用 include <iostream>using namespace std;class Time {public:Time(int, int, int);int hour;int minute;int sec;};Time::Time(int h, int m, int s) {hour = h;minute = m;sec = s;}void fun(Time &t) {t.hour = 18;}int main() {Time t1(10, 13, 56);fun(t1);cout << t1.hour << endl;return 0;} //如果用引用形参又不想让函数修改实参,可以使用常引用机制include <iostream>using namespace std;class Time {public:Time(int, int, int);void fun(int &t) {hour = t;t = 18;}int hour;int minute;int sec;};Time::Time(int h, int m, int s) {hour = h;minute = m;sec = s;}int main(int argc, char argc[]) {int x = 15;Time t1(10, 13, 56);t1.fun(x);cout << t1.hour << endl;cout << x << endl;return 0;} 6.const型数据小结 七、对象的动态建立与释放——动态建立对象 C++提供了new和delete运算符,实现动态分配、回收内存。他们也可以用来动态建立对象和释放对象。 格式:new 类名; 功能:在堆里分配内存,建立指定类的一个对象。如果分配成功,将返回动态对象的起始地址(指针);如不成功,返回0.为了保存这个指针,必须事先建立以类名为类型的指针变量。 格式:类名 指针变量名 Box pt;pt=new Box;//如果分配成功,就可以用指针变量pt访问动态对象的数据成员cout<<pt->height;cout<<pt->volume(); 当不再需要使用动态变量时,必须用delete运算符释放内存。 格式:delete 指针变量(存放的是用new运算返回的指针) 八、对象的赋值和复制 1.对象的赋值 (1)含义 如果一个类定义了两个或多个对象,则这些同类对象之间可以相互赋值。这里所指的对象的值含义是对象中所有数据成员的值。对象1、对象2都是已建立好的同类对象。 格式:对象1=对象2; (2)【例3.9】对象的赋值 include <iostream>using namespace std;class Box {public:Box(int = 10, int = 10, int = 10);int volume();private:int height;int width;int length;};Box::Box(int h, int w, int len) {height = h;width = w;length = len;}int Box::volume() {return (height width length);}int main() {Box box1(15, 30, 25), box2;cout << "box1 体积=" << box1.volume() << endl;box2 = box1;cout << "box2 体积=" << box2.volume() << endl;return 0;} (3)说明 对象的赋值只对数据成员操作 数据成员中不能含有动态分配的数据成员 2.对象的复制 (1)含义 对象赋值的前提是对象1和对象2是已经建立的对象。C++还可以按照一个对象克隆出另一个对象(从无到有),这就是复制对象。复制对象是创建对象的另一种方法(以前学过的是定义对象)。创建对象必须调用构造函数,复制对象要调用复制构造函数。以Box类为例,复制构造函数的形式是: Box::Box(const Box &b){height=b.height;width=b.width;length=b.length;} 复制构造函数只有一个参数,这个参数是本类的对象,且采用引用对象形式。为了防止修改数据,加const限制。构造函数的内容就是将实参对象的数据成员值赋予新对象对应的数据成员,如果程序中未定义复制构造函数,编译系统将提供默认的复制构造函数,复制类中的数据成员。 复制对象有两种格式: 类名 对象2(对象1);按对象1复制对象2 类名 对象2=对象1,对象3=对象1,……按对象1复制对象2、对象3 (2)【例】用复制对象的方法创建Box类的对象(用默认复制构造函数) //include "stdafx.h"include <iostream>using namespace std;class Box {public:Box(int = 10, int = 10, int = 10);int volume();private:int height;int width;int length;};Box::Box(int h, int w, int len) {height = h;width = w;length = len;}int Box::volume() {return (height width length);}int main() {Box box1(15, 30, 25);cout << "box1 体积=" << box1.volume() << endl;//Box box2=box1,box3=box2;Box box2(box1), box3(box2);cout << "box2 体积=" << box2.volume() << endl;cout << "box3 体积=" << box3.volume() << endl;return 0;} (3)说明 在以下情况调用复制构造函数: 在程序里用复制对象格式创建对象 当函数的参数是对象。调用函数时,需要将实参对象复制给形参对象,在此系统将调用复制构造函数 void fun(Box b){...}int main(){Box box1(12,15,18);fun(box1);return 0;} 在函数返回值是类的对象时,需要将函数里的对象复制一个临时对象当作函数值返回 Box f(){Box box1(12,15,18);return box1;}int main(){Box box2;box2=f();} 九、静态成员 C++用const保护数据对象不被修改,在实际中还需要共享数据,C++怎样提供数据共享机制?C++静态成员、友元实现对象之间、类之间的数据共享。 1.静态数据成员 (1)定义格式 static 类型 数据成员名 class Box{public:Box(int=10,int=10,int=10);int volume();private:static int height;int width;int length;}; (2)特性 设Box有n个对象box1..boxn。这n个对象的height成员在内存中共享一个整型数据空间。如果某个对象修改了height成员的值,其他n-1个对象的height成员值也被改变,从而达到n个对象共享height成员值的目的。 (3)说明 由于一个类的所有对象共享静态数据成员,所以不能用构造函数为静态数据成员初始化,只能在类外专门对其初始化。如果程序未对静态数据成员赋初值,则编译系统自动用0为它赋初值 格式:数据类型 类名::静态数据成员名=初值; 即可已用对象名引用静态成员,也可以用类名引用静态成员 静态数据成员在对象外单独开辟内存空间,只要在类中定义了静态成员,即使不定义对象,系统也为静态成员分配内存空间,可以被引用 在程序开始时为静态成员分配内存空间,直到程序结束才释放内存空间 静态数据成员作用域是它的类的作用域(如果在一个函数内定义类,他的静态数据成员作用域就是这个函数)在此范围内可以用“类名::静态成员名”的形式访问静态数据成员 (4)【例3.10】引用静态数据成员 include <iostream>using namespace std;class Box {public:Box(int, int);int volume();static int height;int width;int length;};Box::Box(int w, int len) {width = w;length = len;}int Box::volume() {return (height width length);}int Box::height = 10;int main() {Box a(15, 20), b(25, 30);cout << a.height << endl;cout << b.height << endl;cout << Box::height << endl;cout << a.volume() << endl;cout << b.volume() << endl;return 0;} 2.静态成员函数 (1)含义 C++提供静态成员函数,用它访问静态数据成员,静态成员函数不属于某个对象而属于类。 类中的非静态成员函数可以访问类中所有数据成员;而静态成员函数可以直接访问类的静态成员,不能直接访问非静态成员。 静态成员函数定义格式: static 类型 成员函数(形参表){……} 调用公有静态成员函数格式: 类名::成员函数(实参表) 引用方式 静态数据成员 非静态数据成员 静态成员函数 成员名 对象名.成员名 非静态成员函数 成员名 成员名 【注】静态成员函数不带this指针,所以必须用对象名和成员运算符.访问非静态成员;而普通成员函数有this指针,可以在函数中直接引用成员名。 (2)【例3.11】关于引用非静态成员和静态成员的具体方法 class Student {private:int num;int age;float score;static float sum;static int count;public:Student(int, int, int);void total();static float average();};Student::Student(int m, int a, int s) {num = m;age = a;score = s;}void Student::total() {sum += score;count++;}float Student::average() {return (sum / count);}float Student::sum = 0;int Student::count = 0;int main() {Student stud[3] = {Student(1001, 18, 70), Student(1002, 19, 79), Student(1005, 20, 98)};int n;cout << "请输入学生的人数:";cin >> n;for (int i = 1; i < n; i++)stud[i].total();cout << n << "个学生的平均成绩是:"cout << Student::average() << endl;return 0;} (3)【例】具有静态数据成员的point类 include <iostream>using namespace std;class Point {private:int X, Y;static int countP;public:Point(int xx = 0, int yy = 0) {X = xx;Y = yy;countP++;}Point(Point &p); //复制构造函数int GetX() {return X;}int GetY() {return Y;}int GetC() {cout << "Object id=" << countP << endl;return 0;} };Point::Point(Point &p) {X = p.X;Y = p.Y;countP++;}int Point::countP = 0;int main() {Point A(4, 5);cout << "Point A," << A.GetC() << "," << A.GetY();A.GetC();Point B(A);cout << "Point B," << B.GetC() << "," << B.GetY();B.GetC();return 0;} (4)静态成员函数举例 include <iostream>using namespace std;class application {private:static int global;public:static void f();static void g();};int application::global = 0;void application::f() {global = 5;}void application::g() {cout << global << endl;}int main() {application::f();application::g();return 0;} class A{private:int x; //非静态成员public:static void f(A a);};void A::f(A a){cout<<x; //对x的引用是错误的cout<<a.x; //正确} (5)具有静态数据、函数成员的Point类 include <iostream>using namespace std;class Point { //point类声明private: //私有数据成员int X, Y;static int countP;public: //外部接口Point(int xx = 0, int yy = 0) {X = xx;Y = yy;countP++;}Point(Point &p); //复制构造函数int GetX() {return X;}int GetY() {return Y;}static int GetC() {cout << "Object id=" << countP << endl;return 0;} };Point::Point(Point &p) {X = p.X;Y = p.Y;countP++;}int Point::countP = 0;int main() //主函数实现{ Point A(4, 5); //声明对象Acout << "Point A," << A.GetC() << "," << A.GetY();A.GetC(); //输出对象号,对象名引用Point B(A); //声明对象Bcout << "Point B," << B.GetC() << "," << B.GetY();Point::GetC(); //输出对象号,类名引用return 0;} (6)静态成员函数、静态数组及其初始化 include <iostream>include <stdio.h>using namespace std;class A {static int a[20];int x;public:A(int xx = 0) {x = xx;}static void in();static void out();void show() {cout << "x=" << x << endl;} };int A::a[20] = {0, 0};void A::in() {cout << "input a[20]:" << endl;for (int i = 0; i < 20; ++i)cin >> a[i];}void A::out() {for (int i = 0; i < 20; ++i)cout << "a[" << i << "]=" << a[i] << endl;}int main() {A::in();A::out();A a;a.out();a.show();return 0;} 十、友元 除了在同类对象之间共享数据外,类和类之间也可以共享数据。类的私有成员只能被类的成员函数访问,但是有时需要在类的外部访问类的私有成员,C++通过友元的手段实现这一特殊要求。友元可以是不属于任何类的一般函数,也可以是另一个类的成员函数,还可以是整个的一个类(这个类中的所有成员函数都可以成为友元函数)。 友元是C++提供的一种破坏数据封装和数据隐藏的机制。为了保证数据的完整性及数据封装与隐藏的原则,建议尽量不使用或少使用友元。 1.友元函数 (1)含义 如果在A类外定义一个函数(它可以是另一个类的成员函数,也可以是一个普通函数),在A类中声明该函数是A的友元函数后,这个函数就能访问A类中的所有成员。 (2)格式 friend 类型 类1::成员函数x(类2 &对象); friend 类型 函数y(类2 &对象); //类1是另一个类的类名,类2是本类的类名 功能:第一种形式在类2中声明类1的成员函数x为友元函数。第二种形式在类2中声明一个普通函数y是友元函数。 友元函数内访问对象的格式: 对象名.成员名 因为友元不是成员函数,它不属于类,所以它访问对象时必须冠以对象名。定义友元函数时形参通过定义引用对象,这样在友元函数内就能访问实参对象了。 (3)【例3.12】将普通函数声明为友元函数 include <iostream>using namespace std;class Time {public:Time(int, int, int);friend void display(Time &);private:int hour;int minute;int sec;};Time::Time(int h, int m, int s) {hour = h;minute = m;sec = s;}void display(Time &t) {cout << t.hour << ":" << t.minute << ":" << t.sec << endl;}int main() {Time t1(10, 13, 56);display(t1);return 0;} 【例】使用友元函数计算两点距离 include <iostream>include <cmath>using namespace std;class Point {public:Point(int xx = 0, int yy = 0) {X = xx;Y = yy;}int GetX() {return X;}int GetY() {return Y;}friend double Distance(Point &a, Point &b);private:int X, Y;};double Distance(Point &a, Point &b) {double dx = a.X - b.X;double dy = b.Y - b.Y;return sqrt(dx dx + dy dy);}int main() {Point p1(3.0, 5.0), p2(4.0, 6.0);double d = Distance(p1, p2);cout << "The distance is " << d << endl;return 0;} include <iostream>include <math.h>using namespace std;class TPoint {private:double x, y;public:TPoint(double a, double b) {x = a;y = b;cout << "点:(" << x << "," << y << ")" << endl;}friend double distance(TPoint &a, TPoint &b) {return sqrt((a.x - b.x) (a.x - b.x) + (a.y - b.y) (a.y - b.y));} };int main(int argc, char argv[]) {TPoint myp1(2.1, 1.3), myp2(5.4, 6.5);cout << "两点之间的距离为:";cout << distance(myp1, myp2) << endl;return 0;} (4)友元成员函数 【例3.13】将成员函数声明为友元函数 例子中有两个类Time和Date。其中Time类里定义了成员函数void display(Date &),他除了显示时间外还要显示日期,这个日期通过引用形参访问。在Date类中将Time类的display成员函数定义为友元函数,允许display访问Date类的所有私有数据成员。 include <iostream>using namespace std;class Date;class Time {private:int hour;int minute;int sec;public:Time(int, int, int);void display(const Date &);};class Date {private:int month;int day;int year;public:Date(int, int, int);friend void Time::display(const Date &);};Time::Time(int h, int m, int s) hour = h;minute = m;sec = s;}void Time::display(const Date &da) {cout << da.month << "/" << da.day << "/" << da.year << endl;cout << hour << ":" << minute << ":" << sec << endl;}Date::Date(int m, int d, int y) {month = m;day = d;year = y;}int main() {Time t1(10, 13, 56);Date d1(12, 25, 2004);t1.display(d1);return 0;} 【注1】友元是单向的,此例中声明Time的成员函数display是Date类的友元,允许它访问Date类的所有成员,但不等于说Date类的成员函数也是Time类的友元。 【注2】一个函数(包括普通函数和成员函数)可以被多个类声明为“朋友”,这样就可以引用多个类中的私有数据 【注3】例如可以将例3.13程序中的display函数作为类外的普通函数,分别在Time和Date类中将display声明为友元。Display就可以分别引用Time和Date类的对象的私有数据成员。输出年月日和时分秒。 2.友元类 C++允许将一个类声明为另一个类的友元。假定A类是B类的友元类,A类中所有的成员函数都是B类的友元函数,在B类中声明A类为友元类的格式:friend A; 【注1】友元关系是单向的,不是双向的 【注2】友元关系不能传递 【注3】实际中一般不把整个类声明友元类,而只是将确有需要的成员函数声明为友元函数 include <iostream>include <math.h>using namespace std;class B;class A {private:int x;public:A() {x = 3;}friend class B;};class B {public:void disp1(A temp) {temp.x++;cout << "disp1:x" << temp.x << endl;}void disp2(A temp) {temp.x--;cout << "disp2:x" << temp.x << endl;} };int main(int argc, char argv[]) {A a;B b;b.disp1(a);b.disp2(a);return 0;} class Student; //前向声明,类名声明class Teacher{privated:int noOfStudents;Student pList[100];public:void assignGrades(Student &s); //赋成绩void adjustHours(Student &s); //调整学时数};class Student{privated:int hours;float gpa;public:friend class Teacher;};void Teacher::assignGrades(Student &s){...};void Teacher::adjustHours(Student &s){...}; //函数定义必须在Student定义之后 十一、类模板 1.含义 对于功能相同而只是数据类型不同的函数,不必须定义出所有函数,我们定义一个可对任何类型变量操作的函数模板。对于功能相同的类而数据类型不同,不必定义出所有类,只要定义一个可对任何类进行操作的类模板。 例如定义比较两个整数的类和比较两个浮点数的类,这两个类做的工作是相似的,所以可以用类模板,减少工作量。 class Compare_int{private:int x,y;public:Compare_int(int a,int b){x=a;y=b;}int max(){return (x>y)?x:y;}int min(){return (x<y)?x:y;} };class Compare_float{private:float x,y;public:Compare_float(float a,float b){x=a;y=b;}float max(){return (x>y)?x:y;}float min(){return (x<y)?x:y;} }; 2.定义类模板的格式 template <class 类型参数名> class 类模板名 {……} 类型参数名:按标识符取名。如有多个类型参数,每个类型参数都要以class为前导,两个类型参数之间用逗号分隔 类模板名:按标识符取名 类模板{...}内定义数据成员和成员函数的规则:用类型参数作为数据类型,用类模板名作为类 template<class numtype>class Compare{private:numtype x,y;public:Compare(numtype a,numtype b){x=a,y=b;}numtype max(){return (x>y)?x:y;}numtype min(){return (x<y)?x:y;} }; 3.在类模板外定义成员函数的语法 类型参数 类模板名<类型参数>::成员函数名(形参表){……} 例如在类模板外定义max和min成员函数 template<class numtype>class Compare{public:Compare(numtype a,numtype b){x=a,y=b;}numtype max();numtype min();private:numtype x,y;};numtype Compare<numtype>::max(){return(x>y)?x:y;}numtype Compare<numtype>::min(){return(x<y)?x:y;} 4.使用类模板时,定义对象的格式 类模板名 <实际类型名>对象名; 类模板名 <实际类型名>对象名(实参表); 例如:Compare <int>cmp2(4,7) 在编译时, 编译系统用int取代类模板中的类型参数numtype,就把类模板具体化了。这时Compare<int>将相当于Compare_int类。 5.【例3.14】声明类模板,实现两个整数、浮点数和字符的比较,求出大数和小数 include <iostream>using namespace std;template<class numtype>class Compare {private:numtype x, y;public:Compare(numtype a, numtype b) {x = a;y = b;}numtype max() {return (x > y) ? x : y;}numtype min() {return (x < y) ? x : y;} };int main() {Compare<int>cmp1(3, 7);cout << cmp1.max() << "是两个整数中的大数." << endl;cout << cmp1.min() << "是两个整数中的小数." << endl;Compare<float>cmp2(45.78, 93.6);cout << cmp2.max() << "是两个浮点数中的大数." << endl;cout << cmp2.min() << "是两个浮点数中的小数." << endl;Compare<char>cmp3('a', 'A');cout << cmp3.max() << "是两个字符中的大者." << endl;cout << cmp3.min() << "是两个字符中的小者." << endl;return 0;} 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_72318954/article/details/127064376。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-01-29 12:38:23
544
转载
转载文章
...转载内容。原文链接:https://blog.csdn.net/m0_37337849/article/details/104016531。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 从开发人员到机器学习从业人员 14天 Python是应用机器学习发展最快的平台之一。 在本小课程中,您将发现如何在14天内使用Python入门,建立准确的模型以及自信地完成预测建模机器学习项目。 这是重要的职位。您可能要为其添加书签。 在我的新书中,通过16个循序渐进的教程,3个项目和完整的python代码,探索如何用熊猫准备数据,使用scikit-learn拟合和评估模型,以及更多内容。 让我们开始吧。 2016年10月更新:更新了sklearn v0.18的示例。 2018年2月更新:更新Python和库版本。 2018年3月更新:增加了备用链接以下载一些数据集,因为原始文件似乎已被删除。 2019年5月更新:修复了scikit-learn最新版本的警告消息。 Dave Young的 Python机器学习迷你课程 照片,保留一些权利。 迷你课程面向谁? 在开始之前,请确保您在正确的位置。 下面的列表提供了有关本课程针对谁的一些一般指导。 如果您没有完全匹配这些点,请不要惊慌,您可能只需要在一个或另一个区域刷牙以跟上。 知道如何编写一些代码的开发人员。这意味着,一旦您了解基本语法,就可以选择像Python这样的新编程语言,这对您来说并不重要。这并不意味着您是一名向导编码员,而是可以毫不费力地遵循基本的类似于C的语言。 懂一点机器学习的开发人员。这意味着您了解机器学习的基础知识,例如交叉验证,一些算法和偏差方差折衷。这并不意味着您是机器学习博士,而是您知道地标或知道在哪里查找。 这门迷你课程既不是Python的教科书,也不是机器学习的教科书。 从一个懂一点机器学习的开发人员到一个可以使用Python生态系统获得结果的开发人员,Python生态系统是专业机器学习的新兴平台。 在Python机器学习方面需要帮助吗? 参加我为期2周的免费电子邮件课程,发现数据准备,算法等(包括代码)。 单击立即注册,并获得该课程的免费PDF电子书版本。 立即开始免费的迷你课程! 迷你课程概述 该微型课程分为14节课。 您可以每天完成一堂课(推荐),也可以在一天内完成所有课程(核心!)。这实际上取决于您有空的时间和您的热情水平。 以下是14个课程,可帮助您入门并提高使用Python进行机器学习的效率: 第1课:下载并安装Python和SciPy生态系统。 第2课:深入了解Python,NumPy,Matplotlib和Pandas。 第3课:从CSV加载数据。 第4课:了解具有描述性统计信息的数据。 第5课:通过可视化了解数据。 第6课:通过预处理数据准备建模。 第7课:使用重采样方法进行算法评估。 第8课:算法评估指标。 第9课:现场检查算法。 第10课:模型比较和选择。 第11课:通过算法调整提高准确性。 第12课:利用集合预测提高准确性。 第13课:完成并保存模型。 第14课:Hello World端到端项目。 每节课可能需要您60秒钟或最多30分钟。花点时间按照自己的进度完成课程。提出问题,甚至在以下评论中发布结果。 这些课程希望您能开始学习并做事。我会给您提示,但每节课的重点是迫使您学习从哪里寻求有关Python平台的帮助(提示,我直接在此博客上获得了所有答案,请使用搜索特征)。 在早期课程中,我确实提供了更多帮助,因为我希望您树立一些信心和惯性。 挂在那里,不要放弃! 第1课:下载并安装Python和SciPy 您必须先访问平台才能开始使用Python进行机器学习。 今天的课程很简单,您必须在计算机上下载并安装Python 3.6平台。 访问Python主页并下载适用于您的操作系统(Linux,OS X或Windows)的Python。在计算机上安装Python。您可能需要使用特定于平台的软件包管理器,例如OS X上的macports或RedHat Linux上的yum。 您还需要安装SciPy平台和scikit-learn库。我建议使用与安装Python相同的方法。 您可以使用Anaconda一次安装所有内容(更加容易)。推荐给初学者。 通过在命令行中键入“ python”来首次启动Python。 使用以下代码检查所有您需要的版本: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Python version import sys print('Python: {}'.format(sys.version)) scipy import scipy print('scipy: {}'.format(scipy.__version__)) numpy import numpy print('numpy: {}'.format(numpy.__version__)) matplotlib import matplotlib print('matplotlib: {}'.format(matplotlib.__version__)) pandas import pandas print('pandas: {}'.format(pandas.__version__)) scikit-learn import sklearn print('sklearn: {}'.format(sklearn.__version__)) 如果有任何错误,请停止。现在该修复它们了。 需要帮忙?请参阅本教程: 如何使用Anaconda设置用于机器学习和深度学习的Python环境 第2课:深入了解Python,NumPy,Matplotlib和Pandas。 您需要能够读写基本的Python脚本。 作为开发人员,您可以很快选择新的编程语言。Python区分大小写,使用哈希(#)进行注释,并使用空格指示代码块(空格很重要)。 今天的任务是在Python交互环境中练习Python编程语言的基本语法和重要的SciPy数据结构。 练习作业,在Python中使用列表和流程控制。 练习使用NumPy数组。 练习在Matplotlib中创建简单图。 练习使用Pandas Series和DataFrames。 例如,以下是创建Pandas DataFrame的简单示例。 1 2 3 4 5 6 7 8 dataframe import numpy import pandas myarray = numpy.array([[1, 2, 3], [4, 5, 6]]) rownames = ['a', 'b'] colnames = ['one', 'two', 'three'] mydataframe = pandas.DataFrame(myarray, index=rownames, columns=colnames) print(mydataframe) 第3课:从CSV加载数据 机器学习算法需要数据。您可以从CSV文件加载自己的数据,但是当您开始使用Python进行机器学习时,应该在标准机器学习数据集上进行练习。 今天课程的任务是让您轻松地将数据加载到Python中并查找和加载标准的机器学习数据集。 您可以在UCI机器学习存储库上下载和练习许多CSV格式的出色标准机器学习数据集。 练习使用标准库中的CSV.reader()将CSV文件加载到Python 中。 练习使用NumPy和numpy.loadtxt()函数加载CSV文件。 练习使用Pandas和pandas.read_csv()函数加载CSV文件。 为了让您入门,下面是一个片段,该片段将直接从UCI机器学习存储库中使用Pandas来加载Pima Indians糖尿病数据集。 1 2 3 4 5 6 Load CSV using Pandas from URL import pandas url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] data = pandas.read_csv(url, names=names) print(data.shape) 到现在为止做得很好!等一下 到目前为止有什么问题吗?在评论中提问。 第4课:使用描述性统计数据理解数据 将数据加载到Python之后,您需要能够理解它。 您越了解数据,可以构建的模型就越精确。了解数据的第一步是使用描述性统计数据。 今天,您的课程是学习如何使用描述性统计信息来理解您的数据。我建议使用Pandas DataFrame上提供的帮助程序功能。 使用head()函数了解您的数据以查看前几行。 使用shape属性查看数据的维度。 使用dtypes属性查看每个属性的数据类型。 使用describe()函数查看数据的分布。 使用corr()函数计算变量之间的成对相关性。 以下示例加载了皮马印第安人糖尿病发病数据集,并总结了每个属性的分布。 1 2 3 4 5 6 7 Statistical Summary import pandas url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] data = pandas.read_csv(url, names=names) description = data.describe() print(description) 试试看! 第5课:通过可视化了解数据 从昨天的课程继续,您必须花一些时间更好地了解您的数据。 增进对数据理解的第二种方法是使用数据可视化技术(例如,绘图)。 今天,您的课程是学习如何在Python中使用绘图来单独理解属性及其相互作用。再次,我建议使用Pandas DataFrame上提供的帮助程序功能。 使用hist()函数创建每个属性的直方图。 使用plot(kind ='box')函数创建每个属性的箱须图。 使用pandas.scatter_matrix()函数创建所有属性的成对散点图。 例如,下面的代码片段将加载糖尿病数据集并创建数据集的散点图矩阵。 1 2 3 4 5 6 7 8 9 Scatter Plot Matrix import matplotlib.pyplot as plt import pandas from pandas.plotting import scatter_matrix url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] data = pandas.read_csv(url, names=names) scatter_matrix(data) plt.show() 样本散点图矩阵 第6课:通过预处理数据准备建模 您的原始数据可能未设置为最佳建模形式。 有时您需要对数据进行预处理,以便最好地将问题的固有结构呈现给建模算法。在今天的课程中,您将使用scikit-learn提供的预处理功能。 scikit-learn库提供了两个用于转换数据的标准习语。每种变换在不同的情况下都非常有用:拟合和多重变换以及组合的拟合与变换。 您可以使用多种技术来准备数据以进行建模。例如,尝试以下一些方法 使用比例和中心选项将数值数据标准化(例如,平均值为0,标准偏差为1)。 使用范围选项将数值数据标准化(例如,范围为0-1)。 探索更高级的功能工程,例如Binarizing。 例如,下面的代码段加载了Pima Indians糖尿病发病数据集,计算了标准化数据所需的参数,然后创建了输入数据的标准化副本。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Standardize data (0 mean, 1 stdev) from sklearn.preprocessing import StandardScaler import pandas import numpy url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = pandas.read_csv(url, names=names) array = dataframe.values separate array into input and output components X = array[:,0:8] Y = array[:,8] scaler = StandardScaler().fit(X) rescaledX = scaler.transform(X) summarize transformed data numpy.set_printoptions(precision=3) print(rescaledX[0:5,:]) 第7课:使用重采样方法进行算法评估 用于训练机器学习算法的数据集称为训练数据集。用于训练算法的数据集不能用于为您提供有关新数据的模型准确性的可靠估计。这是一个大问题,因为创建模型的整个思路是对新数据进行预测。 您可以使用称为重采样方法的统计方法将训练数据集划分为子集,一些方法用于训练模型,而另一些则被保留,并用于估计看不见的数据的模型准确性。 今天课程的目标是练习使用scikit-learn中可用的不同重采样方法,例如: 将数据集分为训练集和测试集。 使用k倍交叉验证来估计算法的准确性。 使用留一法交叉验证来估计算法的准确性。 下面的代码段使用scikit-learn通过10倍交叉验证来评估Pima Indians糖尿病发作的Logistic回归算法的准确性。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Evaluate using Cross Validation from pandas import read_csv from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.linear_model import LogisticRegression url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] kfold = KFold(n_splits=10, random_state=7) model = LogisticRegression(solver='liblinear') results = cross_val_score(model, X, Y, cv=kfold) print("Accuracy: %.3f%% (%.3f%%)") % (results.mean()100.0, results.std()100.0) 您获得了什么精度?在评论中让我知道。 您是否意识到这是中间点?做得好! 第8课:算法评估指标 您可以使用许多不同的指标来评估数据集上机器学习算法的技能。 您可以通过cross_validation.cross_val_score()函数在scikit-learn中指定用于测试工具的度量,默认值可用于回归和分类问题。今天课程的目标是练习使用scikit-learn软件包中可用的不同算法性能指标。 在分类问题上练习使用“准确性”和“ LogLoss”度量。 练习生成混淆矩阵和分类报告。 在回归问题上练习使用RMSE和RSquared指标。 下面的代码段演示了根据Pima Indians糖尿病发病数据计算LogLoss指标。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Cross Validation Classification LogLoss from pandas import read_csv from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.linear_model import LogisticRegression url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] kfold = KFold(n_splits=10, random_state=7) model = LogisticRegression(solver='liblinear') scoring = 'neg_log_loss' results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring) print("Logloss: %.3f (%.3f)") % (results.mean(), results.std()) 您得到了什么日志损失?在评论中让我知道。 第9课:抽查算法 您可能无法事先知道哪种算法对您的数据效果最好。 您必须使用反复试验的过程来发现它。我称之为现场检查算法。scikit-learn库提供了许多机器学习算法和工具的接口,以比较这些算法的估计准确性。 在本课程中,您必须练习抽查不同的机器学习算法。 对数据集进行抽查线性算法(例如线性回归,逻辑回归和线性判别分析)。 抽查数据集上的一些非线性算法(例如KNN,SVM和CART)。 抽查数据集上一些复杂的集成算法(例如随机森林和随机梯度增强)。 例如,下面的代码片段对Boston House Price数据集上的K最近邻居算法进行了抽查。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 KNN Regression from pandas import read_csv from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.neighbors import KNeighborsRegressor url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/housing.data" names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV'] dataframe = read_csv(url, delim_whitespace=True, names=names) array = dataframe.values X = array[:,0:13] Y = array[:,13] kfold = KFold(n_splits=10, random_state=7) model = KNeighborsRegressor() scoring = 'neg_mean_squared_error' results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring) print(results.mean()) 您得到的平方误差是什么意思?