前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[使用OLD_PASSWORD函数重置密码...]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Nacos
...,越来越多的企业选择使用像Nacos这样的开源工具作为配置中心,以提升系统的灵活性和可维护性。然而,除了Nacos之外,还有其他一些优秀的配置管理工具值得关注。例如,Spring Cloud Config,它同样支持动态刷新配置,能够与Spring生态系统无缝集成。对于那些已经采用Spring生态的企业来说,Spring Cloud Config无疑是一个不错的选择。此外,Consul Config也是值得考虑的选项之一,它不仅具备配置管理功能,还提供了服务发现和服务网格的能力,特别适合分布式系统环境下的应用。 同时,随着技术的发展,安全问题日益受到重视。在使用Nacos或其他配置管理工具时,数据传输的安全性至关重要。建议开发者们在部署过程中启用SSL/TLS加密,确保敏感信息在网络中传输时不会被窃取或篡改。另外,定期更新工具版本,修复已知漏洞,也是保障系统安全的重要措施。 在全球范围内,开源社区对这些技术的支持力度也在不断加大。比如GitHub上的Nacos项目,其活跃度非常高,每周都有大量的贡献者提交代码改进和修复问题。这种持续的技术迭代为企业提供了强大的技术支持,使得企业在面对复杂多变的技术挑战时能够更加从容应对。 总之,在选择合适的配置管理工具时,企业需要综合考量自身的业务需求和技术栈特点,同时也要密切关注最新的技术趋势和安全动态,以确保系统的稳定性和安全性。
2025-04-06 15:56:57
67
清风徐来
.net
...现在我们需要在程序中使用这个服务。按照传统的做法,可能会直接在类内部实例化: csharp public class Worker { private readonly IService _service = new Service(); public void Execute() { _service.DoWork(); } } 这种方式看起来没什么问题,但实际上隐藏着巨大的隐患。比如,如果你需要替换Service为其他实现(比如MockService),你就得修改Worker类的代码。这违背了开闭原则。 于是,我们引入了依赖注入框架,比如Microsoft的Microsoft.Extensions.DependencyInjection。让我们看看如何正确配置。 --- 3. 正确配置 DI容器的正确姿势 首先,你需要注册服务。比如,在Program.cs文件中: csharp using Microsoft.Extensions.DependencyInjection; var services = new ServiceCollection(); services.AddTransient(); var serviceProvider = services.BuildServiceProvider(); 这里的关键点在于Transient这个词。它表示每次请求时都会生成一个新的实例。对了,还有别的选择呢,比如说 Scoped——在一个作用域里大家用同一个实例,挺节省资源的;再比如 Singleton——在整个应用跑着的时候大家都用一个“独苗”实例,从头到尾都不换。选择合适的生命周期很重要,否则可能会导致意想不到的行为。 接下来,我们可以通过依赖注入获取实例: csharp public class Worker { private readonly IService _service; public Worker(IService service) { _service = service; } public void Execute() { _service.DoWork(); } } 在这个例子中,Worker类不再负责创建IService的实例,而是由DI容器提供。这种解耦的方式让代码更加灵活。 --- 4. 配置错误 常见的坑 然而,现实总是比理想复杂得多。以下是一些常见的DI配置错误,以及它们可能带来的后果。 4.1 注册类型时搞错了 有时候我们会不小心把类型注册错了。比如: csharp services.AddTransient(); // 想注册MockService,却写成了Service 结果就是,无论你在代码中怎么尝试,拿到的永远是Service而不是MockService。其实这个坑挺容易被忽略的,毕竟编译器又不报错,一切都看起来风平浪静,直到程序跑起来的时候,问题才突然冒出来,啪叽一下给你整一个大 surprise! 我的建议是,尽量使用常量或者枚举来定义服务名称,这样可以减少拼写错误的风险: csharp public static class ServiceNames { public const string MockService = "MockService"; public const string RealService = "RealService"; } services.AddTransient(ServiceNames.MockService, typeof(MockService)); 4.2 生命周期设置不当 另一个常见的问题是生命周期设置错误。比如说,你要是想弄个单例服务,结果不小心把它设成了 Transient,那每次调用的时候都会新生成一个实例。这就好比你本来想让一个人负责一件事,结果每次都换个人来干,不仅效率低得让人崩溃,搞不好还会出大乱子呢! csharp // 错误示范 services.AddTransient(); // 正确示范 services.AddSingleton(); 记住,单例模式适用于那些无状态或者状态不重要的场景。嘿,想象一下,你正在用一个数据库连接池这种“有状态”的服务,要是把它搞成单例模式,那可就热闹了——多个线程或者任务同时去抢着用它,结果就是互相踩脚、搞砸事情,什么竞争条件啦、数据混乱啦,各种麻烦接踵而至。就好比大家伙儿都盯着同一个饼干罐子,都想伸手拿饼干,但谁也没个规矩,结果不是抢得太猛把罐子摔了,就是谁都拿不痛快。所以啊,这种情况下,还是别让单例当这个“独裁者”了,分清楚责任才靠谱! 4.3 忘记注册依赖 有时候,我们可能会忘记注册某些依赖项。比如: csharp public class SomeClass { private readonly IAnotherService _anotherService; public SomeClass(IAnotherService anotherService) { _anotherService = anotherService; } } 如果IAnotherService没有被注册到DI容器中,那么在运行时就会抛出异常。为了避免这种情况,你可以使用AddScoped或AddTransient来确保所有依赖都被正确注册。 --- 5. 探讨与总结 通过今天的讨论,我们可以看到,虽然依赖注入能够极大地提高代码的质量和可维护性,但它并不是万能的。设置搞错了,那可就麻烦大了,小到一个单词拼错了,大到程序跑偏、东西乱套,什么幺蛾子都可能出现。 我的建议是,在使用DI框架时要多花时间去理解和实践。不要害怕犯错,因为正是这些错误教会了我们如何更好地编写代码。同时,也要学会利用工具和日志来帮助自己排查问题。 最后,我想说的是,编程不仅仅是解决问题的过程,更是一个不断学习和成长的过程。希望大家能够在实践中找到乐趣,享受每一次成功的喜悦! 好了,今天的分享就到这里啦,如果你有任何疑问或者想法,欢迎随时留言交流哦!😄
2025-05-07 15:53:50
38
夜色朦胧
Hive
在Hive中使用一些不被支持的压缩格式:GZIP、BZIP2等 一、引言 为什么我们要折腾这些“不被支持”的压缩格式? 大家好啊,我是你的数据工程师小A。嘿,今天咱们来聊个有点“叛逆”的事儿——你知道吗?在Hive里头,有些压缩格式虽然官方文档上明晃晃地写着“不支持”,但其实很多人还在偷偷用,像GZIP和BZIP2这些就挺典型的。这事儿听着是不是还挺有意思?相当于跟官方规矩唱反调嘛!哈哈,我知道这话听着可能有点“疯疯癫癫”的,但说实话,谁还没点被迫走出舒适区的时候呢?比如为了给硬盘腾地方,或者让数据库跑得更快一点,咱总得豁出去折腾折腾吧! 先简单介绍一下背景吧。Hive其实就像是个建在Hadoop上的“数据仓库”,它能帮我们把有条理的数据存到HDFS里,然后用类似SQL的语句去查询和处理这些数据,特别方便!Hive默认支持一些常见的压缩格式,比如Snappy、LZO等。哎呀,你要是想用GZIP或者BZIP2来存表,那可得小心点啊!没准Hive会直接给你整出个错误,连数据都不让你加载。这到底是咋回事儿呢?其实吧,这是因为这两种压缩方式的性格和Hive的理念不太合拍。简单来说,它们的玩法不一样,所以Hive就觉得有点不爽,干脆就不让你这么干了。 那么问题来了:既然Hive不支持它们,为什么我们还要去折腾这些“非主流”压缩格式呢?我的回答是:因为它们可能真的有用!比如,GZIP非常适合用于压缩单个文件,而BZIP2则在某些场景下能提供更高的压缩比。所以说嘛,官方案子虽然说了不让搞,但我们不妨大胆试试,看看这些玩意儿到底能整出啥名堂! --- 二、理论基础 GZIP vs BZIP2 vs Hive的“规则” 在深入讨论具体操作之前,我们得先搞清楚这三个东西之间的差异。嘿,先说个大家可能都知道的小秘密——GZIP可是个超火的压缩“神器”呢!它最大的特点就是又快又好用,压缩文件的速度嗖一下就搞定了,效果也还行,妥妥的性价比之王!而BZIP2则是另一种高级压缩算法,虽然压缩比更高,但速度相对较慢。相比之下,Hive好像更喜欢找那种“全能型选手”,就像Snappy这种,又快又能省资源,简直两全其美! 现在问题来了:既然Hive有自己的偏好,那我们为什么要挑战它的权威呢?答案很简单:现实世界中的需求往往比理想模型复杂得多。比如说啊,有时候我们有一堆小文件,东一个西一个的,看着就头疼,想把它们整整齐齐地打包成一个大文件存起来,这时候用GZIP就很方便啦!但要是你手头的数据量超级大,比如几百万张高清图片那种,而且你还特别在意压缩效果,希望能榨干每一丢丢空间,那BZIP2就更适合你了,它在这方面可是个狠角色! 当然,这一切的前提是我们能够绕过Hive对这些格式的限制。接下来,我们就来看看具体的解决方案。 --- 三、实践篇 如何让Hive接受GZIP和BZIP2? 3.1 GZIP的逆袭之路 让我们从GZIP开始说起。想象一下,你有个文件夹,专门用来存各种日志文件,里面的文件可多啦!不过呢,这些文件都特别小巧,大概就几百KB的样子,像是些小纸条,记录着各种小事。哎呀,要是直接把一堆小文件一股脑儿塞进HDFS里,那可就麻烦了!这么多小文件堆在一起,系统就会变得特别卡,整体性能直线下降,简直像路上突然挤满了慢吞吞的小汽车,堵得不行!要解决这个问题嘛,咱们可以先把文件用GZIP压缩一下,弄个小“压缩包”,然后再把它丢进Hive里头去。 下面是一段示例代码,展示了如何创建一个支持GZIP格式的外部表: sql -- 创建数据库 CREATE DATABASE IF NOT EXISTS log_db; -- 切换到数据库 USE log_db; -- 创建外部表并指定GZIP格式 CREATE EXTERNAL TABLE IF NOT EXISTS logs ( id STRING, timestamp STRING, message STRING ) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' STORED AS TEXTFILE -- 注意这里使用TEXTFILE而不是默认的SEQUENCEFILE LOCATION '/path/to/gzipped/files'; 看到这里,你可能会问:“为什么这里要用TEXTFILE而不是SEQUENCEFILE?”这是因为Hive默认不支持直接读取GZIP格式的数据,所以我们需要手动调整存储格式。此外,还需要确保你的Hadoop集群已经启用了GZIP解压功能。 3.2 BZIP2的高阶玩法 接下来轮到BZIP2登场了。相比于GZIP,BZIP2的压缩比更高,但它也有一个明显的缺点:解压速度较慢。因此,BZIP2更适合用于那些访问频率较低的大规模静态数据集。 下面这段代码展示了如何创建一个支持BZIP2格式的分区表: sql -- 创建数据库 CREATE DATABASE IF NOT EXISTS archive_db; -- 切换到数据库 USE archive_db; -- 创建分区表并指定BZIP2格式 CREATE TABLE IF NOT EXISTS archives ( file_name STRING, content STRING ) PARTITIONED BY (year INT, month INT) STORED AS RCFILE -- RCFILE支持BZIP2压缩 TBLPROPERTIES ("orc.compress"="BZIP2"); 需要注意的是,在这种情况下,你需要确保Hive的配置文件中启用了BZIP2支持,并且相关的JAR包已经正确安装。 --- 四、实战经验分享 踩过的坑与学到的东西 在这个过程中,我遇到了不少挫折。比如说吧,有次我正打算把一个GZIP文件塞进Hive里,结果系统直接给我整了个报错,说啥解码器找不着。折腾了半天才发现,哎呀,原来是服务器上那个GZIP工具的老版本太不给劲了,跟最新的Hadoop配不上,闹起了脾气!于是,我赶紧联系运维团队升级了相关依赖,这才顺利解决问题。 还有一个教训是关于文件命名规范的。一开始啊,我老是忘了在压缩完的文件后面加“.gz”或者“.bz2”这种后缀名,搞得 Hive 一脸懵逼,根本分不清文件是啥类型的,直接就报错不认账了。后来我才明白,那些后缀名可不只是个摆设啊,它们其实是给文件贴标签的,告诉你这个文件是啥玩意儿,是图片、音乐,还是什么乱七八糟的东西。 --- 五、总结与展望 总的来说,虽然Hive对GZIP和BZIP2的支持有限,但这并不意味着我们不能利用它们的优势。相反,只要掌握了正确的技巧,我们完全可以在这两者之间找到平衡点,满足不同的业务需求。 最后,我想说的是,作为一名数据工程师,我们不应该被工具的限制束缚住手脚。相反,我们应该敢于尝试新事物,勇于突破常规。毕竟,正是这种探索精神,推动着整个行业不断向前发展! 好了,今天的分享就到这里啦。如果你也有类似的经历或者想法,欢迎随时跟我交流哦~再见啦!