在评论中让我知道。 第10课:模型比较和选择 既然您知道了如何在数据集中检查机器学习算法,那么您需要知道如何比较不同算法的估计性能并选择最佳模型。 在今天的课程中,您将练习比较Python和scikit-learn中的机器学习算法的准确性。 在数据集上相互比较线性算法。 在数据集上相互比较非线性算法。 相互比较同一算法的不同配置。 创建比较算法的结果图。 下面的示例在皮马印第安人发病的糖尿病数据集中将Logistic回归和线性判别分析进行了比较。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Compare Algorithms from pandas import read_csv from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.linear_model import LogisticRegression from sklearn.discriminant_analysis import LinearDiscriminantAnalysis load dataset url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] prepare models models = [] models.append(('LR', LogisticRegression(solver='liblinear'))) models.append(('LDA', LinearDiscriminantAnalysis())) evaluate each model in turn results = [] names = [] scoring = 'accuracy' for name, model in models: kfold = KFold(n_splits=10, random_state=7) cv_results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring) results.append(cv_results) names.append(name) msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std()) print(msg) 哪种算法效果更好?你能做得更好吗?在评论中让我知道。 第11课:通过算法调整提高准确性 一旦找到一种或两种在数据集上表现良好的算法,您可能希望提高这些模型的性能。 提高算法性能的一种方法是将其参数调整为特定的数据集。 scikit-learn库提供了两种方法来搜索机器学习算法的参数组合。在今天的课程中,您的目标是练习每个。 使用您指定的网格搜索来调整算法的参数。 使用随机搜索调整算法的参数。 下面使用的代码段是一个示例,该示例使用网格搜索在Pima Indians糖尿病发病数据集上的Ridge回归算法。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Grid Search for Algorithm Tuning from pandas import read_csv import numpy from sklearn.linear_model import Ridge from sklearn.model_selection import GridSearchCV url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] alphas = numpy.array([1,0.1,0.01,0.001,0.0001,0]) param_grid = dict(alpha=alphas) model = Ridge() grid = GridSearchCV(estimator=model, param_grid=param_grid, cv=3) grid.fit(X, Y) print(grid.best_score_) print(grid.best_estimator_.alpha) 哪些参数取得最佳效果?你能做得更好吗?在评论中让我知道。 第12课:利用集合预测提高准确性 您可以提高模型性能的另一种方法是组合来自多个模型的预测。 一些模型提供了内置的此功能,例如用于装袋的随机森林和用于增强的随机梯度增强。可以使用另一种称为投票的合奏将来自多个不同模型的预测组合在一起。 在今天的课程中,您将练习使用合奏方法。 使用随机森林和多余树木算法练习装袋。 使用梯度增强机和AdaBoost算法练习增强合奏。 通过将来自多个模型的预测组合在一起来练习投票合奏。 下面的代码段演示了如何在Pima Indians糖尿病发病数据集上使用随机森林算法(袋装决策树集合)。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Random Forest Classification from pandas import read_csv from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.ensemble import RandomForestClassifier url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] num_trees = 100 max_features = 3 kfold = KFold(n_splits=10, random_state=7) model = RandomForestClassifier(n_estimators=num_trees, max_features=max_features) results = cross_val_score(model, X, Y, cv=kfold) print(results.mean()) 你能设计出更好的合奏吗?在评论中让我知道。 第13课:完成并保存模型 找到有关机器学习问题的良好模型后,您需要完成该模型。 在今天的课程中,您将练习与完成模型有关的任务。 练习使用模型对新数据(在训练和测试过程中看不到的数据)进行预测。 练习将经过训练的模型保存到文件中,然后再次加载。 例如,下面的代码片段显示了如何创建Logistic回归模型,将其保存到文件中,之后再加载它以及对看不见的数据进行预测。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 Save Model Using Pickle from pandas import read_csv from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression import pickle url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] test_size = 0.33 seed = 7 X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=test_size, random_state=seed) Fit the model on 33% model = LogisticRegression(solver='liblinear') model.fit(X_train, Y_train) save the model to disk filename = 'finalized_model.sav' pickle.dump(model, open(filename, 'wb')) some time later... load the model from disk loaded_model = pickle.load(open(filename, 'rb')) result = loaded_model.score(X_test, Y_test) print(result) 第14课:Hello World端到端项目 您现在知道如何完成预测建模机器学习问题的每个任务。 在今天的课程中,您需要练习将各个部分组合在一起,并通过端到端的标准机器学习数据集进行操作。 端到端遍历虹膜数据集(机器学习的世界) 这包括以下步骤: 使用描述性统计数据和可视化了解您的数据。 预处理数据以最好地揭示问题的结构。 使用您自己的测试工具抽查多种算法。 使用算法参数调整来改善结果。 使用集成方法改善结果。 最终确定模型以备将来使用。 慢慢进行,并记录结果。 您使用什么型号?您得到了什么结果?在评论中让我知道。 结束! (看你走了多远) 你做到了。做得好! 花一点时间,回头看看你已经走了多远。 您最初对机器学习感兴趣,并强烈希望能够使用Python练习和应用机器学习。 您可能是第一次下载,安装并启动Python,并开始熟悉该语言的语法。 在许多课程中,您逐渐地,稳定地学习了预测建模机器学习项目的标准任务如何映射到Python平台上。 基于常见机器学习任务的配方,您使用Python端到端解决了第一个机器学习问题。 使用标准模板,您所收集的食谱和经验现在可以自行解决新的和不同的预测建模机器学习问题。 不要轻描淡写,您在短时间内就取得了长足的进步。 这只是您使用Python进行机器学习的起点。继续练习和发展自己的技能。 喜欢点下关注,你的关注是我写作的最大支持 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_37337849/article/details/104016531。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-11 10:04:06
92
转载
转载文章
...转载内容。原文链接:https://blog.csdn.net/qq_39384184/article/details/79288150。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 写在开头的话 从很久之前就开始构思,一直到今天才开始动笔。这篇文章是送给那些希望更深刻地了解这个世界的人,然而,知道的多了,也不一定是件好事。另外注明,本篇文章全部为作者的个人观点。 引子 现在人工智能越来越火,我们的故事,要从它开始说起。 相信很多人都听说过王者荣耀,即使自己没有亲自玩过,应该也对这个游戏不陌生。我曾经也沉迷这个游戏,当时我有一个朋友,特别喜欢玩小号1。她说,玩小号匹配出来的对手都特别垃圾,玩起来就像切萝卜一样爽。当时我的感觉是玩小号匹配出来的都是新手,技术不高也不足为奇,然而在接下来的事情当中,我发现事情并没有这么简单。首先有网友反映在匹配时遇到了自己多年不用的小号2,也有网友反映,在连输很多局之后,会有一局赢得异常简单,就好像对手都是机器人一样3。 网友称这一类玩家为“ 电脑人”,还总结出了“ 电脑人”的若干特征: 4 1.加载速度非常快 2.进入游戏后在泉水的行为,走路姿势差不多,行动路线也差不多 3.查不到战绩 4.无法沟通 5.很怪异或者说无法解释的名字 但是,真正的玩家和所谓的“电脑人”仅靠这些特征真的可以完全的分辨开吗?这些“电脑人”,究竟是一些行为怪异的玩家,还是天美给玩家的一个惊喜,这并不是我这篇文章所想要讲述的重点。我想说的是,在人类日复一日研究人工智能,希望其更接近人类的同时,已经开始出现了人类与人工智能分不清的现象。更严重的情况是,已经开始了怀疑人类为人工智能的现象。 不难想象,在科技足够发达的未来,这一现象会愈加严重,人类究竟与人工智能有什么本质上的区别,在以下的内容中我将给出解释。 灵魂的存在 自古以来就有一个强大的神话:人类拥有永恒的灵魂。虽然肉体会消失,但是灵魂是永存的。尽管这一神话有人相信,有人不信,但是它确确实实的影响着我们的现实生活,是我们现有的法律,政治的经济制度的重要支柱。 如果灵魂确实存在的话,那么它作为区别人与人工智能的本质区别再合适不过了。但是,灵魂究竟是什么东西,或者说,它究竟存在与哪里。至今为止,科学家研究了动植物和人类的各个角落,也没有发现类似“灵魂”的东西。 又或许说,灵魂根本就是看不见,摸不着的。那灵魂又是如何产生的呢?从最开始的宇宙开始形成,灵魂显然是不存在的。而灵魂又是不可分割的,永恒不变的,那么在生物一步步进化的过程中,究竟是在那一刻,灵魂突然出现。由达尔文的《进化论》,由最初的单细胞生物到最后的人,都可以用基因突变来解释,但是究竟在那一代,突变产生了第一个具有灵魂的生物?人们不得而知。当然也有可能,灵魂是在某个时刻,由“上帝”加入到这个世界的。 本篇文章中,“灵魂”作为我们的唯一存在来描述,下文我会具体的解释。 心流的存在 与灵魂的存在相反,心灵的存在,是一个不争的事实,是一个我们每时每刻都在接受的明确的现实。心流包含两方面:感觉和欲望。 我们可以非常明确的知道,我们自身,是有感觉和欲望的,以及,人工智能,是不具备感觉和欲望。在这里,我想我需要简述一下笛卡尔的心灵哲学5,笛卡尔认为,人不是机器,但是动物是机器,只有人类才拥有感觉和欲望,其他动物都是没有心灵的自动物。所以当有人踢狗的时候,狗会自动的退缩,躲避,并开始狂吠,但是没有任何的感觉和欲望,就像自动贩卖机一样,按下开关,出来商品。所以人类对待动物,也很少有怜悯。早期17世纪的医生和学者对活狗进行解剖,观察其内脏器官如何运作,但完全不用麻醉,他们也不会感到不安。因为在他们眼中这没有什么不对,就像现在人们把机器拆开看看内部的电路是如何工作一样6。 当然,现在有了很多的动物保护者,他们认为动物和人类是平等的,也有自己的意识,也有喜怒哀乐。在《剑桥意识宣言》中提到:“各种证据均指出,非人类动物拥有构成意识所需的神经结构,神经化学及神经生理基础物质,并且能展现出有意图的行为。因此,证据已充分显示,负责产生意识的神经基础物质并非人类所独有。非人类动物,包括所有哺乳动物,鸟类,以及章鱼等其他生物,均拥有这些神经基础物质。” 确实,我承认心流并不只存在与人类,而是存在与所有生物之中。但是笛卡尔的理念也并不是完全错误的,因为心流虽然是生命的特质,但不是人类的特质,我想笛卡尔的理论中把心灵换做灵魂可能会更妥当一些,尽管灵魂的存在目前还是个未知数。或许我说完接下来的例子,会解释的更充分些。 对于心流的存在,生物学家给出了一个简单的不能再简单的解释,那就是,如果没有感觉和欲望,那么就无法解释生物的各种行为。拿人来做例子或许会比较难以理解,但是拿动物做例子却简单的过分,那就是:当人去踢狗的时候,如果狗没有感到疼痛,愤怒,产生躲避的欲望,那么它就会因此而受到伤害。也就是说,这些种种的感觉与欲望,是那些最原始的东西,即进化论为了使生命更好的活着而产生的,只因人类把自己放在比动物高很多个层次的阶级上,而忽略了这个很简单的问题。 心流的产生 问题的关键,在于心流的产生。这样稍微改动下,上文所提到的笛卡尔的理论或许会更合理些:人与动物都存在感觉与欲望,但是动物的感觉与欲望是依靠自身结构在外界的输入下产生的一种内部输出,而人类的感觉和欲望则是一种可以被称作“灵魂”的东西控制下产生的。从而确立了人类高于动物的地位。 前者很容易理解,现在的科学研究也已经很透彻了。例如兔子见到狮子,电信号便从眼睛传到大脑,刺激某些神经元,又结合之前的记忆神经元,放出更多的信号,整条线路的神经元一一受到刺激,最后指令传到肾上腺,让肾上腺素传遍全身,心脏的跳动也随之加快,肾上腺素也使信号的传递速度更快了些,同时在运动中枢的神经元也向腿部肌肉发出信号,让肌肉随着信号有序的完成伸展和收缩。外在的表现就是兔子从狮子旁边逃之夭夭。至于其中的恐惧的感觉和想要逃跑的欲望,都只不过是内部神经元信号的一种状态。 而对于后者,则难以解释。正因为对前者的理解透彻,对后者的解释才显得很难说通。两个过程本来是相同的过程,只是后者多了对于每个人有且唯一的“灵魂”的存在的介入,但是,它究竟何时介入,如何介入,正如前者所描述的,在这样一个信号的传递网络里,究竟有哪一步,是需要“灵魂”来控制的。思前想后,好像并没有必须存在的那么一个步骤。也就是可能,前者所描述的那个信号传递步骤,适用于所有生物,当然也包括人类。 简单的总结 简单的总结一下,关于确定存在的心流和不确定存在的灵魂。 首先,心流是确定存在,并且存在与所有生物当中,是生物进化产生的,为了更好的活着。其中,记忆储存的是之前的心流状态,当然不是全部的心流状态;感觉是当时的生物内部信号的一种状态,成为现态;欲望是一种内部输出,欲望,感觉和记忆相结合再结合会产生对外部的输出。 其次,“灵魂”在这里表示为一个个体的有且唯一的存在。它不参与生物的任何过程,但是却有选择的监视生物的心流。也可以这样说,生物体本身有选择的展示一部分心流以供灵魂检阅,灵魂也是从生物所展示的心流中有选择的检阅。这才是人类的特质。我们真正的自我,就是这样一个有且唯一的灵魂,它无法介入它所在的生物体的任何事情,但是可以在一定程度上知道它所在的生物体的状态。 也可以这样理解,生物体本身是一个封装的很好的复杂程序,心流则是程序的内部变量,程序不断的接收外部输入并向外部输出,我们本身的灵魂所在则置身于程序之外,就像我们坐在电脑前,无法知道这个复杂程序究竟是如何运行的,但是通过它输出在显示屏中的一些内部变量,即心流的一些数据,我们可以大致的判断出,程序在干些什么。对于这样的解释你可能难以接受,接下来的两个例子或许会让你接受这一事实。 现在科学家只要扫描人脑,就能在测试者自己有所感知之前,预测他们会有什么欲望,会做出怎样的决定。例如,在一次实验中,受试者躺在一台巨大的脑部设备里,两手各自拿着一个开关,受试者可以随机的选择在何时按下那个开关。而科学家通过观察受试者的大脑神经活动,就能在受试者做决定之前知道受试者做了怎样的决定。也就是说,当这些内部输出被外部观测者“灵魂”所察觉的时候,心流自身已经做出了决定。7 或许你没有亲自做过这个实验,并不相信实验的结论,但是还有一个实验,你现在就可以给自己做一个测试。相信对于大家心算100以内的乘法没有什么问题,那么请各位充分运用自己的自由意志,即本文中的“灵魂”去控制你的大脑心算5672,注意在计算的过程中不要让自己的大脑去思考其他的任何事情,用尽快的速度计算出结果。当然,你会发现你根本做不到,无论如何你都无法控制那先奇奇怪怪的想法出现在你的大脑里,至于大脑为什么会像你控制的那样去计算5672,接下来我会给出人类的大脑思维模型。 生物的模型 生物的模型分为两部分,一部分我称为确定机,一部分我称为概率机。 确定机 确定机是指只要输入确定,那么就会产生确定输出的部分,而对于输入的概率性则不予考虑。例如,当生物多次看到同一个画面的时候会在大脑里形成同样的图像,因为每次输入的光信号都是一样的,在生物内部进行的信号传递过程也是一样的,所以在大脑里形成的图像输出也是一样的。现在人类所生产的绝大多数工具就是一个确定机的模型,如果相同的输入,不管输入多少次都会得到相同的输出。确定机也是生物模型的基础部分,构成生物的绝大部分,实际上,除了大脑,生物的任何部分都是一个确定机的模型,而大脑也有一部分的确定机模型。对于确定机,所有的内部过程和输出都不会被“灵魂”检阅,当然生物上可以通过解剖或其他更先进的方式去检查生物内部确定机的工作状态。 概率机 概率机是指即使输入确定,输出的确定性也指限制在一定的概率范围之内,会以不同但是给定的概率输出多个输出。当然给定的概率可以是确定机给出的确定概率(只在输入确定的情况下才确定),也可以是概率机给出的概率概率。概率机构成生物的大脑部分,当然一部分低等生物只由确定机构成。对于概率机,有一部分输出会被“灵魂”检阅,而“灵魂”是否检阅取决于“灵魂”本身,当然,对于概率机的工作状态,也可以通过解剖或其他更先进的方式去检查。 生物思考的过程 对于不同的生物,大脑可以同时进行的事情是有限的。就像现在的电脑手机一样,有严格的内存限制,对于大脑来说,同时启用着多个线程,每个线程所占用的内存不同,但是所有线程所占用的内存总和不得超限。对于每个线程,会随机的考虑一些事件,这些事件包括记忆中的事件,和当时正在发生的事件,对于每个事件出现在线程中的概率不同。 不同事件的概率遵循的规律大致有以下几条: 1.对记忆中的事件,事件越久远概率越低。 2.对当时正在发生的事件,概率大致相同。 3.与当时线程中事件有关的事件概率高,无关的概率低。 4.与线程中的事件相关的个数越多,概率越高 5.对不同的心流状态,概率分配有所不同。 6.每个个体对不同的事件有不同的概率分配方案。 7.待补充。 可以说,大脑中的一切过程都是随机的。那这样的话,生物的思考过程究竟如何进行呢?其实很简单,单个概率可能代表随机,但是多个概率就有可能表示必然。我还是举那个5672的例子,为什么你会真的去心算这个结果,大致的过程是这样的,如果大脑的思考频率以毫秒计的话,假设看5672用了200毫秒,其中每毫秒除了这一事件,还有其他的99个事件,那么刚看完就开始计算的概率为1-0.99200=0.8660203251,看完后1秒之内还没有开始计算的概率为0.991000= 4.31712474107 e-5,可以说即使大脑中随机的杂念再多,思考的过程也会如约开始。假设线程中与事件相关的事件出现的概率为0.3,同理,在开始计算后1秒内大部分时间都在思考与计算有关的内容,当然也有可能会走神,即出现大范围的无关事件,但是这只会影响最后计算出结果的时间先后,并不会影响整个过程的进行。这也就是说,大脑的思考过程,其实就是由多个概率所确定的必然事件。 灵魂的旁观者 综上所述,作为个体唯一存在的“灵魂”处在一个旁观者的位置,而所谓的自由意识,主观意识不过是概率机的产物。那么这样就产生了两个问题。 第一个问题,你不觉得“灵魂”所在的肉体更像是一个囚笼吗?“灵魂”可以偶尔窥探外界,但无法做任何事情,只能默默得看着一切发生。尴尬的以为是自己做的,实际上就像看电影,每次看电影的时候,我都会以为我处在电影里面的世界。而现实就是,因为“灵魂”只能看肉体主演的这部“电影”,所以看的入迷了。其实,人类从解放双手,开发智力,使用工具,到探索宇宙,最大的进步莫过于发现自己其实仍处于囚笼之中。要怪就怪这囚笼建造地太过美好。而创建这一囚笼的“上帝”,把我们关在肉体这个囚笼里面,并且把我们的感知限制在有限的范围内,有限的嗅觉,16至20000赫兹的听觉,400纳米到700纳米的视觉,在感知中隔绝了我们对我们的唯一存在——“灵魂”的感知。 第二个问题,对于自己本身来说,表征自己存在的“灵魂”自己是可以确定的,而对于其他人,因为限制了对“灵魂”的感知,所以无法确认别人,别的生物体内这一旁观者的存在。也可以这么理解,你知道自己被关在一间囚笼里面,而不知道隔壁囚笼是否也关了一个存在。那么世界这个大监狱里面,可能只有一小部分,甚至只有你一个孤独的存在。而究竟为何我们或我被困于此,我不得而知,可能就像我们做研究的时候的小白鼠一样,“上帝”也在观察着我们或我的一举一动,这也是我这篇文章取这个题目的原因。小白鼠的逆袭,一开始我只是平凡的活着,说实在的其实做一个平凡人安安稳稳的一生还是很不错的,但是知道了这个囚笼的存在,就总想着打破它,因为在想到可能只有自己一个存在的时候,会是多么的孤独。就像一个人去看电影,哪怕电影的内容再精彩,再引人入胜,但当电影结束的时候,你才发现,原来我是一个人来的呀。 联系作者 有志向联系读者的:1612860@mail.nankai.edu.cn 未完待续。。。 本篇文章相当于《小白鼠的逆袭》的导读,下一篇我会出逆袭第一步:《思考的最简单模型及其编程实现》,可能用C++,也可能用Java,Python,看作者的心情吧。预计近几个月出吧,快则个把月,多则不知道了,毕竟作者本身还是比较忙的,忙七忙八也不知道在忙什么,嗯,就这样。 小号:在有多个游戏账号的前提下,等级高的号叫作大号,等级较低或者新创建的号叫作小号。 ↩︎ https://baijiahao.baidu.com/s?id=1586028525096880374&wfr=spider&for=pc. ↩︎ http://tieba.baidu.com/p/5127924201. ↩︎ http://tieba.baidu.com/p/5127924201. ↩︎ http://www.lwlm.com/sixiangzhexue/201704/840820.htm. ↩︎ 详细讨论请参见:《未来简史:从智人到智神》第三章:人类的特质。 ↩︎ “Unconscious determinants of free decisions in the human brain” in nature neuroscience, http://www.rifters.com/real/articles/NatureNeuroScience_Soon_et_al.pdf. ↩︎ 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_39384184/article/details/79288150。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-02 11:30:59
620
转载
转载文章
...转载内容。原文链接:https://blog.csdn.net/itcodexy/article/details/109574173。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 本文来源于今日头条: 本次分享将主要介绍今日头条推荐系统概览以及内容分析、用户标签、评估分析,内容安全等原理。 一、系统概览 推荐系统,如果用形式化的方式去描述实际上是拟合一个用户对内容满意度的函数,这个函数需要输入三个维度的变量。 第一个维度是内容。头条现在已经是一个综合内容平台,图文、视频、UGC小视频、问答、微头条,每种内容有很多自己的特征,需要考虑怎样提取不同内容类型的特征做好推荐。 第二个维度是用户特征。包括各种兴趣标签,职业、年龄、性别等,还有很多模型刻划出的隐式用户兴趣等。 第三个维度是环境特征。这是移动互联网时代推荐的特点,用户随时随地移动,在工作场合、通勤、旅游等不同的场景,信息偏好有所偏移。 结合三方面的维度,模型会给出一个预估,即推测推荐内容在这一场景下对这一用户是否合适。 这里还有一个问题,如何引入无法直接衡量的目标? 推荐模型中,点击率、阅读时间、点赞、评论、转发包括点赞都是可以量化的目标,能够用模型直接拟合做预估,看线上提升情况可以知道做的好不好。 但一个大体量的推荐系统,服务用户众多,不能完全由指标评估,引入数据指标以外的要素也很重要。 比如广告和特型内容频控。像问答卡片就是比较特殊的内容形式,其推荐的目标不完全是让用户浏览,还要考虑吸引用户回答为社区贡献内容。这些内容和普通内容如何混排,怎样控制频控都需要考虑。 此外,平台出于内容生态和社会责任的考量,像低俗内容的打压,标题党、低质内容的打压,重要新闻的置顶、加权、强插,低级别账号内容降权都是算法本身无法完成,需要进一步对内容进行干预。 下面我将简单介绍在上述算法目标的基础上如何对其实现。 前面提到的公式y = F(Xi ,Xu ,Xc),是一个很经典的监督学习问题。可实现的方法有很多,比如传统的协同过滤模型,监督学习算法Logistic Regression模型,基于深度学习的模型,Factorization Machine和GBDT等。 一个优秀的工业级推荐系统需要非常灵活的算法实验平台,可以支持多种算法组合,包括模型结构调整。因为很难有一套通用的模型架构适用于所有的推荐场景。 现在很流行将LR和DNN结合,前几年Facebook也将LR和GBDT算法做结合。今日头条旗下几款产品都在沿用同一套强大的算法推荐系统,但根据业务场景不同,模型架构会有所调整。 模型之后再看一下典型的推荐特征,主要有四类特征会对推荐起到比较重要的作用。 第一类是相关性特征,就是评估内容的属性和与用户是否匹配。显性的匹配包括关键词匹配、分类匹配、来源匹配、主题匹配等。像FM模型中也有一些隐性匹配,从用户向量与内容向量的距离可以得出。 第二类是环境特征,包括地理位置、时间。这些既是bias特征,也能以此构建一些匹配特征。 第三类是热度特征。包括全局热度、分类热度,主题热度,以及关键词热度等。内容热度信息在大的推荐系统特别在用户冷启动的时候非常有效。 第四类是协同特征,它可以在部分程度上帮助解决所谓算法越推越窄的问题。 协同特征并非考虑用户已有历史。而是通过用户行为分析不同用户间相似性,比如点击相似、兴趣分类相似、主题相似、兴趣词相似,甚至向量相似,从而扩展模型的探索能力。 模型的训练上,头条系大部分推荐产品采用实时训练。实时训练省资源并且反馈快,这对信息流产品非常重要。用户需要行为信息可以被模型快速捕捉并反馈至下一刷的推荐效果。 我们线上目前基于storm集群实时处理样本数据,包括点击、展现、收藏、分享等动作类型。 模型参数服务器是内部开发的一套高性能的系统,因为头条数据规模增长太快,类似的开源系统稳定性和性能无法满足,而我们自研的系统底层做了很多针对性的优化,提供了完善运维工具,更适配现有的业务场景。 目前,头条的推荐算法模型在世界范围内也是比较大的,包含几百亿原始特征和数十亿向量特征。 整体的训练过程是线上服务器记录实时特征,导入到Kafka文件队列中,然后进一步导入Storm集群消费Kafka数据,客户端回传推荐的label构造训练样本,随后根据最新样本进行在线训练更新模型参数,最终线上模型得到更新。 这个过程中主要的延迟在用户的动作反馈延时,因为文章推荐后用户不一定马上看,不考虑这部分时间,整个系统是几乎实时的。 但因为头条目前的内容量非常大,加上小视频内容有千万级别,推荐系统不可能所有内容全部由模型预估。 所以需要设计一些召回策略,每次推荐时从海量内容中筛选出千级别的内容库。召回策略最重要的要求是性能要极致,一般超时不能超过50毫秒。 召回策略种类有很多,我们主要用的是倒排的思路。离线维护一个倒排,这个倒排的key可以是分类,topic,实体,来源等。 排序考虑热度、新鲜度、动作等。线上召回可以迅速从倒排中根据用户兴趣标签对内容做截断,高效的从很大的内容库中筛选比较靠谱的一小部分内容。 二、内容分析 内容分析包括文本分析,图片分析和视频分析。头条一开始主要做资讯,今天我们主要讲一下文本分析。文本分析在推荐系统中一个很重要的作用是用户兴趣建模。 没有内容及文本标签,无法得到用户兴趣标签。举个例子,只有知道文章标签是互联网,用户看了互联网标签的文章,才能知道用户有互联网标签,其他关键词也一样。 另一方面,文本内容的标签可以直接帮助推荐特征,比如魅族的内容可以推荐给关注魅族的用户,这是用户标签的匹配。 如果某段时间推荐主频道效果不理想,出现推荐窄化,用户会发现到具体的频道推荐(如科技、体育、娱乐、军事等)中阅读后,再回主feed,推荐效果会更好。 因为整个模型是打通的,子频道探索空间较小,更容易满足用户需求。只通过单一信道反馈提高推荐准确率难度会比较大,子频道做的好很重要。而这也需要好的内容分析。 上图是今日头条的一个实际文本case。可以看到,这篇文章有分类、关键词、topic、实体词等文本特征。 当然不是没有文本特征,推荐系统就不能工作,推荐系统最早期应用在Amazon,甚至沃尔玛时代就有,包括Netfilx做视频推荐也没有文本特征直接协同过滤推荐。 但对资讯类产品而言,大部分是消费当天内容,没有文本特征新内容冷启动非常困难,协同类特征无法解决文章冷启动问题。 今日头条推荐系统主要抽取的文本特征包括以下几类。首先是语义标签类特征,显式为文章打上语义标签。 这部分标签是由人定义的特征,每个标签有明确的意义,标签体系是预定义的。 此外还有隐式语义特征,主要是topic特征和关键词特征,其中topic特征是对于词概率分布的描述,无明确意义;而关键词特征会基于一些统一特征描述,无明确集合。 另外文本相似度特征也非常重要。在头条,曾经用户反馈最大的问题之一就是为什么总推荐重复的内容。这个问题的难点在于,每个人对重复的定义不一样。 举个例子,有人觉得这篇讲皇马和巴萨的文章,昨天已经看过类似内容,今天还说这两个队那就是重复。 但对于一个重度球迷而言,尤其是巴萨的球迷,恨不得所有报道都看一遍。解决这一问题需要根据判断相似文章的主题、行文、主体等内容,根据这些特征做线上策略。 同样,还有时空特征,分析内容的发生地点以及时效性。比如武汉限行的事情推给北京用户可能就没有意义。 最后还要考虑质量相关特征,判断内容是否低俗,色情,是否是软文,鸡汤? 上图是头条语义标签的特征和使用场景。他们之间层级不同,要求不同。 分类的目标是覆盖全面,希望每篇内容每段视频都有分类;而实体体系要求精准,相同名字或内容要能明确区分究竟指代哪一个人或物,但不用覆盖很全。 概念体系则负责解决比较精确又属于抽象概念的语义。这是我们最初的分类,实践中发现分类和概念在技术上能互用,后来统一用了一套技术架构。 目前,隐式语义特征已经可以很好的帮助推荐,而语义标签需要持续标注,新名词新概念不断出现,标注也要不断迭代。其做好的难度和资源投入要远大于隐式语义特征,那为什么还需要语义标签? 有一些产品上的需要,比如频道需要有明确定义的分类内容和容易理解的文本标签体系。语义标签的效果是检查一个公司NLP技术水平的试金石。 今日头条推荐系统的线上分类采用典型的层次化文本分类算法。 最上面Root,下面第一层的分类是像科技、体育、财经、娱乐,体育这样的大类,再下面细分足球、篮球、乒乓球、网球、田径、游泳…,足球再细分国际足球、中国足球,中国足球又细分中甲、中超、国家队…,相比单独的分类器,利用层次化文本分类算法能更好地解决数据倾斜的问题。 有一些例外是,如果要提高召回,可以看到我们连接了一些飞线。这套架构通用,但根据不同的问题难度,每个元分类器可以异构,像有些分类SVM效果很好,有些要结合CNN,有些要结合RNN再处理一下。 上图是一个实体词识别算法的case。基于分词结果和词性标注选取候选,期间可能需要根据知识库做一些拼接,有些实体是几个词的组合,要确定哪几个词结合在一起能映射实体的描述。 如果结果映射多个实体还要通过词向量、topic分布甚至词频本身等去歧,最后计算一个相关性模型。 三、用户标签 内容分析和用户标签是推荐系统的两大基石。内容分析涉及到机器学习的内容多一些,相比而言,用户标签工程挑战更大。 今日头条常用的用户标签包括用户感兴趣的类别和主题、关键词、来源、基于兴趣的用户聚类以及各种垂直兴趣特征(车型,体育球队,股票等)。还有性别、年龄、地点等信息。 性别信息通过用户第三方社交账号登录得到。年龄信息通常由模型预测,通过机型、阅读时间分布等预估。 常驻地点来自用户授权访问位置信息,在位置信息的基础上通过传统聚类的方法拿到常驻点。 常驻点结合其他信息,可以推测用户的工作地点、出差地点、旅游地点。这些用户标签非常有助于推荐。 当然最简单的用户标签是浏览过的内容标签。但这里涉及到一些数据处理策略。 主要包括: 一、过滤噪声。通过停留时间短的点击,过滤标题党。 二、热点惩罚。对用户在一些热门文章(如前段时间PG One的新闻)上的动作做降权处理。理论上,传播范围较大的内容,置信度会下降。 三、时间衰减。用户兴趣会发生偏移,因此策略更偏向新的用户行为。因此,随着用户动作的增加,老的特征权重会随时间衰减,新动作贡献的特征权重会更大。 四、惩罚展现。如果一篇推荐给用户的文章没有被点击,相关特征(类别,关键词,来源)权重会被惩罚。当 然同时,也要考虑全局背景,是不是相关内容推送比较多,以及相关的关闭和dislike信号等。 用户标签挖掘总体比较简单,主要还是刚刚提到的工程挑战。头条用户标签第一版是批量计算框架,流程比较简单,每天抽取昨天的日活用户过去两个月的动作数据,在Hadoop集群上批量计算结果。 但问题在于,随着用户高速增长,兴趣模型种类和其他批量处理任务都在增加,涉及到的计算量太大。 2014年,批量处理任务几百万用户标签更新的Hadoop任务,当天完成已经开始勉强。集群计算资源紧张很容易影响其它工作,集中写入分布式存储系统的压力也开始增大,并且用户兴趣标签更新延迟越来越高。 面对这些挑战。2014年底今日头条上线了用户标签Storm集群流式计算系统。改成流式之后,只要有用户动作更新就更新标签,CPU代价比较小,可以节省80%的CPU时间,大大降低了计算资源开销。 同时,只需几十台机器就可以支撑每天数千万用户的兴趣模型更新,并且特征更新速度非常快,基本可以做到准实时。这套系统从上线一直使用至今。 当然,我们也发现并非所有用户标签都需要流式系统。像用户的性别、年龄、常驻地点这些信息,不需要实时重复计算,就仍然保留daily更新。 四、评估分析 上面介绍了推荐系统的整体架构,那么如何评估推荐效果好不好? 有一句我认为非常有智慧的话,“一个事情没法评估就没法优化”。对推荐系统也是一样。 事实上,很多因素都会影响推荐效果。比如侯选集合变化,召回模块的改进或增加,推荐特征的增加,模型架构的改进在,算法参数的优化等等,不一一举例。 评估的意义就在于,很多优化最终可能是负向效果,并不是优化上线后效果就会改进。 全面的评估推荐系统,需要完备的评估体系、强大的实验平台以及易用的经验分析工具。 所谓完备的体系就是并非单一指标衡量,不能只看点击率或者停留时长等,需要综合评估。 很多公司算法做的不好,并非是工程师能力不够,而是需要一个强大的实验平台,还有便捷的实验分析工具,可以智能分析数据指标的置信度。 一个良好的评估体系建立需要遵循几个原则,首先是兼顾短期指标与长期指标。我在之前公司负责电商方向的时候观察到,很多策略调整短期内用户觉得新鲜,但是长期看其实没有任何助益。 其次,要兼顾用户指标和生态指标。既要为内容创作者提供价值,让他更有尊严的创作,也有义务满足用户,这两者要平衡。 还有广告主利益也要考虑,这是多方博弈和平衡的过程。 另外,要注意协同效应的影响。实验中严格的流量隔离很难做到,要注意外部效应。 强大的实验平台非常直接的优点是,当同时在线的实验比较多时,可以由平台自动分配流量,无需人工沟通,并且实验结束流量立即回收,提高管理效率。 这能帮助公司降低分析成本,加快算法迭代效应,使整个系统的算法优化工作能够快速往前推进。 这是头条A/B Test实验系统的基本原理。首先我们会做在离线状态下做好用户分桶,然后线上分配实验流量,将桶里用户打上标签,分给实验组。 举个例子,开一个10%流量的实验,两个实验组各5%,一个5%是基线,策略和线上大盘一样,另外一个是新的策略。 实验过程中用户动作会被搜集,基本上是准实时,每小时都可以看到。但因为小时数据有波动,通常是以天为时间节点来看。动作搜集后会有日志处理、分布式统计、写入数据库,非常便捷。 在这个系统下工程师只需要设置流量需求、实验时间、定义特殊过滤条件,自定义实验组ID。系统可以自动生成:实验数据对比、实验数据置信度、实验结论总结以及实验优化建议。 当然,只有实验平台是远远不够的。线上实验平台只能通过数据指标变化推测用户体验的变化,但数据指标和用户体验存在差异,很多指标不能完全量化。 很多改进仍然要通过人工分析,重大改进需要人工评估二次确认。 五、内容安全 最后要介绍今日头条在内容安全上的一些举措。头条现在已经是国内最大的内容创作与分发凭条,必须越来越重视社会责任和行业领导者的责任。如果1%的推荐内容出现问题,就会产生较大的影响。 现在,今日头条的内容主要来源于两部分,一是具有成熟内容生产能力的PGC平台 一是UGC用户内容,如问答、用户评论、微头条。这两部分内容需要通过统一的审核机制。如果是数量相对少的PGC内容,会直接进行风险审核,没有问题会大范围推荐。 UGC内容需要经过一个风险模型的过滤,有问题的会进入二次风险审核。审核通过后,内容会被真正进行推荐。这时如果收到一定量以上的评论或者举报负向反馈,还会再回到复审环节,有问题直接下架。 整个机制相对而言比较健全,作为行业领先者,在内容安全上,今日头条一直用最高的标准要求自己。 分享内容识别技术主要鉴黄模型,谩骂模型以及低俗模型。今日头条的低俗模型通过深度学习算法训练,样本库非常大,图片、文本同时分析。 这部分模型更注重召回率,准确率甚至可以牺牲一些。谩骂模型的样本库同样超过百万,召回率高达95%+,准确率80%+。如果用户经常出言不讳或者不当的评论,我们有一些惩罚机制。 泛低质识别涉及的情况非常多,像假新闻、黑稿、题文不符、标题党、内容质量低等等,这部分内容由机器理解是非常难的,需要大量反馈信息,包括其他样本信息比对。 目前低质模型的准确率和召回率都不是特别高,还需要结合人工复审,将阈值提高。目前最终的召回已达到95%,这部分其实还有非常多的工作可以做。别平台。 如果需要机器学习视频,可以在公众号后台聊天框回复【机器学习】,可以免费获取编程视频 。 你可能还喜欢 数学在机器学习中到底有多重要? AI 新手学习路线,附上最详细的资源整理! 提升机器学习数学基础,推荐7本书 酷爆了!围观2020年十大科技趋势 机器学习该如何入门,听听过来人的经验! 长按加入T圈,接触人工智能 觉得内容还不错的话,给我点个“在看”呗 本篇文章为转载内容。原文链接:https://blog.csdn.net/itcodexy/article/details/109574173。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-01-13 09:21:23
322
转载
转载文章