2025-04-19 16:20:43
45
翡翠梦境
转载文章
... 资源,但是不允许它使用超过限制的资源。 Before you begin You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured to communicate with your cluster. If you do not already have a cluster, you can create one by using Minikube. 你的集群里每个节点至少必须拥有300M的内存。 这个教程里有几个步骤要求Heapster , 但是如果你没有Heapster的话,也可以完成大部分的实验,就算跳过这些Heapster 步骤,也不会有什么问题。 检查看Heapster服务是否运行,执行命令: kubectl get services --namespace=kube-system 如果Heapster服务正在运行,会有如下输出: NAMESPACE NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGEkube-system heapster 10.11.240.9 <none> 80/TCP 6d 创建一个命名空间 创建命名空间,以便你在实验中创建的资源可以从集群的资源中隔离出来。 kubectl create namespace mem-example 配置内存申请和限制 给容器配置内存申请,只要在容器的配置文件里添加resources:requests就可以了。配置限制的话, 则是添加resources:limits。 本实验,我们创建包含一个容器的Pod,这个容器申请100M的内存,并且内存限制设置为200M,下面 是配置文件: memory-request-limit.yaml apiVersion: v1kind: Podmetadata:name: memory-demospec:containers:- name: memory-demo-ctrimage: vish/stressresources:limits:memory: "200Mi"requests:memory: "100Mi"args:- -mem-total- 150Mi- -mem-alloc-size- 10Mi- -mem-alloc-sleep- 1s 在这个配置文件里,args代码段提供了容器所需的参数。-mem-total 150Mi告诉容器尝试申请150M 的内存。 创建Pod: kubectl create -f https://k8s.io/docs/tasks/configure-pod-container/memory-request-limit.yaml --namespace=mem-example 验证Pod的容器是否正常运行: kubectl get pod memory-demo --namespace=mem-example 查看Pod的详细信息: kubectl get pod memory-demo --output=yaml --namespace=mem-example 这个输出显示了Pod里的容器申请了100M的内存和200M的内存限制。 ...resources:limits:memory: 200Mirequests:memory: 100Mi... 启动proxy以便我们可以访问Heapster服务: kubectl proxy 在另外一个命令行窗口,从Heapster服务获取内存使用情况: curl http://localhost:8001/api/v1/proxy/namespaces/kube-system/services/heapster/api/v1/model/namespaces/mem-example/pods/memory-demo/metrics/memory/usage 这个输出显示了Pod正在使用162,900,000字节的内存,大概就是150M。这很明显超过了申请 的100M,但是还没达到200M的限制。 {"timestamp": "2017-06-20T18:54:00Z","value": 162856960} 删除Pod: kubectl delete pod memory-demo --namespace=mem-example 超出容器的内存限制 只要节点有足够的内存资源,那容器就可以使用超过其申请的内存,但是不允许容器使用超过其限制的 资源。如果容器分配了超过限制的内存,这个容器将会被优先结束。如果容器持续使用超过限制的内存, 这个容器就会被终结。如果一个结束的容器允许重启,kubelet就会重启他,但是会出现其他类型的运行错误。 本实验,我们创建一个Pod尝试分配超过其限制的内存,下面的这个Pod的配置文档,它申请50M的内存, 内存限制设置为100M。 memory-request-limit-2.yaml apiVersion: v1kind: Podmetadata:name: memory-demo-2spec:containers:- name: memory-demo-2-ctrimage: vish/stressresources:requests:memory: 50Milimits:memory: "100Mi"args:- -mem-total- 250Mi- -mem-alloc-size- 10Mi- -mem-alloc-sleep- 1s 在配置文件里的args段里,可以看到容器尝试分配250M的内存,超过了限制的100M。 创建Pod: kubectl create -f https://k8s.io/docs/tasks/configure-pod-container/memory-request-limit-2.yaml --namespace=mem-example 查看Pod的详细信息: kubectl get pod memory-demo-2 --namespace=mem-example 这时候,容器可能会运行,也可能会被杀掉。如果容器还没被杀掉,重复之前的命令直至 你看到这个容器被杀掉: NAME READY STATUS RESTARTS AGEmemory-demo-2 0/1 OOMKilled 1 24s 查看容器更详细的信息: kubectl get pod memory-demo-2 --output=yaml --namespace=mem-example 这个输出显示了容器被杀掉因为超出了内存限制。 lastState:terminated:containerID: docker://65183c1877aaec2e8427bc95609cc52677a454b56fcb24340dbd22917c23b10fexitCode: 137finishedAt: 2017-06-20T20:52:19Zreason: OOMKilledstartedAt: null 本实验里的容器可以自动重启,因此kubelet会再去启动它。输入多几次这个命令看看它是怎么 被杀掉又被启动的: kubectl get pod memory-demo-2 --namespace=mem-example 这个输出显示了容器被杀掉,被启动,又被杀掉,又被启动的过程: stevepe@sperry-1:~/steveperry-53.github.io$ kubectl get pod memory-demo-2 --namespace=mem-exampleNAME READY STATUS RESTARTS AGEmemory-demo-2 0/1 OOMKilled 1 37sstevepe@sperry-1:~/steveperry-53.github.io$ kubectl get pod memory-demo-2 --namespace=mem-exampleNAME READY STATUS RESTARTS AGEmemory-demo-2 1/1 Running 2 40s 查看Pod的历史详细信息: kubectl describe pod memory-demo-2 --namespace=mem-example 这个输出显示了Pod一直重复着被杀掉又被启动的过程: ... Normal Created Created container with id 66a3a20aa7980e61be4922780bf9d24d1a1d8b7395c09861225b0eba1b1f8511... Warning BackOff Back-off restarting failed container 查看集群里节点的详细信息: kubectl describe nodes 输出里面记录了容器被杀掉是因为一个超出内存的状况出现: Warning OOMKilling Memory cgroup out of memory: Kill process 4481 (stress) score 1994 or sacrifice child 删除Pod: kubectl delete pod memory-demo-2 --namespace=mem-example 配置超出节点能力范围的内存申请 内存的申请和限制是针对容器本身的,但是认为Pod也有容器的申请和限制是一个很有帮助的想法。 Pod申请的内存就是Pod里容器申请的内存总和,类似的,Pod的内存限制就是Pod里所有容器的 内存限制的总和。 Pod的调度策略是基于请求的,只有当节点满足Pod的内存申请时,才会将Pod调度到合适的节点上。 在这个实验里,我们创建一个申请超大内存的Pod,超过了集群里任何一个节点的可用内存资源。 这个容器申请了1000G的内存,这个应该会超过你集群里能提供的数量。 memory-request-limit-3.yaml apiVersion: v1kind: Podmetadata:name: memory-demo-3spec:containers:- name: memory-demo-3-ctrimage: vish/stressresources:limits:memory: "1000Gi"requests:memory: "1000Gi"args:- -mem-total- 150Mi- -mem-alloc-size- 10Mi- -mem-alloc-sleep- 1s 创建Pod: kubectl create -f https://k8s.io/docs/tasks/configure-pod-container/memory-request-limit-3.yaml --namespace=mem-example 查看Pod的状态: kubectl get pod memory-demo-3 --namespace=mem-example 输出显示Pod的状态是Pending,因为Pod不会被调度到任何节点,所有它会一直保持在Pending状态下。 kubectl get pod memory-demo-3 --namespace=mem-exampleNAME READY STATUS RESTARTS AGEmemory-demo-3 0/1 Pending 0 25s 查看Pod的详细信息包括事件记录 kubectl describe pod memory-demo-3 --namespace=mem-example 这个输出显示容器不会被调度因为节点上没有足够的内存: Events:... Reason Message------ -------... FailedScheduling No nodes are available that match all of the following predicates:: Insufficient memory (3). 内存单位 内存资源是以字节为单位的,可以表示为纯整数或者固定的十进制数字,后缀可以是E, P, T, G, M, K, Ei, Pi, Ti, Gi, Mi, Ki.比如,下面几种写法表示相同的数值:alue: 128974848, 129e6, 129M , 123Mi 删除Pod: kubectl delete pod memory-demo-3 --namespace=mem-example 如果不配置内存限制 如果不给容器配置内存限制,那下面的任意一种情况可能会出现: 容器使用内存资源没有上限,容器可以使用当前节点上所有可用的内存资源。 容器所运行的命名空间有默认内存限制,容器会自动继承默认的限制。集群管理员可以使用这个文档 LimitRange来配置默认的内存限制。 内存申请和限制的原因 通过配置容器的内存申请和限制,你可以更加有效充分的使用集群里内存资源。配置较少的内存申请, 可以让Pod跟任意被调度。设置超过内存申请的限制,可以达到以下效果: Pod可以在负载高峰时更加充分利用内存。 可以将Pod的内存使用限制在比较合理的范围。 清理 删除命名空间,这会顺便删除命名空间里的Pod。 kubectl delete namespace mem-example 译者:NickSu86 原文链接 本篇文章为转载内容。原文链接:https://blog.csdn.net/Aria_Miazzy/article/details/99694937。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-23 12:14:07
494
转载
Beego
...3. 2. 第二步 使用 Beego 提供的工具 Beego 为我们提供了一个非常方便的工具,叫做 beego.AppConfig。这个工具可以帮助我们轻松地读取和解析配置文件。要是你检查完配置文件,发现格式啥的都没毛病,可还是报错的话,那八成是代码里头哪里出岔子了。 下面是一个简单的代码示例,展示如何使用 beego.AppConfig 来读取配置文件: go package main import ( "fmt" "github.com/beego/beego/v2/server/web" ) func main() { // 初始化 Beego 配置 web.SetConfigName("app") web.AddConfigPath("./conf") err := web.LoadAppConfig("ini", "./conf/app.conf") if err != nil { fmt.Println("Error loading configuration:", err) return } // 读取配置项 appName := web.AppConfig.String("appname") port := web.AppConfig.String("port") fmt.Printf("Application Name: %s\n", appName) fmt.Printf("Port: %s\n", port) } 在这个例子中,我们首先设置了配置文件的名字和路径,然后通过 LoadAppConfig 方法加载配置文件。要是加载的时候挂了,就会蹦出个错误信息。咱们可以用 fmt.Println 把这个错误打出来,这样就能知道到底哪里出问题啦! 3. 3. 第三步 日志记录的重要性 在处理配置文件解析错误时,日志记录是一个非常重要的环节。通过记录详细的日志信息,我们可以更好地追踪问题的根源。 Beego 提供了强大的日志功能,我们可以很容易地将日志输出到控制台或文件中。下面是一个使用 Beego 日志模块的例子: go package main import ( "github.com/beego/beego/v2/server/web" "log" ) func main() { // 设置日志级别 log.SetFlags(log.Ldate | log.Ltime | log.Lshortfile) // 加载配置文件 err := web.LoadAppConfig("ini", "./conf/app.conf") if err != nil { log.Fatalf("Failed to load configuration: %v", err) } // 继续执行其他逻辑 log.Println("Configuration loaded successfully.") } 在这个例子中,我们设置了日志的格式,并在加载配置文件时使用了 log.Fatalf 来记录错误信息。这样,即使程序崩溃,我们也能清楚地看到哪里出了问题。 4. 我的经验总结 经过多次实践,我发现处理配置文件解析错误的关键在于耐心和细心。很多时候,问题并不是特别复杂,只是我们一时疏忽导致的。所以啊,在写代码的时候,得养成好习惯,像时不时瞅一眼配置文件是不是整整齐齐的,别让那些键值对出问题,不然出了bug找起来可够呛。 同时,我也建议大家多利用 Beego 提供的各种工具和功能。Beego 是一个非常成熟的框架,它已经为我们考虑到了很多细节。只要我们合理使用这些工具,就能大大减少遇到问题的概率。 最后,我想说的是,编程其实是一个不断学习和成长的过程。当我们遇到困难时,不要气馁,也不要急于求成。静下心来,一步步分析问题,总能找到解决方案。这就跟处理配置文件出错那会儿似的,说白了嘛,只要你能沉住气,再琢磨出点门道来,这坎儿肯定能迈过去! 5. 结语 好了,今天的分享就到这里了。希望能通过这篇文章,让大家弄明白在 Beego 里怎么正确解决配置文件出错的问题,这样以后遇到类似情况就不会抓耳挠腮啦!如果你还有什么疑问或者更好的方法,欢迎随时跟我交流。我们一起进步,一起成为更优秀的开发者! 记住,编程不仅仅是解决问题,更是一种艺术。愿你在编程的道路上越走越远,越走越宽广!