...转载内容。原文链接:https://blog.csdn.net/yuhaibing111/article/details/127682399。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 浅谈 前段时间有个客户问我,为啥你们项目都搞了好几年了,为啥线上还会经常反馈卡顿,呃呃呃。。 于是根据自己的理解以及网上大佬们的思路总结了一篇关于卡顿优化这块的文章。 卡顿问题是一个老生常谈的话题了,一个App的好坏,卡顿也许会占一半,它直接决定了用户的留存问题,各大app排行版上,那些知名度较高,但是排行较低的,可能就要思考思考是不是和你app本身有关系了。 卡顿一直是性能优化中相对重要的一个点,因为其涉及了UI绘制、垃圾回收(GC)、线程调度以及Binder,CPU,GPU方面等JVM以及FrameWork相关知识 如果能做好卡顿优化,那么也就间接证明你对Android FrameWork的理解之深。 接下来我们就来讲解下卡顿方面的知识。 什么是卡顿: 对用户来讲就是界面不流畅,滞顿。 场景如下: 1.视频加载慢,画面卡顿,卡死,黑屏 2.声音卡顿,音画不同步。 3.动画帧卡顿,交互响应慢 4.滑动不跟手,列表自动更新,滚动不流畅 5.网络响应慢,数据和画面展示慢、 6.过渡动画生硬。 7.界面不可交互,卡死,等等现象。 卡顿是如何发生的 卡顿产生的原因一般都比较复杂,如CPU内存大小,IO操作,锁操作,低效的算法等都会引起卡顿。 站在开发的角度看: 通常我们讲,屏幕刷新率是60fps,需要在16ms内完成所有的工作才不会造成卡顿。 为什么是16ms,不是17,18呢? 下面我们先来理清在UI绘制中的几个概念: SurfaceFlinger: SurfaceFlinger作用是接受多个来源的图形显示数据Surface,合成后发送到显示设备,比如我们的主界面中:可能会有statusBar,侧滑菜单,主界面,这些View都是独立Surface渲染和更新,最后提交给SF后,SF根据Zorder,透明度,大小,位置等参数,合成为一个数据buffer,传递HWComposer或者OpenGL处理,最终给显示器。 在显示过程中使用到了bufferqueue,surfaceflinger作为consumer方,比如windowmanager管理的surface作为生产方产生页面,交由surfaceflinger进行合成。 VSYNC Android系统每隔16ms发出VSYNC信号,触发对UI进行渲染,VSYNC是一种在PC上很早就有应用,可以理解为一种定时中断技术。 tearing 问题: 早期的 Android 是没有 vsync 机制的,CPU 和 GPU 的配合也比较混乱,这也造成著名的 tearing 问题,即 CPU/GPU 直接更新正在显示的屏幕 buffer 造成画面撕裂。 后续 Android 引入了双缓冲机制,但是 buffer 的切换也需要一个比较合适的时机,也就是屏幕扫描完上一帧后的时机,这也就是引入 vsync 的原因。 早先一般的屏幕刷新率是 60fps,所以每个 vsync 信号的间隔也是 16ms,不过随着技术的更迭以及厂商对于流畅性的追求,越来越多 90fps 和 120fps 的手机面世,相对应的间隔也就变成了 11ms 和 8ms。 VSYNC信号种类: 1.屏幕产生的硬件VSYNC:硬件VSYNC是一种脉冲信号,起到开关和触发某种操作的作用。 2.由SurfaceFlinger将其转成的软件VSYNC信号,经由Binder传递给Choreographer Choreographer: 编舞者,用于注册VSYNC信号并接收VSYNC信号回调,当内部接收到这个信号时最终会调用到doFrame进行帧的绘制操作。 Choreographer在系统中流程: 如何通过Choreographer计算掉帧情况:原理就是: 通过给Choreographer设置FrameCallback,在每次绘制前后看时间差是16.6ms的多少倍,即为前后掉帧率。 使用方式如下: //Application.javapublic void onCreate() {super.onCreate();//在Application中使用postFrameCallbackChoreographer.getInstance().postFrameCallback(new FPSFrameCallback(System.nanoTime()));}public class FPSFrameCallback implements Choreographer.FrameCallback {private static final String TAG = "FPS_TEST";private long mLastFrameTimeNanos = 0;private long mFrameIntervalNanos;public FPSFrameCallback(long lastFrameTimeNanos) {mLastFrameTimeNanos = lastFrameTimeNanos;mFrameIntervalNanos = (long)(1000000000 / 60.0);}@Overridepublic void doFrame(long frameTimeNanos) {//初始化时间if (mLastFrameTimeNanos == 0) {mLastFrameTimeNanos = frameTimeNanos;}final long jitterNanos = frameTimeNanos - mLastFrameTimeNanos;if (jitterNanos >= mFrameIntervalNanos) {final long skippedFrames = jitterNanos / mFrameIntervalNanos;if(skippedFrames>30){//丢帧30以上打印日志Log.i(TAG, "Skipped " + skippedFrames + " frames! "+ "The application may be doing too much work on its main thread.");} }mLastFrameTimeNanos=frameTimeNanos;//注册下一帧回调Choreographer.getInstance().postFrameCallback(this);} } UI绘制全路径分析: 有了前面几个概念,这里我们让SurfaceFlinger结合View的绘制流程用一张图来表达整个绘制流程: 生产者:APP方构建Surface的过程。 消费者:SurfaceFlinger UI绘制全路径分析卡顿原因: 接下来,我们逐个分析,看看都会有哪些原因可能造成卡顿: 1.渲染流程 1.Vsync 调度:这个是起始点,但是调度的过程会经过线程切换以及一些委派的逻辑,有可能造成卡顿,但是一般可能性比较小,我们也基本无法介入; 2.消息调度:主要是 doframe Message 的调度,这就是一个普通的 Handler 调度,如果这个调度被其他的 Message 阻塞产生了时延,会直接导致后续的所有流程不会被触发 3.input 处理:input 是一次 Vsync 调度最先执行的逻辑,主要处理 input 事件。如果有大量的事件堆积或者在事件分发逻辑中加入大量耗时业务逻辑,会造成当前帧的时长被拉大,造成卡顿,可以尝试通过事件采样的方案,减少 event 的处理 4.动画处理:主要是 animator 动画的更新,同理,动画数量过多,或者动画的更新中有比较耗时的逻辑,也会造成当前帧的渲染卡顿。对动画的降帧和降复杂度其实解决的就是这个问题; 5.view 处理:主要是接下来的三大流程,过度绘制、频繁刷新、复杂的视图效果都是此处造成卡顿的主要原因。比如我们平时所说的降低页面层级,主要解决的就是这个问题; 6.measure/layout/draw:view 渲染的三大流程,因为涉及到遍历和高频执行,所以这里涉及到的耗时问题均会被放大,比如我们会降不能在 draw 里面调用耗时函数,不能 new 对象等等; 7.DisplayList 的更新:这里主要是 canvas 和 displaylist 的映射,一般不会存在卡顿问题,反而可能存在映射失败导致的显示问题; 8.OpenGL 指令转换:这里主要是将 canvas 的命令转换为 OpenGL 的指令,一般不存在问题 9.buffer 交换:这里主要指 OpenGL 指令集交换给 GPU,这个一般和指令的复杂度有关 10.GPU 处理:顾名思义,这里是 GPU 对数据的处理,耗时主要和任务量和纹理复杂度有关。这也就是我们降低 GPU 负载有助于降低卡顿的原因; 11.layer 合成:Android P 修改了 Layer 的计算方法 , 把这部分放到了 SurfaceFlinger 主线程去执行, 如果后台 Layer 过多, 就会导致 SurfaceFlinger 在执行 rebuildLayerStacks 的时候耗时 , 导致 SurfaceFlinger 主线程执行时间过长。 可以选择降低Surface层级来优化卡顿。 12.光栅化/Display:这里暂时忽略,底层系统行为; Buffer 切换:主要是屏幕的显示,这里 buffer 的数量也会影响帧的整体延迟,不过是系统行为,不能干预。 2.系统负载 内存:内存的吃紧会直接导致 GC 的增加甚至 ANR,是造成卡顿的一个不可忽视的因素; CPU:CPU 对卡顿的影响主要在于线程调度慢、任务执行的慢和资源竞争,比如 1.降频会直接导致应用卡顿; 2.后台活动进程太多导致系统繁忙,cpu \ io \ memory 等资源都会被占用, 这时候很容易出现卡顿问题 ,这种情况比较常见,可以使用dumpsys cpuinfo查看当前设备的cpu使用情况: 3.主线程调度不到 , 处于 Runnable 状态,这种情况比较少见 4.System 锁:system_server 的 AMS 锁和 WMS 锁 , 在系统异常的情况下 , 会变得非常严重 , 如下图所示 , 许多系统的关键任务都被阻塞 , 等待锁的释放 , 这时候如果有 App 发来的 Binder 请求带锁 , 那么也会进入等待状态 , 这时候 App 就会产生性能问题 ; 如果此时做 Window 动画 , 那么 system_server 的这些锁也会导致窗口动画卡顿 GPU:GPU 的影响见渲染流程,但是其实还会间接影响到功耗和发热; 功耗/发热:功耗和发热一般是不分家的,高功耗会引起高发热,进而会引起系统保护,比如降频、热缓解等,间接的导致卡顿。 如何监控卡顿 线下监控: 我们知道卡顿问题的原因错综复杂,但最终都可以反馈到CPU使用率上来 1.使用dumpsys cpuinfo命令 这个命令可以获取当时设备cpu使用情况,我们可以在线下通过重度使用应用来检测可能存在的卡顿点 A8S:/ $ dumpsys cpuinfoLoad: 1.12 / 1.12 / 1.09CPU usage from 484321ms to 184247ms ago (2022-11-02 14:48:30.793 to 2022-11-02 14:53:30.866):2% 1053/scanserver: 0.2% user + 1.7% kernel0.6% 934/system_server: 0.4% user + 0.1% kernel / faults: 563 minor0.4% 564/signserver: 0% user + 0.4% kernel0.2% 256/ueventd: 0.1% user + 0% kernel / faults: 320 minor0.2% 474/surfaceflinger: 0.1% user + 0.1% kernel0.1% 576/vendor.sprd.hardware.gnss@2.0-service: 0.1% user + 0% kernel / faults: 54 minor0.1% 286/logd: 0% user + 0% kernel / faults: 10 minor0.1% 2821/com.allinpay.appstore: 0.1% user + 0% kernel / faults: 1312 minor0.1% 447/android.hardware.health@2.0-service: 0% user + 0% kernel / faults: 1175 minor0% 1855/com.smartpos.dataacqservice: 0% user + 0% kernel / faults: 755 minor0% 2875/com.allinpay.appstore:pushcore: 0% user + 0% kernel / faults: 744 minor0% 1191/com.android.systemui: 0% user + 0% kernel / faults: 70 minor0% 1774/com.android.nfc: 0% user + 0% kernel0% 172/kworker/1:2: 0% user + 0% kernel0% 145/irq/24-70900000: 0% user + 0% kernel0% 575/thermald: 0% user + 0% kernel / faults: 300 minor... 2.CPU Profiler 这个工具是AS自带的CPU性能检测工具,可以在PC上实时查看我们CPU使用情况。 AS提供了四种Profiling Model配置: 1.Sample Java Methods:在应用程序基于Java的代码执行过程中,频繁捕获应用程序的调用堆栈 获取有关应用程序基于Java的代码执行的时间和资源使用情况信息。 2.Trace java methods:在运行时对应用程序进行检测,以在每个方法调用的开始和结束时记录时间戳。收集时间戳并进行比较以生成方法跟踪数据,包括时序信息和CPU使用率。 请注意与检测每种方法相关的开销会影响运行时性能,并可能影响性能分析数据。对于生命周期相对较短的方法,这一点甚至更为明显。此外,如果您的应用在短时间内执行大量方法,则探查器可能会很快超过其文件大小限制,并且可能无法记录任何进一步的跟踪数据。 3.Sample C/C++ Functions:捕获应用程序本机线程的示例跟踪。要使用此配置,您必须将应用程序部署到运行Android 8.0(API级别26)或更高版本的设备。 4.Trace System Calls:捕获细粒度的详细信息,使您可以检查应用程序与系统资源的交互方式 您可以检查线程状态的确切时间和持续时间,可视化CPU瓶颈在所有内核中的位置,并添加自定义跟踪事件进行分析。在对性能问题进行故障排除时,此类信息可能至关重要。要使用此配置,您必须将应用程序部署到运行Android 7.0(API级别24)或更高版本的设备。 使用方式: Debug.startMethodTracing("");// 需要检测的代码片段...Debug.stopMethodTracing(); 优点:有比较全面的调用栈以及图像化方法时间显示,包含所有线程的情况 缺点:本身也会带来一点的性能开销,可能会带偏优化方向 火焰图:可以显示当前应用的方法堆栈: 3.Systrace Systrace在前面一篇分析启动优化的文章讲解过 这里我们简单来复习下: Systrace用来记录当前应用的系统以及应用(使用Trace类打点)的各阶段耗时信息包括绘制信息以及CPU信息等。 使用方式: Trace.beginSection("MyApp.onCreate_1");alt(200);Trace.endSection(); 在命令行中: python systrace.py -t 5 sched gfx view wm am app webview -a "com.chinaebipay.thirdcall" -o D:\trac1.html 记录的方法以及CPU中的耗时情况: 优点: 1.轻量级,开销小,CPU使用率可以直观反映 2.右侧的Alerts能够根据我们应用的问题给出具体的建议,比如说,它会告诉我们App界面的绘制比较慢或者GC比较频繁。 4.StrictModel StrictModel是Android提供的一种运行时检测机制,用来帮助开发者自动检测代码中不规范的地方。 主要和两部分相关: 1.线程相关 2.虚拟机相关 基础代码: private void initStrictMode() {// 1、设置Debug标志位,仅仅在线下环境才使用StrictModeif (DEV_MODE) {// 2、设置线程策略StrictMode.setThreadPolicy(new StrictMode.ThreadPolicy.Builder().detectCustomSlowCalls() //API等级11,使用StrictMode.noteSlowCode.detectDiskReads().detectDiskWrites().detectNetwork() // or .detectAll() for all detectable problems.penaltyLog() //在Logcat 中打印违规异常信息// .penaltyDialog() //也可以直接跳出警报dialog// .penaltyDeath() //或者直接崩溃.build());// 3、设置虚拟机策略StrictMode.setVmPolicy(new StrictMode.VmPolicy.Builder().detectLeakedSqlLiteObjects()// 给NewsItem对象的实例数量限制为1.setClassInstanceLimit(NewsItem.class, 1).detectLeakedClosableObjects() //API等级11.penaltyLog().build());} } 线上监控: 线上需要自动化的卡顿检测方案来定位卡顿,它能记录卡顿发生时的场景。 自动化监控原理: 采用拦截消息调度流程,在消息执行前埋点计时,当耗时超过阈值时,则认为是一次卡顿,会进行堆栈抓取和上报工作 首先,我们看下Looper用于执行消息循环的loop()方法,关键代码如下所示: / Run the message queue in this thread. Be sure to call {@link quit()} to end the loop./public static void loop() {...for (;;) {Message msg = queue.next(); // might blockif (msg == null) {// No message indicates that the message queue is quitting.return;// This must be in a local variable, in case a UI event sets the loggerfinal Printer logging = me.mLogging;if (logging != null) {// 1logging.println(">>>>> Dispatching to " + msg.target + " " +msg.callback + ": " + msg.what);}...try {// 2 msg.target.dispatchMessage(msg);dispatchEnd = needEndTime ? SystemClock.uptimeMillis() : 0;} finally {if (traceTag != 0) {Trace.traceEnd(traceTag);} }...if (logging != null) {// 3logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);} 在Looper的loop()方法中,在其执行每一个消息(注释2处)的前后都由logging进行了一次打印输出。可以看到,在执行消息前是输出的">>>>> Dispatching to “,在执行消息后是输出的”<<<<< Finished to ",它们打印的日志是不一样的,我们就可以由此来判断消息执行的前后时间点。 具体的实现可以归纳为如下步骤: 1、首先,我们需要使用Looper.getMainLooper().setMessageLogging()去设置我们自己的Printer实现类去打印输出logging。这样,在每个message执行的之前和之后都会调用我们设置的这个Printer实现类。 2、如果我们匹配到">>>>> Dispatching to "之后,我们就可以执行一行代码:也就是在指定的时间阈值之后,我们在子线程去执行一个任务,这个任务就是去获取当前主线程的堆栈信息以及当前的一些场景信息,比如:内存大小、电脑、网络状态等。 3、如果在指定的阈值之内匹配到了"<<<<< Finished to ",那么说明message就被执行完成了,则表明此时没有产生我们认为的卡顿效果,那我们就可以将这个子线程任务取消掉。 这里我们使用blockcanary来做测试: BlockCanary APM是一个非侵入式的性能监控组件,可以通过通知的形式弹出卡顿信息。它的原理就是我们刚刚讲述到的卡顿监控的实现原理。 使用方式: 1.导入依赖 implementation 'com.github.markzhai:blockcanary-android:1.5.0' Application的onCreate方法中开启卡顿监控 // 注意在主进程初始化调用BlockCanary.install(this, new AppBlockCanaryContext()).start(); 3.继承BlockCanaryContext类去实现自己的监控配置上下文类 public class AppBlockCanaryContext extends BlockCanaryContext {....../ 指定判定为卡顿的阈值threshold (in millis), 你可以根据不同设备的性能去指定不同的阈值 @return threshold in mills/public int provideBlockThreshold() {return 1000;}....} 4.在Activity的onCreate方法中执行一个耗时操作 try {Thread.sleep(4000);} catch (InterruptedException e) {e.printStackTrace();} 5.结果: 可以看到一个和LeakCanary一样效果的阻塞可视化堆栈图 那有了BlockCanary的方法耗时监控方式是不是就可以解百愁了呢,呵呵。有那么容易就好了 根据原理:我们拿到的是msg执行前后的时间和堆栈信息,如果msg中有几百上千个方法,就无法确认到底是哪个方法导致的耗时,也有可能是多个方法堆积导致。 这就导致我们无法准确定位哪个方法是最耗时的。如图中:堆栈信息是T2的,而发生耗时的方法可能是T1到T2中任何一个方法甚至是堆积导致。 那如何优化这块? 这里我们采用字节跳动给我们提供的一个方案:基于 Sliver trace 的卡顿监控体系 Sliver trace 整体流程图: 主要包含两个方面: 检测方案: 在监控卡顿时,首先需要打开 Sliver 的 trace 记录能力,Sliver 采样记录 trace 执行信息,对抓取到的堆栈进行 diff 聚合和缓存。 同时基于我们的需要设置相应的卡顿阈值,以 Message 的执行耗时为衡量。对主线程消息调度流程进行拦截,在消息开始分发执行时埋点,在消息执行结束时计算消息执行耗时,当消息执行耗时超过阈值,则认为产生了一次卡顿。 堆栈聚合策略: 当卡顿发生时,我们需要为此次卡顿准备数据,这部分工作是在端上子线程中完成的,主要是 dump trace 到文件以及过滤聚合要上报的堆栈。分为以下几步: 1.拿到缓存的主线程 trace 信息并 dump 到文件中。 2.然后从文件中读取 trace 信息,按照数据格式,从最近的方法栈向上追溯,找到当前 Message 包含的全部 trace 信息,并将当前 Message 的完整 trace 写入到待上传的 trace 文件中,删除其余 trace 信息。 3.遍历当前 Message trace,按照(Method 执行耗时 > Method 耗时阈值 & Method 耗时为该层堆栈中最耗时)为条件过滤出每一层函数调用堆栈的最长耗时函数,构成最后要上报的堆栈链路,这样特征堆栈中的每一步都是最耗时的,且最底层 Method 为最后的耗时大于阈值的 Method。 之后,将 trace 文件和堆栈一同上报,这样的特征堆栈提取策略保证了堆栈聚合的可靠性和准确性,保证了上报到平台后堆栈的正确合理聚合,同时提供了进一步分析问题的 trace 文件。 可以看到字节给的是一整套监控方案,和前面BlockCanary不同之处就在于,其是定时存储堆栈,缓存,然后使用diff去重的方式,并上传到服务器,可以最大限度的监控到可能发生比较耗时的方法。 开发中哪些习惯会影响卡顿的发生 1.布局太乱,层级太深。 1.1:通过减少冗余或者嵌套布局来降低视图层次结构。比如使用约束布局代替线性布局和相对布局。 1.2:用 ViewStub 替代在启动过程中不需要显示的 UI 控件。 1.3:使用自定义 View 替代复杂的 View 叠加。 2.主线程耗时操作 2.1:主线程中不要直接操作数据库,数据库的操作应该放在数据库线程中完成。 2.2:sharepreference尽量使用apply,少使用commit,可以使用MMKV框架来代替sharepreference。 2.3:网络请求回来的数据解析尽量放在子线程中,不要在主线程中进行复制的数据解析操作。 2.4:不要在activity的onResume和onCreate中进行耗时操作,比如大量的计算等。 2.5:不要在 draw 里面调用耗时函数,不能 new 对象 3.过度绘制 过度绘制是同一个像素点上被多次绘制,减少过度绘制一般减少布局背景叠加等方式,如下图所示右边是过度绘制的图片。 4.列表 RecyclerView使用优化,使用DiffUtil和notifyItemDataSetChanged进行局部更新等。 5.对象分配和回收优化 自从Android引入 ART 并且在Android 5.0上成为默认的运行时之后,对象分配和垃圾回收(GC)造成的卡顿已经显著降低了,但是由于对象分配和GC有额外的开销,它依然又可能使线程负载过重。 在一个调用不频繁的地方(比如按钮点击)分配对象是没有问题的,但如果在在一个被频繁调用的紧密的循环里,就需要避免对象分配来降低GC的压力。 减少小对象的频繁分配和回收操作。 好了,关于卡顿优化的问题就讲到这里,下篇文章会对卡顿中的ANR情况的处理,这里做个铺垫。 如果喜欢我的文章,欢迎关注我的公众号。 点击这看原文链接: 参考 Android卡顿检测及优化 一文读懂直播卡顿优化那些事儿 “终于懂了” 系列:Android屏幕刷新机制—VSync、Choreographer 全面理解! 深入探索Android卡顿优化(上) 西瓜卡顿 & ANR 优化治理及监控体系建设 5376)] 参考 Android卡顿检测及优化 一文读懂直播卡顿优化那些事儿 “终于懂了” 系列:Android屏幕刷新机制—VSync、Choreographer 全面理解! 深入探索Android卡顿优化(上) 西瓜卡顿 & ANR 优化治理及监控体系建设 本篇文章为转载内容。原文链接:https://blog.csdn.net/yuhaibing111/article/details/127682399。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-26 08:05:57
214
转载
转载文章
...转载内容。原文链接:https://blog.csdn.net/qq_27184497/article/details/121765387。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 pod的创建方式 在k8s中,可以将pod的创建方式分为2类 自主式pod: 由k8s直接创建出来的pod,这种pod删除之后就没有了,也不会重建 kubectl run mynginx --image=nginx 控制器创建的pod: 通过控制器创建的pod,这种pod删除了之后会自动重建; kubectl create deployment mynginx --image=nginx:1.17.1 什么是pod控制器 Pod控制器是管理pod的中间层,使用Pod控制器之后,只需要告诉Pod控制器,想要多少个什么样的Pod就可以了,它会创建出满足条件的Pod并确保每一个Pod资源处于用户期望的目标状态。如果Pod资源在运行中出现故障,它会基于指定策略重新编排Pod。 控制器的种类 在kubernetes有很多种类型的pod控制器,每种都有自己的使用场景 ReplicationController:比较原始的pod控制器,已经被废弃,由ReplicaSet替代 ReplicaSet:保证副本数量一直维持在期望值,并支持pod数量扩缩容,镜像版本升级 Deployment:通过控制ReplicaSet来控制Pod,并支持滚动升级、回退版本 Horizontal Pod Autoscaler:可以根据集群负载自动水平调整Pod的数量,实现削峰填谷 DaemonSet:在集群中的指定Node上运行且仅运行一个副本,一般用于守护进程类的任务 Job:它创建出来的pod只要完成任务就立即退出,不需要重启或重建,用于执行一次性任务 Cronjob:它创建的Pod负责周期性任务控制,不需要持续后台运行,可以理解为是定时任务; StatefulSet:管理有状态应用 1、ReplicaSet 简称为RS,主要的作用是保证一定数量的pod能够正常运行,它会持续监听这些pod的运行状态,提供了以下功能 自愈能力: 重启 :当某节点中的pod运行过程中出现问题导致无法启动时,k8s会不断重启,直到可用状态为止 故障转移:当正在运行中pod所在的节点发生故障或者宕机时,k8s会选择集群中另一个可用节点,将pod运行到可用节点上; pod数量的扩缩容:pod副本的扩容和缩容 镜像升降级:支持镜像版本的升级和降级; 配置模板 rs的所有配置如下 apiVersion: apps/v1 版本号kind: ReplicaSet 类型 metadata: 元数据name: rs名称 namespace: 所属命名空间 labels: 标签controller: rsspec: 详情描述replicas: 3 副本数量selector: 选择器,通过它指定该控制器管理哪些podmatchLabels: Labels匹配规则app: nginx-podmatchExpressions: Expressions匹配规则,key就是label的key,values的值是个数组,意思是标签值必须是此数组中的其中一个才能匹配上;- {key: app, operator: In, values: [nginx-pod]}template: 模板,当副本数量不足时,会根据下面的模板创建pod副本metadata:labels: 这里的标签必须和上面的matchLabels一致,将他们关联起来app: nginx-podspec:containers:- name: nginximage: nginx:1.17.1ports:- containerPort: 80 1、创建一个ReplicaSet 新建一个文件 rs.yaml,内容如下 apiVersion: apps/v1kind: ReplicaSet pod控制器metadata: 元数据name: pc-replicaset 名字namespace: dev 名称空间spec:replicas: 3 副本数selector: 选择器,通过它指定该控制器管理哪些podmatchLabels: Labels匹配规则app: nginx-podtemplate: 模板,当副本数量不足时,会根据下面的模板创建pod副本metadata:labels:app: nginx-podspec:containers:- name: nginximage: nginx:1.17.1 运行 kubectl create -f rs.yaml 获取replicaset kubectl get replicaset -n dev 2、扩缩容 刚刚我们已经用第一种方式创建了一个replicaSet,现在就基于原来的rs进行扩容,原来的副本数量是3个,现在我们将其扩到6个,做法也很简单,运行编辑命令 第一种方式: scale 使用scale命令实现扩缩容,后面--replicas=n直接指定目标数量即可kubectl scale rs pc-replicaset --replicas=2 -n dev 第二种方式:使用edit命令编辑rs 这种方式相当于使用vi编辑修改yaml配置的内容,进去后将replicas的值改为1,保存后自动生效kubectl edit rs pc-replicaset -n dev 3、镜像版本变更 第一种方式:scale kubectl scale rs pc-replicaset nginx=nginx:1.71.2 -n dev 第二种方式:edit 这种方式相当于使用vi编辑修改yaml配置的内容,进去后将nginx的值改为nginx:1.71.2,保存后自动生效kubectl edit rs pc-replicaset -n dev 4、删除rs 第一种方式kubectl delete -f rs.yaml 第二种方式 ,如果想要只删rs,但不删除pod,可在删除时加上--cascade=false参数(不推荐)kubectl delete rs pc-replicaset -n dev --cascade=false 2、Deployment k8s v1.2版本后加入Deployment;这种控制器不直接控制pod,而是通过管理ReplicaSet来间接管理pod;也就是Deployment管理ReplicaSet,ReplicaSet管理pod;所以 Deployment 比 ReplicaSet 功能更加强大 当我们创建了一个Deployment之后,也会自动创建一个ReplicaSet 功能 支持ReplicaSet 的所有功能 支持发布的停止、继续 支持版本的滚动更新和回退功能 配置模板 新建文件 apiVersion: apps/v1 版本号kind: Deployment 类型 metadata: 元数据name: rs名称 namespace: 所属命名空间 labels: 标签controller: deployspec: 详情描述replicas: 3 副本数量revisionHistoryLimit: 3 保留历史版本的数量,默认10,内部通过保留rs来实现paused: false 暂停部署,默认是falseprogressDeadlineSeconds: 600 部署超时时间(s),默认是600strategy: 策略type: RollingUpdate 滚动更新策略rollingUpdate: 滚动更新maxSurge: 30% 最大额外可以存在的副本数,可以为百分比,也可以为整数maxUnavailable: 30% 最大不可用状态的 Pod 的最大值,可以为百分比,也可以为整数selector: 选择器,通过它指定该控制器管理哪些podmatchLabels: Labels匹配规则app: nginx-podmatchExpressions: Expressions匹配规则- {key: app, operator: In, values: [nginx-pod]}template: 模板,当副本数量不足时,会根据下面的模板创建pod副本metadata:labels:app: nginx-podspec:containers:- name: nginximage: nginx:1.17.1ports:- containerPort: 80 1、创建和删除Deployment 创建pc-deployment.yaml,内容如下: apiVersion: apps/v1kind: Deployment metadata:name: pc-deploymentnamespace: devspec: replicas: 3selector:matchLabels:app: nginx-podtemplate:metadata:labels:app: nginx-podspec:containers:- name: nginximage: nginx:1.17.1 创建和查看 创建deployment,--record=true 表示记录整个deployment更新过程[root@k8s-master01 ~] kubectl create -f pc-deployment.yaml --record=truedeployment.apps/pc-deployment created 查看deployment READY 可用的/总数 UP-TO-DATE 最新版本的pod的数量 AVAILABLE 当前可用的pod的数量[root@k8s-master01 ~] kubectl get deploy pc-deployment -n devNAME READY UP-TO-DATE AVAILABLE AGEpc-deployment 3/3 3 3 15s 查看rs 发现rs的名称是在原来deployment的名字后面添加了一个10位数的随机串[root@k8s-master01 ~] kubectl get rs -n devNAME DESIRED CURRENT READY AGEpc-deployment-6696798b78 3 3 3 23s 查看pod[root@k8s-master01 ~] kubectl get pods -n devNAME READY STATUS RESTARTS AGEpc-deployment-6696798b78-d2c8n 1/1 Running 0 107spc-deployment-6696798b78-smpvp 1/1 Running 0 107spc-deployment-6696798b78-wvjd8 1/1 Running 0 107s 删除deployment 删除deployment,其下的rs和pod也将被删除kubectl delete -f pc-deployment.yaml 2、扩缩容 deployment的扩缩容和 ReplicaSet 的扩缩容一样,只需要将rs或者replicaSet改为deployment即可,具体请参考上面的 ReplicaSet 扩缩容 3、镜像更新 刚刚在创建时加上了--record=true参数,所以在一旦进行了镜像更新,就会新建出一个pod出来,将老的old-pod上的容器全删除,然后在新的new-pod上在新建对应数量的容器,此时old-pod是不会删除的,因为这个old-pod是要进行回退的; 镜像更新策略有2种 滚动更新(RollingUpdate):(默认值),杀死一部分,就启动一部分,在更新过程中,存在两个版本Pod 重建更新(Recreate):在创建出新的Pod之前会先杀掉所有已存在的Pod strategy:指定新的Pod替换旧的Pod的策略, 支持两个属性:type:指定策略类型,支持两种策略Recreate:在创建出新的Pod之前会先杀掉所有已存在的PodRollingUpdate:滚动更新,就是杀死一部分,就启动一部分,在更新过程中,存在两个版本PodrollingUpdate:当type为RollingUpdate时生效,用于为RollingUpdate设置参数,支持两个属性:maxUnavailable:用来指定在升级过程中不可用Pod的最大数量,默认为25%。maxSurge: 用来指定在升级过程中可以超过期望的Pod的最大数量,默认为25%。 重建更新 编辑pc-deployment.yaml,在spec节点下添加更新策略 spec:strategy: 策略type: Recreate 重建更新 创建deploy进行验证 变更镜像[root@k8s-master01 ~] kubectl set image deployment pc-deployment nginx=nginx:1.17.2 -n devdeployment.apps/pc-deployment image updated 观察升级过程[root@k8s-master01 ~] kubectl get pods -n dev -wNAME READY STATUS RESTARTS AGEpc-deployment-5d89bdfbf9-65qcw 1/1 Running 0 31spc-deployment-5d89bdfbf9-w5nzv 1/1 Running 0 31spc-deployment-5d89bdfbf9-xpt7w 1/1 Running 0 31spc-deployment-5d89bdfbf9-xpt7w 1/1 Terminating 0 41spc-deployment-5d89bdfbf9-65qcw 1/1 Terminating 0 41spc-deployment-5d89bdfbf9-w5nzv 1/1 Terminating 0 41spc-deployment-675d469f8b-grn8z 0/1 Pending 0 0spc-deployment-675d469f8b-hbl4v 0/1 Pending 0 0spc-deployment-675d469f8b-67nz2 0/1 Pending 0 0spc-deployment-675d469f8b-grn8z 0/1 ContainerCreating 0 0spc-deployment-675d469f8b-hbl4v 0/1 ContainerCreating 0 0spc-deployment-675d469f8b-67nz2 0/1 ContainerCreating 0 0spc-deployment-675d469f8b-grn8z 1/1 Running 0 1spc-deployment-675d469f8b-67nz2 1/1 Running 0 1spc-deployment-675d469f8b-hbl4v 1/1 Running 0 2s 滚动更新 编辑pc-deployment.yaml,在spec节点下添加更新策略 spec:strategy: 策略type: RollingUpdate 滚动更新策略rollingUpdate:maxSurge: 25% maxUnavailable: 25% 创建deploy进行验证 变更镜像[root@k8s-master01 ~] kubectl set image deployment pc-deployment nginx=nginx:1.17.3 -n dev deployment.apps/pc-deployment image updated 观察升级过程[root@k8s-master01 ~] kubectl get pods -n dev -wNAME READY STATUS RESTARTS AGEpc-deployment-c848d767-8rbzt 1/1 Running 0 31mpc-deployment-c848d767-h4p68 1/1 Running 0 31mpc-deployment-c848d767-hlmz4 1/1 Running 0 31mpc-deployment-c848d767-rrqcn 1/1 Running 0 31mpc-deployment-966bf7f44-226rx 0/1 Pending 0 0spc-deployment-966bf7f44-226rx 0/1 ContainerCreating 0 0spc-deployment-966bf7f44-226rx 1/1 Running 0 1spc-deployment-c848d767-h4p68 0/1 Terminating 0 34mpc-deployment-966bf7f44-cnd44 0/1 Pending 0 0spc-deployment-966bf7f44-cnd44 0/1 ContainerCreating 0 0spc-deployment-966bf7f44-cnd44 1/1 Running 0 2spc-deployment-c848d767-hlmz4 0/1 Terminating 0 34mpc-deployment-966bf7f44-px48p 0/1 Pending 0 0spc-deployment-966bf7f44-px48p 0/1 ContainerCreating 0 0spc-deployment-966bf7f44-px48p 1/1 Running 0 0spc-deployment-c848d767-8rbzt 0/1 Terminating 0 34mpc-deployment-966bf7f44-dkmqp 0/1 Pending 0 0spc-deployment-966bf7f44-dkmqp 0/1 ContainerCreating 0 0spc-deployment-966bf7f44-dkmqp 1/1 Running 0 2spc-deployment-c848d767-rrqcn 0/1 Terminating 0 34m 至此,新版本的pod创建完毕,就版本的pod销毁完毕 中间过程是滚动进行的,也就是边销毁边创建 4、版本回退 更新 刚刚在创建时加上了--record=true参数,所以在一旦进行了镜像更新,就会新建出一个pod出来,将老的old-pod上的容器全删除,然后在新的new-pod上在新建对应数量的容器,此时old-pod是不会删除的,因为这个old-pod是要进行回退的; 回退 在回退时会将new-pod上的容器全部删除,在将old-pod上恢复原来的容器; 回退命令 kubectl rollout: 版本升级相关功能,支持下面的选项: status 显示当前升级状态 history 显示 升级历史记录 pause 暂停版本升级过程 resume 继续已经暂停的版本升级过程 restart 重启版本升级过程 undo 回滚到上一级版本(可以使用–to-revision回滚到指定版本) 用法 查看当前升级版本的状态kubectl rollout status deploy pc-deployment -n dev 查看升级历史记录kubectl rollout history deploy pc-deployment -n dev 版本回滚 这里直接使用--to-revision=1回滚到了1版本, 如果省略这个选项,就是回退到上个版本kubectl rollout undo deployment pc-deployment --to-revision=1 -n dev 金丝雀发布 Deployment控制器支持控制更新过程中的控制,如“暂停(pause)”或“继续(resume)”更新操作。 比如有一批新的Pod资源创建完成后立即暂停更新过程,此时,仅存在一部分新版本的应用,主体部分还是旧的版本。然后,再筛选一小部分的用户请求路由到新版本的Pod应用,继续观察能否稳定地按期望的方式运行。确定没问题之后再继续完成余下的Pod资源滚动更新,否则立即回滚更新操作。这就是所谓的金丝雀发布。 金丝雀发布不是自动完成的,需要人为手动去操作,才能达到金丝雀发布的标准; 更新deployment的版本,并配置暂停deploymentkubectl set image deploy pc-deployment nginx=nginx:1.17.4 -n dev && kubectl rollout pause deployment pc-deployment -n dev 观察更新状态kubectl rollout status deploy pc-deployment -n dev 监控更新的过程kubectl get rs -n dev -o wide 确保更新的pod没问题了,继续更新kubectl rollout resume deploy pc-deployment -n dev 如果有问题,就回退到上个版本回退到上个版本kubectl rollout undo deployment pc-deployment -n dev Horizontal Pod Autoscaler 简称HPA,使用deployment可以手动调整pod的数量来实现扩容和缩容;但是这显然不符合k8s的自动化的定位,k8s期望可以通过检测pod的使用情况,实现pod数量自动调整,于是就有了HPA控制器; HPA可以获取每个Pod利用率,然后和HPA中定义的指标进行对比,同时计算出需要伸缩的具体值,最后实现Pod的数量的调整。比如说我指定了一个规则:当我的cpu利用率达到90%或者内存使用率到达80%的时候,就需要进行调整pod的副本数量,每次添加n个pod副本; 其实HPA与之前的Deployment一样,也属于一种Kubernetes资源对象,它通过追踪分析ReplicaSet控制器的所有目标Pod的负载变化情况,来确定是否需要针对性地调整目标Pod的副本数,也就是HPA管理Deployment,Deployment管理ReplicaSet,ReplicaSet管理pod,这是HPA的实现原理。 1、安装metrics-server metrics-server可以用来收集集群中的资源使用情况 安装git[root@k8s-master01 ~] yum install git -y 获取metrics-server, 注意使用的版本[root@k8s-master01 ~] git clone -b v0.3.6 https://github.com/kubernetes-incubator/metrics-server 修改deployment, 注意修改的是镜像和初始化参数[root@k8s-master01 ~] cd /root/metrics-server/deploy/1.8+/[root@k8s-master01 1.8+] vim metrics-server-deployment.yaml按图中添加下面选项hostNetwork: trueimage: registry.cn-hangzhou.aliyuncs.com/google_containers/metrics-server-amd64:v0.3.6args:- --kubelet-insecure-tls- --kubelet-preferred-address-types=InternalIP,Hostname,InternalDNS,ExternalDNS,ExternalIP 2、安装metrics-server [root@k8s-master01 1.8+] kubectl apply -f ./ 3、查看pod运行情况 [root@k8s-master01 1.8+] kubectl get pod -n kube-systemmetrics-server-6b976979db-2xwbj 1/1 Running 0 90s 4、使用kubectl top node 查看资源使用情况 [root@k8s-master01 1.8+] kubectl top nodeNAME CPU(cores) CPU% MEMORY(bytes) MEMORY%k8s-master01 289m 14% 1582Mi 54% k8s-node01 81m 4% 1195Mi 40% k8s-node02 72m 3% 1211Mi 41% [root@k8s-master01 1.8+] kubectl top pod -n kube-systemNAME CPU(cores) MEMORY(bytes)coredns-6955765f44-7ptsb 3m 9Micoredns-6955765f44-vcwr5 3m 8Mietcd-master 14m 145Mi... 