2025-04-13 15:33:12
24
桃李春风一杯酒
Apache Lucene
...tory); // 使用 IndexSearcher 查找文档 IndexSearcher searcher = new IndexSearcher(reader); // 获取 TokenStream 对象 org.apache.lucene.search.IndexSearcher.SearchContext context = searcher.createSearchContext(); org.apache.lucene.analysis.standard.StandardAnalyzer analyzer = new org.apache.lucene.analysis.standard.StandardAnalyzer(Version.LATEST); org.apache.lucene.analysis.TokenStream tokenStream = analyzer.tokenStream("content", context.reader().getTermVector(0, 0).getPayload().toString()); // 检查是否有异常抛出 while (tokenStream.incrementToken()) { System.out.println("Token: " + tokenStream.getAttribute(CharTermAttribute.class).toString()); } // 关闭 TokenStream 和 IndexReader tokenStream.end(); reader.close(); } } 在这段代码中,我们首先创建了一个 RAMDirectory,并使用它来构建一个索引。接着,我们添加了一个包含测试文本的文档到索引中。之后,我们创建了 IndexSearcher 来搜索文档,并使用 StandardAnalyzer 来创建 TokenStream。在循环中,我们逐个输出令牌,直到遇到 EOFException,这通常意味着已经到达了文本的末尾。 第二部分:深入分析 EOFException 的原因与解决策略 在实际应用中,EOFException 通常意味着 TokenStream 已经到达了文本的结尾,这可能是由于以下原因: - 文本过短:如果输入的文本长度不足以产生足够的令牌,TokenStream 可能会过早地报告结束。 - 解析问题:在复杂的文本结构下,解析器可能未能正确地分割文本,导致部分文本未被识别为有效的令牌。 为了应对这种情况,我们可以采取以下策略: - 增加文本长度:确保输入的文本足够长,以生成多个令牌。 - 优化解析器配置:根据特定的应用场景调整分析器的配置,例如使用不同的分词器(如 CJKAnalyzer)来适应不同语言的需求。 - 错误处理机制:在代码中加入适当的错误处理逻辑,以便在遇到 EOFException 时进行相应的处理,例如记录日志、提示用户重新输入更长的文本等。 结语:拥抱挑战,驾驭全文检索 面对 org.apache.lucene.analysis.TokenStream$EOFException: End of stream 这样的挑战,我们的目标不仅仅是解决问题,更是通过这样的经历深化对 Lucene 工作原理的理解。哎呀,你猜怎么着?咱们在敲代码、调参数的过程中,不仅技术越来越溜,还能在处理那些乱七八糟的数据时,感觉自己就像个数据处理的小能手,得心应手的呢!就像是在厨房里,熟练地翻炒各种食材,做出来的菜品色香味俱全,让人赞不绝口。编程也是一样,每一次的实践和调试,都是在给我们的技能加料,让我们的作品越来越美味,越来越有营养!嘿!兄弟,听好了,每次遇到难题都像是在给咱的成长加个buff,咱们得一起揭开全文检索的神秘面纱,掌控技术的大棒,让用户体验到最棒、最快的搜索服务,让每一次敲击键盘都能带来惊喜! --- 以上内容不仅涵盖了理论解释与代码实现,还穿插了人类在面对技术难题时的思考与探讨,旨在提供一种更加贴近实际应用、充满情感与主观色彩的技术解读方式。
2024-07-25 00:52:37
391
青山绿水
Hadoop
...3. 实战演示 如何使用Hadoop进行跨硬件复制? 接下来,让我们动手试试看!我会通过一些实际的例子来展示Hadoop是如何完成文件跨硬件复制的。 3.1 安装与配置Hadoop 首先,你需要确保自己的环境已经安装好了Hadoop。如果你还没有安装,可以参考官方文档一步步来配置。对新手来说,建议先试试伪分布式模式,相当于在一台电脑上“假装”有一个完整的集群,方便你熟悉环境又不用折腾多台机器。 3.2 创建一个简单的文本文件 我们先创建一个简单的文本文件,用来测试Hadoop的功能。你可以使用以下命令: bash echo "Hello, Hadoop!" > test.txt 然后,我们将这个文件上传到HDFS中: bash hadoop fs -put test.txt /user/hadoop/ 这里的/user/hadoop/是HDFS上的一个目录路径。 3.3 查看文件的副本分布 上传完成后,我们可以检查一下这个文件的副本分布情况。使用以下命令: bash hadoop fsck /user/hadoop/test.txt -files -blocks -locations 这段命令会输出类似如下的结果: /user/hadoop/test.txt 128 bytes, 1 block(s): OK 0. BP-123456789-192.168.1.1:50010 file:/path/to/local/file 1. BP-123456789-192.168.1.2:50010 file:/path/to/local/file 2. BP-123456789-192.168.1.3:50010 file:/path/to/local/file 从这里可以看到,我们的文件已经被复制到了三台不同的服务器上。 --- 4. 深度解读 Hadoop的副本策略 在前面的步骤中,我们已经看到了Hadoop是如何将文件复制到不同节点上的。但是,你知道吗?Hadoop的副本策略其实是非常灵活的。它可以根据网络拓扑结构来决定副本的位置。 例如,默认情况下,第一个副本会放在与客户端最近的节点上,第二个副本会放在另一个机架上,而第三个副本则会放在同一个机架的不同节点上。这样的策略可以最大限度地减少网络延迟,提高读取效率。 当然,如果你对默认的副本策略不满意,也可以自己定制。比如,如果你想让所有副本都放在同一个机架内,可以通过修改dfs.replication.policy参数来实现。 --- 5. 总结与展望 通过今天的讨论,我们了解了Hadoop是如何通过HDFS实现文件的跨硬件复制的。虽然这个功能看似简单,但它背后蕴含着复杂的设计理念和技术细节。正是这些设计,才使得Hadoop成为了一个强大的大数据处理工具。 最后,我想说的是,学习新技术的过程就像探险一样,充满了未知和挑战。嘿,谁还没遇到过点麻烦事儿呢?有时候一头雾水,感觉前路茫茫,但这不正是探索的开始嘛!别急着放弃,熬过去你会发现,那些让人头疼的问题其实藏着不少小惊喜,等你拨开云雾时,成就感绝对让你觉得值了!希望这篇文章能给你带来一些启发,也希望你能亲自尝试一下Hadoop的实际操作,感受一下它的魅力! 好了,今天的分享就到这里啦!如果你有任何疑问或者想法,欢迎随时留言交流。让我们一起探索更多有趣的技术吧!
2025-03-26 16:15:40
97
冬日暖阳
转载文章
...jpeg等都有魔数。使用魔数主要是来识别文件的格式,相比于通过文件后缀名识别,这种方式准确性更高,因为文件后缀名可以随便更改,但更改二进制文件内容的却很少。Class类文件的魔数是Oxcafebabe,cafe babe?咖啡宝贝?至于为什么是这个, 这个名字在java语言诞生之初就已经确定了,它象征着著名咖啡品牌Peet's Coffee中深受欢迎的Baristas咖啡,Java的商标logo也源于此。 3.文件版本(Version) 在魔数后面的4个字节就是Class文件的版本号,第5和第6个字节是次版本号(Minor Version),第7和第8个字节是主版本号(Major Version)。Java的版本号是从45开始的,JDK1.1之后的每个JDK大版本发布主版本号向上加1(JDK1.0~1.1使用的版本号是45.0~45.3),比如我这里是十六进制的Ox0034,也就是十进制的52,所以说明该class文件可以被JDK1.8及以上的虚拟机执行,否则低版本虚拟机执行会报java.lang.UnsupportedClassVersionError错误。 4.常量池(Constant Pool) 在主版本号紧接着的就是常量池的入口,它是Class文件结构中与其他项目关联最多的数据类型,也是占用空间最大的数据之一。常量池的容量由后2个字节指定,比如这里我的是Ox001d,即十进制的29,这就表示常量池中有29项常量,而常量池的索引是从1开始的,这一点需要特殊记忆,因为程序员习惯性的计数法是从0开始的,而这里不一样,所以我这里常量池的索引范围是1~29。设计者将第0项常量空出来是有目的的,这样可以满足后面某些指向常量池的索引值的数据在特定情况下需要表达“不引用任何一个常量池项目”的含义。 通过javap -v命令反编译出class文件之后,我们可以看到常量池的内容 常量池中主要存放两大类常量:字面量和符号引用。比如文本字符、声明为final的常量值就属于字面量,而符号引用则包含下面三类常量: 类和接口的全限名 字段的名称和描述符 方法的名称和描述符 在之前的文章(详谈类加载的全过程)中有详细讲到,在加载类过程的第二大阶段连接的第三个阶段解析的时候,会将常量池中的符号引用替换为直接引用。相信很多人在开始了解那里的时候也是一头雾水,作者我也是,当我了解到常量池的构成的时候才明白真正意思。Java代码在编译的时候,是在虚拟机加载Class文件的时候才会动态链接,也就是说Class文件中不会保存各个方法、字段的最终内存布局信息,因此这些字段、方法的符号引用不经过运行期转换的话无法获得真正的内存入口地址,也就无法直接被虚拟机使用。当虚拟机运行时,需要从常量池获得对应的符号引用,再在类创建时或运行时解析、翻译到具体的内存地址之中。 常量池中每一项常量都是一张表,这里我只找到了JDK1.7之前的常量池项目类型表,见下图。 常量池项目类型表: 常量池常量项的结构总表: 比如我这里测试的class文件第一项常量,它的标志位是Ox0a,即十进制10,即表示tag为10的常量项,查表发现是CONSTANT_Methodref_info类型,和上面反编译之后的到的第一个常量是一致的,Methodref表示类中方法的符号引用。查上面《常量池常量项的结构总表》可以看到Methodref中含有3个项目,第一个tag就是上述的Ox0a,那么第二个项目就是Ox0006,第三个项目就是Ox000f,分别指向的CONSTANT_Class_info索引项和CONSTANT_NameAndType_info索引项为6和15,那么反编译的结果该项常量指向的应该是6和15,查看上面反编译的图应证我们的推测是对的。后面的常量项就以此类推。 这里需要特殊说明一下utf8常量项的内容,这里我以第29项常量项解释,也就是最后一项常量项。查《常量池常量项的结构总表》可以看到utf8项有三个内容:tag、length、bytes。tag表示常量项类型,这里是Ox01,表示是CONSTANT_Utf8_info类型,紧接着的是长度length,这里是Ox0015,即十进制21,那么再紧接着的21个字节都表示该项常量项的具体内容。特别注意length表示的最大值是65535,所以Java程序中仅能接收小于等于64KB英文字符的变量和变量名,否则将无法编译。 5.访问标志(Access Flags) 在常量池结束后,紧接着的两个字节代表访问标志(Access Flags),该标志用于识别一些类或者接口层次的访问信息,其中包括:Class是类还是接口、是否定义为public、是否定义为abstract类型、类是否被声明为final等。 访问标志表 标志位一共有16个,但是并不是所有的都用到,上表只列举了其中8个,没有使用的标志位统统置为0,access_flags只有2个字节表示,但是有这么多标志位怎么计算而来的呢?它是由标志位为true的标志位值取或运算而来,比如这里我演示的class文件是一个类并且是public的,所以对应的ACC_PUBLIC和ACC_SIPER标志应该置为true,其余标志不满足则为false,那么access_flags的计算过程就是:Ox0001 | Ox0020 = Ox0021 篇幅原因,未完待续...... 参考文献:《深入理解Java虚拟机》 END 本篇文章为转载内容。原文链接:https://javar.blog.csdn.net/article/details/97532925。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-01-09 17:46:36
645
转载
Hadoop
...来找原因! 最近我在使用Hadoop的过程中,发现了一个让我非常头疼的问题——HDFS的读取速度慢得让人抓狂!作为一个对大数据技术充满热情的技术宅男(或者宅女),这种问题简直就像一道数学题里的“未知数”一样困扰着我。今天,我就想跟大家聊聊这个话题,希望能找到一些解决办法。 一、背景介绍 HDFS为什么重要? 首先,让我们简单回顾一下HDFS是什么。HDFS(Hadoop分布式文件系统)就像是Hadoop这个大家族里的“顶梁柱”之一,它专门用来管理海量的数据,就像一个超级大的仓库,能把成千上万的数据文件整整齐齐地存放在不同的电脑上,还能保证它们既安全又容易取用。简单来说,就是把一个大文件分成很多小块,然后把这些小块分散存储在不同的服务器上。这么做的好处嘛,简直太明显了!就算哪台机器突然“罢工”了,数据也能稳稳地保住,完全不会丢。而且呢,还能同时对这些数据进行处理,效率杠杠的! 但是,任何技术都有它的局限性。HDFS虽然功能强大,但在实际应用中也可能会遇到各种问题,比如读取速度慢。这可能是由于网络延迟、磁盘I/O瓶颈或者其他因素造成的。那么,具体有哪些原因会导致HDFS读取速度变慢呢?接下来,我们就来一一分析。 二、可能的原因及初步排查 1. 网络延迟过高 想象一下,你正在家里看电影,突然发现画面卡顿了,这是因为你的网络连接出了问题。同样地,在HDFS中,如果网络延迟过高,也会导致读取速度变慢。比如说,假如你的数据节点散落在天南海北的各种数据中心里,那数据跑来跑去就得花更多时间,就像你在城市两端都有家一样,来回折腾肯定比在同一个小区里串门费劲得多。 示例代码: java Configuration conf = new Configuration(); FileSystem fs = FileSystem.get(conf); Path filePath = new Path("/user/hadoop/input/file.txt"); FSDataInputStream in = null; try { in = fs.open(filePath); byte[] buffer = new byte[1024]; int bytesRead = in.read(buffer); while (bytesRead != -1) { bytesRead = in.read(buffer); } } catch (IOException e) { e.printStackTrace(); } finally { if (in != null) { try { in.close(); } catch (IOException e) { e.printStackTrace(); } } } 这段代码展示了如何从HDFS中读取文件。如果你发现每次执行这段代码时都需要花费很长时间,那么很可能是网络延迟的问题。 2. 数据本地性不足 还记得小时候玩过的接力赛吗?如果接力棒总是从一个人传到另一个人再传回来,效率肯定不高。这就跟生活中的事儿一样啊,在HDFS里头,要是数据没分配到离客户端最近的那个数据节点上,那不是干等着嘛,多浪费时间呀! 解决方案: 可以通过调整副本策略来改善数据本地性。比如说,默认设置下,HDFS会把文件的备份分散存到集群里的不同机器上。不过呢,如果你想让这个过程变得更高效或者更适合自己的需求,完全可以去调整那个叫dfs.replication的参数! xml dfs.replication 3 3. 磁盘I/O瓶颈 磁盘读写速度是影响HDFS性能的一个重要因素。要是你的服务器用的是那些老掉牙的机械硬盘,那读文件的速度肯定就慢得像乌龟爬了。 实验验证: 为了测试磁盘I/O的影响,可以尝试将一部分数据迁移到SSD上进行对比实验。好啦,想象一下,你手头有一堆日志文件要对付。先把它们丢到普通的老硬盘(HDD)里待着,然后又挪到固态硬盘(SSD)上,看看读取速度变了多少。是不是感觉像在玩拼图游戏,只不过这次是在折腾文件呢? 三、进阶优化技巧 经过前面的分析,我们可以得出结论:要提高HDFS的读取速度,不仅仅需要关注硬件层面的问题,还需要从软件配置上下功夫。以下是一些更高级别的优化建议: 1. 增加带宽 带宽就像是高速公路的车道数量,车道越多,车辆通行就越顺畅。对于HDFS来说,增加带宽意味着可以同时传输更多的数据块。 实际操作: 联系你的网络管理员,询问是否有可能升级现有的网络基础设施,比如更换更快的交换机或者部署新的光纤线路。 2. 调整副本策略 默认情况下,HDFS会将每个文件的三个副本均匀分布在整个集群中。然而,在某些特殊场景下,这种做法并不一定是最优解。比如说,你家APP平时就爱扎堆在那几个服务器节点上干活儿,那就可以把副本都放一块儿,这样它们串门聊天、传文件啥的就方便多了,也不用跑太远浪费时间啦! 配置修改: xml dfs.block.local-path-access.enabled true 3. 使用缓存机制 缓存就像冰箱里的剩饭,拿出来就能直接吃,不用重新加热。HDFS也有类似的机制,叫做“DataNode Cache”。打开这个功能之后啊,那些经常用到的数据就会被暂时存到内存里,这样下次再用的时候就嗖的一下快多了! 启用步骤: bash hadoop dfsadmin -setSpaceQuota 100g /cachedir hadoop dfs -cache /inputfile /cachedir 四、总结与展望 通过今天的讨论,我相信大家都对HDFS读取速度慢的原因有了更深的理解。其实,无论是网络延迟、数据本地性还是磁盘I/O瓶颈,都不是不可克服的障碍。其实吧,只要咱们肯花点心思去琢磨、去试试,肯定能找出个适合自己情况的办法。 最后,我想说的是,作为一名技术人员,我们应该始终保持好奇心和探索精神。不要害怕失败,也不要急于求成,因为每一次挫折都是一次成长的机会。希望这篇文章能给大家带来启发,让我们一起努力,让Hadoop变得更加高效可靠吧! --- 以上就是我对“HDFS读取速度慢”的全部看法和建议。如果你还有其他想法或者遇到类似的问题,请随时留言交流。咱们共同进步,一起探索大数据世界的奥秘!