至此,metrics-server安装完成 5、 准备deployment和servie 创建pc-hpa-pod.yaml文件,内容如下: apiVersion: apps/v1kind: Deploymentmetadata:name: nginxnamespace: devspec:strategy: 策略type: RollingUpdate 滚动更新策略replicas: 1selector:matchLabels:app: nginx-podtemplate:metadata:labels:app: nginx-podspec:containers:- name: nginximage: nginx:1.17.1resources: 资源配额limits: 限制资源(上限)cpu: "1" CPU限制,单位是core数requests: 请求资源(下限)cpu: "100m" CPU限制,单位是core数 创建deployment [root@k8s-master01 1.8+] kubectl run nginx --image=nginx:1.17.1 --requests=cpu=100m -n dev 6、创建service [root@k8s-master01 1.8+] kubectl expose deployment nginx --type=NodePort --port=80 -n dev 7、查看 [root@k8s-master01 1.8+] kubectl get deployment,pod,svc -n devNAME READY UP-TO-DATE AVAILABLE AGEdeployment.apps/nginx 1/1 1 1 47sNAME READY STATUS RESTARTS AGEpod/nginx-7df9756ccc-bh8dr 1/1 Running 0 47sNAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGEservice/nginx NodePort 10.101.18.29 <none> 80:31830/TCP 35s 8、 部署HPA 创建pc-hpa.yaml文件,内容如下: apiVersion: autoscaling/v1kind: HorizontalPodAutoscalermetadata:name: pc-hpanamespace: devspec:minReplicas: 1 最小pod数量maxReplicas: 10 最大pod数量 ,pod数量会在1~10之间自动伸缩targetCPUUtilizationPercentage: 3 CPU使用率指标,如果cpu使用率达到3%就会进行扩容;为了测试方便,将这个数值调小一些scaleTargetRef: 指定要控制的nginx信息apiVersion: /v1kind: Deploymentname: nginx 创建hpa [root@k8s-master01 1.8+] kubectl create -f pc-hpa.yamlhorizontalpodautoscaler.autoscaling/pc-hpa created 查看hpa [root@k8s-master01 1.8+] kubectl get hpa -n devNAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGEpc-hpa Deployment/nginx 0%/3% 1 10 1 62s 9、 测试 使用压测工具对service地址192.168.5.4:31830进行压测,然后通过控制台查看hpa和pod的变化 hpa变化 [root@k8s-master01 ~] kubectl get hpa -n dev -wNAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGEpc-hpa Deployment/nginx 0%/3% 1 10 1 4m11spc-hpa Deployment/nginx 0%/3% 1 10 1 5m19spc-hpa Deployment/nginx 22%/3% 1 10 1 6m50spc-hpa Deployment/nginx 22%/3% 1 10 4 7m5spc-hpa Deployment/nginx 22%/3% 1 10 8 7m21spc-hpa Deployment/nginx 6%/3% 1 10 8 7m51spc-hpa Deployment/nginx 0%/3% 1 10 8 9m6spc-hpa Deployment/nginx 0%/3% 1 10 8 13mpc-hpa Deployment/nginx 0%/3% 1 10 1 14m deployment变化 [root@k8s-master01 ~] kubectl get deployment -n dev -wNAME READY UP-TO-DATE AVAILABLE AGEnginx 1/1 1 1 11mnginx 1/4 1 1 13mnginx 1/4 1 1 13mnginx 1/4 1 1 13mnginx 1/4 4 1 13mnginx 1/8 4 1 14mnginx 1/8 4 1 14mnginx 1/8 4 1 14mnginx 1/8 8 1 14mnginx 2/8 8 2 14mnginx 3/8 8 3 14mnginx 4/8 8 4 14mnginx 5/8 8 5 14mnginx 6/8 8 6 14mnginx 7/8 8 7 14mnginx 8/8 8 8 15mnginx 8/1 8 8 20mnginx 8/1 8 8 20mnginx 1/1 1 1 20m pod变化 [root@k8s-master01 ~] kubectl get pods -n dev -wNAME READY STATUS RESTARTS AGEnginx-7df9756ccc-bh8dr 1/1 Running 0 11mnginx-7df9756ccc-cpgrv 0/1 Pending 0 0snginx-7df9756ccc-8zhwk 0/1 Pending 0 0snginx-7df9756ccc-rr9bn 0/1 Pending 0 0snginx-7df9756ccc-cpgrv 0/1 ContainerCreating 0 0snginx-7df9756ccc-8zhwk 0/1 ContainerCreating 0 0snginx-7df9756ccc-rr9bn 0/1 ContainerCreating 0 0snginx-7df9756ccc-m9gsj 0/1 Pending 0 0snginx-7df9756ccc-g56qb 0/1 Pending 0 0snginx-7df9756ccc-sl9c6 0/1 Pending 0 0snginx-7df9756ccc-fgst7 0/1 Pending 0 0snginx-7df9756ccc-g56qb 0/1 ContainerCreating 0 0snginx-7df9756ccc-m9gsj 0/1 ContainerCreating 0 0snginx-7df9756ccc-sl9c6 0/1 ContainerCreating 0 0snginx-7df9756ccc-fgst7 0/1 ContainerCreating 0 0snginx-7df9756ccc-8zhwk 1/1 Running 0 19snginx-7df9756ccc-rr9bn 1/1 Running 0 30snginx-7df9756ccc-m9gsj 1/1 Running 0 21snginx-7df9756ccc-cpgrv 1/1 Running 0 47snginx-7df9756ccc-sl9c6 1/1 Running 0 33snginx-7df9756ccc-g56qb 1/1 Running 0 48snginx-7df9756ccc-fgst7 1/1 Running 0 66snginx-7df9756ccc-fgst7 1/1 Terminating 0 6m50snginx-7df9756ccc-8zhwk 1/1 Terminating 0 7m5snginx-7df9756ccc-cpgrv 1/1 Terminating 0 7m5snginx-7df9756ccc-g56qb 1/1 Terminating 0 6m50snginx-7df9756ccc-rr9bn 1/1 Terminating 0 7m5snginx-7df9756ccc-m9gsj 1/1 Terminating 0 6m50snginx-7df9756ccc-sl9c6 1/1 Terminating 0 6m50s DaemonSet 简称DS,ds可以保证在集群中的每一台节点(或指定节点)上都运行一个副本,一般适用于日志收集、节点监控等场景;也就是说,如果一个Pod提供的功能是节点级别的(每个节点都需要且只需要一个),那么这类Pod就适合使用DaemonSet类型的控制器创建。 DaemonSet控制器的特点: 每当向集群中添加一个节点时,指定的 Pod 副本也将添加到该节点上 当节点从集群中移除时,Pod 也就被垃圾回收了 配置模板 apiVersion: apps/v1 版本号kind: DaemonSet 类型 metadata: 元数据name: rs名称 namespace: 所属命名空间 labels: 标签controller: daemonsetspec: 详情描述revisionHistoryLimit: 3 保留历史版本updateStrategy: 更新策略type: RollingUpdate 滚动更新策略rollingUpdate: 滚动更新maxUnavailable: 1 最大不可用状态的 Pod 的最大值,可以为百分比,也可以为整数selector: 选择器,通过它指定该控制器管理哪些podmatchLabels: Labels匹配规则app: nginx-podmatchExpressions: Expressions匹配规则- {key: app, operator: In, values: [nginx-pod]}template: 模板,当副本数量不足时,会根据下面的模板创建pod副本metadata:labels:app: nginx-podspec:containers:- name: nginximage: nginx:1.17.1ports:- containerPort: 80 1、创建ds 创建pc-daemonset.yaml,内容如下: apiVersion: apps/v1kind: DaemonSet metadata:name: pc-daemonsetnamespace: devspec: selector:matchLabels:app: nginx-podtemplate:metadata:labels:app: nginx-podspec:containers:- name: nginximage: nginx:1.17.1 运行 创建daemonset[root@k8s-master01 ~] kubectl create -f pc-daemonset.yamldaemonset.apps/pc-daemonset created 查看daemonset[root@k8s-master01 ~] kubectl get ds -n dev -o wideNAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE AGE CONTAINERS IMAGES pc-daemonset 2 2 2 2 2 24s nginx nginx:1.17.1 查看pod,发现在每个Node上都运行一个pod[root@k8s-master01 ~] kubectl get pods -n dev -o wideNAME READY STATUS RESTARTS AGE IP NODE pc-daemonset-9bck8 1/1 Running 0 37s 10.244.1.43 node1 pc-daemonset-k224w 1/1 Running 0 37s 10.244.2.74 node2 2、删除daemonset [root@k8s-master01 ~] kubectl delete -f pc-daemonset.yamldaemonset.apps "pc-daemonset" deleted Job 主要用于负责批量处理一次性(每个任务仅运行一次就结束)任务。当然,你也可以运行多次,配置好即可,Job特点如下: 当Job创建的pod执行成功结束时,Job将记录成功结束的pod数量 当成功结束的pod达到指定的数量时,Job将完成执行 配置模板 apiVersion: batch/v1 版本号kind: Job 类型 metadata: 元数据name: rs名称 namespace: 所属命名空间 labels: 标签controller: jobspec: 详情描述completions: 1 指定job需要成功运行Pods的次数。默认值: 1parallelism: 1 指定job在任一时刻应该并发运行Pods的数量。默认值: 1activeDeadlineSeconds: 30 指定job可运行的时间期限,超过时间还未结束,系统将会尝试进行终止。backoffLimit: 6 指定job失败后进行重试的次数。默认是6manualSelector: true 是否可以使用selector选择器选择pod,默认是falseselector: 选择器,通过它指定该控制器管理哪些podmatchLabels: Labels匹配规则app: counter-podmatchExpressions: Expressions匹配规则- {key: app, operator: In, values: [counter-pod]}template: 模板,当副本数量不足时,会根据下面的模板创建pod副本metadata:labels:app: counter-podspec:restartPolicy: Never 重启策略只能设置为Never或者OnFailurecontainers:- name: counterimage: busybox:1.30command: ["bin/sh","-c","for i in 9 8 7 6 5 4 3 2 1; do echo $i;sleep 2;done"] 关于重启策略设置的说明:(这里只能设置为Never或者OnFailure) 如果指定为OnFailure,则job会在pod出现故障时重启容器,而不是创建pod,failed次数不变 如果指定为Never,则job会在pod出现故障时创建新的pod,并且故障pod不会消失,也不会重启,failed次数加1 如果指定为Always的话,就意味着一直重启,意味着job任务会重复去执行了,当然不对,所以不能设置为Always 1、创建一个job 创建pc-job.yaml,内容如下: apiVersion: batch/v1kind: Job metadata:name: pc-jobnamespace: devspec:manualSelector: trueselector:matchLabels:app: counter-podtemplate:metadata:labels:app: counter-podspec:restartPolicy: Nevercontainers:- name: counterimage: busybox:1.30command: ["bin/sh","-c","for i in 9 8 7 6 5 4 3 2 1; do echo $i;sleep 3;done"] 创建 创建job[root@k8s-master01 ~] kubectl create -f pc-job.yamljob.batch/pc-job created 查看job[root@k8s-master01 ~] kubectl get job -n dev -o wide -wNAME COMPLETIONS DURATION AGE CONTAINERS IMAGES SELECTORpc-job 0/1 21s 21s counter busybox:1.30 app=counter-podpc-job 1/1 31s 79s counter busybox:1.30 app=counter-pod 通过观察pod状态可以看到,pod在运行完毕任务后,就会变成Completed状态[root@k8s-master01 ~] kubectl get pods -n dev -wNAME READY STATUS RESTARTS AGEpc-job-rxg96 1/1 Running 0 29spc-job-rxg96 0/1 Completed 0 33s 接下来,调整下pod运行的总数量和并行数量 即:在spec下设置下面两个选项 completions: 6 指定job需要成功运行Pods的次数为6 parallelism: 3 指定job并发运行Pods的数量为3 然后重新运行job,观察效果,此时会发现,job会每次运行3个pod,总共执行了6个pod[root@k8s-master01 ~] kubectl get pods -n dev -wNAME READY STATUS RESTARTS AGEpc-job-684ft 1/1 Running 0 5spc-job-jhj49 1/1 Running 0 5spc-job-pfcvh 1/1 Running 0 5spc-job-684ft 0/1 Completed 0 11spc-job-v7rhr 0/1 Pending 0 0spc-job-v7rhr 0/1 Pending 0 0spc-job-v7rhr 0/1 ContainerCreating 0 0spc-job-jhj49 0/1 Completed 0 11spc-job-fhwf7 0/1 Pending 0 0spc-job-fhwf7 0/1 Pending 0 0spc-job-pfcvh 0/1 Completed 0 11spc-job-5vg2j 0/1 Pending 0 0spc-job-fhwf7 0/1 ContainerCreating 0 0spc-job-5vg2j 0/1 Pending 0 0spc-job-5vg2j 0/1 ContainerCreating 0 0spc-job-fhwf7 1/1 Running 0 2spc-job-v7rhr 1/1 Running 0 2spc-job-5vg2j 1/1 Running 0 3spc-job-fhwf7 0/1 Completed 0 12spc-job-v7rhr 0/1 Completed 0 12spc-job-5vg2j 0/1 Completed 0 12s 2、删除 删除jobkubectl delete -f pc-job.yaml CronJob 简称为CJ,CronJob控制器以 Job控制器资源为其管控对象,并借助它管理pod资源对象,Job控制器定义的作业任务在其控制器资源创建之后便会立即执行,但CronJob可以以类似于Linux操作系统的周期性任务作业计划的方式控制其运行时间点及重复运行的方式。也就是说,CronJob可以在特定的时间点(反复的)去运行job任务。可以理解为定时任务 配置模板 apiVersion: batch/v1beta1 版本号kind: CronJob 类型 metadata: 元数据name: rs名称 namespace: 所属命名空间 labels: 标签controller: cronjobspec: 详情描述schedule: cron格式的作业调度运行时间点,用于控制任务在什么时间执行concurrencyPolicy: 并发执行策略,用于定义前一次作业运行尚未完成时是否以及如何运行后一次的作业failedJobHistoryLimit: 为失败的任务执行保留的历史记录数,默认为1successfulJobHistoryLimit: 为成功的任务执行保留的历史记录数,默认为3startingDeadlineSeconds: 启动作业错误的超时时长jobTemplate: job控制器模板,用于为cronjob控制器生成job对象;下面其实就是job的定义metadata:spec:completions: 1parallelism: 1activeDeadlineSeconds: 30backoffLimit: 6manualSelector: trueselector:matchLabels:app: counter-podmatchExpressions: 规则- {key: app, operator: In, values: [counter-pod]}template:metadata:labels:app: counter-podspec:restartPolicy: Never containers:- name: counterimage: busybox:1.30command: ["bin/sh","-c","for i in 9 8 7 6 5 4 3 2 1; do echo $i;sleep 20;done"] cron表达式写法 需要重点解释的几个选项:schedule: cron表达式,用于指定任务的执行时间/1 <分钟> <小时> <日> <月份> <星期>分钟 值从 0 到 59.小时 值从 0 到 23.日 值从 1 到 31.月 值从 1 到 12.星期 值从 0 到 6, 0 代表星期日多个时间可以用逗号隔开; 范围可以用连字符给出;可以作为通配符; /表示每... 例如1 // 每个小时的第一分钟执行/1 // 每分钟都执行concurrencyPolicy:Allow: 允许Jobs并发运行(默认)Forbid: 禁止并发运行,如果上一次运行尚未完成,则跳过下一次运行Replace: 替换,取消当前正在运行的作业并用新作业替换它 1、创建cronJob 创建pc-cronjob.yaml,内容如下: apiVersion: batch/v1beta1kind: CronJobmetadata:name: pc-cronjobnamespace: devlabels:controller: cronjobspec:schedule: "/1 " 每分钟执行一次jobTemplate:metadata:spec:template:spec:restartPolicy: Nevercontainers:- name: counterimage: busybox:1.30command: ["bin/sh","-c","for i in 9 8 7 6 5 4 3 2 1; do echo $i;sleep 3;done"] 运行 创建cronjob[root@k8s-master01 ~] kubectl create -f pc-cronjob.yamlcronjob.batch/pc-cronjob created 查看cronjob[root@k8s-master01 ~] kubectl get cronjobs -n devNAME SCHEDULE SUSPEND ACTIVE LAST SCHEDULE AGEpc-cronjob /1 False 0 <none> 6s 查看job[root@k8s-master01 ~] kubectl get jobs -n devNAME COMPLETIONS DURATION AGEpc-cronjob-1592587800 1/1 28s 3m26spc-cronjob-1592587860 1/1 28s 2m26spc-cronjob-1592587920 1/1 28s 86s 查看pod[root@k8s-master01 ~] kubectl get pods -n devpc-cronjob-1592587800-x4tsm 0/1 Completed 0 2m24spc-cronjob-1592587860-r5gv4 0/1 Completed 0 84spc-cronjob-1592587920-9dxxq 1/1 Running 0 24s 2、删除cronjob kubectl delete -f pc-cronjob.yaml pod调度 什么是调度 默认情况下,一个pod在哪个node节点上运行,是通过scheduler组件采用相应的算法计算出来的,这个过程是不受人工控制的; 调度规则 但是在实际使用中,我们想控制某些pod定向到达某个节点上,应该怎么做呢?其实k8s提供了四类调度规则 调度方式 描述 自动调度 通过scheduler组件采用相应的算法计算得出运行在哪个节点上 定向调度 运行到指定的node节点上,通过NodeName、NodeSelector实现 亲和性调度 跟谁关系好就调度到哪个节点上 1、nodeAffinity :节点亲和性,调度到关系好的节点上 2、podAffinity:pod亲和性,调度到关系好的pod所在的节点上 3、PodAntAffinity:pod反清河行,调度到关系差的那个pod所在的节点上 污点(容忍)调度 污点是站在node的角度上的,比如果nodeA有一个污点,大家都别来,此时nodeA会拒绝master调度过来的pod 定向调度 指的是利用在pod上声明nodeName或nodeSelector的方式将pod调度到指定的pod节点上,因为这种定向调度是强制性的,所以如果node节点不存在的话,也会向上面进行调度,只不过pod会运行失败; 1、定向调度-> nodeName nodeName 是将pod强制调度到指定名称的node节点上,这种方式跳过了scheduler的调度逻辑,直接将pod调度到指定名称的节点上,配置文件内容如下 apiVersion: v1 版本号kind: Pod 资源类型metadata: name: pod-namenamespace: devspec: containers: - image: nginx:1.17.1name: nginx-containernodeName: node1 调度到node1节点上 2、定向调度 -> NodeSelector NodeSelector是将pod调度到添加了指定label标签的node节点上,它是通过k8s的label-selector机制实现的,也就是说,在创建pod之前,会由scheduler用matchNodeSelecto调度策略进行label标签的匹配,找出目标node,然后在将pod调度到目标node; 要实验NodeSelector,首先得给node节点加上label标签 kubectl label nodes node1 nodetag=node1 配置文件内容如下 apiVersion: v1 版本号kind: Pod 资源类型metadata: name: pod-namenamespace: devspec: containers: - image: nginx:1.17.1name: nginx-containernodeSelector: nodetag: node1 调度到具有nodetag=node1标签的节点上 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_27184497/article/details/121765387。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-29 09:08:28
422
转载
转载文章
...转载内容。原文链接:https://blog.csdn.net/tom_8899_li/article/details/71194434。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 Spark Streaming电商广告点击综合案例 需求分析和技术架构 广告点击系统实时分析 广告来自于广告或者移动App等,广告需要设定在具体的广告位,当用户点击广告的时候,一般都会通过ajax或Socket往后台发送日志数据,在这里我们是要做基于SparkStreaming做实时在线统计。那么数据就需要放进消息系统(Kafka)中,我们的Spark Streaming应用程序就会去Kafka中Pull数据过来进行计算和消费,并把计算后的数据放入到持久化系统中(MySQL) 广告点击系统实时分析的意义:因为可以在线实时的看见广告的投放效果,就为广告的更大规模的投入和调整打下了坚实的基础,从而为公司带来最大化的经济回报。 核心需求: 1、实时黑名单动态过滤出有效的用户广告点击行为:因为黑名单用户可能随时出现,所以需要动态更新; 2、在线计算广告点击流量; 3、Top3热门广告; 4、每个广告流量趋势; 5、广告点击用户的区域分布分析 6、最近一分钟的广告点击量; 7、整个广告点击Spark Streaming处理程序724小时运行; 数据格式: 时间、用户、广告、城市等 技术细节: 在线计算用户点击的次数分析,屏蔽IP等; 使用updateStateByKey或者mapWithState进行不同地区广告点击排名的计算; Spark Streaming+Spark SQL+Spark Core等综合分析数据; 使用Window类型的操作; 高可用和性能调优等等; 流量趋势,一般会结合DB等; Spark Core / /package com.tom.spark.SparkApps.sparkstreaming;import java.util.Date;import java.util.HashMap;import java.util.Map;import java.util.Properties;import java.util.Random;import kafka.javaapi.producer.Producer;import kafka.producer.KeyedMessage;import kafka.producer.ProducerConfig;/ 数据生成代码,Kafka Producer产生数据/public class MockAdClickedStat {/ @param args/public static void main(String[] args) {final Random random = new Random();final String[] provinces = new String[]{"Guangdong", "Zhejiang", "Jiangsu", "Fujian"};final Map<String, String[]> cities = new HashMap<String, String[]>();cities.put("Guangdong", new String[]{"Guangzhou", "Shenzhen", "Dongguan"});cities.put("Zhejiang", new String[]{"Hangzhou", "Wenzhou", "Ningbo"});cities.put("Jiangsu", new String[]{"Nanjing", "Suzhou", "Wuxi"});cities.put("Fujian", new String[]{"Fuzhou", "Xiamen", "Sanming"});final String[] ips = new String[] {"192.168.112.240","192.168.112.239","192.168.112.245","192.168.112.246","192.168.112.247","192.168.112.248","192.168.112.249","192.168.112.250","192.168.112.251","192.168.112.252","192.168.112.253","192.168.112.254",};/ Kafka相关的基本配置信息/Properties kafkaConf = new Properties();kafkaConf.put("serializer.class", "kafka.serializer.StringEncoder");kafkaConf.put("metadeta.broker.list", "Master:9092,Worker1:9092,Worker2:9092");ProducerConfig producerConfig = new ProducerConfig(kafkaConf);final Producer<Integer, String> producer = new Producer<Integer, String>(producerConfig);new Thread(new Runnable() {public void run() {while(true) {//在线处理广告点击流的基本数据格式:timestamp、ip、userID、adID、province、cityLong timestamp = new Date().getTime();String ip = ips[random.nextInt(12)]; //可以采用网络上免费提供的ip库int userID = random.nextInt(10000);int adID = random.nextInt(100);String province = provinces[random.nextInt(4)];String city = cities.get(province)[random.nextInt(3)];String clickedAd = timestamp + "\t" + ip + "\t" + userID + "\t" + adID + "\t" + province + "\t" + city;producer.send(new KeyedMessage<Integer, String>("AdClicked", clickedAd));try {Thread.sleep(50);} catch (InterruptedException e) {// TODO Auto-generated catch blocke.printStackTrace();} }} }).start();} } package com.tom.spark.SparkApps.sparkstreaming;import java.sql.Connection;import java.sql.DriverManager;import java.sql.PreparedStatement;import java.sql.ResultSet;import java.sql.SQLException;import java.util.ArrayList;import java.util.Arrays;import java.util.HashMap;import java.util.HashSet;import java.util.Iterator;import java.util.List;import java.util.Map;import java.util.Set;import java.util.concurrent.LinkedBlockingQueue;import kafka.serializer.StringDecoder;import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaPairRDD;import org.apache.spark.api.java.JavaRDD;import org.apache.spark.api.java.JavaSparkContext;import org.apache.spark.api.java.function.Function;import org.apache.spark.api.java.function.Function2;import org.apache.spark.api.java.function.PairFunction;import org.apache.spark.api.java.function.VoidFunction;import org.apache.spark.sql.DataFrame;import org.apache.spark.sql.Row;import org.apache.spark.sql.RowFactory;import org.apache.spark.sql.hive.HiveContext;import org.apache.spark.sql.types.DataTypes;import org.apache.spark.sql.types.StructType;import org.apache.spark.streaming.Durations;import org.apache.spark.streaming.api.java.JavaDStream;import org.apache.spark.streaming.api.java.JavaPairDStream;import org.apache.spark.streaming.api.java.JavaPairInputDStream;import org.apache.spark.streaming.api.java.JavaStreamingContext;import org.apache.spark.streaming.api.java.JavaStreamingContextFactory;import org.apache.spark.streaming.kafka.KafkaUtils;import com.google.common.base.Optional;import scala.Tuple2;/ 数据处理,Kafka消费者/public class AdClickedStreamingStats {/ @param args/public static void main(String[] args) {// TODO Auto-generated method stub//好处:1、checkpoint 2、工厂final SparkConf conf = new SparkConf().setAppName("SparkStreamingOnKafkaDirect").setMaster("hdfs://Master:7077/");final String checkpointDirectory = "hdfs://Master:9000/library/SparkStreaming/CheckPoint_Data";JavaStreamingContextFactory factory = new JavaStreamingContextFactory() {public JavaStreamingContext create() {// TODO Auto-generated method stubreturn createContext(checkpointDirectory, conf);} };/ 可以从失败中恢复Driver,不过还需要指定Driver这个进程运行在Cluster,并且在提交应用程序的时候制定--supervise;/JavaStreamingContext javassc = JavaStreamingContext.getOrCreate(checkpointDirectory, factory);/ 第三步:创建Spark Streaming输入数据来源input Stream: 1、数据输入来源可以基于File、HDFS、Flume、Kafka、Socket等 2、在这里我们指定数据来源于网络Socket端口,Spark Streaming连接上该端口并在运行的时候一直监听该端口的数据 (当然该端口服务首先必须存在),并且在后续会根据业务需要不断有数据产生(当然对于Spark Streaming 应用程序的运行而言,有无数据其处理流程都是一样的) 3、如果经常在每间隔5秒钟没有数据的话不断启动空的Job其实会造成调度资源的浪费,因为并没有数据需要发生计算;所以 实际的企业级生成环境的代码在具体提交Job前会判断是否有数据,如果没有的话就不再提交Job;///创建Kafka元数据来让Spark Streaming这个Kafka Consumer利用Map<String, String> kafkaParameters = new HashMap<String, String>();kafkaParameters.put("metadata.broker.list", "Master:9092,Worker1:9092,Worker2:9092");Set<String> topics = new HashSet<String>();topics.add("SparkStreamingDirected");JavaPairInputDStream<String, String> adClickedStreaming = KafkaUtils.createDirectStream(javassc, String.class, String.class, StringDecoder.class, StringDecoder.class,kafkaParameters, topics);/因为要对黑名单进行过滤,而数据是在RDD中的,所以必然使用transform这个函数; 但是在这里我们必须使用transformToPair,原因是读取进来的Kafka的数据是Pair<String,String>类型, 另一个原因是过滤后的数据要进行进一步处理,所以必须是读进的Kafka数据的原始类型 在此再次说明,每个Batch Duration中实际上讲输入的数据就是被一个且仅被一个RDD封装的,你可以有多个 InputDStream,但其实在产生job的时候,这些不同的InputDStream在Batch Duration中就相当于Spark基于HDFS 数据操作的不同文件来源而已罢了。/JavaPairDStream<String, String> filteredadClickedStreaming = adClickedStreaming.transformToPair(new Function<JavaPairRDD<String,String>, JavaPairRDD<String,String>>() {public JavaPairRDD<String, String> call(JavaPairRDD<String, String> rdd) throws Exception {/ 在线黑名单过滤思路步骤: 1、从数据库中获取黑名单转换成RDD,即新的RDD实例封装黑名单数据; 2、然后把代表黑名单的RDD的实例和Batch Duration产生的RDD进行Join操作, 准确的说是进行leftOuterJoin操作,也就是说使用Batch Duration产生的RDD和代表黑名单的RDD实例进行 leftOuterJoin操作,如果两者都有内容的话,就会是true,否则的话就是false 我们要留下的是leftOuterJoin结果为false; /final List<String> blackListNames = new ArrayList<String>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();jdbcWrapper.doQuery("SELECT FROM blacklisttable", null, new ExecuteCallBack() {public void resultCallBack(ResultSet result) throws Exception {while(result.next()){blackListNames.add(result.getString(1));} }});List<Tuple2<String, Boolean>> blackListTuple = new ArrayList<Tuple2<String,Boolean>>();for(String name : blackListNames) {blackListTuple.add(new Tuple2<String, Boolean>(name, true));}List<Tuple2<String, Boolean>> blacklistFromListDB = blackListTuple; //数据来自于查询的黑名单表并且映射成为<String, Boolean>JavaSparkContext jsc = new JavaSparkContext(rdd.context());/ 黑名单的表中只有userID,但是如果要进行join操作的话就必须是Key-Value,所以在这里我们需要 基于数据表中的数据产生Key-Value类型的数据集合/JavaPairRDD<String, Boolean> blackListRDD = jsc.parallelizePairs(blacklistFromListDB);/ 进行操作的时候肯定是基于userID进行join,所以必须把传入的rdd进行mapToPair操作转化成为符合格式的RDD/JavaPairRDD<String, Tuple2<String, String>> rdd2Pair = rdd.mapToPair(new PairFunction<Tuple2<String,String>, String, Tuple2<String, String>>() {public Tuple2<String, Tuple2<String, String>> call(Tuple2<String, String> t) throws Exception {// TODO Auto-generated method stubString userID = t._2.split("\t")[2];return new Tuple2<String, Tuple2<String,String>>(userID, t);} });JavaPairRDD<String, Tuple2<Tuple2<String, String>, Optional<Boolean>>> joined = rdd2Pair.leftOuterJoin(blackListRDD);JavaPairRDD<String, String> result = joined.filter(new Function<Tuple2<String,Tuple2<Tuple2<String,String>,Optional<Boolean>>>, Boolean>() {public Boolean call(Tuple2<String, Tuple2<Tuple2<String, String>, Optional<Boolean>>> tuple)throws Exception {// TODO Auto-generated method stubOptional<Boolean> optional = tuple._2._2;if(optional.isPresent() && optional.get()){return false;} else {return true;} }}).mapToPair(new PairFunction<Tuple2<String,Tuple2<Tuple2<String,String>,Optional<Boolean>>>, String, String>() {public Tuple2<String, String> call(Tuple2<String, Tuple2<Tuple2<String, String>, Optional<Boolean>>> t)throws Exception {// TODO Auto-generated method stubreturn t._2._1;} });return result;} });//广告点击的基本数据格式:timestamp、ip、userID、adID、province、cityJavaPairDStream<String, Long> pairs = filteredadClickedStreaming.mapToPair(new PairFunction<Tuple2<String,String>, String, Long>() {public Tuple2<String, Long> call(Tuple2<String, String> t) throws Exception {String[] splited=t._2.split("\t");String timestamp = splited[0]; //YYYY-MM-DDString ip = splited[1];String userID = splited[2];String adID = splited[3];String province = splited[4];String city = splited[5]; String clickedRecord = timestamp + "_" +ip + "_"+userID+"_"+adID+"_"+province +"_"+city;return new Tuple2<String, Long>(clickedRecord, 1L);} });/ 第4.3步:在单词实例计数为1基础上,统计每个单词在文件中出现的总次数/JavaPairDStream<String, Long> adClickedUsers= pairs.reduceByKey(new Function2<Long, Long, Long>() {public Long call(Long i1, Long i2) throws Exception{return i1 + i2;} });/判断有效的点击,复杂化的采用机器学习训练模型进行在线过滤 简单的根据ip判断1天不超过100次;也可以通过一个batch duration的点击次数判断是否非法广告点击,通过一个batch来判断是不完整的,还需要一天的数据也可以每一个小时来判断。