2025-05-04 16:24:39
103
月影清风
Netty
...java // 使用FileRegion发送文件 FileInputStream fileInputStream = new FileInputStream(new File("data.txt")); FileRegion region = new DefaultFileRegion(fileInputStream.getChannel(), 0, fileSize); channel.writeAndFlush(region); 在这段代码中,我们利用DefaultFileRegion将文件内容直接传递给了Netty的通道,大大提升了传输效率。 --- 3.3 长连接复用与心跳检测 第三个重要的机制是长连接复用与心跳检测。 在高并发环境下,频繁创建和销毁TCP连接的成本是非常高的。所以啊,Netty这个家伙超级聪明,它能让一个TCP连接反复用,不用每次都重新建立新的连接。这就像是你跟朋友煲电话粥,不用每次说完一句话就挂断重拨,直接接着聊就行啦,省心又省资源! 与此同时,为了防止连接因为长时间闲置而失效,Netty还引入了心跳检测机制。简单说吧,就像你隔一会儿给对方发个“我还在线”的消息,就为了确认你们的联系没断就行啦! java // 设置心跳检测参数 Bootstrap bootstrap = new Bootstrap(); bootstrap.option(ChannelOption.SO_KEEPALIVE, true); // 开启TCP保活功能 bootstrap.option(ChannelOption.CONNECT_TIMEOUT_MILLIS, 5000); // 设置连接超时时间 在这里,我们通过设置SO_KEEPALIVE选项开启了TCP保活功能,并设置了最长的连接等待时间为5秒。这样一来,即使网络出现短暂中断,Netty也会自动尝试恢复连接。 --- 3.4 数据缓冲与批量处理 最后一个要点是数据缓冲与批量处理。 在网络通信过程中,数据的大小和频率往往不可控。要是每次传来的数据都一点点的,那老是去处理这些小碎数据,就会多花不少功夫啦。Netty通过内置的缓冲区(Buffer)解决了这个问题。 例如,我们可以使用ByteBuf来存储和处理接收到的数据。ByteBuf就像是内存管理界的“万金油”,不仅能够灵活地伸缩大小,还能轻松应对各种编码需求,简直是程序员手里的瑞士军刀! java // 创建一个ByteBuf实例 ByteBuf buffer = Unpooled.buffer(1024); buffer.writeBytes(data); // 处理数据 while (buffer.readableBytes() > 0) { byte b = buffer.readByte(); process(b); } 在这段代码中,我们首先创建了一个容量为1024字节的缓冲区,然后将接收到的数据写入其中。接着,我们通过循环逐个读取并处理缓冲区中的数据。这种方式不仅可以提高处理效率,还能更好地应对突发流量。 --- 四、总结与展望 好了,朋友们,今天的分享就到这里啦!通过上面的内容,相信大家对Netty的故障恢复机制有了更深的理解。不管是应对各种意外情况的异常处理,还是能让数据传输更高效的零拷贝技术,又或者是能重复利用长连接和设置数据缓冲这些招数,Netty可真是个实力派选手啊! 不过,技术的世界永远没有尽头。Netty虽然已经足够优秀,但在某些特殊场景下仍可能存在局限性。未来的日子啊,我超级期待能看到更多的小伙伴,在Netty的基础上大展身手,把自己的系统捯饬得既聪明又靠谱,简直就像给它装了个“智慧大脑”一样! 最后,我想说的是,技术的学习是一个不断探索的过程。希望大家能在实践中积累经验,在挑战中成长进步。如果你有任何疑问或者想法,欢迎随时留言交流哦! 祝大家都能写出又快又稳的代码,一起迈向技术巅峰吧!😎
2025-03-19 16:22:40
79
红尘漫步
转载文章
...,掌握一门技术并合理使用它的最好办法就是深入理解这项技术背后的工作原理。通常情况 下,一项新技术的诞生常常会伴随着媒体的大肆宣传和炒作,这使得用户很难看清技术的本质。更确切地说,新技术总是会发明一些新的术语或者隐喻词来帮助宣 传,这在初期是非常有帮助的,但是这给技术的原理蒙上了一层砂纸,不利于用户在后期掌握技术的真谛。 Git就是一个很好的例子。我之前不能够很好的使用Git,于是我花了一段时间去学习Git的原理,直到这时,我才真正明白了Git的用法。我坚信只有真正理解Git内部原理的人才能够掌握这个工具。 Image Definition 镜像(Image)就是一堆只读层(read-only layer)的统一视角,也许这个定义有些难以理解,下面的这张图能够帮助读者理解镜像的定义。 从左边我们看到了多个只读层,它们重叠在一起。除了最下面一层,其它层都会有一个指针指向下一层。这些层是Docker内部的实现细节,并且能够 在主机(译者注:运行Docker的机器)的文件系统上访问到。统一文件系统(union file system)技术能够将不同的层整合成一个文件系统,为这些层提供了一个统一的视角,这样就隐藏了多层的存在,在用户的角度看来,只存在一个文件系统。 我们可以在图片的右边看到这个视角的形式。 你可以在你的主机文件系统上找到有关这些层的文件。需要注意的是,在一个运行中的容器内部,这些层是不可见的。在我的主机上,我发现它们存在于/var/lib/docker/aufs目录下。 sudo tree -L 1 /var/lib/docker/ /var/lib/docker/├── aufs├── containers├── graph├── init├── linkgraph.db├── repositories-aufs├── tmp├── trust└── volumes7 directories, 2 files Container Definition 容器(container)的定义和镜像(image)几乎一模一样,也是一堆层的统一视角,唯一区别在于容器的最上面那一层是可读可写的。 细心的读者可能会发现,容器的定义并没有提及容器是否在运行,没错,这是故意的。正是这个发现帮助我理解了很多困惑。 要点:容器 = 镜像 + 可读层。并且容器的定义并没有提及是否要运行容器。 接下来,我们将会讨论运行态容器。 Running Container Definition 一个运行态容器(running container)被定义为一个可读写的统一文件系统加上隔离的进程空间和包含其中的进程。下面这张图片展示了一个运行中的容器。 正是文件系统隔离技术使得Docker成为了一个前途无量的技术。一个容器中的进程可能会对文件进行修改、删除、创建,这些改变都将作用于可读写层(read-write layer)。下面这张图展示了这个行为。 我们可以通过运行以下命令来验证我们上面所说的: docker run ubuntu touch happiness.txt 即便是这个ubuntu容器不再运行,我们依旧能够在主机的文件系统上找到这个新文件。 find / -name happiness.txt /var/lib/docker/aufs/diff/860a7b...889/happiness.txt Image Layer Definition 为了将零星的数据整合起来,我们提出了镜像层(image layer)这个概念。下面的这张图描述了一个镜像层,通过图片我们能够发现一个层并不仅仅包含文件系统的改变,它还能包含了其他重要信息。 元数据(metadata)就是关于这个层的额外信息,它不仅能够让Docker获取运行和构建时的信息,还包括父层的层次信息。需要注意,只读层和读写层都包含元数据。 除此之外,每一层都包括了一个指向父层的指针。如果一个层没有这个指针,说明它处于最底层。 Metadata Location: 我发现在我自己的主机上,镜像层(image layer)的元数据被保存在名为”json”的文件中,比如说: /var/lib/docker/graph/e809f156dc985.../json e809f156dc985...就是这层的id 一个容器的元数据好像是被分成了很多文件,但或多或少能够在/var/lib/docker/containers/<id>目录下找到,<id>就是一个可读层的id。这个目录下的文件大多是运行时的数据,比如说网络,日志等等。 全局理解(Tying It All Together) 现在,让我们结合上面提到的实现细节来理解Docker的命令。 docker create <image-id> docker create 命令为指定的镜像(image)添加了一个可读写层,构成了一个新的容器。注意,这个容器并没有运行。 docker start <container-id> Docker start命令为容器文件系统创建了一个进程隔离空间。注意,每一个容器只能够有一个进程隔离空间。 docker run <image-id> 看到这个命令,读者通常会有一个疑问:docker start 和 docker run命令有什么区别。 从图片可以看出,docker run 命令先是利用镜像创建了一个容器,然后运行这个容器。这个命令非常的方便,并且隐藏了两个命令的细节,但从另一方面来看,这容易让用户产生误解。 题外话:继续我们之前有关于Git的话题,我认为docker run命令类似于git pull命令。git pull命令就是git fetch 和 git merge两个命令的组合,同样的,docker run就是docker create和docker start两个命令的组合。 docker ps docker ps 命令会列出所有运行中的容器。这隐藏了非运行态容器的存在,如果想要找出这些容器,我们需要使用下面这个命令。 docker ps –a docker ps –a命令会列出所有的容器,不管是运行的,还是停止的。 docker images docker images命令会列出了所有顶层(top-level)镜像。实际上,在这里我们没有办法区分一个镜像和一个只读层,所以我们提出了top-level 镜像。只有创建容器时使用的镜像或者是直接pull下来的镜像能被称为顶层(top-level)镜像,并且每一个顶层镜像下面都隐藏了多个镜像层。 docker images –a docker images –a命令列出了所有的镜像,也可以说是列出了所有的可读层。如果你想要查看某一个image-id下的所有层,可以使用docker history来查看。 docker stop <container-id> docker stop命令会向运行中的容器发送一个SIGTERM的信号,然后停止所有的进程。 docker kill <container-id> docker kill 命令向所有运行在容器中的进程发送了一个不友好的SIGKILL信号。 docker pause <container-id> docker stop和docker kill命令会发送UNIX的信号给运行中的进程,docker pause命令则不一样,它利用了cgroups的特性将运行中的进程空间暂停。具体的内部原理你可以在这里找到:https://www.kernel.org/doc/Doc ... m.txt,但是这种方式的不足之处在于发送一个SIGTSTP信号对于进程来说不够简单易懂,以至于不能够让所有进程暂停。 docker rm <container-id> docker rm命令会移除构成容器的可读写层。注意,这个命令只能对非运行态容器执行。 docker rmi <image-id> docker rmi 命令会移除构成镜像的一个只读层。你只能够使用docker rmi来移除最顶层(top level layer)(也可以说是镜像),你也可以使用-f参数来强制删除中间的只读层。 docker commit <container-id> docker commit命令将容器的可读写层转换为一个只读层,这样就把一个容器转换成了不可变的镜像。 docker build docker build命令非常有趣,它会反复的执行多个命令。 我们从上图可以看到,build命令根据Dockerfile文件中的FROM指令获取到镜像,然后重复地1)run(create和start)、2)修改、3)commit。在循环中的每一步都会生成一个新的层,因此许多新的层会被创建。 docker exec <running-container-id> docker exec 命令会在运行中的容器执行一个新进程。 docker inspect <container-id> or <image-id> docker inspect命令会提取出容器或者镜像最顶层的元数据。 docker save <image-id> docker save命令会创建一个镜像的压缩文件,这个文件能够在另外一个主机的Docker上使用。和export命令不同,这个命令为每一个层都保存了它们的元数据。这个命令只能对镜像生效。 docker export <container-id> docker export命令创建一个tar文件,并且移除了元数据和不必要的层,将多个层整合成了一个层,只保存了当前统一视角看到的内容(译者注:expoxt后 的容器再import到Docker中,通过docker images –tree命令只能看到一个镜像;而save后的镜像则不同,它能够看到这个镜像的历史镜像)。 docker history <image-id> docker history命令递归地输出指定镜像的历史镜像。 参考: http://www.cnblogs.com/bethal/p/5942369.html 本篇文章为转载内容。原文链接:https://blog.csdn.net/u010098331/article/details/53485539。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-26 15:47:20
538
转载
Mahout
...训练:然后,我们可以使用Mahout中的算法对数据进行预处理和建模。例如,假设我们想要进行用户行为的聚类分析,可以使用Mahout的KMeans算法。 scala import org.apache.mahout.cf.taste.hadoop.recommender.KNNRecommender import org.apache.mahout.cf.taste.impl.model.file.FileDataModel import org.apache.mahout.cf.taste.impl.neighborhood.ThresholdUserNeighborhood import org.apache.mahout.cf.taste.impl.recommender.GenericUserBasedRecommender import org.apache.mahout.cf.taste.impl.similarity.PearsonCorrelationSimilarity import org.apache.mahout.math.RandomAccessSparseVector import org.apache.hadoop.conf.Configuration val dataModel = new FileDataModel(new File("/path/to/your/data.csv")) val neighborhood = new ThresholdUserNeighborhood(0.5, dataModel, new Configuration()) val similarity = new PearsonCorrelationSimilarity(dataModel) val recommender = new GenericUserBasedRecommender(dataModel, neighborhood, similarity) val recommendations = dstream.map { (user, ratings) => val userVector = new RandomAccessSparseVector(ratings.size()) for ((itemId, rating) <- ratings) { userVector.setField(itemId.toInt, rating.toDouble) } val recommendation = recommender.recommend(user, userVector) (user, recommendation.map { (itemId, score) => (itemId, score) }) } - 结果输出:最后,我们可以将生成的推荐结果输出到合适的目标位置,如日志文件或数据库,以便后续分析和应用。 scala recommendations.foreachRDD { rdd => rdd.saveAsTextFile("/path/to/output") } 5. 总结与展望 通过将Mahout与Spark Streaming集成,我们能够构建一个强大的实时流数据分析平台,不仅能够实时处理大量数据,还能利用Mahout的高级机器学习功能进行深入分析。哎呀,这个融合啊,就像是给数据分析插上了翅膀,能即刻飞到你眼前,又准确得不得了!这样一来,咱们做决定的时候,心里那根弦就更紧了,因为有它在身后撑腰,决策那可是又稳又准,妥妥的!哎呀,随着科技车轮滚滚向前,咱们的Mahout和Spark Streaming这对好搭档,未来肯定会越来越默契,联手为我们做决策时,用上实时数据这个大宝贝,提供更牛逼哄哄的武器和方法!想象一下,就像你用一把锋利的剑,能更快更准地砍下胜利的果实,这俩家伙在数据战场上,就是那把超级厉害的宝剑,让你的决策快人一步,精准无比! --- 以上内容是基于实际的编程实践和理论知识的融合,旨在提供一个从概念到实现的全面指南。哎呀,当真要将这个系统或者项目实际铺展开来的时候,咱们得根据手头的实际情况,比如数据的个性、业务的流程和咱们的技术底子,来灵活地调整策略,让一切都能无缝对接,发挥出最大的效用。就像是做菜,得看食材的新鲜度,再搭配合适的调料,才能做出让人满意的美味佳肴一样。所以,别死板地照搬方案,得因地制宜,因材施教,这样才能确保我们的工作既高效又有效。
2024-09-06 16:26:39
59
月影清风
ZooKeeper
...各种事务。不过呢,在使用过程中,我们可能会遇到一些问题,比如CommitQueueFullException。哎呀,乍一听这事儿还挺唬人是吧?但其实呢,它就是在说ZooKeeper的那个内部消息队列已经爆满了,忙不过来了,所以没法再接着处理新的请求啦! 作为一个开发者,我第一次看到这个错误的时候,心里是有点慌的:“完蛋啦,是不是我的代码有问题?”但后来我慢慢发现,其实它并不是那么可怕,只要我们理解了它的原理,并且知道怎么应对,就能轻松解决这个问题。 那么,CommitQueueFullException到底是怎么回事呢?简单来说,ZooKeeper内部有一个请求队列,用来存储客户端发来的各种操作请求(比如创建节点、删除节点等)。嘿嘿,想象一下,这就好比一个超挤的电梯,已经装满了人,再有人想挤进去肯定会被拒之门外啦!ZooKeeper也一样,当它的小“队伍”排满了的时候,新来的请求就别想加塞儿了,直接就被它无情地“拒绝”了,然后还甩给你一个“异常”的小牌子,意思是说:“兄弟,这儿真的装不下了!”这种情况通常发生在高并发场景下,或者是网络延迟导致请求堆积。 为了更好地理解这个问题,我们可以看看下面这段代码: java import org.apache.zookeeper.ZooKeeper; import org.apache.zookeeper.CreateMode; public class ZookeeperExample { public static void main(String[] args) throws Exception { // 创建ZooKeeper实例 ZooKeeper zk = new ZooKeeper("localhost:2181", 5000, event -> { System.out.println("ZooKeeper event: " + event); }); // 创建一个节点 String nodePath = zk.create("/testNode", "data".getBytes(), ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT); System.out.println("Node created at path: " + nodePath); // 关闭连接 zk.close(); } } 在这个简单的例子中,我们尝试创建一个ZooKeeper实例并创建一个节点。如果这个时候ZooKeeper的队列满了,就会抛出CommitQueueFullException。所以,接下来我们要做的就是想办法避免这种情况的发生。 --- 二、为什么会出现CommitQueueFullException? 在深入讨论解决方案之前,我觉得有必要先搞清楚为什么会发生这种异常。其实,这背后涉及到了ZooKeeper的一些设计细节。 首先,ZooKeeper的队列大小是由配置文件中的zookeeper.commitlog.capacity参数决定的。默认情况下,这个值是比较小的,可能只有几兆字节。想象一下,你的应用像一个忙碌的快递站,接到了无数订单(也就是那些请求)。但要是快递小哥忙得顾不上送货,订单就会越堆越多,很快整个站点就塞满了,连下一份订单都没地方放了! 其次,网络环境也是一个重要因素。有时候,客户端和服务端之间的网络延迟会导致请求堆积。就算客户端那边请求没那么频繁,但要是服务端反应慢了,照样会出问题啊。 最后,还有一个容易被忽视的原因就是客户端的连接数过多。每个连接都会占用一定的资源,包括内存和CPU。要是连上的用户太多了,但服务器的“体力”又不够强(比如内存、CPU之类的资源有限),那它就很容易“忙不过来”,导致请求都排着队等着,根本处理不完。 说到这里,我忍不住想吐槽一下自己曾经犯过的错误。嘿,有次我在测试环境里弄了个能扛大流量的程序,结果发现ZooKeeper老是蹦出个叫“CommitQueueFullException”的错误,烦得不行!我当时就纳闷了:“我明明设了个挺合理的线程池大小啊,怎么还出问题了呢?”后来一查才发现,坏事了,是客户端的连接数配少了,结果请求都堵在那儿了,就像高速公路堵车一样。真是教训深刻啊! --- 三、如何优雅地处理CommitQueueFullException? 既然知道了问题的根源,那接下来就要谈谈具体的解决办法了。我觉得可以从以下几个方面入手: 1. 调整队列大小 最直接的办法当然是增大队列的容量。通过修改zookeeper.commitlog.capacity参数,可以让ZooKeeper拥有更大的缓冲空间。其实嘛,这个方法也不是啥灵丹妙药,毕竟咱们手头的硬件资源就那么多,要是傻乎乎地把队列弄得太长,说不定反而会惹出别的麻烦,比如让系统跑得更卡之类的。 代码示例: properties zookeeper.commitlog.capacity=10485760 上面这段配置文件的内容表示将队列大小调整为10MB。你可以根据实际情况进行调整。 2. 优化客户端逻辑 很多时候,CommitQueueFullException并不是因为服务器的问题,而是客户端的请求模式不合理造成的。比如说,你是否可以合并多个小请求为一个大请求?或者是否可以采用批量操作的方式减少请求次数? 举个例子,假设你在做一个日志采集系统,每天需要向ZooKeeper写入成千上万个临时节点。与其每次都往一个节点里写东西,不如一口气往多个节点里写,这样能大大减少你发出的请求次数,省事儿又高效! 代码示例: java List nodesToCreate = Arrays.asList("/node1", "/node2", "/node3"); List createdNodes = zk.create("/batch/", new byte[0], ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL_SEQUENTIAL, nodesToCreate.size()); System.out.println("Created nodes: " + createdNodes); 在这段代码中,我们一次性创建了三个临时节点,而不是分别调用三次create()方法。这样的做法不仅减少了请求次数,还提高了效率。 3. 增加服务器资源 如果以上两种方法都不能解决问题,那么可能就需要考虑升级服务器硬件了。比如增加内存、提升CPU性能,甚至更换更快的磁盘。当然,这通常是最后的选择,因为它涉及到成本和技术难度。 4. 使用异步API ZooKeeper提供了同步和异步两种API,其中异步API可以在一定程度上缓解CommitQueueFullException的问题。异步API可酷了!你提交个请求,它立马给你返回结果,根本不用傻等那个响应回来。这样一来啊,就相当于给任务队列放了个假,压力小了很多呢! 代码示例: java import org.apache.zookeeper.AsyncCallback.StringCallback; public class AsyncExample implements StringCallback { @Override public void processResult(int rc, String path, Object ctx, String name) { if (rc == 0) { System.out.println("Node created successfully at path: " + name); } else { System.err.println("Failed to create node with error code: " + rc); } } public static void main(String[] args) throws Exception { ZooKeeper zk = new ZooKeeper("localhost:2181", 5000, null); zk.createAsync("/asyncTest", "data".getBytes(), ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT, new AsyncExample(), null); } } 在这段代码中,我们使用了createAsync()方法来异步创建节点。相比于同步版本,这种方式不会阻塞主线程,从而降低了队列满的风险。 --- 四、总结与展望 通过今天的探讨,我相信大家都对CommitQueueFullException有了更深刻的理解。嘿,别被这个错误吓到!其实啊,它也没那么可怕。只要你找到对的方法,保证分分钟搞定,就跟玩儿似的! 回顾整个过程,我觉得最重要的是要保持冷静和耐心。遇到技术难题的时候啊,别慌!先搞清楚它到底是个啥问题,就像剥洋葱一样,一层层搞明白本质。接着呢,就一步一步地去找解决的办法,慢慢来,总能找到出路的!就像攀登一座高山一样,每一步都需要脚踏实地。 最后,我想鼓励大家多动手实践。理论固然重要,但真正的成长来自于不断的尝试和失败。希望大家能够在实际项目中运用今天学到的知识,创造出更加优秀的应用! 好了,今天的分享就到这里啦!如果你还有什么疑问或者想法,欢迎随时交流哦~
2025-03-16 15:37:44
10
林中小径
Redis
...k_key): 使用Lua脚本来保证解锁的安全性 script = """ if redis.call("get", KEYS[1]) == ARGV[1] then return redis.call("del", KEYS[1]) else return 0 end """ redis_client.eval(script, keys=[lock_key], args=["locked"]) 这段代码展示了最基础的分布式锁实现方式。我们用set命令设置了两个参数:一个是NX,意思是“只在key不存在的时候才创建”,这样就能避免重复创建;另一个是EX,给这个锁加了个过期时间,相当于设了个倒计时,万一客户端挂了或者出问题了,锁也能自动释放,就不会一直卡在那里变成死锁啦。最后,解锁的时候我们用了Lua脚本,这样可以保证操作的原子性。 --- 4. 如何解决锁的隔离性问题? 诶,说到这里,问题来了——如果两个不同的业务逻辑都需要用到同一个锁怎么办?比如订单系统和积分系统都想操作同一个用户的数据,这时候就需要考虑锁的隔离性了。换句话说,我们需要确保不同业务逻辑之间的锁不会互相干扰。 示例代码 2:基于命名空间的隔离策略 python def acquire_namespace_lock(redis_client, namespace, lock_name, timeout=10): 构造带命名空间的锁名称 lock_key = f"{namespace}:{lock_name}" result = redis_client.set(lock_key, "locked", nx=True, ex=timeout) return bool(result) def release_namespace_lock(redis_client, namespace, lock_name): lock_key = f"{namespace}:{lock_name}" script = """ if redis.call("get", KEYS[1]) == ARGV[1] then return redis.call("del", KEYS[1]) else return 0 end """ redis_client.eval(script, keys=[lock_key], args=["locked"]) 在这个版本中,我们在锁的名字前面加上了命名空间前缀,比如orders:place_order和points:update_score。这样一来,不同业务逻辑就可以使用独立的锁,避免相互影响。 --- 5. 进阶 如何处理锁竞争与性能优化? 当然啦,现实中的分布式锁并不会总是那么顺利,有时候会出现大量请求同时争抢同一个锁的情况。这时我们可能需要引入队列机制或者批量处理的方式来降低系统的压力。 示例代码 3:使用Redis的List模拟队列 python def enqueue_request(redis_client, queue_key, request_data): redis_client.rpush(queue_key, request_data) def dequeue_request(redis_client, queue_key): return redis_client.lpop(queue_key) def process_queue(redis_client, lock_key, queue_key): while True: 先尝试获取锁 if not acquire_lock(redis_client, lock_key): time.sleep(0.1) 等待一段时间再重试 continue 获取队列中的第一个请求并处理 request = dequeue_request(redis_client, queue_key) if request: handle_request(request) 释放锁 release_lock(redis_client, lock_key) 这段代码展示了如何利用Redis的List结构来管理请求队列。想象一下,好多用户一起抢同一个东西,场面肯定乱哄哄的对吧?这时候,咱们就让他们老老实实排成一队,然后派一个专门的小哥挨个儿去处理他们的请求。这样一来,大家就不会互相“打架”了,事情也能更顺利地办妥。 --- 6. 总结与反思 兄弟们,通过今天的讨论,我相信大家都对如何在Redis中实现分布式锁有了更深刻的理解了吧?虽然Redis本身已经足够强大,但我们仍然需要根据实际需求对其进行适当的扩展和优化。比如刚才提到的命名空间隔离、队列机制等,这些都是非常实用的小技巧。 不过呢,我也希望大家能记住一点——技术永远不是一成不变的。业务越做越大,技术也日新月异的,咱们得不停地充电,学点新鲜玩意儿,试试新招数才行啊!就像今天的分布式锁一样,也许明天就会有更高效、更优雅的解决方案出现。所以,保持好奇心,勇于探索未知领域,这才是程序员最大的乐趣所在! 好了,今天就聊到这里啦,祝大家在编程的路上越走越远!如果有任何疑问或者想法,欢迎随时找我交流哦~
2025-04-22 16:00:29
58
寂静森林
ElasticSearch
...通过以下命令检查磁盘使用情况: bash df -h 看到磁盘空间变大了,心里顿时舒坦了不少。 --- 4. 解决方案二 调整ElasticSearch配置 当然啦,仅仅扩容还不够,还需要优化ElasticSearch的配置文件。特别是那些容易导致内存不足或磁盘占用过高的参数,比如indices.memory.index_buffer_size和indices.store.throttle.max_bytes_per_sec。修改后的配置文件大概长这样: yaml cluster.routing.allocation.disk.threshold_enabled: true cluster.routing.allocation.disk.watermark.low: 85% cluster.routing.allocation.disk.watermark.high: 90% cluster.routing.allocation.disk.watermark.flood_stage: 95% cluster.info.update.interval: 30s 这些设置的意思是告诉ElasticSearch,当磁盘使用率达到85%时开始警告,达到90%时限制写入,超过95%时完全停止操作。这样可以有效避免再次出现类似的问题。 --- 5. 实战演练 代码中的应对策略 除了调整配置,我们还可以通过编写脚本来监控和处理NodeNotActiveException。比如,下面这段Java代码展示了如何捕获异常并记录日志: java import org.elasticsearch.client.RestHighLevelClient; import org.elasticsearch.client.RestClient; import org.elasticsearch.client.indices.CreateIndexRequest; import org.elasticsearch.client.indices.CreateIndexResponse; public class ElasticSearchExample { public static void main(String[] args) { RestHighLevelClient client = new RestHighLevelClient(RestClient.builder(new HttpHost("localhost", 9200, "http"))); try { CreateIndexRequest request = new CreateIndexRequest("test_index"); CreateIndexResponse response = client.indices().create(request, RequestOptions.DEFAULT); System.out.println("Index created: " + response.isAcknowledged()); } catch (Exception e) { if (e instanceof ClusterBlockException) { System.err.println("Cluster block detected: " + e.getMessage()); } else { System.err.println("Unexpected error: " + e.getMessage()); } } finally { try { client.close(); } catch (IOException ex) { System.err.println("Failed to close client: " + ex.getMessage()); } } } } 这段代码的作用是在创建索引时捕获可能发生的异常,并根据异常类型采取不同的处理方式。如果遇到ClusterBlockException,我们可以选择延迟重试或者其他补偿措施。 --- 6. 总结与反思 成长路上的一课 通过这次经历,我深刻体会到,作为一名开发者,不仅要掌握技术细节,还要学会从实际问题出发,找到最优解。NodeNotActiveException这个错误看着不起眼,但其实背后有不少门道呢!比如说,你的服务器硬件是不是有点吃不消了?集群那边有没有啥小毛病没及时发现?还有啊,咱们平时运维的时候是不是也有点松懈了?这些都是得好好琢磨的地方! 最后,我想说的是,技术学习的过程就像爬山一样,有时候会遇到陡峭的山坡,但只要坚持下去,总能看到美丽的风景。希望这篇文章能给大家带来一些启发和帮助!如果还有其他疑问,欢迎随时交流哦~