/JavaPairDStream<String, Long> filterClickedBatch = adClickedUsers.filter(new Function<Tuple2<String,Long>, Boolean>() {public Boolean call(Tuple2<String, Long> v1) throws Exception {if (1 < v1._2){//更新一些黑名单的数据库表return false;} else { return true;} }});//filterClickedBatch.print();//写入数据库filterClickedBatch.foreachRDD(new Function<JavaPairRDD<String,Long>, Void>() {public Void call(JavaPairRDD<String, Long> rdd) throws Exception {rdd.foreachPartition(new VoidFunction<Iterator<Tuple2<String,Long>>>() {public void call(Iterator<Tuple2<String, Long>> partition) throws Exception {//使用数据库连接池的高效读写数据库的方式将数据写入数据库mysql//例如一次插入 1000条 records,使用insertBatch 或 updateBatch//插入的用户数据信息:userID,adID,clickedCount,time//这里面有一个问题,可能出现两条记录的key是一样的,此时需要更新累加操作List<UserAdClicked> userAdClickedList = new ArrayList<UserAdClicked>();while(partition.hasNext()) {Tuple2<String, Long> record = partition.next();String[] splited = record._1.split("\t");UserAdClicked userClicked = new UserAdClicked();userClicked.setTimestamp(splited[0]);userClicked.setIp(splited[1]);userClicked.setUserID(splited[2]);userClicked.setAdID(splited[3]);userClicked.setProvince(splited[4]);userClicked.setCity(splited[5]);userAdClickedList.add(userClicked);}final List<UserAdClicked> inserting = new ArrayList<UserAdClicked>();final List<UserAdClicked> updating = new ArrayList<UserAdClicked>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();//表的字段timestamp、ip、userID、adID、province、city、clickedCountfor(final UserAdClicked clicked : userAdClickedList) {jdbcWrapper.doQuery("SELECT clickedCount FROM adclicked WHERE"+ " timestamp =? AND userID = ? AND adID = ?",new Object[]{clicked.getTimestamp(), clicked.getUserID(),clicked.getAdID()}, new ExecuteCallBack() {public void resultCallBack(ResultSet result) throws Exception {// TODO Auto-generated method stubif(result.next()) {long count = result.getLong(1);clicked.setClickedCount(count);updating.add(clicked);} else {inserting.add(clicked);clicked.setClickedCount(1L);} }});}//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> insertParametersList = new ArrayList<Object[]>();for(UserAdClicked insertRecord : inserting) {insertParametersList.add(new Object[] {insertRecord.getTimestamp(),insertRecord.getIp(),insertRecord.getUserID(),insertRecord.getAdID(),insertRecord.getProvince(),insertRecord.getCity(),insertRecord.getClickedCount()});}jdbcWrapper.doBatch("INSERT INTO adclicked VALUES(?, ?, ?, ?, ?, ?, ?)", insertParametersList);//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> updateParametersList = new ArrayList<Object[]>();for(UserAdClicked updateRecord : updating) {updateParametersList.add(new Object[] {updateRecord.getTimestamp(),updateRecord.getIp(),updateRecord.getUserID(),updateRecord.getAdID(),updateRecord.getProvince(),updateRecord.getCity(),updateRecord.getClickedCount() + 1});}jdbcWrapper.doBatch("UPDATE adclicked SET clickedCount = ? WHERE"+ " timestamp =? AND ip = ? AND userID = ? AND adID = ? "+ "AND province = ? AND city = ?", updateParametersList);} });return null;} });//再次过滤,从数据库中读取数据过滤黑名单JavaPairDStream<String, Long> blackListBasedOnHistory = filterClickedBatch.filter(new Function<Tuple2<String,Long>, Boolean>() {public Boolean call(Tuple2<String, Long> v1) throws Exception {//广告点击的基本数据格式:timestamp,ip,userID,adID,province,cityString[] splited = v1._1.split("\t"); //提取key值String date =splited[0];String userID =splited[2];String adID =splited[3];//查询一下数据库同一个用户同一个广告id点击量超过50次列入黑名单//接下来 根据date、userID、adID条件去查询用户点击广告的数据表,获得总的点击次数//这个时候基于点击次数判断是否属于黑名单点击int clickedCountTotalToday = 81 ;if (clickedCountTotalToday > 50) {return true;}else {return false ;} }});//map操作,找出用户的idJavaDStream<String> blackListuserIDBasedInBatchOnhistroy =blackListBasedOnHistory.map(new Function<Tuple2<String,Long>, String>() {public String call(Tuple2<String, Long> v1) throws Exception {// TODO Auto-generated method stubreturn v1._1.split("\t")[2];} });//有一个问题,数据可能重复,在一个partition里面重复,这个好办;//但多个partition不能保证一个用户重复,需要对黑名单的整个rdd进行去重操作。//rdd去重了,partition也就去重了,一石二鸟,一箭双雕// 找出了黑名单,下一步就写入黑名单数据库表中JavaDStream<String> blackListUniqueuserBasedInBatchOnhistroy = blackListuserIDBasedInBatchOnhistroy.transform(new Function<JavaRDD<String>, JavaRDD<String>>() {public JavaRDD<String> call(JavaRDD<String> rdd) throws Exception {// TODO Auto-generated method stubreturn rdd.distinct();} });// 下一步写入到数据表中blackListUniqueuserBasedInBatchOnhistroy.foreachRDD(new Function<JavaRDD<String>, Void>() {public Void call(JavaRDD<String> rdd) throws Exception {rdd.foreachPartition(new VoidFunction<Iterator<String>>() {public void call(Iterator<String> t) throws Exception {// TODO Auto-generated method stub//插入的用户信息可以只包含:useID//此时直接插入黑名单数据表即可。//写入数据库List<Object[]> blackList = new ArrayList<Object[]>();while(t.hasNext()) {blackList.add(new Object[]{t.next()});}JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();jdbcWrapper.doBatch("INSERT INTO blacklisttable values (?)", blackList);} });return null;} });/广告点击累计动态更新,每个updateStateByKey都会在Batch Duration的时间间隔的基础上进行广告点击次数的更新, 更新之后我们一般都会持久化到外部存储设备上,在这里我们存储到MySQL数据库中/JavaPairDStream<String, Long> updateStateByKeyDSteam = filteredadClickedStreaming.mapToPair(new PairFunction<Tuple2<String,String>, String, Long>() {public Tuple2<String, Long> call(Tuple2<String, String> t)throws Exception {String[] splited=t._2.split("\t");String timestamp = splited[0]; //YYYY-MM-DDString ip = splited[1];String userID = splited[2];String adID = splited[3];String province = splited[4];String city = splited[5]; String clickedRecord = timestamp + "_" +ip + "_"+userID+"_"+adID+"_"+province +"_"+city;return new Tuple2<String, Long>(clickedRecord, 1L);} }).updateStateByKey(new Function2<List<Long>, Optional<Long>, Optional<Long>>() {public Optional<Long> call(List<Long> v1, Optional<Long> v2)throws Exception {// v1:当前的Key在当前的Batch Duration中出现的次数的集合,例如{1,1,1,。。。,1}// v2:当前的Key在以前的Batch Duration中积累下来的结果;Long clickedTotalHistory = 0L; if(v2.isPresent()){clickedTotalHistory = v2.get();}for(Long one : v1) {clickedTotalHistory += one;}return Optional.of(clickedTotalHistory);} });updateStateByKeyDSteam.foreachRDD(new Function<JavaPairRDD<String,Long>, Void>() {public Void call(JavaPairRDD<String, Long> rdd) throws Exception {rdd.foreachPartition(new VoidFunction<Iterator<Tuple2<String,Long>>>() {public void call(Iterator<Tuple2<String, Long>> partition) throws Exception {//使用数据库连接池的高效读写数据库的方式将数据写入数据库mysql//例如一次插入 1000条 records,使用insertBatch 或 updateBatch//插入的用户数据信息:timestamp、adID、province、city//这里面有一个问题,可能出现两条记录的key是一样的,此时需要更新累加操作List<AdClicked> AdClickedList = new ArrayList<AdClicked>();while(partition.hasNext()) {Tuple2<String, Long> record = partition.next();String[] splited = record._1.split("\t");AdClicked adClicked = new AdClicked();adClicked.setTimestamp(splited[0]);adClicked.setAdID(splited[1]);adClicked.setProvince(splited[2]);adClicked.setCity(splited[3]);adClicked.setClickedCount(record._2);AdClickedList.add(adClicked);}final List<AdClicked> inserting = new ArrayList<AdClicked>();final List<AdClicked> updating = new ArrayList<AdClicked>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();//表的字段timestamp、ip、userID、adID、province、city、clickedCountfor(final AdClicked clicked : AdClickedList) {jdbcWrapper.doQuery("SELECT clickedCount FROM adclickedcount WHERE"+ " timestamp = ? AND adID = ? AND province = ? AND city = ?",new Object[]{clicked.getTimestamp(), clicked.getAdID(),clicked.getProvince(), clicked.getCity()}, new ExecuteCallBack() {public void resultCallBack(ResultSet result) throws Exception {// TODO Auto-generated method stubif(result.next()) {long count = result.getLong(1);clicked.setClickedCount(count);updating.add(clicked);} else {inserting.add(clicked);clicked.setClickedCount(1L);} }});}//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> insertParametersList = new ArrayList<Object[]>();for(AdClicked insertRecord : inserting) {insertParametersList.add(new Object[] {insertRecord.getTimestamp(),insertRecord.getAdID(),insertRecord.getProvince(),insertRecord.getCity(),insertRecord.getClickedCount()});}jdbcWrapper.doBatch("INSERT INTO adclickedcount VALUES(?, ?, ?, ?, ?)", insertParametersList);//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> updateParametersList = new ArrayList<Object[]>();for(AdClicked updateRecord : updating) {updateParametersList.add(new Object[] {updateRecord.getClickedCount(),updateRecord.getTimestamp(),updateRecord.getAdID(),updateRecord.getProvince(),updateRecord.getCity()});}jdbcWrapper.doBatch("UPDATE adclickedcount SET clickedCount = ? WHERE"+ " timestamp =? AND adID = ? AND province = ? AND city = ?", updateParametersList);} });return null;} });/ 对广告点击进行TopN计算,计算出每天每个省份Top5排名的广告 因为我们直接对RDD进行操作,所以使用了transfomr算子;/updateStateByKeyDSteam.transform(new Function<JavaPairRDD<String,Long>, JavaRDD<Row>>() {public JavaRDD<Row> call(JavaPairRDD<String, Long> rdd) throws Exception {JavaRDD<Row> rowRDD = rdd.mapToPair(new PairFunction<Tuple2<String,Long>, String, Long>() {public Tuple2<String, Long> call(Tuple2<String, Long> t)throws Exception {// TODO Auto-generated method stubString[] splited=t._1.split("_");String timestamp = splited[0]; //YYYY-MM-DDString adID = splited[3];String province = splited[4];String clickedRecord = timestamp + "_" + adID + "_" + province;return new Tuple2<String, Long>(clickedRecord, t._2);} }).reduceByKey(new Function2<Long, Long, Long>() {public Long call(Long v1, Long v2) throws Exception {// TODO Auto-generated method stubreturn v1 + v2;} }).map(new Function<Tuple2<String,Long>, Row>() {public Row call(Tuple2<String, Long> v1) throws Exception {// TODO Auto-generated method stubString[] splited=v1._1.split("_");String timestamp = splited[0]; //YYYY-MM-DDString adID = splited[3];String province = splited[4];return RowFactory.create(timestamp, adID, province, v1._2);} });StructType structType = DataTypes.createStructType(Arrays.asList(DataTypes.createStructField("timestamp", DataTypes.StringType, true),DataTypes.createStructField("adID", DataTypes.StringType, true),DataTypes.createStructField("province", DataTypes.StringType, true),DataTypes.createStructField("clickedCount", DataTypes.LongType, true)));HiveContext hiveContext = new HiveContext(rdd.context());DataFrame df = hiveContext.createDataFrame(rowRDD, structType);df.registerTempTable("topNTableSource");DataFrame result = hiveContext.sql("SELECT timestamp, adID, province, clickedCount, FROM"+ " (SELECT timestamp, adID, province,clickedCount, "+ "ROW_NUMBER() OVER(PARTITION BY province ORDER BY clickeCount DESC) rank "+ "FROM topNTableSource) subquery "+ "WHERE rank <= 5");return result.toJavaRDD();} }).foreachRDD(new Function<JavaRDD<Row>, Void>() {public Void call(JavaRDD<Row> rdd) throws Exception {// TODO Auto-generated method stubrdd.foreachPartition(new VoidFunction<Iterator<Row>>() {public void call(Iterator<Row> t) throws Exception {// TODO Auto-generated method stubList<AdProvinceTopN> adProvinceTopN = new ArrayList<AdProvinceTopN>();while(t.hasNext()) {Row row = t.next();AdProvinceTopN item = new AdProvinceTopN();item.setTimestamp(row.getString(0));item.setAdID(row.getString(1));item.setProvince(row.getString(2));item.setClickedCount(row.getLong(3));adProvinceTopN.add(item);}// final List<AdProvinceTopN> inserting = new ArrayList<AdProvinceTopN>();// final List<AdProvinceTopN> updating = new ArrayList<AdProvinceTopN>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();Set<String> set = new HashSet<String>();for(AdProvinceTopN item: adProvinceTopN){set.add(item.getTimestamp() + "_" + item.getProvince());}//表的字段timestamp、adID、province、clickedCountArrayList<Object[]> deleteParametersList = new ArrayList<Object[]>();for(String deleteRecord : set) {String[] splited = deleteRecord.split("_");deleteParametersList.add(new Object[]{splited[0],splited[1]});}jdbcWrapper.doBatch("DELETE FROM adprovincetopn WHERE timestamp = ? AND province = ?", deleteParametersList);//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> insertParametersList = new ArrayList<Object[]>();for(AdProvinceTopN insertRecord : adProvinceTopN) {insertParametersList.add(new Object[] {insertRecord.getClickedCount(),insertRecord.getTimestamp(),insertRecord.getAdID(),insertRecord.getProvince()});}jdbcWrapper.doBatch("INSERT INTO adprovincetopn VALUES (?, ?, ?, ?)", insertParametersList);} });return null;} });/ 计算过去半个小时内广告点击的趋势 广告点击的基本数据格式:timestamp、ip、userID、adID、province、city/filteredadClickedStreaming.mapToPair(new PairFunction<Tuple2<String,String>, String, Long>() {public Tuple2<String, Long> call(Tuple2<String, String> t)throws Exception {String splited[] = t._2.split("\t");String adID = splited[3];String time = splited[0]; //Todo:后续需要重构代码实现时间戳和分钟的转换提取。此处需要提取出该广告的点击分钟单位return new Tuple2<String, Long>(time + "_" + adID, 1L);} }).reduceByKeyAndWindow(new Function2<Long, Long, Long>() {public Long call(Long v1, Long v2) throws Exception {// TODO Auto-generated method stubreturn v1 + v2;} }, new Function2<Long, Long, Long>() {public Long call(Long v1, Long v2) throws Exception {// TODO Auto-generated method stubreturn v1 - v2;} }, Durations.minutes(30), Durations.milliseconds(5)).foreachRDD(new Function<JavaPairRDD<String,Long>, Void>() {public Void call(JavaPairRDD<String, Long> rdd) throws Exception {// TODO Auto-generated method stubrdd.foreachPartition(new VoidFunction<Iterator<Tuple2<String,Long>>>() {public void call(Iterator<Tuple2<String, Long>> partition)throws Exception {List<AdTrendStat> adTrend = new ArrayList<AdTrendStat>();// TODO Auto-generated method stubwhile(partition.hasNext()) {Tuple2<String, Long> record = partition.next();String[] splited = record._1.split("_");String time = splited[0];String adID = splited[1];Long clickedCount = record._2;/ 在插入数据到数据库的时候具体需要哪些字段?time、adID、clickedCount; 而我们通过J2EE技术进行趋势绘图的时候肯定是需要年、月、日、时、分这个维度的,所以我们在这里需要 年月日、小时、分钟这些时间维度;/AdTrendStat adTrendStat = new AdTrendStat();adTrendStat.setAdID(adID);adTrendStat.setClickedCount(clickedCount);adTrendStat.set_date(time); //Todo:获取年月日adTrendStat.set_hour(time); //Todo:获取小时adTrendStat.set_minute(time);//Todo:获取分钟adTrend.add(adTrendStat);}final List<AdTrendStat> inserting = new ArrayList<AdTrendStat>();final List<AdTrendStat> updating = new ArrayList<AdTrendStat>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();//表的字段timestamp、ip、userID、adID、province、city、clickedCountfor(final AdTrendStat trend : adTrend) {final AdTrendCountHistory adTrendhistory = new AdTrendCountHistory();jdbcWrapper.doQuery("SELECT clickedCount FROM adclickedtrend WHERE"+ " date =? AND hour = ? AND minute = ? AND AdID = ?",new Object[]{trend.get_date(), trend.get_hour(), trend.get_minute(),trend.getAdID()}, new ExecuteCallBack() {public void resultCallBack(ResultSet result) throws Exception {// TODO Auto-generated method stubif(result.next()) {long count = result.getLong(1);adTrendhistory.setClickedCountHistoryLong(count);updating.add(trend);} else { inserting.add(trend);} }});}//表的字段date、hour、minute、adID、clickedCountList<Object[]> insertParametersList = new ArrayList<Object[]>();for(AdTrendStat insertRecord : inserting) {insertParametersList.add(new Object[] {insertRecord.get_date(),insertRecord.get_hour(),insertRecord.get_minute(),insertRecord.getAdID(),insertRecord.getClickedCount()});}jdbcWrapper.doBatch("INSERT INTO adclickedtrend VALUES(?, ?, ?, ?, ?)", insertParametersList);//表的字段date、hour、minute、adID、clickedCountList<Object[]> updateParametersList = new ArrayList<Object[]>();for(AdTrendStat updateRecord : updating) {updateParametersList.add(new Object[] {updateRecord.getClickedCount(),updateRecord.get_date(),updateRecord.get_hour(),updateRecord.get_minute(),updateRecord.getAdID()});}jdbcWrapper.doBatch("UPDATE adclickedtrend SET clickedCount = ? WHERE"+ " date =? AND hour = ? AND minute = ? AND AdID = ?", updateParametersList);} });return null;} });;/ Spark Streaming 执行引擎也就是Driver开始运行,Driver启动的时候是位于一条新的线程中的,当然其内部有消息循环体,用于 接收应用程序本身或者Executor中的消息,/javassc.start();javassc.awaitTermination();javassc.close();}private static JavaStreamingContext createContext(String checkpointDirectory, SparkConf conf) {// If you do not see this printed, that means the StreamingContext has been loaded// from the new checkpointSystem.out.println("Creating new context");// Create the context with a 5 second batch sizeJavaStreamingContext ssc = new JavaStreamingContext(conf, Durations.seconds(10));ssc.checkpoint(checkpointDirectory);return ssc;} }class JDBCWrapper {private static JDBCWrapper jdbcInstance = null;private static LinkedBlockingQueue<Connection> dbConnectionPool = new LinkedBlockingQueue<Connection>();static {try {Class.forName("com.mysql.jdbc.Driver");} catch (ClassNotFoundException e) {// TODO Auto-generated catch blocke.printStackTrace();} }public static JDBCWrapper getJDBCInstance() {if(jdbcInstance == null) {synchronized (JDBCWrapper.class) {if(jdbcInstance == null) {jdbcInstance = new JDBCWrapper();} }}return jdbcInstance; }private JDBCWrapper() {for(int i = 0; i < 10; i++){try {Connection conn = DriverManager.getConnection("jdbc:mysql://Master:3306/sparkstreaming","root", "root");dbConnectionPool.put(conn);} catch (Exception e) {// TODO Auto-generated catch blocke.printStackTrace();} } }public synchronized Connection getConnection() {while(0 == dbConnectionPool.size()){try {Thread.sleep(20);} catch (InterruptedException e) {// TODO Auto-generated catch blocke.printStackTrace();} }return dbConnectionPool.poll();}public int[] doBatch(String sqlText, List<Object[]> paramsList){Connection conn = getConnection();PreparedStatement preparedStatement = null;int[] result = null;try {conn.setAutoCommit(false);preparedStatement = conn.prepareStatement(sqlText);for(Object[] parameters: paramsList) {for(int i = 0; i < parameters.length; i++){preparedStatement.setObject(i + 1, parameters[i]);} preparedStatement.addBatch();}result = preparedStatement.executeBatch();conn.commit();} catch (SQLException e) {// TODO Auto-generated catch blocke.printStackTrace();} finally {if(preparedStatement != null) {try {preparedStatement.close();} catch (SQLException e) {// TODO Auto-generated catch blocke.printStackTrace();} }if(conn != null) {try {dbConnectionPool.put(conn);} catch (InterruptedException e) {// TODO Auto-generated catch blocke.printStackTrace();} }}return result; }public void doQuery(String sqlText, Object[] paramsList, ExecuteCallBack callback){Connection conn = getConnection();PreparedStatement preparedStatement = null;ResultSet result = null;try {preparedStatement = conn.prepareStatement(sqlText);for(int i = 0; i < paramsList.length; i++){preparedStatement.setObject(i + 1, paramsList[i]);} result = preparedStatement.executeQuery();try {callback.resultCallBack(result);} catch (Exception e) {// TODO Auto-generated catch blocke.printStackTrace();} } catch (SQLException e) {// TODO Auto-generated catch blocke.printStackTrace();} finally {if(preparedStatement != null) {try {preparedStatement.close();} catch (SQLException e) {// TODO Auto-generated catch blocke.printStackTrace();} }if(conn != null) {try {dbConnectionPool.put(conn);} catch (InterruptedException e) {// TODO Auto-generated catch blocke.printStackTrace();} }} }}interface ExecuteCallBack {void resultCallBack(ResultSet result) throws Exception;}class UserAdClicked {private String timestamp;private String ip;private String userID;private String adID;private String province;private String city;private Long clickedCount;public String getTimestamp() {return timestamp;}public void setTimestamp(String timestamp) {this.timestamp = timestamp;}public String getIp() {return ip;}public void setIp(String ip) {this.ip = ip;}public String getUserID() {return userID;}public void setUserID(String userID) {this.userID = userID;}public String getAdID() {return adID;}public void setAdID(String adID) {this.adID = adID;}public String getProvince() {return province;}public void setProvince(String province) {this.province = province;}public String getCity() {return city;}public void setCity(String city) {this.city = city;}public Long getClickedCount() {return clickedCount;}public void setClickedCount(Long clickedCount) {this.clickedCount = clickedCount;} }class AdClicked {private String timestamp;private String adID;private String province;private String city;private Long clickedCount;public String getTimestamp() {return timestamp;}public void setTimestamp(String timestamp) {this.timestamp = timestamp;}public String getAdID() {return adID;}public void setAdID(String adID) {this.adID = adID;}public String getProvince() {return province;}public void setProvince(String province) {this.province = province;}public String getCity() {return city;}public void setCity(String city) {this.city = city;}public Long getClickedCount() {return clickedCount;}public void setClickedCount(Long clickedCount) {this.clickedCount = clickedCount;} }class AdProvinceTopN {private String timestamp;private String adID;private String province;private Long clickedCount;public String getTimestamp() {return timestamp;}public void setTimestamp(String timestamp) {this.timestamp = timestamp;}public String getAdID() {return adID;}public void setAdID(String adID) {this.adID = adID;}public String getProvince() {return province;}public void setProvince(String province) {this.province = province;}public Long getClickedCount() {return clickedCount;}public void setClickedCount(Long clickedCount) {this.clickedCount = clickedCount;} }class AdTrendStat {private String _date;private String _hour;private String _minute;private String adID;private Long clickedCount;public String get_date() {return _date;}public void set_date(String _date) {this._date = _date;}public String get_hour() {return _hour;}public void set_hour(String _hour) {this._hour = _hour;}public String get_minute() {return _minute;}public void set_minute(String _minute) {this._minute = _minute;}public String getAdID() {return adID;}public void setAdID(String adID) {this.adID = adID;}public Long getClickedCount() {return clickedCount;}public void setClickedCount(Long clickedCount) {this.clickedCount = clickedCount;} }class AdTrendCountHistory{private Long clickedCountHistoryLong;public Long getClickedCountHistoryLong() {return clickedCountHistoryLong;}public void setClickedCountHistoryLong(Long clickedCountHistoryLong) {this.clickedCountHistoryLong = clickedCountHistoryLong;} } 本篇文章为转载内容。原文链接:https://blog.csdn.net/tom_8899_li/article/details/71194434。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-14 19:16:35
297
转载
转载文章
...转载内容。原文链接:https://blog.csdn.net/qq_28052907/article/details/75194926。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 中小企业MIS系统的管理基本上由两大部份组成,一是前台的可视化操作,二是后台的数据库管理。网管对前台的管理和维护工作包括保障网络链路通畅、处理MIS终端的突发事件以及对操作员的管理、培训等,这是网管们日常做得最多、最辛苦的功课;然而MIS系统架构中同等重要的针对数据库的管理、维护和优化工作,现实中似乎并没有得到网管朋友的足够重视,看起来这都是程序员的事,事实上,一个网管如果能在MIS设计期间就数据表的规范化、表索引优化、容量设计、事务处理等诸多方面与程序员进行卓有成效的沟通和协作,那么日常的前台管理工作将会变得大为轻松,因为在某种意义上,数据库管理系统就相当于操作系统,在系统中占有同样重要的位置。 这正是SQL SERVER等数据库管理系统和dBASEX、ACCESS等数据库文件系统的本质区别,所以,对数据库管理系统操作能力的强弱在某种程度上也折射出了网管的水平——个人认为,称得上优秀的Admin,至少应该是一个称职的DBA(数据库管理员)。 下面以SQL SERVER(下称 SQLS)为例,将数据库管理中难于理解的“索引原理”问题给各位朋友作一个深入浅出的介绍。其他的数据库管理系统如Oracle、Sybase等,朋友们可以融会贯通,举一反三。 一、数据表的基本结构 建立数据库的目的是管理大量数据,而建立索引的目的就是提高数据检索效率,改善数据库工作性能,提高数据访问速度。对于索引,我们要知其然,更要知其所以然,关键在于认识索引的工作原理,才能更好的管理索引。 为认识索引工作原理,首先有必要对数据表的基本结构作一次全面的复习。 SQLS当一个新表被创建之时,系统将在磁盘中分配一段以8K为单位的连续空间,当字段的值从内存写入磁盘时,就在这一既定空间随机保存,当一个8K用完的时候,SQLS指针会自动分配一个8K的空间。这里,每个8K空间被称为一个数据页(Page),又名页面或数据页面,并分配从0-7的页号,每个文件的第0页记录引导信息,叫文件头(File header);每8个数据页(64K)的组合形成扩展区(Extent),称为扩展。全部数据页的组合形成堆(Heap)。 SQLS规定行不能跨越数据页,所以,每行记录的最大数据量只能为8K。这就是char和varchar这两种字符串类型容量要限制在8K以内的原因,存储超过8K的数据应使用text类型,实际上,text类型的字段值不能直接录入和保存,它只是存储一个指针,指向由若干8K的文本数据页所组成的扩展区,真正的数据正是放在这些数据页中。 页面有空间页面和数据页面之分。 当一个扩展区的8个数据页中既包含了空间页面又包括了数据或索引页面时,称为混合扩展(Mixed Extent),每张表都以混合扩展开始;反之,称为一致扩展(Uniform Extent),专门保存数据及索引信息。 表被创建之时,SQLS在混合扩展中为其分配至少一个数据页面,随着数据量的增长,SQLS可即时在混合扩展中分配出7个页面,当数据超过8个页面时,则从一致扩展中分配数据页面。 空间页面专门负责数据空间的分配和管理,包括:PFS页面(Page free space):记录一个页面是否已分配、位于混合扩展还是一致扩展以及页面上还有多少可用空间等信息;GAM页面(Global allocation map)和SGAM页面(Secodary global allocation map):用来记录空闲的扩展或含有空闲页面的混合扩展的位置。SQLS综合利用这三种类型的页面文件在必要时为数据表创建新空间; 数据页或索引页则专门保存数据及索引信息,SQLS使用4种类型的数据页面来管理表或索引:它们是IAM页、数据页、文本/图像页和索引页。 在WINDOWS中,我们对文件执行的每一步操作,在磁盘上的物理位置只有系统(system)才知道;SQL SERVER沿袭了这种工作方式,在插入数据的过程中,不但每个字段值在数据页面中的保存位置是随机的,而且每个数据页面在“堆”中的排列位置也只有系统(system)才知道。 这是为什么呢?众所周知,OS之所以能管理DISK,是因为在系统启动时首先加载了文件分配表:FAT(File Allocation Table),正是由它管理文件系统并记录对文件的一切操作,系统才得以正常运行;同理,作为管理系统级的SQL SERVER,也有这样一张类似FAT的表存在,它就是索引分布映像页:IAM(Index Allocation Map)。 IAM的存在,使SQLS对数据表的物理管理有了可能。 IAM页从混合扩展中分配,记录了8个初始页面的位置和该扩展区的位置,每个IAM页面能管理512,000个数据页面,如果数据量太大,SQLS也可以增加更多的IAM页,可以位于文件的任何位置。第一个IAM页被称为FirstIAM,其中记录了以后的IAM页的位置。 数据页和文本/图像页互反,前者保存非文本/图像类型的数据,因为它们都不超过8K的容量,后者则只保存超过8K容量的文本或图像类型数据。而索引页顾名思义,保存的是与索引结构相关的数据信息。了解页面的问题有助我们下一步准确理解SQLS维护索引的方式,如页拆分、填充因子等。 二、索引的基本概念 索引是一种特殊类型的数据库对象,它与表有着密切的联系。 索引是为检索而存在的。如一些书籍的末尾就专门附有索引,指明了某个关键字在正文中的出现的页码位置,方便我们查找,但大多数的书籍只有目录,目录不是索引,只是书中内容的排序,并不提供真正的检索功能。可见建立索引要单独占用空间;索引也并不是必须要建立的,它们只是为更好、更快的检索和定位关键字而存在。 再进一步说,我们要在图书馆中查阅图书,该怎么办呢?图书馆的前台有很多叫做索引卡片柜的小柜子,里面分了若干的类别供我们检索图书,比如你可以用书名的笔画顺序或者拼音顺序作为查找的依据,你还可以从作者名的笔画顺序或拼音顺序去查询想要的图书,反正有许多检索方式,但有一点很明白,书库中的书并没有按照这些卡片柜中的顺序排列——虽然理论上可以这样做,事实上,所有图书的脊背上都人工的粘贴了一个特定的编号①,它们是以这个顺序在排列。索引卡片中并没有指明这本书摆放在书库中的第几个书架的第几本,仅仅指明了这个特定的编号。管理员则根据这一编号将请求的图书返回到读者手中。这是很形象的例子,以下的讲解将会反复用到它。 SQLS在安装完成之后,安装程序会自动创建master、model、tempdb等几个特殊的系统数据库,其中master是SQLS的主数据库,用于保存和管理其它系统数据库、用户数据库以及SQLS的系统信息,它在SQLS中的地位与WINDOWS下的注册表相当。 master中有一个名为sysindexes的系统表,专门管理索引。SQLS查询数据表的操作都必须用到它,毫无疑义,它是本文主角之一。 查看一张表的索引属性,可以在查询分析器中使用以下命令:select from sysindexes where id=object_id(‘tablename’) ;而要查看表的索引所占空间的大小,可以使用系统存储过程命令:sp_spaceused tablename,其中参数tablename为被索引的表名。 三、平衡树 如果你通过书后的索引知道了一个关键字所在的页码,你有可能通过随机的翻寻,最终到达正确的页码。但更科学更快捷的方法是:首先把书翻到大概二分之一的位置,如果要找的页码比该页的页码小,就把书向前翻到四分之一处,否则,就把书向后翻到四分之三的地方,依此类推,把书页续分成更小的部分,直至正确的页码。这叫“两分法”,微软在官方教程MOC里另有一种说法:叫B树(B-Tree,Balance Tree),即平衡树。 一个表索引由若干页面组成,这些页面构成了一个树形结构。B树由“根”(root)开始,称为根级节点,它通过指向另外两个页,把一个表的记录从逻辑上分成两个部分:“枝”—--非叶级节点(Non-Leaf Level);而非叶级节点又分别指向更小的部分:“叶”——叶级节点(Leaf Level)。根节点、非叶级节点和叶级节点都位于索引页中,统称为索引节点,属于索引页的范筹。这些“枝”、“叶”最终指向了具体的数据页(Page)。在根级节点和叶级节点之间的叶又叫数据中间页。 “根”(root)对应了sysindexes表的Root字段,其中记载了非叶级节点的物理位置(即指针);非叶级节点位于根节点和叶节点之间,记载了指向叶级节点的指针;而叶级节点则最终指向数据页。这就是“平衡树”。 四、聚集索引和非聚集索引 从形式上而言,索引分为聚集索引(Clustered Indexes)和非聚集索引(NonClustered Indexes)。 聚集索引相当于书籍脊背上那个特定的编号。如果对一张表建立了聚集索引,其索引页中就包含着建立索引的列的值(下称索引键值),那么表中的记录将按照该索引键值进行排序。比如,我们如果在“姓名”这一字段上建立了聚集索引,则表中的记录将按照姓名进行排列;如果建立了聚集索引的列是数值类型的,那么记录将按照该键值的数值大小来进行排列。 非聚集索引用于指定数据的逻辑顺序,也就是说,表中的数据并没有按照索引键值指定的顺序排列,而仍然按照插入记录时的顺序存放。其索引页中包含着索引键值和它所指向该行记录在数据页中的物理位置,叫做行定位符(RID:Row ID)。好似书后面的的索引表,索引表中的顺序与实际的页码顺序也是不一致的。而且一本书也许有多个索引。比如主题索引和作者索引。 SQL Server在默认的情况下建立的索引是非聚集索引,由于非聚集索引不对表中的数据进行重组,而只是存储索引键值并用一个指针指向数据所在的页面。一个表如果没有聚集索引时,理论上可以建立249个非聚集索引。每个非聚集索引提供访问数据的不同排序顺序。 五、数据是怎样被访问的 若能真正理解了以上索引的基础知识,那么再回头来看索引的工作原理就简单和轻松多了。 (一)SQLS怎样访问没有建立任何索引数据表: Heap译成汉语叫做“堆”,其本义暗含杂乱无章、无序的意思,前面提到数据值被写进数据页时,由于每一行记录之间并没地有特定的排列顺序,所以行与行的顺序就是随机无序的,当然表中的数据页也就是无序的了,而表中所有数据页就形成了“堆”,可以说,一张没有索引的数据表,就像一个只有书柜而没有索引卡片柜的图书馆,书库里面塞满了一堆乱七八糟的图书。当读者对管理员提交查询请求后,管理员就一头钻进书库,对照查找内容从头开始一架一柜的逐本查找,运气好的话,在第一个书架的第一本书就找到了,运气不好的话,要到最后一个书架的最后一本书才找到。 SQLS在接到查询请求的时候,首先会分析sysindexes表中一个叫做索引标志符(INDID: Index ID)的字段的值,如果该值为0,表示这是一张数据表而不是索引表,SQLS就会使用sysindexes表的另一个字段——也就是在前面提到过的FirstIAM值中找到该表的IAM页链——也就是所有数据页集合。 这就是对一个没有建立索引的数据表进行数据查找的方式,是不是很没效率?对于没有索引的表,对于一“堆”这样的记录,SQLS也只能这样做,而且更没劲的是,即使在第一行就找到了被查询的记录,SQLS仍然要从头到尾的将表扫描一次。这种查询称为“遍历”,又叫“表扫描”。 可见没有建立索引的数据表照样可以运行,不过这种方法对于小规模的表来说没有什么太大的问题,但要查询海量的数据效率就太低了。 (二)SQLS怎样访问建立了非聚集索引的数据表: 如前所述,非聚集索引可以建多个,具有B树结构,其叶级节点不包含数据页,只包含索引行。假定一个表中只有非聚集索引,则每个索引行包含了非聚集索引键值以及行定位符(ROW ID,RID),他们指向具有该键值的数据行。每一个RID由文件ID、页编号和在页中行的编号组成。 当INDID的值在2-250之间时,意味着表中存在非聚集索引页。此时,SQLS调用ROOT字段的值指向非聚集索引B树的ROOT,在其中查找与被查询最相近的值,根据这个值找到在非叶级节点中的页号,然后顺藤摸瓜,在叶级节点相应的页面中找到该值的RID,最后根据这个RID在Heap中定位所在的页和行并返回到查询端。 例如:假定在Lastname上建立了非聚集索引,则执行Select From Member Where Lastname=’Ota’时,查询过程是:①SQLS查询INDID值为2;②立即从根出发,在非叶级节点中定位最接近Ota的值“Martin”,并查到其位于叶级页面的第61页;③仅在叶级页面的第61页的Martin下搜寻Ota的RID,其RID显示为N∶706∶4,表示Lastname字段中名为Ota的记录位于堆的第707页的第4行,N表示文件的ID值,与数据无关;④根据上述信息,SQLS立马在堆的第 707页第4行将该记录“揪”出来并显示于前台(客户端)。视表的数据量大小,整个查询过程费时从百分之几毫秒到数毫秒不等。 在谈到索引基本概念的时候,我们就提到了这种方式: 图书馆的前台有很多索引卡片柜,里面分了若干的类别,诸如按照书名笔画或拼音顺序、作者笔画或拼音顺序等等,但不同之处有二:① 索引卡片上记录了每本书摆放的具体位置——位于某柜某架的第几本——而不是“特殊编号”;② 书脊上并没有那个“特殊编号”。管理员在索引柜中查到所需图书的具体位置(RID)后,根据RID直接在书库中的具体位置将书提出来。 显然,这种查询方式效率很高,但资源占用极大,因为书库中书的位置随时在发生变化,必然要求管理员花费额外的精力和时间随时做好索引更新。 (三)SQLS怎样访问建立了聚集索引的数据表: 在聚集索引中,数据所在的数据页是叶级,索引数据所在的索引页是非叶级。 查询原理和上述对非聚集索引的查询相似,但由于记录是按照聚集索引中索引键值进行排序,换句话说,聚集索引的索引键值也就是具体的数据页。 这就好比书库中的书就是按照书名的拼音在排序,而且也只按照这一种排序方式建立相应的索引卡片,于是查询起来要比上述只建立非聚集索引的方式要简单得多。仍以上面的查询为例: 假定在Lastname字段上建立了聚集索引,则执行Select From Member Where Lastname=’Ota’时,查询过程是:①SQLS查询INDID值为1,这是在系统中只建立了聚集索引的标志;②立即从根出发,在非叶级节点中定位最接近Ota的值“Martin”,并查到其位于叶级页面的第120页;③在位于叶级页面第120页的Martin下搜寻到Ota条目,而这一条目已是数据记录本身;④将该记录返回客户端。 这一次的效率比第二种方法更高,以致于看起来更美,然而它最大的优点也恰好是它最大的缺点——由于同一张表中同时只能按照一种顺序排列,所以在任何一种数据表中的聚集索引只能建立一个;并且建立聚集索引需要至少相当于源表120%的附加空间,以存放源表的副本和索引中间页! 难道鱼和熊掌就不能兼顾了吗?办法是有的。 (四)SQLS怎样访问既有聚集索引、又有非聚集索引的数据表: 如果我们在建立非聚集索引之前先建立了聚集索引的话,那么非聚集索引就可以使用聚集索引的关键字进行检索,就像在图书馆中,前台卡片柜中的可以有不同类别的图书索引卡,然而每张卡片上都载明了那个特殊编号——并不是书籍存放的具体位置。这样在最大程度上既照顾了数据检索的快捷性,又使索引的日常维护变得更加可行,这是最为科学的检索方法。 也就是说,在只建立了非聚集索引的情况下,每个叶级节点指明了记录的行定位符(RID);而在既有聚集索引又有非聚集索引的情况下,每个叶级节点所指向的是该聚集索引的索引键值,即数据记录本身。 假设聚集索引建立在Lastname上,而非聚集索引建立在Firstname上,当执行Select From Member Where Firstname=’Mike’时,查询过程是:①SQLS查询INDID值为2;②立即从根出发,在Firstname的非聚集索引的非叶级节点中定位最接近Mike的值“Jose”条目;③从Jose条目下的叶级页面中查到Mike逻辑位置——不是RID而是聚集索引的指针;④根据这一指针所指示位置,直接进入位于Lastname的聚集索引中的叶级页面中到达Mike数据记录本身;⑤将该记录返回客户端。 这就完全和我们在“索引的基本概念”中讲到的现实场景完全一样了,当数据发生更新的时候,SQLS只负责对聚集索引的健值驾以维护,而不必考虑非聚集索引,只要我们在ID类的字段上建立聚集索引,而在其它经常需要查询的字段上建立非聚集索引,通过这种科学的、有针对性的在一张表上分别建立聚集索引和非聚集索引的方法,我们既享受了索引带来的灵活与快捷,又相对规避了维护索引所导致的大量的额外资源消耗。 六、索引的优点和不足 索引有一些先天不足:1:建立索引,系统要占用大约为表的1.2倍的硬盘和内存空间来保存索引。2:更新数据的时候,系统必须要有额外的时间来同时对索引进行更新,以维持数据和索引的一致性——这就如同图书馆要有专门的位置来摆放索引柜,并且每当库存图书发生变化时都需要有人将索引卡片重整以保持索引与库存的一致。 当然建立索引的优点也是显而易见的:在海量数据的情况下,如果合理的建立了索引,则会大大加强SQLS执行查询、对结果进行排序、分组的操作效率。 实践表明,不恰当的索引不但于事无补,反而会降低系统性能。因为大量的索引在进行插入、修改和删除操作时比没有索引花费更多的系统时间。比如在如下字段建立索引应该是不恰当的:1、很少或从不引用的字段;2、逻辑型的字段,如男或女(是或否)等。 综上所述,提高查询效率是以消耗一定的系统资源为代价的,索引不能盲目的建立,必须要有统筹的规划,一定要在“加快查询速度”与“降低修改速度”之间做好平衡,有得必有失,此消则彼长。这是考验一个DBA是否优秀的很重要的指标。 至此,我们一直在说SQLS在维护索引时要消耗系统资源,那么SQLS维护索引时究竟消耗了什么资源?会产生哪些问题?究竟应该才能优化字段的索引? 在上篇中,我们就索引的基本概念和数据查询原理作了详细阐述,知道了建立索引时一定要在“加快查询速度”与“降低修改速度”之间做好平衡,有得必有失,此消则彼长。那么,SQLS维护索引时究竟怎样消耗资源?应该从哪些方面对索引进行管理与优化?以下就从七个方面来回答这些问题。 一、页分裂 微软MOC教导我们:当一个数据页达到了8K容量,如果此时发生插入或更新数据的操作,将导致页的分裂(又名页拆分): 1、有聚集索引的情况下:聚集索引将被插入和更新的行指向特定的页,该页由聚集索引关键字决定; 2、只有堆的情况下:只要有空间就可以插入新的行,但是如果我们对行数据的更新需要更多的空间,以致大于了当前页的可用空间,行就被移到新的页中,并且在原位置留下一个转发指针,指向被移动的新行,如果具有转发指针的行又被移动了,那么原来的指针将重新指向新的位置; 3、如果堆中有非聚集索引,那么尽管插入和更新操作在堆中不会发生页分裂,但是在非聚集索引上仍然产生页分裂。 无论有无索引,大约一半的数据将保留在老页面,而另一半将放入新页面,并且新页面可能被分配到任何可用的页。所以,频繁页分裂,后果很严重,将使物理表产生大量数据碎片,导致直接造成I/O效率的急剧下降,最后,停止SQLS的运行并重建索引将是我们的唯一选择! 二、填充因子 然而在“混沌之初”,就可以在一定程度上避免不愉快出现:在创建索引时,可以为这个索引指定一个填充因子,以便在索引的每个叶级页面上保留一定百分比的空间,将来数据可以进行扩充和减少页分裂。填充因子是从0到100的百分比数值,设为100时表示将数据页填满。只有当不会对数据进行更改时(例如只读表中)才用此设置。值越小则数据页上的空闲空间越大,这样可以减少在索引增长过程中进行页分裂的需要,但这一操作需要占用更多的硬盘空间。 填充因子只在创建索引时执行,索引创建以后,当表中进行数据的添加、删除或更新时,是不会保持填充因子的,如果想在数据页上保持额外的空间,则有悖于使用填充因子的本意,因为随着数据的输入,SQLS必须在每个页上进行页拆分,以保持填充因子指定的空闲空间。因此,只有在表中的数据进行了较大的变动,才可以填充数据页的空闲空间。这时,可以从容的重建索引,重新指定填充因子,重新分布数据。 反之,填充因子指定不当,就会降低数据库的读取性能,其降低量与填充因子设置值成反比。例如,当填充因子的值为50时,数据库的读取性能会降低两倍!所以,只有在表中根据现有数据创建新索引,并且可以预见将来会对这些数据进行哪些更改时,设置填充因子才有意义。 三、两道数学题 假定数据库设计没有问题,那么是否象上篇中分析的那样,当你建立了众多的索引,在查询工作中SQLS就只能按照“最高指示”用索引处理每一个提交的查询呢?答案是否定的! 上篇“数据是怎样被访问的”章节中提到的四种索引方案只是一种静态的、标准的和理论上的分析比较,实际上,将在外,军令有所不从,SQLS几乎完全是“自主”的决定是否使用索引或使用哪一个索引! 这是怎么回事呢? 让我们先来算一道题:如果某表的一条记录在磁盘上占用1000字节(1K)的话,我们对其中10字节的一个字段建立索引,那么该记录对应的索引大小只有10字节(0.01K)。上篇说过,SQLS的最小空间分配单元是“页(Page)”,一个页面在磁盘上占用8K空间,所以一页只能存储8条“记录”,但可以存储800条“索引”。现在我们要从一个有8000条记录的表中检索符合某个条件的记录(有Where子句),如果没有索引的话,我们需要遍历8000条×1000字节/8K字节=1000个页面才能够找到结果。如果在检索字段上有上述索引的话,那么我们可以在8000条×10字节/8K字节=10个页面中就检索到满足条件的索引块,然后根据索引块上的指针逐一找到结果数据块,这样I/O访问量肯定要少得多。 然而有时用索引还不如不用索引快! 同上,如果要无条件检索全部记录(不用Where子句),不用索引的话,需要访问8000条×1000字节/8K字节=1000个页面;而使用索引的话,首先检索索引,访问8000条×10字节/8K字节=10个页面得到索引检索结果,再根据索引检索结果去对应数据页面,由于是检索全部数据,所以需要再访问8000条×1000字节/8K字节=1000个页面将全部数据读取出来,一共访问了1010个页面,这显然不如不用索引快。 SQLS内部有一套完整的数据索引优化技术,在上述情况下,SQLS会自动使用表扫描的方式检索数据而不会使用任何索引。那么SQLS是怎么知道什么时候用索引,什么时候不用索引的呢?因为SQLS除了维护数据信息外,还维护着数据统计信息! 四、统计信息 打开企业管理器,单击“Database”节点,右击Northwind数据库→单击“属性”→选择“Options”选项卡,观察“Settings”下的各项复选项,你发现了什么? 从Settings中我们可以看到,在数据库中,SQLS将默认的自动创建和更新统计信息,这些统计信息包括数据密度和分布信息,正是它们帮助SQLS确定最佳的查询策略:建立查询计划和是否使用索引以及使用什么样的索引。 在创建索引时,SQLS会创建分布数据页来存放有关索引的两种统计信息:分布表和密度表。查询优化器使用这些统计信息估算使用该索引进行查询的成本(Cost),并在此基础上判断该索引对某个特定查询是否有用。 随着表中的数据发生变化,SQLS自动定期更新这些统计信息。采样是在各个数据页上随机进行。从磁盘读取一个数据页后,该数据页上的所有行都被用来更新统计信息。统计信息更新的频率取决于字段或索引中的数据量以及数据更改量。比如,对于有一万条记录的表,当1000个索引键值发生改变时,该表的统计信息便可能需要更新,因为1000 个值在该表中占了10%,这是一个很大的比例。而对于有1千万条记录的表来说,1000个索引值发生更改的意义则可以忽略不计,因此统计信息就不会自动更新。 至于它们帮助SQLS建立查询计划的具体过程,限于篇幅,这里就省略了,请有兴趣的朋友们自己研究。 顺便多说一句,SQLS除了能自动记录统计信息之外,还可以记录服务器中所发生的其它活动的详细信息,包括I/O 统计信息、CPU 统计信息、锁定请求、T-SQL 和 RPC 统计信息、索引和表扫描、警告和引发的错误、数据库对象的创建/除去、连接/断开、存储过程操作、游标操作等等。这些信息的读取、设置请朋友们在SQLS联机帮助文档(SQL Server Books Online)中搜索字符串“Profiler”查找。 五、索引的人工维护 上面讲到,某些不合适的索引将影响到SQLS的性能,随着应用系统的运行,数据不断地发生变化,当数据变化达到某一个程度时将会影响到索引的使用。这时需要用户自己来维护索引。 随着数据行的插入、删除和数据页的分裂,有些索引页可能只包含几页数据,另外应用在执行大量I/O的时候,重建非聚聚集索引可以维护I/O的效率。重建索引实质上是重新组织B树。需要重建索引的情况有: 1) 数据和使用模式大幅度变化; 2)排序的顺序发生改变; 3)要进行大量插入操作或已经完成; 4)使用I/O查询的磁盘读次数比预料的要多; 5)由于大量数据修改,使得数据页和索引页没有充分使用而导致空间的使用超出估算; 6)dbcc检查出索引有问题。 六、索引的使用原则 接近尾声的时候,让我们再从另一个角度认识索引的两个重要属性----唯一性索引和复合性索引。 在设计表的时候,可以对字段值进行某些限制,比如可以对字段进行主键约束或唯一性约束。 主键约束是指定某个或多个字段不允许重复,用于防止表中出现两条完全相同的记录,这样的字段称为主键,每张表都可以建立并且只能建立一个主键,构成主键的字段不允许空值。例如职员表中“身份证号”字段或成绩表中“学号、课程编号”字段组合。 而唯一性约束与主键约束类似,区别只在于构成唯一性约束的字段允许出现空值。 建立在主键约束和唯一性约束上的索引,由于其字段值具有唯一性,于是我们将这种索引叫做“唯一性索引”,如果这个唯一性索引是由两个以上字段的组合建立的,那么它又叫“复合性索引”。 注意,唯一索引不是聚集索引,如果对一个字段建立了唯一索引,你仅仅不能向这个字段输入重复的值。并不妨碍你可以对其它类型的字段也建立一个唯一性索引,它们可以是聚集的,也可以是非聚集的。 唯一性索引保证在索引列中的全部数据是唯一的,不会包含冗余数据。如果表中已经有一个主键约束或者唯一性约束,那么当创建表或者修改表时,SQLS自动创建一个唯一性索引。但出于必须保证唯一性,那么应该创建主键约束或者唯一性键约束,而不是创建一个唯一性索引。当创建唯一性索引时,应该认真考虑这些规则:当在表中创建主键约束或者唯一性键约束时, SQLS钭自动创建一个唯一性索引;如果表中已经包含有数据,那么当创建索引时,SQLS检查表中已有数据的冗余性,如果发现冗余值,那么SQLS就取消该语句的执行,并且返回一个错误消息,确保表中的每一行数据都有一个唯一值。 复合索引就是一个索引创建在两个列或者多个列上。在搜索时,当两个或者多个列作为一个关键值时,最好在这些列上创建复合索引。当创建复合索引时,应该考虑这些规则:最多可以把16个列合并成一个单独的复合索引,构成复合索引的列的总长度不能超过900字节,也就是说复合列的长度不能太长;在复合索引中,所有的列必须来自同一个表中,不能跨表建立复合列;在复合索引中,列的排列顺序是非常重要的,原则上,应该首先定义最唯一的列,例如在(COL1,COL2)上的索引与在(COL2,COL1)上的索引是不相同的,因为两个索引的列的顺序不同;为了使查询优化器使用复合索引,查询语句中的WHERE子句必须参考复合索引中第一个列;当表中有多个关键列时,复合索引是非常有用的;使用复合索引可以提高查询性能,减少在一个表中所创建的索引数量。 综上所述,我们总结了如下索引使用原则: 1)逻辑主键使用唯一的成组索引,对系统键(作为存储过程)采用唯一的非成组索引,对任何外键列采用非成组索引。考虑数据库的空间有多大,表如何进行访问,还有这些访问是否主要用作读写。 2)不要索引memo/note 字段,不要索引大型字段(有很多字符),这样作会让索引占用太多的存储空间。 3)不要索引常用的小型表 4)一般不要为小型数据表设置过多的索引,假如它们经常有插入和删除操作就更别这样作了,SQLS对这些插入和删除操作提供的索引维护可能比扫描表空间消耗更多的时间。 七、大结局 查询是一个物理过程,表面上是SQLS在东跑西跑,其实真正大部分压马路的工作是由磁盘输入输出系统(I/O)完成,全表扫描需要从磁盘上读表的每一个数据页,如果有索引指向数据值,则I/O读几次磁盘就可以了。但是,在随时发生的增、删、改操作中,索引的存在会大大增加工作量,因此,合理的索引设计是建立在对各种查询的分析和预测上的,只有正确地使索引与程序结合起来,才能产生最佳的优化方案。 一般来说建立索引的思路是: (1)主键时常作为where子句的条件,应在表的主键列上建立聚聚集索引,尤其当经常用它作为连接的时候。 (2)有大量重复值且经常有范围查询和排序、分组发生的列,或者非常频繁地被访问的列,可考虑建立聚聚集索引。 (3)经常同时存取多列,且每列都含有重复值可考虑建立复合索引来覆盖一个或一组查询,并把查询引用最频繁的列作为前导列,如果可能尽量使关键查询形成覆盖查询。 (4)如果知道索引键的所有值都是唯一的,那么确保把索引定义成唯一索引。 (5)在一个经常做插入操作的表上建索引时,使用fillfactor(填充因子)来减少页分裂,同时提高并发度降低死锁的发生。如果在只读表上建索引,则可以把fillfactor置为100。 (6)在选择索引字段时,尽量选择那些小数据类型的字段作为索引键,以使每个索引页能够容纳尽可能多的索引键和指针,通过这种方式,可使一个查询必须遍历的索引页面降到最小。此外,尽可能地使用整数为键值,因为它能够提供比任何数据类型都快的访问速度。 SQLS是一个很复杂的系统,让索引以及查询背后的东西真相大白,可以帮助我们更为深刻的了解我们的系统。一句话,索引就象盐,少则无味多则咸。 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_28052907/article/details/75194926。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-30 23:10:07
97
转载
转载文章
...转载内容。原文链接:https://blog.csdn.net/kaiyuanshe/article/details/124976824。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 | 翻译:邓永嘉 | 校对:王永雷、陈久宁 | 编辑:金心悦 | 设计:张千禧 中文版 谈到开源软件,有一个较大且日益严重的问题:大多数组织都是索取者,而不是给予者。 漫画XKCD展示了一个较为经典的代表现代数字基础设施的巨大结构,它是由“内布拉斯加州的某位人士”创建的微小组件,该组件“自2003年来一直都处于吃力不讨好的状态”。 Randall Monroe 的XKCD漫画展示了目前开源面临的困境:过度依赖少数项目维护志愿者。 (开源项目由志愿者自发来维护,)这本来会是一件很有趣的事情,只是去年十二月在Log4j中发现的安全漏洞也确实存在着上述情况。 然而这个基于Java的日志记录工具已经在企业记录中无处不在。例如根据软件公司Sonatype的一份报告显示,在过去的三个月里,Log4j的下载量就已经超过3000万次。 Log4j是Sonatype公司旗下的Black Duck Open Hub所研发的研究工具。Log4j有着440,000行代码,由近200名开发人员贡献了将近24,000行代码。其实与其他开源项目相比,这是一个庞大的开发团队。但是如果关注数据的话,就会发现超过70%的工作是仅仅靠五个人来完成的。 Log4j的主页上展示了十几位项目团队的成员。而大多项目的开发人员要比其原本需要的少得多----这是高度依赖开发人员团队所呈现出来的问题。 “如今几乎没有人愿意为现有的开源项目作出贡献”,来自DNS网络公司NS1的杰出工程师Jeremy Strech说,“因为通常来说,这没有直接的物质回报,也很少提供荣誉----大多数用户甚至不知道他们所用的软件是谁维护的。” 他说,开源贡献者们最常见的动机就是添加他们自己想要的功能。“一旦实现了这一点,他们几乎都不会留下来。” 与此同时,随着项目的逐渐火爆,对于维护方面的核心团队来说,他们的负担也在不断增加。 “更多的用户意味有着更多的功能需求和错误报告----但不是更多的维护人员”,Stretch说。“曾经令人愉快的爱好很快就会变成一项乏味的项目,所以很多维护人员选择干脆完全放弃他们的项目,这也是可以理解的。” Part1公地悲剧 开源软件的生态系统,就是“公地悲剧”的一个完美例子。 这个悲剧就是---当一种资源,无论是一个超限的公园还是一个开源项目,所有人都在使用而没有人贡献之时,最终都会因为过度使用和投入不足而崩溃坍塌。 这种方式可以在短期内为你节省资金,但随着时间的推移,它可能会变成项目里致命的缺陷。 拿Linux来说,这个开源操作系统在全球前100万台服务器中运行率在96%以上,且这些服务器90%的云基础设施也都在Linux上。更不用说世界上85%的智能手机都运行着Linux,即Android操作系统。 这些常见开源项目的列表还在逐渐增加着。 所以没有开源,今天的大部分技术基础设施的建设也将会戛然而止。 “这是一个很现实的问题”,Data.org的执行董事Danil Mikhailov说,该组织是由万事达包容性发展中心和洛克菲勒基金会支持,旨在促进使用数据科学来应对当今社会所面临的巨大挑战的非营利性组织。 虽然几乎所有组织都在使用着开源软件,但只有少数组织为这些项目作出了贡献。The New Stack、Linux Foundation Research 和 TODO Group 在 9 月发布的一项调查中,42% 的参与者表示,他们至少有时会为开源项目做出贡献。 而同一项研究表明,只有36%的组织会培训他们的工程师为开源作出贡献。 个体公司应该支持贡献这些他们使用最多且对他们成功至关重要的项目,Mikhailov认为:“如果你使用开源,你就应该为他做出属于你自己的贡献。” Part2OSPO的好处:更少的技术负债,更好的招聘效果 参与开源社区----特别是在内部开源计划办公室(OSPO)的指导下----不仅可以保证对组织成功至关重要项目的健康发展,还可以提高项目安全性,同时可以允许工程师在项目发展规划中起到更大的作用。 例如,如果一家公司使用了开源工具,并对其进行了一些调整使其变得更好。但如果这项改进没有反馈到开源社区,那么开源项目的正式版本就会一开始与该公司所使用的版本有所不同。 “当原始数据来源发生变化且你所使用的是不同的版本时,你的技术负债将越来越多。而这些差异是以天为单位迅速增长的。”VMware 开源营销和战略总监 Suzanne Ambiel 表示,“所以你很快就会变成一个开源项目里独一无二变体的‘自豪’用户和维护人员。” “如果技术负债越来越多,那么公司的管理成本则会非常昂贵”。 实际上对于开源活动的支持也变成了一种招聘途径。“这真是一块吸引人才的磁铁,”Ambiel说,“这也是新员工所寻求的“。 她还提到,一些工程经理可能会对贡献开源而减损核心产品的开发的精力而感到担忧。她补充到,他们的理由有可能是这样的:“我只有有限的才华与时间,且我需要这些只做我认为可以处理且看到投资回报的事情。” 但她说,这是一种鼠目寸光的态度。支持开源社区并且作出贡献的员工,可以从中培养技能与增长才干。 云安全供应商 Sysdig 的首席技术官兼创始人 Loris Degionni 也赞同这一观点:“找到为开源做出贡献的员工无疑就找到一座金矿,”他说。 他认为,这些参与开源的员工更具备公司想拥有的竞争力并将一些功能融入至社区所支持的标准中。且在人才争夺战中,拥抱开源的公司也更受到开发人员的青睐。 “最后,开源项目是由你可能无法聘请的技术专家社区推动的”,他说,“当员工积极参与并于这些专家合作时,他们将能更好地深入这些顶级的实践,并将这些收获带回到你的组织之中。” “当原始数据来源发生变化且你所使用的是不同的版本时,你的技术负债将越来越多...所以你很快就会变成一个开源项目里独一无二变体的”自豪“用户和维护人员。”— Suzanne Ambiel,VMware 开源营销和战略总监 “但是这一切终究不会白费--开发人员不应该把空闲时间用在磨练他们的技能上,因为你的公司很快就会在他们的努力中看到好处。” Degionni认为,OSPO(开源计划办公室)可以帮助公司实现这些目标,以及帮助确定贡献的优先级并确保合作的进行。除此之外,他们也可以对公司内部开发应用程序方面的治理提供相关帮助。 “开源团队的成员也可以成为开源技术的伟大内部传播者,并充当组织与更广泛社区之间的桥梁。”他补充道。 在 The New Stack、Linux Foundation Research 和 TODO Group 的 9 月调查中,近 53% 的拥有 OSPO的组织表示,由于拥有了OSPO,他们看到了更多创新,而近 43% 的组织表示,他们在外部开源项目的参与度上有所增加。 Part3更多OSPO的好处:商业优势 网络安全公司 ThreatX 的首席创新官 Tom Hickman 表示,为开源社区做出贡献,不仅有助于社区,还有助于为社区做出贡献的公司。 “围绕一个项目而发展的开发人员社区,有助于代码库的形成,并吸引更多的开发人员参与”,他说,“这可以变成一个良性循环。” 此外,根据哈佛商学院的研究,为开源项目作出贡献的公司从使用开源的项目中获得的生产价值,是不参与开源项目公司的两倍。 Cloud Native Computing Foundation 的首席技术官 Chris Aniszczyk 说,世界上许多巨头公司都为开源作出了贡献。他还提到,开源贡献者的指数是作为公司是否有所作为的参考。 科技巨头占据了这份榜单的主导地位:谷歌、微软、红帽、英特尔、IBM、亚马逊、Facebook、VMware、GitHub 和 SAP 依次是排名前 10 的贡献者。但Aniszczyk 表示,但也有很多终端用户公司进入前 100 名,包括 Uber、BBC、Orange、Netflix 和 Square。 “我们一直知道,在上游项目中工作不仅仅是关正确与否----它是开源软件开发的最佳方法,也是向客户提供开源福利的最佳方式”他说,“很高兴看到IT领导者们也认识到了这一点。” 为了和这些公司一起作出贡献,公司也需要有自己的开源策略,而拥有一个开源计划办公室则可以为其提供帮助。 “在使用开源软件方面,OPSO为公司提供了一个至关重要的能力中心”他说。 这与公司拥有安全运营中心的方式类似,他说。 “围绕一个项目而发展的开发人员社区,有助于代码库的形成,并吸引更多的开发人员参与,这可以变成一个良性循环。” ——Tom Hickman,ThreatX 首席创新官 “如果你对安全团队进行相应投资,你通常是不会期望你的软件是安全的,也无法及时应对安全事件。”