2025-03-14 15:40:13
64
林中小径
转载文章
...的出台,对网络爬虫的使用提出了更为严格的规范要求。例如,在未经用户授权的情况下,爬取并存储他人网站图片可能涉及侵犯版权及个人信息问题。因此,在实际操作中,除了掌握技术手段外,还需遵循相关法规,如robots.txt协议,并尊重网站的版权声明和服务条款。 同时,为了应对日益复杂的动态加载内容和反爬机制,开发者需要不断更新技术和策略,比如利用Selenium等工具模拟用户行为动态渲染页面,或者研究新的网络请求伪装方法以绕过反爬策略。此外,对于海量数据的高效爬取与存储,分布式爬虫框架(如Scrapy)以及云存储解决方案(如阿里云OSS、AWS S3)的应用也成为现代爬虫工程的重要组成部分。 总而言之,在探索网络爬虫技术深度的同时,务必关注行业动态,紧跟法规政策走向,并在实践中不断提升道德和技术双重素养,确保网络爬虫项目的合规、高效运行。
2023-06-12 10:26:04
130
转载
转载文章
...法求线性方程组的解 使用(VAE)生成建模,理解可变自动编码器背后的数学原理 视觉SLAM入门 -- 学习笔记 - Part2 带你入门nodejs第一天——node基础语法及使用 python3数据结构_Python3-数据结构 debezium-connect-oracle使用 相关数值分析多种算法代码 android iphone treeview,Android之IphoneTreeView带组指示器的ExpandableListView效果 nginx rewrite功能使用 3-3 OneHot编码 JavaWeb:shiro入门小案例 MySQL的定义、操作、控制、查询语言的用法 MongoDB入门学习(三):MongoDB的增删查改 赋值、浅复制和深复制解析 以及get/set应用 他是吴恩达导师,被马云聘为「达摩院」首座 Jordan 标准型定理 列主元的Gauss-Jordan消元法-python实现 Jordan 块的几何 若尔当型(The Jordan form) 第七章 其他神经网络类型 解决迁移系统后无法配置启用WindowsRE环境的问题 宝塔面板迁移系统盘/www到数据盘/home 使用vmware vconverter从物理机迁移系统到虚拟机P2V 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_62695120/article/details/124510157。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-08 20:01:49
68
转载
转载文章
...对于list和map使用CollectionUtils.isEmpty()判空(null和size=0) 对于对象使用ObjectUtils.isEmpty()判定,可以尝试使用Optional.ofNullable() 对于数组使用ArrayUtils.isEmpty()判空(null和length=0) 对于字符串使用 StringUtils.isBlank()判空(null和空字符串) 工具类 使用hutool可以方便的进行文件类型的判断、唯一id(uuid,Snowflake)的生成、数据加密解密、二维码生成、图片加水印、BASE64编码解码、图片验证码等操作 集合 使用Arrays.asList()返回的list为数组的内部list,只允许遍历不允许增删,可以使用Stream流转换为list Collection和map对于仅遍历可以使用增强for循环和,但如果有删除为避免错误必须使用迭代器 foreach遍历不允许改变变量的地址,java的参数是值传递,修改了形参的地址并不影响原来的参数,故即使你修改了值也不会同步到原变量中,故操作的变量都显式或者隐式的定义为final JSON fastjson parseArray(String text, Class<T> clazz) 解析List parseObject(String text, Class<T> clazz) 解析Object JSON对于null、空白字符串、“null”会返回nullif (text == null) {return null;} else {DefaultJSONParser parser = new DefaultJSONParser(text, ParserConfig.getGlobalInstance());JSONLexer lexer = parser.lexer;int token = lexer.token();ArrayList list;if (token == 8) {lexer.nextToken(); // nextToken() => ...if ("null".equalsIgnoreCase(ident)) this.token = 8;list = null;} } String toJSONString(Object object) 将对象转为String toJSONBytes(Object object, SerializerFeature... features) 将对象转为byte[] @JSONField() 可以忽略字段serialize ,别名映射name,日期格式化format等 jackson @JsonFormat(pattern = "yyyy-MM-dd HH:mm:ss") 设置Date到前台的格式 @JsonIgnore SpringMVC不会向前台传递该字段 ObjectMapper mapper = new ObjectMapper();String str = mapper.writeValueAsString(admin); // 对象转JSON字符串mapper.readValue(s,Admin.class ); // JSON字符串转对象 EasyExcel 官方API https://www.yuque.com/easyexcel/doc 使用类注解@ExcelIgnoreUnannotated配合@ExcelProperty操作 @ExcelProperty可以指定表头列名,列顺序和表头的合并 @ColumnWidth(10)可以指定列宽,其长度约为(中文length3+英文length1) @DateTimeFormat(value="yyyy-MM-dd HH:mm:ss")可以指定日期格式 自定义策略实现SheetWriteHandler工作表回调接口,在afterSheetCreate()工作表创建之后方法可以 设置列宽 自定义表头 新建单元格 自定义策略实现RowWriteHandler行回调接口,在afterRowDispose()行操作完之后方法可以 设置行高 设置行样式 自定义策略实现CustomerCellHandler单元格回调接口,在afterCellDispose()单元格操作完之后方法可以 根据行号,列宽甚至是单元格的值来设置单元格样式 可以对单元格的值获取和修改 样式通常包括内容格式、批注、背景色、自动换行、平和垂直居中、边框大小和颜色、字体实例(格式,颜色,大小,加粗等)等 自定义策略继承AbstractMergeStrategy单元格合并抽象类,在merge()方法中可以通过CellRangeAddress合并单元格 过于复杂的表格可以使用模板,配合写出write和填充fill一起使用 Mybatis 在mapper方法的@select中也是可以直接书写动态SQL的,但要使用<script></script>包裹,这样就不用在java文件和xml文件切换了,将@select中包裹的代码直接放到浏览器的控制台输出后会自动转义\n,\t,+,"等 动态sql中“<” 和 “>” 号要用转义字符 “<” 和 ”>“ (分号要带) 动态sql中test中表达式通常使用 test=“id != null and id != ‘’”,要注意的是字符串不能直接识别单引号,有两种方法使用id==“1001"或者id==‘1001’.toString(),另外参数如果是boolean,可以直接使用test=”!flag",如果判定集合的话可以使用 test=“list != null and list.size>0” 返回数据类型为Map只能接收一条记录,字段为键名,字段值为值,但通常是用实体类接收,或是使用注解@MapKey来进行每条记录的映射,效果等同于List用Stream流转Map foreach遍历list collection=“list” item=“vo” separator="," open="(" close=")"> {vo.id} foreach遍历map collection=“map” index=“key” item=“value”,{key}获取建,{value}获取值,$亦可 collection=“map.entrySet()” index=“key” item=“value”,同上 collection=“map.keys” item=“key”,{key}为键 不要使用where 1=1,使用动态where拼接,会自动剔除where后多余的and和or 单个参数时无论基本和引用并且未使用在动态SQL可以不加参数注解@Param,但一旦参数大于一个或者参数在动态SQL中使用就必须加@Param 并不是直接把参数加引号,而是变成?的形式交给prepareStatement处理,$直接使用值,当ORDER BY诸如此类不需要加引号的参数时,使用$代替,但为避免sql注入,该参数不能交由用户控制 Plus 官方API https://baomidou.com/guide/ @TableName 表名 @TableField(strategy = FieldStrategy.IGNORED) 更新不会忽略NULL值 @TableField(exist = false)表明该字段非数据字段,否则新增更新会报错 MybatisPlus对于单表的操作还是非常优秀的,在对单表进行新增或者更新的时候经常使用,但对于单表的查询业务上很少出现仅仅查询一张表的情况,但也会有,如果条件不大于3个还是可以使用的,多了倒没有直接写SQL来的方便了 MybatisPlus的批量插入也是通过for循环插入的,还是建议使用Mybatis的动态foreach进行批量插入 MybatisPlus的分页器会对方法中的参数判断,如果存在分页对象就先查询总数看是否大于0,然后拼接当前的数据库limit语句,所以如果我们分页对象为null,就可以实现不分页查询 Object paramObj = boundSql.getParameterObject();IPage page = null;if (paramObj instanceof IPage) { ……public static String getOriginalCountSql(String originalSql) {return String.format("SELECT COUNT(1) FROM ( %s ) TOTAL", originalSql);} ……originalSql = DialectFactory.buildPaginationSql(page, buildSql, dbType, this.dialectClazz); ……public String buildPaginationSql(String originalSql, long offset, long limit) {StringBuilder sql = new StringBuilder(originalSql);sql.append(" LIMIT ").append(offset).append(",").append(limit);return sql.toString();} IDEA 插件 Lombok : 快速生成getter、setter等 Alibaba Java Coding Guidelines :阿里规约扫描 Rainbow Brackets :彩色括号 HighlightBracketPair :高亮提示 MyBatisX :mabatisPlus提供的xml和mapper转换的插件,小鸟图标 CamelCase :大小写、驼峰、下划线、中划线转换插件 使用shift+Alt+u进行转换(很方便) 可以在Editor中设置CamelCase的转换,一般只保留下划线和驼峰两种 String Manipulation :字符串工具(未使用) RestfulToolkit http :Restful请求工具 打开idea,在右侧边栏会有一个标签(RestServices),打开可以看到里面是url路径 ctrl+\或者ctrl+alt+n会检索路径 Ctrl + Enter格式化json 没有记忆功能,也不能加token,只是查找请求路径使用 easycode :代码生成工具(个人觉得很好用,常用于生成实体类) 支持自定义模板 支持添加自定义列,不影响数据库 支持多表同时生成 支持自定义类型映射 支持配置导入导出 支持动态调试 支持自定义属性 Power Mode 11 :打字特效(纯属装逼) Nyan Progress Bar :漂亮的进度条(纯属装逼) Other Vo:数据持久化模型 Query:数据查询模型 Dto:数据传输模型 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_40910781/article/details/111416185。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-05-26 23:30:52
268
转载
转载文章
...t技术,如果支持,就使用检测到的技术。 那么这个库到哪里下载,怎么搭建呢,比较懒的童鞋还是用Install-Package Plupload搞定吧,一个命令搞定所有事 Plupload支持的功能这里就不细说了,什么批量上传,这里我没有用到,主要是感觉它支持的事件非常丰富,文件选取后的事件,文件上传中的事件(可获得文件的上传进度),文件上传成功的事件,文件上传失败的事件,等等 我的例子主要是上传一个单个文件,并显示上传的进度条(使用jQuery的一个进度条插件) 下面的例子主要是为文件上传交给 UploadCoursePackage.ashx 来处理 /ProgressBar/ var progressBar = $("loading").progressbar({ width: '500px', color: 'B3240E', border: '1px solid 000000' }); /Plupload/ //实例化一个plupload上传对象 var uploader = new plupload.Uploader({ browse_button: 'browse', //触发文件选择对话框的按钮,为那个元素id runtimes: 'html5,flash,silverlight,html4',//兼容的上传方式 url: "Handlers/UploadCoursePackage.ashx", //后端交互处理地址 max_retries: 3, //允许重试次数 chunk_size: '10mb', //分块大小 rename: true, //重命名 dragdrop: false, //允许拖拽文件进行上传 unique_names: true, //文件名称唯一性 filters: { //过滤器 max_file_size: '999999999mb', //文件最大尺寸 mime_types: [ //允许上传的文件类型 { title: "Zip", extensions: "zip" }, { title: "PE", extensions: "pe" } ] }, //自定义参数 (键值对形式) 此处可以定义参数 multipart_params: { type: "misoft" }, // FLASH的配置 flash_swf_url: "../Scripts/plupload/Moxie.swf", // Silverligh的配置 silverlight_xap_url: "../Scripts/plupload/Moxie.xap", multi_selection: false //true:ctrl多文件上传, false 单文件上传 }); //在实例对象上调用init()方法进行初始化 uploader.init(); uploader.bind('FilesAdded', function (uploader, files) { $("<%=fileSource.ClientID %>").val(files[0].name); $.ajax( { type: 'post', url: 'HardDiskSpace.aspx/GetHardDiskFreeSpace', data: {}, dataType: 'json', contentType: 'application/json;charset=utf-8', success: function (result) { //选择文件以后检测服务器剩余磁盘空间是否够用 if (files.length > 0) { if (parseInt(files[0].size) > parseInt(result.d)) { $('error-msg').text("文件容量大于剩余磁盘空间,请联系管理员!"); } else { $('error-msg').text(""); } } }, error: function (xhr, err, obj) { $('error-msg').text("检测服务器剩余磁盘空间失败"); } }); }); uploader.bind('UploadProgress', function (uploader, file) { var percent = file.percent; progressBar.progress(percent); }); uploader.bind('FileUploaded', function (up, file, callBack) { var data = $.parseJSON(callBack.response); if (data.statusCode === "1") { $("<%=hfPackagePath.ClientID %>").val(data.filePath); var id = $("<%=hfCourseID.ClientID %>").val(); __doPostBack("save", id); } else { hideLoading(); $('error-msg').text(data.message); } }); uploader.bind('Error', function (up, err) { alert("文件上传失败,错误信息: " + err.message); }); /Plupload/ 后台 UploadCoursePackage.ashx 的代码也重要,主要是文件分片跟不分片的处理方式不一样 using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.IO; namespace WebUI.Handlers { /// <summary> /// UploadCoursePackage 的摘要说明 /// </summary> public class UploadCoursePackage : IHttpHandler { public void ProcessRequest(HttpContext context) { context.Response.ContentType = "text/plain"; int statuscode = 1; string message = string.Empty; string filepath = string.Empty; if (context.Request.Files.Count > 0) { try { string resourceDirectoryName = System.Configuration.ConfigurationManager.AppSettings["resourceDirectory"]; string path = context.Server.MapPath("~/" + resourceDirectoryName); if (!Directory.Exists(path)) Directory.CreateDirectory(path); int chunk = context.Request.Params["chunk"] != null ? int.Parse(context.Request.Params["chunk"]) : 0; //获取当前的块ID,如果不是分块上传的。chunk则为0 string fileName = context.Request.Params["name"]; //这里写的比较潦草。判断文件名是否为空。 string type = context.Request.Params["type"]; //在前面JS中不是定义了自定义参数multipart_params的值么。其中有个值是type:"misoft",此处就可以获取到这个值了。获取到的type="misoft"; string ext = Path.GetExtension(fileName); //fileName = string.Format("{0}{1}", Guid.NewGuid().ToString(), ext); filepath = resourceDirectoryName + "/" + fileName; fileName = Path.Combine(path, fileName); //对文件流进行存储 需要注意的是 files目录必须存在(此处可以做个判断) 根据上面的chunk来判断是块上传还是普通上传 上传方式不一样 ,导致的保存方式也会不一样 FileStream fs = new FileStream(fileName, chunk == 0 ? FileMode.OpenOrCreate : FileMode.Append); //write our input stream to a buffer Byte[] buffer = null; if (context.Request.ContentType == "application/octet-stream" && context.Request.ContentLength > 0) { buffer = new Byte[context.Request.InputStream.Length]; context.Request.InputStream.Read(buffer, 0, buffer.Length); } else if (context.Request.ContentType.Contains("multipart/form-data") && context.Request.Files.Count > 0 && context.Request.Files[0].ContentLength > 0) { buffer = new Byte[context.Request.Files[0].InputStream.Length]; context.Request.Files[0].InputStream.Read(buffer, 0, buffer.Length); } //write the buffer to a file. if (buffer != null) fs.Write(buffer, 0, buffer.Length); fs.Close(); statuscode = 1; message = "上传成功"; } catch (Exception ex) { statuscode = -1001; message = "保存时发生错误,请确保文件有效且格式正确"; Util.LogHelper logger = new Util.LogHelper(); string path = context.Server.MapPath("~/Logs"); logger.WriteLog(ex.Message, path); } } else { statuscode = -404; message = "上传失败,未接收到资源文件"; } string msg = "{\"statusCode\":\"" + statuscode + "\",\"message\":\"" + message + "\",\"filePath\":\"" + filepath + "\"}"; context.Response.Write(msg); } public bool IsReusable { get { return false; } } } } 再附送一个检测服务器端硬盘剩余空间的功能吧 using System; using System.Collections.Generic; using System.IO; using System.Linq; using System.Web; using System.Web.Script.Services; using System.Web.Services; using System.Web.UI; using System.Web.UI.WebControls; namespace WebUI { public partial class CheckHardDiskFreeSpace : System.Web.UI.Page { protected void Page_Load(object sender, EventArgs e) { } /// <summary> /// 获取磁盘剩余容量 /// </summary> /// <returns></returns> [WebMethod] public static string GetHardDiskFreeSpace() { const string strHardDiskName = @"F:\"; var freeSpace = string.Empty; var drives = DriveInfo.GetDrives(); var myDrive = (from drive in drives where drive.Name == strHardDiskName select drive).FirstOrDefault(); if (myDrive != null) { freeSpace = myDrive.TotalFreeSpace+""; } return freeSpace; } } } 效果展示: 详细配置信息可以参考这篇文章:http://blog.ncmem.com/wordpress/2019/08/12/plupload%e4%b8%8a%e4%bc%a0%e6%95%b4%e4%b8%aa%e6%96%87%e4%bb%b6%e5%a4%b9-2/ 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_45525177/article/details/100654639。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-19 09:43:46
127
转载
转载文章
...但是因为同一种能量包使用太多会带来副作用,因此同样的能量包不能同时使用超过两个,也就是说最多同时可以使用两个相同的能量包。 每种能量包都有一个重量值和能量值。由于这些能量包的特殊性,必须要完整地使用一个能量包才能够发挥功效,否则将失去对应的能量值。 考虑到竞赛的公平性,竞赛组委会规定每个人赛前补充的能量包的总重量不能超过W。 现在需要你编写一个程序计算出X星人能够拥有的最大能量值是多少? 输入 单组输入。 第1行包含两个正整数N和W,其中N<=10^ 3,W<=10^ 3。 第2行到第N+1行,每一行包含两个正整数,分别表示每一种能量包的重量和能量值,两个正整数之间用空格隔开。每一种能量包的重量和能量值都是小于等于100的正整数。 输出 输出X星人能够拥有的最大能量值。 背包 可以看成每个物品个数为2的多重背包,用多重背包的方法做;也可以看成总共有2n个物品,用一般背包的方法做 //方法1include <bits/stdc++.h>using namespace std;int c[1005],w[1005];//重量 能量int f[10005];int main(){int n,m;cin>>n>>m;for(int i=1;i<=n;i++)cin>>c[i]>>w[i];for(int i=1;i<=n;i++)for(int j=m;j>=c[i];--j){for(int k=1;k<=2&&kc[i]<=j;k++){f[j]=max(f[j],f[j-c[i]k]+w[i]k);} }cout<<f[m]<<endl;return 0;}//方法2include<bits/stdc++.h>using namespace std;const int N=1e3+5;int a[2N],b[2N],dp[N],n,m;int main(){cin>>n>>m;for(int i=1;i<=n;i++){cin>>a[i]>>b[i];a[i+n]=a[i],b[i+n]=b[i];}for(int i=1;i<=2n;i++){for(int j=m;j>=a[i];j--){dp[j]=max(dp[j],dp[j-a[i]]+b[i]);} }cout<<dp[m]<<'\n';return 0;} E: 最大素数 题目描述 输入一个数字字符串,从中删除若干个(包含0个)数字后可以得到一个素数,请编写一个程序求解删除部分数字之后能够得到的最大素数。 例如,输入“1234”,删除1和4,可以得到的最大素数为23。 输入 输入一个数字字符串,从中删除若干个(包含0个)数字后可以得到一个素数,请编写一个程序求解删除部分数字之后能够得到的最大素数。 例如,输入“1234”,删除1和4,可以得到的最大素数为23。 输出 输入一个数字字符串,从中删除若干个(包含0个)数字后可以得到一个素数,请编写一个程序求解删除部分数字之后能够得到的最大素数。 例如,输入“1234”,删除1和4,可以得到的最大素数为23。 搜索 这里用的bfs,优先搜索当前最大的数,如果这个数已经是素数那么就是答案 我说不清楚,参考代码吧 include <bits/stdc++.h>using namespace std;bool isprime(int n){//素数判断if(n<2)return 0;for(int i=2;i<=(int)sqrt(n);++i)if(n%i==0)return 0;return 1;}struct node {string s;int len;bool operator<(const node &q)const{if(len!=q.len)return len<q.len;return s<q.s;} };bool check(string str){int m=0;for(int i=0;i<str.size();i++){m=m10+str[i]-'0';}return isprime(m);}bool flag;map<string,bool>vis;string s;void bfs(){priority_queue<node>q;q.push({s,s.size()});while(!q.empty()){node k=q.top();q.pop();if(vis[k.s])continue;vis[k.s]=1;if(check(k.s)){cout<<k.s<<endl;flag=1;return ;}for(int i=0;i<k.s.size();i++){//去掉第i个字符string s1=k.s.substr(0,i)+k.s.substr(i+1);q.push({s1,s1.size()});} }}int main(){cin>>s;bfs();if(!flag)puts("No result.");return 0;} F: 最大计分 题目描述 小米和小花在玩一个删除数字的游戏。 游戏规则如下: 首先随机写下N个正整数,然后任选一个数字作为起始点,从起始点开始从左往右每次可以删除一个数字,但是必须满足下一个删除的数字要小于上一个删除的数字。每成功删除一个数字计1分。 请问对于给定的N个正整数,一局游戏过后可以得到的最大计分是多少? 输入 单组输入。 第1行输入一个正整数N表示数字的个数(N<=10^3)。 第2行输入N个正整数,两两之间用空格隔开。 输出 对于给定的N个正整数,一局游戏过后可以得到的最大计分值。 最长下降子序列 将数组逆转就等价于求最长上升子序列长度 include <bits/stdc++.h>using namespace std;int arr[1005];int main(){int n;cin>>n;for(int i=0;i<n;i++)cin>>arr[i];reverse(arr,arr+n);vector<int>stk;stk.push_back(arr[0]);for (int i = 1; i < n; ++i) {if (arr[i] > stk.back())stk.push_back(arr[i]);elselower_bound(stk.begin(), stk.end(), arr[i]) = arr[i];}cout << stk.size() << endl;return 0;} G: 密钥 题目描述 X星人又截获了Y星人的一段密文。 破解这段密文需要使用一个密钥,而这个密钥存在于一个正整数N中。 聪明的X星人终于找到了获取密钥的方法:这个正整数的最后一位是一个非零数K(K>=2),需要将正整数N切分成K个小的整数,并且要使得这K个较小整数的乘积达到最大。而所得到的最大乘积就是破解密文所需的密钥。 你能否帮X星人编写一段程序来得到密钥呢? 输入 X星人又截获了Y星人的一段密文。 破解这段密文需要使用一个密钥,而这个密钥存在于一个正整数N中。 聪明的X星人终于找到了获取密钥的方法:这个正整数的最后一位是一个非零数K(K>=2),需要将正整数N切分成K个小的整数,并且要使得这K个较小整数的乘积达到最大。而所得到的最大乘积就是破解密文所需的密钥。 你能否帮X星人编写一段程序来得到密钥呢? 输出 将N划分为K个整数后的最大乘积。 搜索 include <bits/stdc++.h>using namespace std;define ll long longll n;ll ans;void dfs(ll sum,ll m,int res){if(res==1){ans=max(ans,summ);return ;}int num=(int)log10(m)+1;//m的位数int k=10;for(int i=1;i<=num-res+1;i++){//保证剩余的数至少还有res-1位dfs(sum(m%k),m/k,res-1);k=10;}return ;}int main(){cin>>n;dfs(1ll,n,n%10);cout<<ans<<endl;return 0;} H: X星大学 题目描述 X星大学新校区终于建成啦! 新校区一共有N栋教学楼和办公楼。现在需要用光纤把这N栋连接起来,保证任意两栋楼之间都有一条有线网络通讯链路。 已知任意两栋楼之间的直线距离(单位:千米)。为了降低成本,要求两栋楼之间都用直线光纤连接。 光纤的单位成本C已知(单位:X星币/千米),请问最少需要多少X星币才能保证任意两栋楼之间都有光纤直接或者间接相连? 注意:如果1号楼和2号楼相连,2号楼和3号楼相连,则1号楼和3号楼间接相连。 输入 单组输入。 第1行输入两个正整数N和C,分别表示楼栋的数量和光纤的单位成本(单位:X星币/千米),N<=100,C<=100。两者之间用英文空格隔开。 接下来N(N-1)/2行,每行包含三个正整数,第1个正整数和第2个正整数表示楼栋的编号(从1开始一直到N),编号小的在前,编号大的在后,第3个正整数为两栋楼之间的直线距离(单位:千米)。 输出 输出最少需要多少X星币才能保证任意两栋楼之间都有光纤直接或者间接相连。 最小生成树模板题 //prim()最小生成树include <bits/stdc++.h>using namespace std;define ll long longdefine INF 0x3f3f3f3fint n,c;int dist[105];bool vis[105];int a[105][105];ll prim(int pos){memset(dist,INF,sizeof(dist));dist[pos]=0;ll sum=0;for(int i=1;i<=n;i++){int cur=-1;for(int j=1;j<=n;j++){if(!vis[j]&&(cur==-1||dist[j]<dist[cur]))cur=j;}if(dist[cur]>=INF)return INF;sum+=dist[cur];vis[cur]=1;for(int l=1;l<=n;l++)if(!vis[l])dist[l]=min(dist[l],a[cur][l]);}return sum;}int main() {scanf("%d%d",&n,&c);int x,y,z;memset(a,INF,sizeof(a));for(int i=1;i<=n;i++)a[i][i]=0;for(int i=1;i<=n(n-1)/2;i++){scanf("%d%d%d",&x,&y,&z);a[x][y]=min(a[x][y],z);a[y][x]=a[x][y];}printf("%lld\n",prim(1)c);return 0;}//Kruskal()最小生成树include<bits/stdc++.h>using namespace std;struct node {int x,y,z;}edge[10005];bool cmp(node a,node b) {return a.z < b.z;}int fa[105];int n,m,c;long long sum;int get(int x) {return x == fa[x] ? x : fa[x] = get(fa[x]);}int main() {scanf("%d%d",&n,&c);m=n(n-1)/2;for(int i = 1; i <= m; i ++) {scanf("%d%d%d",&edge[i].x,&edge[i].y,&edge[i].z);}for(int i = 0; i <= n; i ++) {fa[i] = i;}sort(edge + 1,edge + 1 + m,cmp);// 每次加入一条最短的边for(int i = 1; i <= m; i ++) {int x = get(edge[i].x);int y = get(edge[i].y);if(x == y) continue;fa[y] = x;sum += edge[i].z;}printf("%lld\n",sumc);return 0;} 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_52139055/article/details/123284091。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-01-20 16:20:26