他说。 “同样的逻辑也适用于 OSPO,这就是为什么你会看到许多领先的公司,例如Apple、Meta、Twitter、Goldman Sachs、Bloomberg 和 Google 都拥有 OSPO。他们走在了趋势的前面。” 而对组织内的开源活动的支持态度亦可成为软件供应商们的差异化原因与营销的机会。 根据Red Hat 2月分发布的一项调查,82%的IT领导者更倾向于选择为开源社区作出贡献的软件供应商。 受访者表示,当供应商支持开源社区时,就表示着他们更熟悉开源的流程并且在客户遇到技术难题时会更加有效。 但收益的不仅仅是软件供应商们。 根据 The New Stack、Linux Foundation Research 和 TODO Group 9 月份的调查,57% 拥有 OSPO 的组织将使用它们来进一步发展战略关系和建立合作伙伴关系。 十年前,Mark Hinkle 在 Citrix 工作时创办了一个开源计划办公室。他指出了在内部拥有一个 OSPO将如何使公司受益。 “对于我们来说,最大的工作是让不熟悉开源的员工学会并参与其中,成为优秀的社区成员”,他说,“我们还就如何确保我们的IP不会在没有正确理解的情况下进入项目的情况提供了指导,并确保我们没有与我们企业软件许可相冲突的开源项目合作。” 他说,OSPO还帮助Citrix确定了公司参与开源项目和Linux基金会等贸易组织的战略机会。 如今,他是云原生开源集成平台 TriggerMesh 的首席执行官兼联合创始人。 他说,参与开源系统对公司来说有着重大的经济效益。 “我们参与Knative是为了分享我们基础底层平台的开发,但作为业务的一部分,我们也拥有相关的增值服务。”他说,“通过共享该平台的研发,这为我们提供了更多的资源来改进我们自己的差异化技术。” Part4如何入门开源 在 The New Stack、Linux Foundation Research 和 TODO Group 的 9 月份调查中,有 63% 的公司表示,拥有OSPO 对其工程或产品团队的成功至关重要,高于上一年度该项研究数据的 54%。 其中77% 的人表示他们的开源程序对他们的软件实践产生了积极影响,例如提高了代码质量。 但公司也不可能总是为他们使用的每一个开源项目而花费精力。 “首先,节流一下”,VMware 的 Ambiel 建议道。 公司应该关注投入使用中最有意义的项目。而这也是OSPO可以帮助确定优先事项并确保技术与战略一致性的领域。 之后,开发人员应该自己去了解一下。项目通常提供相关在线文档,一般包含贡献着指南、治理文档和未解决问题列表。 “对于那些你较感兴趣的项目中,你可以介绍一下自己----打个招呼”,她说。“然后转到Slack频道或者分发列表,询问他们需要帮助的地方。也许他们不需要帮助,一切完好;又或者他们也有可能使用新人来审查核验代码。” Ambiel 说,开源计划办公室不仅可以帮助制定为开源社区做出贡献的商业案例,还可以帮助公司以安全、可靠和健全的方式来做这件事。 “如果我为一家公司工作,并想为开源做出贡献,我不想意外披露、泄露或破坏任何专利,”她说。“而OSPO可以帮助您做出明智的选择。” 她说,OSPO还可以在开源方面提供领导力和指导理念的支持。“它可以提供引领、指导、辅导和最佳实践的作用。” Aqua Security的开发人员倡导者Anaïs Urlichs则认为,支持开源的承诺必须从高层开始。 她说,“公司在多数时候往往不重视对开源的投资,所以员工自然而然不被鼓励对此作出贡献。” 在这些情况下,员工对于开源的热情也会在空闲时间里对开源的建设而消散殆尽,这对于开源的发展来说是不可持续的。 “如果公司对开源项目依赖度高,那么将开源贡献纳入工程师的日程安排是很重要的,”她说。“一些公司定义了员工可以为开源建设的时间百分比,将其作为他们正常工作日的一部分。” The New Stack 是 Insight Partners 的全资子公司,Insight Partners 是本文提到的以下公司的投资者:Sysdig、Aqua Security。 中英对照版 How an OSPO Can Help Your Engineers Give Back to Open Source OSPO (开源项目办公室)是如何使工程师回馈开源的 When it comes to open source software, there’s a big and growing problem: most organizations are takers, not givers. 谈到开源软件,有一个较大且日益严重的问题:大多数组织都是索取者,而不是给予者。 There’s a classic XKCD comic that shows a giant structure representing modern digital infrastructure, dependent on a tiny component created by “some random person in Nebraska” who has been “thanklessly maintaining since 2003.” 经典漫画XKCD展示了一个代表现代数字基础设施的巨大结构,它依赖于“内布拉斯加州的某位人士”创建的微小组件,该组件“自2003年来一直都处于吃力不讨好的状态”。 Randall Monroe’s XKCD comic illustrates the open source dilemma: overreliance on a small number of volunteer project maintainers. Randall Monroe 的XKCD漫画展示了目前开源面临的窘境:过度依赖少数项目维护志愿者的志愿服务。 This would have been funny, except that this is exactly what happened when security vulnerabilities were discovered in Log4j last December. (开源项目由志愿者自发来维护,)这听起来像是一件很滑稽的事情,但事实上去年十二月在Log4j中发现的安全漏洞也确实存在着上述情况。 The Java-based logging tool is ubiquitous in enterprise publications. In the last three months, for example, Log4j has been downloaded more than 30 million times, according to a report by the enterprise software company Sonatype. 然而这个基于Java的日志记录工具已经在企业内部刊物中无处不在。例如根据软件公司Sonatype的一份报告显示,在过去的三个月里,Log4j的下载量就已经超过3000万次。 The tool has 440,000 lines of code, according to Synopsys‘ Black Duck Open Hub research tool, with nearly 24,000 contributions by nearly 200 developers. That’s a large dev team compared to other open source projects. But looking closer at the numbers, more than 70% of commits were by just five people. 根据Synopsys(新思)公司旗下的Black Duck Open Hub 研究工具显示。Log4j有着440,000行代码,由近200名开发人员贡献了将近24,000行代码。其实与其他开源项目相比,这是一个庞大的开发团队。但是如果关注数据的话,就会发现超过70%的提交是仅仅靠五个人来完成的。 Log4j’s home page lists about a dozen members on its project team. Most projects have far fewer developers working on them — and that presents a problem for the organizations that depend on them. Log4j的主页上展示了十几位项目团队的成员。而大多项目的开发人员要比其原本需要的少得多----这是高度依赖开发人员团队所呈现出来的问题。 “There is little incentive for anyone today to contribute to an existing open source project,” said Jeremy Stretch, distinguished engineer at NS1, a DNS network company. “There’s usually no direct compensation, and few accolades are offered — most users don’t even know who maintains the software that they use.” “如今的人没有什么动力去为现有的开源项目做贡献”,来自DNS网络公司NS1的杰出工程师Jeremy Strech说,“因为通常来说,这没有直接的物质回报,也很少提供荣誉----大多数用户甚至不知道他们所用的软件是谁维护的。” The most common motivation among open source contributors is to add a feature that they themselves want to see, he said. “Once this has been achieved, the contributor rarely sticks around.” 他说,开源贡献者们最常见的动机就是添加他们自己想要的功能。“一旦实现了这一点,他们几乎都不会留下来。” Meanwhile, as a project becomes more popular, the burden on the core team of maintainers keeps increasing. 与此同时,随着项目的逐渐流行,对于维护方面的核心团队来说,他们的负担也在不断增加。 “More users means more feature requests and more bug reports — but not more maintainers,” Stretch said. “What was once an enjoyable hobby can quickly become a tedious chore, and many maintainers understandably opt to simply abandon their projects altogether.” “更多的用户意味有着更多的功能需求和错误报告----但不是更多的维护人员”,Stretch说。“曾经令人愉快的爱好很快就会变成一项乏味的项目,所以很多维护人员选择干脆完全放弃他们的项目,这也是可以理解的。” Part1The Tragedy of the Commons The open source software ecosystem is a perfect example of the “tragedy of the commons.” 开源软件的生态系统,就是“公地悲剧”的一个完美例子。 And the tragedy is — when everyone uses, but no one contributes, that resource — whether it’s an overrun park or an open source project — eventually collapses from overuse and underinvestment. Everyone loves using free stuff, but everyone expects someone else to take care of it. 这个悲剧就是---当一种资源,无论是一个超限的公园还是一个开源项目,所有人都在使用而没有人贡献之时,最终都会因为过度使用和投入不足而崩溃坍塌。 This approach can save you money in the short term, but it can become a fatal flaw over time. Especially since open source software is everywhere, running everything. 这种方式可以在短期内为你节省资金,但随着时间的推移,它可能会变成项目里致命的缺陷。 Linux, for example, the open source operating system, runs on 96% of the world’s top 1 million servers, and 90% of all cloud infrastructure is on Linux. Not to mention that 85% of all smartphones in the world run Linux, in the form of the Android OS. 拿Linux来说,这个开源操作系统在全球前100万台服务器中运行率在96%以上,且这些服务器90%的云基础设施也都在Linux上。更不用说世界上85%的智能手机都运行着Linux,即Android操作系统。 Then there’s Java, Apache, WordPress, Cassandra, Hadoop, MySQL, PHP, ElasticSearch, Kubernetes — the list of ubiquitous open source projects goes on and on. 还有Java, Apache, WordPress, Cassandra, Hadoop, MySQL, PHP, ElasticSearch, Kubernetes--这些常见开源项目的列表还在逐渐增加着。 Without open source, much of today’s technical infrastructure would immediately grind to a halt. 如果没有开源,今天的大部分技术基础设施的建设也将会戛然而止。 “It is a real problem,” said Danil Mikhailov, executive director at Data.org, a nonprofit backed by the Mastercard Center for Inclusive Growth and The Rockefeller Foundation that promotes the use of data science to tackle society’s greatest challenges. “这是一个很现实的问题”,Data.org的执行董事Danil Mikhailov说,该组织是由万事达包容性发展中心和洛克菲勒基金会支持,旨在促进使用数据科学来应对当今社会所面临的巨大挑战的非营利性组织。 While nearly all organizations use open source software, only a minority contribute to those projects. Forty-two percent of participants in a survey released in September by The New Stack, Linux Foundation Research, and the TODO Group said tthey contribute at least sometimes to open source projects. 虽然几乎所有组织都在使用着开源软件,但只有少数组织为这些项目作出了贡献。The New Stack、Linux Foundation Research 和 TODO Group 在 9 月发布的一项调查中,42% 的参与者表示,他们至少有时会为开源项目做出贡献。 The same study showed that only 36% of organizations train their engineers to contribute to open source. 而同一项研究表明,只有36%的组织会培训他们的工程师为开源作出贡献。 Individual companies should support projects that they use the most and are critical to their success, Mikhailov said: “If you use, you contribute.” 个体公司应该支持贡献这些他们使用最多且对他们成功至关重要的项目,Mikhailov认为:“如果你使用开源,你就应该为他做出属于你自己的贡献。” Part2OSPO Benefits:Less Tech Debt,Better Recruiting Participating in open source communities — especially when guided by an in-house open source program office (OSPO) — can help ensure the health of projects critical to your organization’s success, improve those projects’ security, and allow your engineers to have more impact in the projects’ development road map. 参与开源社区——特别是在内部开源项目办公室(OSPO)的指导下——不仅可以保证对组织成功至关重要项目的健康发展,还可以提高项目安全性,同时可以允许工程师在项目发展规划中起到更大的影响。 Say, for example, a company uses an open source tool and modifies it a little to make it better. If that improvement isn’t contributed back to the community, then the official version of the open source project will start to diverge from what the company is using 例如,如果一家公司使用了开源工具,并对其进行了一些调整使其变得更好。但如果这项改进没有反馈到开源社区,那么开源项目的正式版本就会一开始与该公司所使用的版本有所不同。 “You start to grow technical debt because when the original source changes and you’ve got a different version. Those differences grow rapidly, compounding daily. It doesn’t take long for you to be the proud user and maintainer of a one-of-a-kind open source project variant,” said Suzanne Ambiel, director, open source marketing and strategy at VMware. “当原始代码来源发生变化且你所使用的是不同的版本时,你的技术负债将越来越多。而这些差异是以天为单位迅速增长的。”VMware 开源营销和战略总监 Suzanne Ambiel 表示,“所以你很快就会变成一个开源项目里独一无二变体的‘自豪’用户和维护人员。” “The technical debt gets bigger and bigger and it gets very expensive for a company to manage.” “如果技术负债越来越多,那么公司的管理成本则会非常昂贵”。 Support for open source activity can also be a recruiting tool. “It’s really a talent magnet,” said Ambiel. “It’s one of the things that new hires look for.” 实际上对于开源活动的支持也变成了一种招聘途径。“这真是一块吸引人才的磁铁,”Ambiel说,“这也是新员工所寻求的“。 Some engineering managers might worry that open source contributions will detract from core product development, she said. Their rationale, she added, might run along the lines of, “I only have so much talent, and so many hours, and I need them to only work on things where I can measure and see the return on investment.” 她还提到,一些工程经理可能会对贡献开源而减损核心产品的开发的精力而感到担忧。她补充到,他们的理由有可能是这样的:“我只有有限的才华与时间,且我需要这些只做我认为可以度量且看到投资回报的事情。” But that attitude, she said, is shortsighted. Supporting employees who contribute to open source communities can build skills and develop talent, she said. 但她说,这是一种鼠目寸光的态度。支持开源社区并且作出贡献的员工,可以从中培养技能与增长才华。 Loris Degionni, chief technology officer and founder at Sysdig, a cloud security vendor, echoed this notion: “Finding employees who contribute to open source is a gold mine,” said. 云安全供应商 Sysdig 的首席技术官兼创始人 Loris Degionni 也赞同这一观点:“找出为开源做出贡献的员工无疑就找到一座金矿,”他说。 These employees are more capable of delivering features a company wants to use and merge them into community-supported standards, he said. And in a war for talent, companies that embrace open source are more attractive to developers. 他认为,这些参与开源的员工更具备公司想拥有的竞争力并将一些功能融入至社区所支持的标准中。且在人才争夺战中,拥抱开源的公司也更受到开发人员的青睐。 “Lastly, open source is driven by a community of technical experts you may not be able to hire,” he said. “When employees actively contribute and collaborate with these experts, they’ll be better informed of best practices and bring them back to your organization. “最后,开源项目是由你可能无法聘请的技术专家社区推动的”,他说,“当员工积极参与并于这些专家合作时,他们将能更好地深入这些最佳实践,并将这些收获带回到你的组织之中。” “You start to grow technical debt because when the original source changes and you’ve got a different version … It doesn’t take long for you to be the proud user and maintainer of a one-of-a-kind open source project variant.” —Suzanne Ambiel, director, open source marketing and strategy, VMware “当原始数据来源发生变化且你所使用的是不同的版本时,你的技术负债将越来越多...所以你很快就会变成一个开源项目里独一无二变体的”自豪“用户和维护人员。” — Suzanne Ambiel,VMware 开源营销和战略总监 “All of this should be rewarded — developers shouldn’t have to spend their free time honing their skills, as your company will quickly see benefits from their efforts.” “但是这一切终究不会白费--开发人员不应该把业余时间用在磨练他们的技能上,因为你的公司很快就会在他们的努力中看到好处。” An OSPO, Degionni suggested, can help achieve these goals, as well as help prioritize contributions and ensure collaboration. In addition, they can help provide governance that mirrors what companies would have for internally developed applications. Degionni认为,OSPO(开源计划办公室)可以帮助公司实现这些目标,以及帮助确定贡献的优先级并确保合作的进行。除此之外,他们也可以对公司内部开发应用程序方面的治理提供相关帮助。 “Members of the open source team are also in a position to be great internal evangelists for open source technologies, and act as bridges between the organization and the broader community,” he added. “开源团队的成员也可以成为开源技术的伟大内部布道师,并充当组织与更广泛社区之间的桥梁。”他补充道。 In the September survey from The New Stack, Linux Foundation Research and the TODO Group, nearly 53% of organizations with OSPOs said they saw more innovation as a result of having an OSPO, while almost 43% said they saw increased participation in external open source projects. 在 The New Stack、Linux Foundation Research 和 TODO Group 的 9 月调查中,近 53% 的拥有 OSPO的组织表示,由于拥有了OSPO,他们看到了更多创新,而近 43% 的组织表示,他们在外部开源项目的参与度上有所增加。 Part3More OSPO Benefits:A Business Edge Contributing to open source communities doesn’t just help the communities, but the companies that contribute to them, said Tom Hickman, chief innovation officer at ThreatX, a cybersecurity firm. 网络安全公司 ThreatX 的首席创新官 Tom Hickman 表示,为开源社区做出贡献,不仅有助于社区,还有助于为社区做出贡献的公司。 “Growing the community of developers around a project helps the code base, and attracts more developers,” he said. “It can become a virtuous circle.” “围绕一个项目而发展的开发人员社区,有助于代码库的形成,并吸引更多的开发人员参与”,他说,“这可以变成一个良性循环。” Also, companies that contribute to open source projects get twice the productive value from their use of open source than companies that don’t, according to research by Harvard Business School. 此外,根据哈佛商学院的研究,为开源项目作出贡献的公司从使用开源的项目中获得的生产价值,是不参与开源项目公司的两倍。 Many of the biggest companies in the world are contributing to open source, said Chris Aniszczyk, chief technology officer at Cloud Native Computing Foundation. He pointed to the Open Source Contributor Index as a reference for exactly just how much companies are doing. Cloud Native Computing Foundation 的首席技术官 Chris Aniszczyk 说,世界上许多巨头公司都为开源作出了贡献。他还提到,开源贡献者的指数是作为公司是否有所作为的参考。 The tech giants dominate the list: Google, Microsoft, Red Hat, Intel, IBM, Amazon, Facebook, VMware, GitHub and SAP are the top 10 contributors, in that order. But there are also a lot of end users on the top 100 list, said Aniszczyk, including Uber, the BBC, Orange, Netflix, and Square. 科技巨头占据了这份榜单的主导地位:谷歌、微软、红帽、英特尔、IBM、亚马逊、Facebook、VMware、GitHub 和 SAP 依次是排名前 10 的贡献者。但Aniszczyk 表示,但也有很多终端用户公司进入前 100 名,包括 Uber、BBC、Orange、Netflix 和 Square。 “We’ve always known working in upstream projects is not just the right thing to do —it’s the best approach to open source software development and the best way to deliver open source benefits to our customers,” he said. “It’s great to see that IT leaders recognize this as well.” “我们一直知道,在上游项目中工作不仅仅是关正确与否----它是开源软件开发的最佳方法,也是向客户提供开源福利的最佳方式“他说,“很高兴看到IT领导者们也认识到了这一点。” To contribute alongside these giants, companies need to have their own open source strategies, and having an open source program office can help. 为了和这些公司一起作出贡献,公司也需要有自己的开源策略,而拥有一个开源项目办公室则可以为其提供帮助。 “OSPOs provide a critical center of competency in a company when it comes to utilizing open source software,” he said. “在使用开源软件方面,OPSO为公司提供了一个至关重要的能力中心”他说。 It’s similar to the way that companies have security operations centers, he said. 这与公司拥有安全运营中心的方式类似,他说。 “Growing the community of developers around a project helps the code base, and attracts more developers. It can become a virtuous circle.” —Tom Hickman, chief innovation officer, ThreatX “围绕一个项目而发展的开发人员社区,有助于代码库的形成,并吸引更多的开发人员参与,这可以变成一个良性循环。” ——Tom Hickman,ThreatX 首席创新官 “If you don’t make the investment in a security team, you generally don’t expect your software to be secure or be able to respond to security incidents in a timely fashion,” he said. “如果你没有对安全团队进行相应投资,你通常是不会期望你的软件是安全的,也无法及时响应安全事件。”他说。 “The same logic applies to OSPOs and is why you see many leading companies out there such as Apple, Meta, Twitter, Goldman Sachs, Bloomberg, and Google all have OSPOs. They are ahead of the curve.” “同样的逻辑也适用于 OSPO,这就是为什么你会看到许多领先的公司,例如 Apple、Meta、Twitter、Goldman Sachs、Bloomberg 和 Google 都拥有 OSPO。他们走在了趋势的前面。” Support for open source activity within your organization can become a differentiator and marketing opportunity for software vendors. 而对组织内的开源活动的支持态度亦可成为软件供应商们的差异化原因与营销的机会。 According to a Red Hat survey released in February, 82% of IT leaders are more likely to select a vendor who contributes to the open source community. 根据Red Hat2月分发布的一项调查,82%的IT领导者更倾向于选择为开源社区作出贡献的软件供应商。 Respondents said that when vendors support open source communities they are more familiar with open source processes and are more effective if customers have technical challenges. 受访者表示,当供应商支持开源社区时,就表示着他们更熟悉开源的流程并且在客户遇到技术难题时会更加有效。 But it’s not just software vendors who benefit. 但收益的不仅仅是软件供应商们。 According to September’s survey by The New Stack, Linux Foundation Research, and the TODO Group, 57% of organizations with OSPOs use them to further strategic relationships and build partnerships. 根据 The New Stack、Linux Foundation Research 和 TODO Group 9 月份的调查,57% 拥有 OSPO 的组织将使用它们来进一步发展战略关系和建立合作伙伴关系。 Mark Hinkle started an open source program office back when he worked at Citrix a decade ago. He pointed out how having an OSPO in-house benefited the company. 十年前,Mark Hinkle 在 Citrix 工作时创办了一个开源计划办公室。他指出了在内部拥有一个 OSPO将如何使公司受益。 “For us the biggest job was to educate our employees who weren’t familiar with open source to get involved and be good community members,” he said. “We also provided guidance on how to make sure our IP didn’t enter projects without proper understanding and we made sure we didn’t incorporate open source that conflicted with our enterprise software licensing.” “对于我们来说,最大的工作是让不熟悉开源的员工学会并参与其中,成为优秀的社区成员”,他说,“我们还就如何确保我们的IP不会在没有正确理解的情况下进入项目的情况提供了指导,并确保我们没有与我们企业软件许可相冲突的开源项目合作。” The OSPO also helped Citrix identify strategic opportunities for the company to participate in open source projects and trade organizations like The Linux Foundation, he said. 他说,OSPO还帮助Citrix确定了公司参与开源项目和Linux基金会等贸易组织的战略机会。 Today, he’s the CEO and co-founder of TriggerMesh, a cloud native, open source integration platform. 如今,他是云原生开源集成平台 TriggerMesh 的首席执行官兼联合创始人。 There are some significant economic benefits to participating in the open source ecosystem, he said. 他说,参与开源系统对公司来说有着重大的经济效益。 “We participate in Knative to share the development of our underlying platform but we develop value-added services as part of our business,” he said. “By sharing the R and D for the platform, it gives us more resources to develop our own differentiated technology.” “我们参与Knative是为了分享我们基础底层平台的开发,但作为业务的一部分,我们也拥有相关的增值服务。”他说,“通过共享该平台的研发,这为我们提供了更多的资源来改进我们自己的差异化技术。” Part4How to Get Started in Open Source Sixty-three percent of companies in the September survey from The New Stack, Linux Foundation Research and the TODO Group said that having an OSPO was very or extremely critical to the success of their engineering or product teams, up from 54% in the previous annual study. 在 The New Stack、Linux Foundation Research 和 TODO Group 的 9 月份调查中,有 63% 的公司表示,拥有OSPO 对其工程或产品团队的成功至关重要,高于上一年度该项研究数据的 54%。 In particular, 77% said that their open source program had a positive impact on their software practices, such as improved code quality. 其中77% 的人表示他们的开源程序对他们的软件实践产生了积极影响,例如提高了代码质量。 But companies can’t always contribute to every single open source project that they use. 但公司也不可能总是为他们使用的每一个开源项目而花费精力。 “First, thin the herd a little bit,” advised VMware’s Ambiel. “首先,节流一下”,VMware 的 Ambiel 建议道。 Companies should look at the projects that make the most sense for their use cases. This is an area where an OSPO can help set priorities and ensure technical and strategic alignment. 公司应该关注投入使用中最有意义的项目。而这也是OSPO可以帮助确定优先事项并确保技术与战略一致性的领域。 Then, developers should go and check out the projects themselves. Projects typically offer online documentation, often with contributor guides, governance documents, and lists of open issues. 之后,开发人员应该自己去了解一下。项目通常提供相关在线文档,一般包含贡献着指南、治理文档和未解决问题列表。 “For the projects that rise to the top of your strategic list, introduce yourself — say hello,” she said. “Go to the Slack channel or the distribution list and ask where they need help. Maybe they don’t need help and everything is good. Or maybe they can use a new person to review code.” “对于那些上升到你的战略清单顶端的项目,你可以介绍一下自己----打个招呼”,她说。“然后转到Slack频道或者分发列表,询问他们需要帮助的地方。也许他们不需要帮助,一切完好;又或者他们也有可能使用新人来审查核验代码。” An open source program office can not only help make a business case for contributing to the open source community, Ambiel said, but can help companies do it in a way that’s safe, secure and sound. Ambiel 说,开源项目办公室不仅可以帮助制定为开源社区做出贡献的商业案例,还可以帮助公司以安全、可靠和健全的方式来做这件事。 “If I work for a company and want to contribute to open source, I don’t want to accidentally disclose, divulge or undermine any patents,” she said. “An OSPO helps you make smart choices.” “如果我为一家公司工作,并想为开源做出贡献,我不想意外披露、泄露或破坏任何专利,”她说。“而OSPO可以帮助您做出明智的选择。” An OSPO can also help provide leadership and the guiding philosophy about supporting open source, she said. “It can provide guidance, mentorship, coaching and best practices.” 她说,OSPO还可以在开源方面提供领导力和指导理念的支持。“它可以提供引领、指导、辅导和最佳实践的作用。” Commitment to support open source has to start at the top, said Anaïs Urlichs, developer advocate at Aqua Security. Aqua Security的开发人员倡导者Anaïs Urlichs则认为,支持开源的承诺必须从高层开始。 “Too often,” she said, “companies do not value investment into open source, so employees are not encouraged to contribute to it.” 她说,“公司在多数时候往往不重视对开源的投资,所以员工自然而然不被鼓励对此作出贡献。” In those cases, employees with a passion for open source end up contributing during their free time, which is not sustainable. 在这些情况下,员工对于开源的热情也会在空闲时间里对开源的建设而消散殆尽,这对于开源的发展来说是不可持续的。 “If companies rely on open source projects, it is important to make open source contributions part of an engineer’s work schedule,” she said. “Some companies define a time percentage that employees can contribute to open source as part of their normal workday.” “如果公司对开源项目依赖度高,那么将开源贡献纳入工程师的日程安排是很重要的,”她说。“一些公司定义了员工可以为开源建设的时间百分比,将其作为他们正常工作日的一部分。” The New Stack is a wholly owned subsidiary of Insight Partners, an investor in the following companies mentioned in this article: Sysdig, Aqua Security. The New Stack 是 Insight Partners 的全资子公司,Insight Partners 是本文提到的以下公司的投资者:Sysdig、Aqua Security。 相关阅读 | Related Reading 《开源合规指南(企业篇)》正式发布,为推动我国开源合规建设提供参考 “目标->用户->指标”——企业开源运营之道|瞰道@谭中意 开源之夏邀请函——仅限高校学子开启 开源社简介 开源社成立于 2014 年,是由志愿贡献于开源事业的个人成员,依 “贡献、共识、共治” 原则所组成,始终维持厂商中立、公益、非营利的特点,是最早以 “开源治理、国际接轨、社区发展、开源项目” 为使命的开源社区联合体。开源社积极与支持开源的社区、企业以及政府相关单位紧密合作,以 “立足中国、贡献全球” 为愿景,旨在共创健康可持续发展的开源生态,推动中国开源社区成为全球开源体系的积极参与及贡献者。 2017 年,开源社转型为完全由个人成员组成,参照 ASF 等国际顶级开源基金会的治理模式运作。近八年来,链接了数万名开源人,集聚了上千名社区成员及志愿者、海内外数百位讲师,合作了近百家赞助、媒体、社区伙伴。 本篇文章为转载内容。原文链接:https://blog.csdn.net/kaiyuanshe/article/details/124976824。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-05-03 09:19:23
273
转载
转载文章
...转载内容。原文链接:https://blog.csdn.net/zhoutaochun/article/details/120075092。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 1、发布订阅模式 1.1 列表的局限 通过队列的 rpush 和 lpop 可以实现消息队列(队尾进队头出),但是消费者需要不停地调用 lpop 查看 List 中是否有等待处理的消息(比如写一个 while 循环)。 为了减少通信的消耗,可以 sleep()一段时间再消费,但是会有两个问题: 1、如果生产者生产消息的速度远大于消费者消费消息的速度,List 会占用大量的内存。 2、消息的实时性降低。 list 还提供了一个阻塞的命令:blpop,没有任何元素可以弹出的时候,连接会被阻塞。 基于 list 实现的消息队列,不支持一对多的消息分发。 1.2 发布订阅模式 除了通过 list 实现消息队列之外,Redis 还提供了一组命令实现发布/订阅模式。 这种方式,发送者和接收者没有直接关联(实现了解耦),接收者也不需要持续尝试获取消息。 1.2.1 订阅频道 首先,我们有很多的频道(channel),我们也可以把这个频道理解成 queue。订阅者可以订阅一个或者多个频道。消息的发布者(生产者)可以给指定的频道发布消息。只要有消息到达了频道,所有订阅了这个频道的订阅者都会收到这条消息。 需要注意的注意是,发出去的消息不会被持久化,因为它已经从队列里面移除了,所以消费者只能收到它开始订阅这个频道之后发布的消息。 下面我们来看一下发布订阅命令的使用方法。 订阅者订阅频道:可以一次订阅多个,比如这个客户端订阅了 3 个频道。 subscribe channel-1 channel-2 channel-3 发布者可以向指定频道发布消息(并不支持一次向多个频道发送消息): publish channel-1 2673 取消订阅(不能在订阅状态下使用): unsubscribe channel-1 1.2.2 按规则(Pattern)订阅频道 支持 ?和 占位符。? 代表一个字符, 代表 0 个或者多个字符。 消费端 1,关注运动信息: psubscribe sport 消费端 2,关注所有新闻: psubscribe news 消费端 3,关注天气新闻: psubscribe news-weather 生产者,发布 3 条信息 publish news-sport yaoming publish news-music jaychou publish news-weather rain 2、Redis 事务 2.1 为什么要用事务 我们知道 Redis 的单个命令是原子性的(比如 get set mget mset),如果涉及到多个命令的时候,需要把多个命令作为一个不可分割的处理序列,就需要用到事务。 例如我们之前说的用 setnx 实现分布式锁,我们先 set,然后设置对 key 设置 expire, 防止 del 发生异常的时候锁不会被释放,业务处理完了以后再 del,这三个动作我们就希望它们作为一组命令执行。 Redis 的事务有两个特点: 1、按进入队列的顺序执行。 2、不会受到其他客户端的请求的影响。 Redis 的事务涉及到四个命令:multi(开启事务),exec(执行事务),discard (取消事务),watch(监视) 2.2 事务的用法 案例场景:tom 和 mic 各有 1000 元,tom 需要向 mic 转账 100 元。tom 的账户余额减少 100 元,mic 的账户余额增加 100 元。 通过 multi 的命令开启事务。事务不能嵌套,多个 multi 命令效果一样。 multi 执行后,客户端可以继续向服务器发送任意多条命令,这些命令不会立即被执行,而是被放到一个队列中,当 exec 命令被调用时,所有队列中的命令才会被执行。 通过 exec 的命令执行事务。如果没有执行 exec,所有的命令都不会被执行。如果中途不想执行事务了,怎么办? 可以调用 discard 可以清空事务队列,放弃执行。 2.3 watch命令 在 Redis 中还提供了一个 watch 命令。 它可以为 Redis 事务提供 CAS 乐观锁行为(Check and Set / Compare and Swap),也就是多个线程更新变量的时候,会跟原值做比较,只有它没有被其他线程修改的情况下,才更新成新的值。 我们可以用 watch 监视一个或者多个 key,如果开启事务之后,至少有一个被监视 key 键在 exec 执行之前被修改了,那么整个事务都会被取消(key 提前过期除外)。可以用 unwatch 取消。 2.4 事务可能遇到的问题 我们把事务执行遇到的问题分成两种,一种是在执行 exec 之前发生错误,一种是在执行 exec 之后发生错误。 2.4.1 在执行 exec 之前发生错误 比如:入队的命令存在语法错误,包括参数数量,参数名等等(编译器错误)。 在这种情况下事务会被拒绝执行,也就是队列中所有的命令都不会得到执行。 2.4.2 在执行 exec 之后发生错误 比如,类型错误,比如对 String 使用了 Hash 的命令,这是一种运行时错误。 最后我们发现 set k1 1 的命令是成功的,也就是在这种发生了运行时异常的情况下, 只有错误的命令没有被执行,但是其他命令没有受到影响。 这个显然不符合我们对原子性的定义,也就是我们没办法用 Redis 的这种事务机制来实现原子性,保证数据的一致。 3、Lua脚本 Lua/ˈluə/是一种轻量级脚本语言,它是用 C 语言编写的,跟数据的存储过程有点类似。 使用 Lua 脚本来执行 Redis 命令的好处: 1、一次发送多个命令,减少网络开销。 2、Redis 会将整个脚本作为一个整体执行,不会被其他请求打断,保持原子性。 3、对于复杂的组合命令,我们可以放在文件中,可以实现程序之间的命令集复用。 3.1 在Redis中调用Lua脚本 使用 eval /ɪ’væl/ 方法,语法格式: redis> eval lua-script key-num [key1 key2 key3 ....] [value1 value2 value3 ....] eval代表执行Lua语言的命令。 lua-script代表Lua语言脚本内容。 key-num表示参数中有多少个key,需要注意的是Redis中key是从1开始的,如果没有key的参数,那么写0。 [key1key2key3…]是key作为参数传递给Lua语言,也可以不填,但是需要和key-num的个数对应起来。 [value1 value2 value3 …]这些参数传递给 Lua 语言,它们是可填可不填的。 示例,返回一个字符串,0 个参数: redis> eval "return 'Hello World'" 0 3.2 在Lua脚本中调用Redis命令 使用 redis.call(command, key [param1, param2…])进行操作。语法格式: redis> eval "redis.call('set',KEYS[1],ARGV[1])" 1 lua-key lua-value command是命令,包括set、get、del等。 key是被操作的键。 param1,param2…代表给key的参数。 注意跟 Java 不一样,定义只有形参,调用只有实参。 Lua 是在调用时用 key 表示形参,argv 表示参数值(实参)。 3.2.1 设置键值对 在 Redis 中调用 Lua 脚本执行 Redis 命令 redis> eval "return redis.call('set',KEYS[1],ARGV[1])" 1 gupao 2673 redis> get gupao 以上命令等价于 set gupao 2673。 在 redis-cli 中直接写 Lua 脚本不够方便,也不能实现编辑和复用,通常我们会把脚本放在文件里面,然后执行这个文件。 3.2.2 在 Redis 中调用 Lua 脚本文件中的命令,操作 Redis 创建 Lua 脚本文件: cd /usr/local/soft/redis5.0.5/src vim gupao.lua Lua 脚本内容,先设置,再取值: cd /usr/local/soft/redis5.0.5/src redis-cli --eval gupao.lua 0 得到返回值: root@localhost src] redis-cli --eval gupao.lua 0 "lua666" 3.2.3 案例:对 IP 进行限流 需求:在 X 秒内只能访问 Y 次。 设计思路:用 key 记录 IP,用 value 记录访问次数。 拿到 IP 以后,对 IP+1。如果是第一次访问,对 key 设置过期时间(参数 1)。否则判断次数,超过限定的次数(参数 2),返回 0。如果没有超过次数则返回 1。超过时间, key 过期之后,可以再次访问。 KEY[1]是 IP, ARGV[1]是过期时间 X,ARGV[2]是限制访问的次数 Y。 -- ip_limit.lua-- IP 限流,对某个 IP 频率进行限制 ,6 秒钟访问 10 次 local num=redis.call('incr',KEYS[1])if tonumber(num)==1 thenredis.call('expire',KEYS[1],ARGV[1])return 1elseif tonumber(num)>tonumber(ARGV[2]) thenreturn 0 elsereturn 1 end 6 秒钟内限制访问 10 次,调用测试(连续调用 10 次): ./redis-cli --eval "ip_limit.lua" app:ip:limit:192.168.8.111 , 6 10 app:ip:limit:192.168.8.111 是 key 值 ,后面是参数值,中间要加上一个空格和一个逗号,再加上一个空格 。 即:./redis-cli –eval [lua 脚本] [key…]空格,空格[args…] 多个参数之间用一个空格分割 。 代码:LuaTest.java 3.2.4 缓存 Lua 脚本 为什么要缓存 在脚本比较长的情况下,如果每次调用脚本都需要把整个脚本传给 Redis 服务端, 会产生比较大的网络开销。为了解决这个问题,Redis 提供了 EVALSHA 命令,允许开发者通过脚本内容的 SHA1 摘要来执行脚本。 如何缓存 Redis 在执行 script load 命令时会计算脚本的 SHA1 摘要并记录在脚本缓存中,执行 EVALSHA 命令时 Redis 会根据提供的摘要从脚本缓存中查找对应的脚本内容,如果找到了则执行脚本,否则会返回错误:“NOSCRIPT No matching script. Please use EVAL.” 127.0.0.1:6379> script load "return 'Hello World'" "470877a599ac74fbfda41caa908de682c5fc7d4b"127.0.0.1:6379> evalsha "470877a599ac74fbfda41caa908de682c5fc7d4b" 0 "Hello World" 3.2.5 自乘案例 Redis 有 incrby 这样的自增命令,但是没有自乘,比如乘以 3,乘以 5。我们可以写一个自乘的运算,让它乘以后面的参数: local curVal = redis.call("get", KEYS[1]) if curVal == false thencurVal = 0 elsecurVal = tonumber(curVal)endcurVal = curVal tonumber(ARGV[1]) redis.call("set", KEYS[1], curVal) return curVal 把这个脚本变成单行,语句之间使用分号隔开 local curVal = redis.call("get", KEYS[1]); if curVal == false then curVal = 0 else curVal = tonumber(curVal) end; curVal = curVal tonumber(ARGV[1]); redis.call("set", KEYS[1], curVal); return curVal script load ‘命令’ 127.0.0.1:6379> script load 'local curVal = redis.call("get", KEYS[1]); if curVal == false then curVal = 0 else curVal = tonumber(curVal) end; curVal = curVal tonumber(ARGV[1]); redis.call("set", KEYS[1], curVal); return curVal' "be4f93d8a5379e5e5b768a74e77c8a4eb0434441" 调用: 127.0.0.1:6379> set num 2OK127.0.0.1:6379> evalsha be4f93d8a5379e5e5b768a74e77c8a4eb0434441 1 num 6 (integer) 12 3.2.6 脚本超时 Redis 的指令执行本身是单线程的,这个线程还要执行客户端的 Lua 脚本,如果 Lua 脚本执行超时或者陷入了死循环,是不是没有办法为客户端提供服务了呢? eval 'while(true) do end' 0 为了防止某个脚本执行时间过长导致 Redis 无法提供服务,Redis 提供了 lua-time-limit 参数限制脚本的最长运行时间,默认为 5 秒钟。 lua-time-limit 5000(redis.conf 配置文件中) 当脚本运行时间超过这一限制后,Redis 将开始接受其他命令但不会执行(以确保脚本的原子性,因为此时脚本并没有被终止),而是会返回“BUSY”错误。 Redis 提供了一个 script kill 的命令来中止脚本的执行。新开一个客户端: script kill 如果当前执行的 Lua 脚本对 Redis 的数据进行了修改(SET、DEL 等),那么通过 script kill 命令是不能终止脚本运行的。 127.0.0.1:6379> eval "redis.call('set','gupao','666') while true do end" 0 因为要保证脚本运行的原子性,如果脚本执行了一部分终止,那就违背了脚本原子性的要求。最终要保证脚本要么都执行,要么都不执行。 127.0.0.1:6379> script kill(error) UNKILLABLE Sorry the script already executed write commands against the dataset. You can either wait the scripttermination or kill the server in a hard way using the SHUTDOWN NOSAVE command. 遇到这种情况,只能通过 shutdown nosave 命令来强行终止 redis。 shutdown nosave 和 shutdown 的区别在于 shutdown nosave 不会进行持久化操作,意味着发生在上一次快照后的数据库修改都会丢失。 4、Redis 为什么这么快? 4.1 Redis到底有多快? 根据官方的数据,Redis 的 QPS 可以达到 10 万左右(每秒请求数)。 4.2 Redis为什么这么快? 总结:1)纯内存结构、2)单线程、3)多路复用 4.2.1 内存 KV 结构的内存数据库,时间复杂度 O(1)。 第二个,要实现这么高的并发性能,是不是要创建非常多的线程? 恰恰相反,Redis 是单线程的。 4.2.2 单线程 单线程有什么好处呢? 1、没有创建线程、销毁线程带来的消耗 2、避免了上线文切换导致的 CPU 消耗 3、避免了线程之间带来的竞争问题,例如加锁释放锁死锁等等 4.2.3 异步非阻塞 异步非阻塞 I/O,多路复用处理并发连接。 4.3 Redis为什么是单线程的? 不是白白浪费了 CPU 的资源吗? 因为单线程已经够用了,CPU 不是 redis 的瓶颈。Redis 的瓶颈最有可能是机器内存或者网络带宽。既然单线程容易实现,而且 CPU 不会成为瓶颈,那就顺理成章地采用单线程的方案了。 4.4 单线程为什么这么快? 因为 Redis 是基于内存的操作,我们先从内存开始说起。 4.4.1 虚拟存储器(虚拟内存 Vitual Memory) 名词解释:主存:内存;辅存:磁盘(硬盘) 计算机主存(内存)可看作一个由 M 个连续的字节大小的单元组成的数组,每个字节有一个唯一的地址,这个地址叫做物理地址(PA)。早期的计算机中,如果 CPU 需要内存,使用物理寻址,直接访问主存储器。 这种方式有几个弊端: 1、在多用户多任务操作系统中,所有的进程共享主存,如果每个进程都独占一块物理地址空间,主存很快就会被用完。我们希望在不同的时刻,不同的进程可以共用同一块物理地址空间。 2、如果所有进程都是直接访问物理内存,那么一个进程就可以修改其他进程的内存数据,导致物理地址空间被破坏,程序运行就会出现异常。 为了解决这些问题,我们就想了一个办法,在 CPU 和主存之间增加一个中间层。CPU 不再使用物理地址访问,而是访问一个虚拟地址,由这个中间层把地址转换成物理地址,最终获得数据。这个中间层就叫做虚拟存储器(Virtual Memory)。 具体的操作如下所示: 在每一个进程开始创建的时候,都会分配一段虚拟地址,然后通过虚拟地址和物理地址的映射来获取真实数据,这样进程就不会直接接触到物理地址,甚至不知道自己调用的哪块物理地址的数据。 目前,大多数操作系统都使用了虚拟内存,如 Windows 系统的虚拟内存、Linux 系统的交换空间等等。Windows 的虚拟内存(pagefile.sys)是磁盘空间的一部分。 在 32 位的系统上,虚拟地址空间大小是 2^32bit=4G。在 64 位系统上,最大虚拟地址空间大小是多少? 是不是 2^64bit=10241014TB=1024PB=16EB?实际上没有用到 64 位,因为用不到这么大的空间,而且会造成很大的系统开销。Linux 一般用低 48 位来表示虚拟地址空间,也就是 2^48bit=256T。 cat /proc/cpuinfo address sizes : 40 bits physical, 48 bits virtual 实际的物理内存可能远远小于虚拟内存的大小。 总结:引入虚拟内存,可以提供更大的地址空间,并且地址空间是连续的,使得程序编写、链接更加简单。并且可以对物理内存进行隔离,不同的进程操作互不影响。还可以通过把同一块物理内存映射到不同的虚拟地址空间实现内存共享。 4.4.2 用户空间和内核空间 为了避免用户进程直接操作内核,保证内核安全,操作系统将虚拟内存划分为两部分,一部分是内核空间(Kernel-space)/ˈkɜːnl /,一部分是用户空间(User-space)。 内核是操作系统的核心,独立于普通的应用程序,可以访问受保护的内存空间,也有访问底层硬件设备的权限。 内核空间中存放的是内核代码和数据,而进程的用户空间中存放的是用户程序的代码和数据。不管是内核空间还是用户空间,它们都处于虚拟空间中,都是对物理地址的映射。 在 Linux 系统中, 内核进程和用户进程所占的虚拟内存比例是 1:3。 当进程运行在内核空间时就处于内核态,而进程运行在用户空间时则处于用户态。 进程在内核空间以执行任意命令,调用系统的一切资源;在用户空间只能执行简单的运算,不能直接调用系统资源,必须通过系统接口(又称 system call),才能向内核发出指令。 top 命令: us 代表 CPU 消耗在 User space 的时间百分比; sy 代表 CPU 消耗在 Kernel space 的时间百分比。 4.4.3 进程切换(上下文切换) 多任务操作系统是怎么实现运行远大于 CPU 数量的任务个数的? 当然,这些任务实际上并不是真的在同时运行,而是因为系统通过时间片分片算法,在很短的时间内,将 CPU 轮流分配给它们,造成多任务同时运行的错觉。 为了控制进程的执行,内核必须有能力挂起正在 CPU 上运行的进程,并恢复以前挂起的某个进程的执行。这种行为被称为进程切换。 什么叫上下文? 在每个任务运行前,CPU 都需要知道任务从哪里加载、又从哪里开始运行,也就是说,需要系统事先帮它设置好 CPU 寄存器和程序计数器(ProgramCounter),这个叫做 CPU 的上下文。 而这些保存下来的上下文,会存储在系统内核中,并在任务重新调度执行时再次加载进来。这样就能保证任务原来的状态不受影响,让任务看起来还是连续运行。 在切换上下文的时候,需要完成一系列的工作,这是一个很消耗资源的操作。 4.4.4 进程的阻塞 正在运行的进程由于提出系统服务请求(如 I/O 操作),但因为某种原因未得到操作系统的立即响应,该进程只能把自己变成阻塞状态,等待相应的事件出现后才被唤醒。 进程在阻塞状态不占用 CPU 资源。 4.4.5 文件描述符 FD Linux 系统将所有设备都当作文件来处理,而 Linux 用文件描述符来标识每个文件对象。 文件描述符(File Descriptor)是内核为了高效管理已被打开的文件所创建的索引,用于指向被打开的文件,所有执行 I/O 操作的系统调用都通过文件描述符;文件描述符是一个简单的非负整数,用以表明每个被进程打开的文件。 Linux 系统里面有三个标准文件描述符。 0:标准输入(键盘); 1:标准输出(显示器); 2:标准错误输出(显示器)。 4.4.6 传统 I/O 数据拷贝 以读操作为例: 当应用程序执行 read 系统调用读取文件描述符(FD)的时候,如果这块数据已经存在于用户进程的页内存中,就直接从内存中读取数据。如果数据不存在,则先将数据从磁盘加载数据到内核缓冲区中,再从内核缓冲区拷贝到用户进程的页内存中。(两次拷贝,两次 user 和 kernel 的上下文切换)。 I/O 的阻塞到底阻塞在哪里? 4.4.7 Blocking I/O 当使用 read 或 write 对某个文件描述符进行过读写时,如果当前 FD 不可读,系统就不会对其他的操作做出响应。从设备复制数据到内核缓冲区是阻塞的,从内核缓冲区拷贝到用户空间,也是阻塞的,直到 copy complete,内核返回结果,用户进程才解除 block 的状态。 为了解决阻塞的问题,我们有几个思路。 1、在服务端创建多个线程或者使用线程池,但是在高并发的情况下需要的线程会很多,系统无法承受,而且创建和释放线程都需要消耗资源。 2、由请求方定期轮询,在数据准备完毕后再从内核缓存缓冲区复制数据到用户空间 (非阻塞式 I/O),这种方式会存在一定的延迟。 能不能用一个线程处理多个客户端请求? 4.4.8 I/O 多路复用(I/O Multiplexing) I/O 指的是网络 I/O。 多路指的是多个 TCP 连接(Socket 或 Channel)。 复用指的是复用一个或多个线程。它的基本原理就是不再由应用程序自己监视连接,而是由内核替应用程序监视文件描述符。 客户端在操作的时候,会产生具有不同事件类型的 socket。在服务端,I/O 多路复用程序(I/O Multiplexing Module)会把消息放入队列中,然后通过文件事件分派器(File event Dispatcher),转发到不同的事件处理器中。 多路复用有很多的实现,以 select 为例,当用户进程调用了多路复用器,进程会被阻塞。内核会监视多路复用器负责的所有 socket,当任何一个 socket 的数据准备好了,多路复用器就会返回。这时候用户进程再调用 read 操作,把数据从内核缓冲区拷贝到用户空间。 所以,I/O 多路复用的特点是通过一种机制一个进程能同时等待多个文件描述符,而这些文件描述符(套接字描述符)其中的任意一个进入读就绪(readable)状态,select() 函数就可以返回。 Redis 的多路复用, 提供了 select, epoll, evport, kqueue 几种选择,在编译的时 候来选择一种。 evport 是 Solaris 系统内核提供支持的; epoll 是 LINUX 系统内核提供支持的; kqueue 是 Mac 系统提供支持的; select 是 POSIX 提供的,一般的操作系统都有支撑(保底方案); 源码 ae_epoll.c、ae_select.c、ae_kqueue.c、ae_evport.c 5、内存回收 Reids 所有的数据都是存储在内存中的,在某些情况下需要对占用的内存空间进行回 收。内存回收主要分为两类,一类是 key 过期,一类是内存使用达到上限(max_memory) 触发内存淘汰。 5.1 过期策略 要实现 key 过期,我们有几种思路。 5.1.1 定时过期(主动淘汰) 每个设置过期时间的 key 都需要创建一个定时器,到过期时间就会立即清除。该策略可以立即清除过期的数据,对内存很友好;但是会占用大量的 CPU 资源去处理过期的 数据,从而影响缓存的响应时间和吞吐量。 5.1.2 惰性过期(被动淘汰) 只有当访问一个 key 时,才会判断该 key 是否已过期,过期则清除。该策略可以最大化地节省 CPU 资源,却对内存非常不友好。极端情况可能出现大量的过期 key 没有再次被访问,从而不会被清除,占用大量内存。 例如 String,在 getCommand 里面会调用 expireIfNeeded server.c expireIfNeeded(redisDb db, robj key) 第二种情况,每次写入 key 时,发现内存不够,调用 activeExpireCycle 释放一部分内存。 expire.c activeExpireCycle(int type) 5.1.3 定期过期 源码:server.h typedef struct redisDb { dict dict; / 所有的键值对 /dict expires; / 设置了过期时间的键值对 /dict blocking_keys; dict ready_keys; dict watched_keys; int id;long long avg_ttl;list defrag_later; } redisDb; 每隔一定的时间,会扫描一定数量的数据库的 expires 字典中一定数量的 key,并清除其中已过期的 key。该策略是前两者的一个折中方案。通过调整定时扫描的时间间隔和每次扫描的限定耗时,可以在不同情况下使得 CPU 和内存资源达到最优的平衡效果。 Redis 中同时使用了惰性过期和定期过期两种过期策略。 5.2 淘汰策略 Redis 的内存淘汰策略,是指当内存使用达到最大内存极限时,需要使用淘汰算法来决定清理掉哪些数据,以保证新数据的存入。 5.2.1 最大内存设置 redis.conf 参数配置: maxmemory <bytes> 如果不设置 maxmemory 或者设置为 0,64 位系统不限制内存,32 位系统最多使用 3GB 内存。 动态修改: redis> config set maxmemory 2GB 到达最大内存以后怎么办? 5.2.2 淘汰策略 https://redis.io/topics/lru-cache redis.conf maxmemory-policy noeviction 先从算法来看: LRU,Least Recently Used:最近最少使用。判断最近被使用的时间,目前最远的数据优先被淘汰。 LFU,Least Frequently Used,最不常用,4.0 版本新增。 random,随机删除。 如果没有符合前提条件的 key 被淘汰,那么 volatile-lru、volatile-random、 volatile-ttl 相当于 noeviction(不做内存回收)。 动态修改淘汰策略: redis> config set maxmemory-policy volatile-lru 建议使用 volatile-lru,在保证正常服务的情况下,优先删除最近最少使用的 key。 5.2.3 LRU 淘汰原理 问题:如果基于传统 LRU 算法实现 Redis LRU 会有什么问题? 需要额外的数据结构存储,消耗内存。 Redis LRU 对传统的 LRU 算法进行了改良,通过随机采样来调整算法的精度。如果淘汰策略是 LRU,则根据配置的采样值 maxmemory_samples(默认是 5 个), 随机从数据库中选择 m 个 key, 淘汰其中热度最低的 key 对应的缓存数据。所以采样参数m配置的数值越大, 就越能精确的查找到待淘汰的缓存数据,但是也消耗更多的CPU计算,执行效率降低。 问题:如何找出热度最低的数据? Redis 中所有对象结构都有一个 lru 字段, 且使用了 unsigned 的低 24 位,这个字段用来记录对象的热度。对象被创建时会记录 lru 值。在被访问的时候也会更新 lru 的值。 但是不是获取系统当前的时间戳,而是设置为全局变量 server.lruclock 的值。 源码:server.h typedef struct redisObject {unsigned type:4;unsigned encoding:4;unsigned lru:LRU_BITS;int refcount;void ptr; } robj; server.lruclock 的值怎么来的? Redis 中有个定时处理的函数 serverCron,默认每 100 毫秒调用函数 updateCachedTime 更新一次全局变量的 server.lruclock 的值,它记录的是当前 unix 时间戳。 源码:server.c void updateCachedTime(void) { time_t unixtime = time(NULL); atomicSet(server.unixtime,unixtime); server.mstime = mstime();struct tm tm; localtime_r(&server.unixtime,&tm);server.daylight_active = tm.tm_isdst; } 问题:为什么不获取精确的时间而是放在全局变量中?不会有延迟的问题吗? 这样函数 lookupKey 中更新数据的 lru 热度值时,就不用每次调用系统函数 time,可以提高执行效率。 OK,当对象里面已经有了 LRU 字段的值,就可以评估对象的热度了。 函数 estimateObjectIdleTime 评估指定对象的 lru 热度,思想就是对象的 lru 值和全局的 server.lruclock 的差值越大(越久没有得到更新),该对象热度越低。 源码 evict.c / Given an object returns the min number of milliseconds the object was never requested, using an approximated LRU algorithm. /unsigned long long estimateObjectIdleTime(robj o) {unsigned long long lruclock = LRU_CLOCK(); if (lruclock >= o->lru) {return (lruclock - o->lru) LRU_CLOCK_RESOLUTION; } else {return (lruclock + (LRU_CLOCK_MAX - o->lru)) LRU_CLOCK_RESOLUTION;} } server.lruclock 只有 24 位,按秒为单位来表示才能存储 194 天。当超过 24bit 能表 示的最大时间的时候,它会从头开始计算。 server.h define LRU_CLOCK_MAX ((1<<LRU_BITS)-1) / Max value of obj->lru / 在这种情况下,可能会出现对象的 lru 大于 server.lruclock 的情况,如果这种情况 出现那么就两个相加而不是相减来求最久的 key。 为什么不用常规的哈希表+双向链表的方式实现?需要额外的数据结构,消耗资源。而 Redis LRU 算法在 sample 为 10 的情况下,已经能接近传统 LRU 算法了。 问题:除了消耗资源之外,传统 LRU 还有什么问题? 如图,假设 A 在 10 秒内被访问了 5 次,而 B 在 10 秒内被访问了 3 次。因为 B 最后一次被访问的时间比 A 要晚,在同等的情况下,A 反而先被回收。 问题:要实现基于访问频率的淘汰机制,怎么做? 5.2.4 LFU server.h typedef struct redisObject {unsigned type:4;unsigned encoding:4;unsigned lru:LRU_BITS;int refcount;void ptr; } robj; 当这 24 bits 用作 LFU 时,其被分为两部分: 高 16 位用来记录访问时间(单位为分钟,ldt,last decrement time) 低 8 位用来记录访问频率,简称 counter(logc,logistic counter) counter 是用基于概率的对数计数器实现的,8 位可以表示百万次的访问频率。 对象被读写的时候,lfu 的值会被更新。 db.c——lookupKey void updateLFU(robj val) {unsigned long counter = LFUDecrAndReturn(val); counter = LFULogIncr(counter);val->lru = (LFUGetTimeInMinutes()<<8) | counter;} 增长的速率由,lfu-log-factor 越大,counter 增长的越慢 redis.conf 配置文件。 lfu-log-factor 10 如果计数器只会递增不会递减,也不能体现对象的热度。没有被访问的时候,计数器怎么递减呢? 减少的值由衰减因子 lfu-decay-time(分钟)来控制,如果值是 1 的话,N 分钟没有访问就要减少 N。 redis.conf 配置文件 lfu-decay-time 1 6、持久化机制 https://redis.io/topics/persistence Redis 速度快,很大一部分原因是因为它所有的数据都存储在内存中。如果断电或者宕机,都会导致内存中的数据丢失。为了实现重启后数据不丢失,Redis 提供了两种持久化的方案,一种是 RDB 快照(Redis DataBase),一种是 AOF(Append Only File)。 6.1 RDB RDB 是 Redis 默认的持久化方案。当满足一定条件的时候,会把当前内存中的数据写入磁盘,生成一个快照文件 dump.rdb。Redis 重启会通过加载 dump.rdb 文件恢复数据。 什么时候写入 rdb 文件? 6.1.1 RDB 触发 1、自动触发 a)配置规则触发。 redis.conf, SNAPSHOTTING,其中定义了触发把数据保存到磁盘的触发频率。 如果不需要 RDB 方案,注释 save 或者配置成空字符串""。 save 900 1 900 秒内至少有一个 key 被修改(包括添加) save 300 10 400 秒内至少有 10 个 key 被修改save 60 10000 60 秒内至少有 10000 个 key 被修改 注意上面的配置是不冲突的,只要满足任意一个都会触发。 RDB 文件位置和目录: 文件路径,dir ./ 文件名称dbfilename dump.rdb 是否是LZF压缩rdb文件 rdbcompression yes 开启数据校验 rdbchecksum yes 问题:为什么停止 Redis 服务的时候没有 save,重启数据还在? RDB 还有两种触发方式: b)shutdown 触发,保证服务器正常关闭。 c)flushall,RDB 文件是空的,没什么意义(删掉 dump.rdb 演示一下)。 2、手动触发 如果我们需要重启服务或者迁移数据,这个时候就需要手动触 RDB 快照保存。Redis 提供了两条命令: a)save save 在生成快照的时候会阻塞当前 Redis 服务器, Redis 不能处理其他命令。如果内存中的数据比较多,会造成 Redis 长时间的阻塞。生产环境不建议使用这个命令。 为了解决这个问题,Redis 提供了第二种方式。 执行 bgsave 时,Redis 会在后台异步进行快照操作,快照同时还可以响应客户端请求。 具体操作是 Redis 进程执行 fork 操作创建子进程(copy-on-write),RDB 持久化过程由子进程负责,完成后自动结束。它不会记录 fork 之后后续的命令。阻塞只发生在 fork 阶段,一般时间很短。 用 lastsave 命令可以查看最近一次成功生成快照的时间。 6.1.2 RDB 数据的恢复(演示) 1、shutdown 持久化添加键值 添加键值 redis> set k1 1 redis> set k2 2 redis> set k3 3 redis> set k4 4 redis> set k5 5 停服务器,触发 save redis> shutdown 备份 dump.rdb 文件 cp dump.rdb dump.rdb.bak 启动服务器 /usr/local/soft/redis-5.0.5/src/redis-server /usr/local/soft/redis-5.0.5/redis.conf 啥都没有: redis> keys 3、通过备份文件恢复数据停服务器 redis> shutdown 重命名备份文件 mv dump.rdb.bak dump.rdb 启动服务器 /usr/local/soft/redis-5.0.5/src/redis-server /usr/local/soft/redis-5.0.5/redis.conf 查看数据 redis> keys 6.1.3 RDB 文件的优势和劣势 一、优势 1.RDB 是一个非常紧凑(compact)的文件,它保存了 redis 在某个时间点上的数据集。这种文件非常适合用于进行备份和灾难恢复。 2.生成 RDB 文件的时候,redis 主进程会 fork()一个子进程来处理所有保存工作,主进程不需要进行任何磁盘 IO 操作。 3.RDB 在恢复大数据集时的速度比 AOF 的恢复速度要快。 二、劣势 1、RDB 方式数据没办法做到实时持久化/秒级持久化。因为 bgsave 每次运行都要执行 fork 操作创建子进程,频繁执行成本过高。 2、在一定间隔时间做一次备份,所以如果 redis 意外 down 掉的话,就会丢失最后一次快照之后的所有修改(数据有丢失)。 如果数据相对来说比较重要,希望将损失降到最小,则可以使用 AOF 方式进行持久化。 6.2 AOF Append Only File AOF:Redis 默认不开启。AOF 采用日志的形式来记录每个写操作,并追加到文件中。开启后,执行更改 Redis 数据的命令时,就会把命令写入到 AOF 文件中。 Redis 重启时会根据日志文件的内容把写指令从前到后执行一次以完成数据的恢复工作。 6.2.1 AOF 配置 配置文件 redis.conf 开关appendonly no 文件名appendfilename "appendonly.aof" AOF 文件的内容(vim 查看): 问题:数据都是实时持久化到磁盘吗? 由于操作系统的缓存机制,AOF 数据并没有真正地写入硬盘,而是进入了系统的硬盘缓存。什么时候把缓冲区的内容写入到 AOF 文件? 问题:文件越来越大,怎么办? 由于 AOF 持久化是 Redis 不断将写命令记录到 AOF 文件中,随着 Redis 不断的进行,AOF 的文件会越来越大,文件越大,占用服务器内存越大以及 AOF 恢复要求时间越长。 例如 set xxx 666,执行 1000 次,结果都是 xxx=666。 为了解决这个问题,Redis 新增了重写机制,当 AOF 文件的大小超过所设定的阈值时,Redis 就会启动 AOF 文件的内容压缩,只保留可以恢复数据的最小指令集。 可以使用命令 bgrewriteaof 来重写。 AOF 文件重写并不是对原文件进行重新整理,而是直接读取服务器现有的键值对,然后用一条命令去代替之前记录这个键值对的多条命令,生成一个新的文件后去替换原来的 AOF 文件。 重写触发机制 auto-aof-rewrite-percentage 100 auto-aof-rewrite-min-size 64mb 问题:重写过程中,AOF 文件被更改了怎么办? 另外有两个与 AOF 相关的参数: 6.2.2 AOF 数据恢复 重启 Redis 之后就会进行 AOF 文件的恢复。 6.2.3 AOF 优势与劣势 优点: 1、AOF 持久化的方法提供了多种的同步频率,即使使用默认的同步频率每秒同步一次,Redis 最多也就丢失 1 秒的数据而已。 缺点: 1、对于具有相同数据的的 Redis,AOF 文件通常会比 RDB 文件体积更大(RDB 存的是数据快照)。 2、虽然 AOF 提供了多种同步的频率,默认情况下,每秒同步一次的频率也具有较高的性能。在高并发的情况下,RDB 比 AOF 具好更好的性能保证。 6.3 两种方案比较 那么对于 AOF 和 RDB 两种持久化方式,我们应该如何选择呢? 如果可以忍受一小段时间内数据的丢失,毫无疑问使用 RDB 是最好的,定时生成 RDB 快照(snapshot)非常便于进行数据库备份, 并且 RDB 恢复数据集的速度也要比 AOF 恢复的速度要快。 否则就使用 AOF 重写。但是一般情况下建议不要单独使用某一种持久化机制,而是应该两种一起用,在这种情况下,当 redis 重启的时候会优先载入 AOF 文件来恢复原始的数据,因为在通常情况下 AOF 文件保存的数据集要比 RDB 文件保存的数据集要完整。 本篇文章为转载内容。原文链接:https://blog.csdn.net/zhoutaochun/article/details/120075092。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-03-18 12:25:04
541
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
uniq file.txt
- 移除连续重复行。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"