468
转载
Ruby
错误地使用了并发编程 1. 并发编程的迷人陷阱 大家好!今天咱们聊聊Ruby中的并发编程,特别是那些让人头疼的错误用法。嘿,如果你在用Ruby搞开发的话,那肯定对并发编程挺熟悉的吧?这玩意儿就像是编程界的“多头怪兽”,能让程序同时干好多事儿,效率蹭蹭往上涨,简直太酷了!嘿,告诉你,这根魔法棒可不是那么完美无缺的,它其实也有个小缺点呢!只要你稍微一不小心,哎呀,就有可能一脚踩空,掉进坑里啦! 我曾经也经历过这样的噩梦:一个程序运行得很慢,我以为是硬件问题,结果发现是自己在并发编程上犯了错。嘿,今天咱们就来聊聊那些经常犯的小错吧!我呢,打算用一些接地气的例子,跟大家伙儿一起看看这些错误长啥样,顺便学学怎么躲开它们。毕竟谁也不想踩雷不是? --- 2. 什么是并发编程? 简单来说,并发编程就是让程序在同一时间执行多个任务。在Ruby中,我们可以用线程(Thread)来实现这一点。比如说啊,你正在倒腾一堆数据的时候,完全可以把它切成一小块一小块的,然后让每个线程去负责一块,这样一来,效率直接拉满,干活儿的速度蹭蹭往上涨! 但是,问题来了:并发编程虽然强大,但它并不是万能药。哎呀,经常会有这样的情况呢——自个儿辛辛苦苦改代码,还以为是在让程序变得更好,结果一不小心,又给它整出了新麻烦,真是“好心办坏事”的典型啊!接下来,我们来看几个具体的例子。 --- 3. 示例一 共享状态的混乱 场景描述: 假设你正在开发一个电商网站,需要统计用户的购买记录。你琢磨着干脆让多线程上阵,给这个任务提速,于是打算让每个线程各管一拨用户的活儿,分头行动效率肯定更高!看起来很合理对不对? 问题出现: 问题是,当你让多个线程共享同一个变量(比如一个全局计数器),事情就开始变得不可控了。Ruby 的线程可不是完全分开的,这就有点像几个人共用一个记事本,大家都能随便写东西上去。结果就是,这本子可能一会儿被这个写点,一会儿被那个划掉,最后你都不知道上面到底写了啥,数据就乱套了。 代码示例: ruby 错误的代码 counter = 0 threads = [] 5.times do |i| threads << Thread.new do 100_000.times { counter += 1 } end end threads.each(&:join) puts "Counter: {counter}" 分析: 这段代码看起来没什么问题,每个线程都只是简单地增加计数器。但实际情况却是,输出的结果经常不是期望的500_000,而是各种奇怪的数字。这就好比说,counter += 1 其实不是一步到位的简单操作,它得先“读一下当前的值”,再“给这个值加1”,最后再“把新的值存回去”。问题是,在这中间的每一个小动作,都可能被别的线程突然插队过来捣乱! 解决方案: 为了避免这种混乱,我们需要使用线程安全的操作,比如Mutex(互斥锁)。Mutex可以确保每次只有一个线程能够修改某个变量。 修正后的代码: ruby 正确的代码 require 'thread' counter = 0 mutex = Mutex.new threads = [] 5.times do |i| threads << Thread.new do 100_000.times do mutex.synchronize { counter += 1 } end end end threads.each(&:join) puts "Counter: {counter}" 总结: 这一段代码告诉我们,共享状态是一个雷区。如果你非要用共享变量,记得给它加上锁,不然后果不堪设想。 --- 4. 示例二 死锁的诅咒 场景描述: 有时候,我们会遇到更复杂的情况,比如两个线程互相等待对方释放资源。哎呀,这种情况就叫“死锁”,简直就像两只小猫抢一个玩具,谁都不肯让步,结果大家都卡在那里动弹不得,程序也就这样傻乎乎地停在原地,啥也干不了啦! 问题出现: 想象一下,你有两个线程,A线程需要获取锁X,B线程需要获取锁Y。想象一下,A和B两个人都想打开两把锁——A拿到了锁X,B拿到了锁Y。然后呢,A心想:“我得等B先把他的锁Y打开,我才能继续。”而B也在想:“等A先把她的锁X打开,我才能接着弄。”结果俩人就这么干等着,谁也不肯先放手,最后就成了“死锁”——就像两个人在拔河,谁都不松手,僵在那里啥也干不成。 代码示例: ruby 死锁的代码 lock_a = Mutex.new lock_b = Mutex.new thread_a = Thread.new do lock_a.synchronize do puts "Thread A acquired lock A" sleep(1) lock_b.synchronize do puts "Thread A acquired lock B" end end end thread_b = Thread.new do lock_b.synchronize do puts "Thread B acquired lock B" sleep(1) lock_a.synchronize do puts "Thread B acquired lock A" end end end thread_a.join thread_b.join 分析: 在这段代码中,两个线程都在尝试获取两个不同的锁,但由于它们的顺序不同,最终导致了死锁。运行这段代码时,你会发现程序卡住了,没有任何输出。 解决方案: 为了避免死锁,我们需要遵循“总是按照相同的顺序获取锁”的原则。比如,在上面的例子中,我们可以强制让所有线程都先获取锁A,再获取锁B。 修正后的代码: ruby 避免死锁的代码 lock_a = Mutex.new lock_b = Mutex.new thread_a = Thread.new do [lock_a, lock_b].each do |lock| lock.synchronize do puts "Thread A acquired lock {lock.object_id}" end end end thread_b = Thread.new do [lock_a, lock_b].each do |lock| lock.synchronize do puts "Thread B acquired lock {lock.object_id}" end end end thread_a.join thread_b.join 总结: 死锁就像一只隐形的手,随时可能掐住你的喉咙。记住,保持一致的锁顺序是关键! --- 5. 示例三 不恰当的线程池 场景描述: 线程池是一种管理线程的方式,它可以复用线程,减少频繁创建和销毁线程的开销。但在实际使用中,很多人会因为配置不当而导致性能下降甚至崩溃。 问题出现: 假设你创建了一个线程池,但线程池的大小设置得不合理。哎呀,这就好比做饭时锅不够大,菜都堆在那儿煮不熟,菜要是放太多呢,锅又会冒烟、潽得到处都是,最后饭也没做好。线程池也一样,太小了任务堆成山,程序半天没反应;太大了吧,电脑资源直接被榨干,啥事也干不成,还得收拾烂摊子! 代码示例: ruby 线程池的错误用法 require 'thread' pool = Concurrent::FixedThreadPool.new(2) 20.times do |i| pool.post do sleep(1) puts "Task {i} completed" end end pool.shutdown pool.wait_for_termination 分析: 在这个例子中,线程池的大小被设置为2,但有20个任务需要执行。哎呀,这就好比你请了个帮手,但他一次只能干两件事,其他事儿就得排队等着,得等前面那两件事儿干完了,才能轮到下一件呢!这种情况下,整个程序的执行时间会显著延长。 解决方案: 为了优化线程池的性能,我们需要根据系统的负载情况动态调整线程池的大小。可以使用Concurrent::CachedThreadPool,它会根据当前的任务数量自动调整线程的数量。 修正后的代码: ruby 使用缓存线程池 require 'concurrent' pool = Concurrent::CachedThreadPool.new 20.times do |i| pool.post do sleep(1) puts "Task {i} completed" end end sleep(10) 给线程池足够的时间完成任务 pool.shutdown pool.wait_for_termination 总结: 线程池就像一把双刃剑,用得好可以提升效率,用不好则会成为负担。记住,线程池的大小要根据实际情况灵活调整。 --- 6. 示例四 忽略异常的代价 场景描述: 并发编程的一个常见问题是,线程中的异常不容易被察觉。如果你没有妥善处理这些异常,程序可能会因为一个小错误而崩溃。 问题出现: 假设你有一个线程在执行某个操作时抛出了异常,但你没有捕获它,那么整个线程池可能会因此停止工作。 代码示例: ruby 忽略异常的代码 threads = [] 5.times do |i| threads << Thread.new do raise "Error in thread {i}" if i == 2 puts "Thread {i} completed" end end threads.each(&:join) 分析: 在这个例子中,当i == 2时,线程会抛出一个异常。哎呀糟糕!因为我们没抓住这个异常,程序直接就挂掉了,别的线程啥的也别想再跑了。 解决方案: 为了防止这种情况发生,我们应该在每个线程中添加异常捕获机制。比如,可以用begin-rescue-end结构来捕获异常并进行处理。 修正后的代码: ruby 捕获异常的代码 threads = [] 5.times do |i| threads << Thread.new do begin raise "Error in thread {i}" if i == 2 puts "Thread {i} completed" rescue => e puts "Thread {i} encountered an error: {e.message}" end end end threads.each(&:join) 总结: 异常就像隐藏在暗处的敌人,稍不注意就会让你措手不及。学会捕获和处理异常,是成为一个优秀的并发编程者的关键。 --- 7. 结语 好了,今天的分享就到这里啦!并发编程确实是一项强大的技能,但也需要谨慎对待。大家看看今天这个例子,是不是觉得有点隐患啊?希望能引起大家的注意,也学着怎么避开这些坑,别踩雷了! 最后,我想说的是,编程是一门艺术,也是一场冒险。每次遇到新挑战,我都觉得像打开一个神秘的盲盒,既兴奋又紧张。不过呢,光有好奇心还不够,还得有点儿耐心,就像种花一样,得一点点浇水施肥,不能急着看结果。相信只要我们不断学习、不断反思,就一定能写出更加优雅、高效的代码! 祝大家编码愉快!
2025-04-25 16:14:17
32
凌波微步
Spark
...来说,就是把一些频繁使用的数据放到内存里,供多个任务共享。听起来是不是很美好?但实际上,我在实际开发过程中遇到了不少麻烦。 比如有一次,我正在做一个数据分析项目,需要多次对同一份数据进行操作。我寻思着,这不就是常规操作嘛,直接用Spark的分布式缓存功能得了,这样岂不是能省掉好多重复加载的麻烦?嘿,事情是这样的——我辛辛苦苦搞完了任务,满怀期待地提交上去,结果发现这运行速度简直让人无语,不仅没达到预期的飞快效果,反而比啥缓存都不用的时候还慢!当时我就蒙圈了,心里直嘀咕:“卧槽,这是什么神仙操作?”没办法,只能硬着头皮一点点去查问题,最后才慢慢搞清楚了分布式缓存里到底藏着啥猫腻。 二、深入分析 为什么缓存反而变慢? 经过一番折腾,我发现问题出在以下几个方面: 2.1 数据量太大导致内存不足 首先,大家要明白一点,Spark的分布式缓存本质上是将数据存储在集群节点的内存中。要是数据量太大,超出了单个节点能装下的内存容量,那就会把多余的数据写到磁盘上,这个过程叫“磁盘溢写”。但这样一来,任务的速度就会被拖慢,变得特别磨叽。 举个例子吧,假设你有一份1GB大小的数据集,而你的集群节点只有512MB的可用内存。你要是想把这份数据缓存起来,Spark会自己挑个序列化的方式给数据“打包”,顺便还能压一压体积。不过呢,就算是这样,还是有可能会出现溢写这种烦人的情况,挡都挡不住。唉,真是没想到啊,本来想靠着缓存省事儿提速呢,结果这操作反倒因为磁盘老是读写(频繁I/O)变得更卡了,简直跟开反向加速器似的! 解决办法也很简单——要么增加节点的内存配置,要么减少需要缓存的数据规模。当然,这需要根据实际情况权衡利弊。 2.2 序列化方式的选择不当 另一个容易被忽视的问题是序列化方式的选择。Spark提供了多种序列化机制,包括JavaSerializer、KryoSerializer等。不同的序列化方式会影响数据的大小以及读取效率。 我曾经试过直接使用默认的JavaSerializer,结果发现性能非常差。后来改用了KryoSerializer之后,才明显感觉到速度有所提升。话说回来啊,用 KryoSerializer 的时候可别忘了先给所有要序列化的类都注册好,不然程序很可能就“翻车”报错啦! java import org.apache.spark.serializer.KryoRegistrator; import com.esotericsoftware.kryo.Kryo; public class MyRegistrator implements KryoRegistrator { @Override public void registerClasses(Kryo kryo) { kryo.register(MyClass.class); // 注册其他需要序列化的类... } } 然后在SparkConf中设置: java SparkConf conf = new SparkConf(); conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer"); conf.set("spark.kryo.registrator", "MyRegistrator"); 2.3 缓存时机的选择失误 还有一个关键点在于缓存的时机。有些人一启动任务就赶紧给数据加上.cache(),觉得这样数据就能一直乖乖待在内存里,不用再费劲去读了。但实际上,这种做法并不总是最优解。 比如,在某些情况下,数据可能只会在特定阶段被频繁访问,而在其他阶段则很少用到。要是你提前把这部分数据缓存了,不光白白占用了宝贵的内存空间,搞不好后面真要用缓存的地方还找不到足够的空位呢! 因此,合理规划缓存策略非常重要。比如说,在某个任务快开始了,你再随手调用一下.cache()这个方法,这样就能保证数据乖乖地待在内存里,别到时候卡壳啦! 三、实践案例 如何正确使用分布式缓存? 接下来,我想分享几个具体的案例,帮助大家更好地理解和运用分布式缓存。 案例1:简单的词频统计 假设我们有一个文本文件,里面包含了大量的英文单词。我们的目标是统计每个单词出现的次数。为了提高效率,我们可以先将文件内容缓存起来,然后再进行处理。 scala val textFile = sc.textFile("hdfs://path/to/input.txt") textFile.cache() val wordCounts = textFile.flatMap(_.split(" ")) .map(word => (word, 1)) .reduceByKey(_ + _) wordCounts.collect().foreach(println) 在这个例子中,.cache()方法确保了textFile RDD的内容只被加载一次,并且可以被后续的操作共享。其实嘛,要是没用缓存的话,每次你调用flatMap或者map的时候,都得重新去原始数据里翻一遍,这就跟每次出门都得把家里所有东西再检查一遍似的,纯属给自己找麻烦啊! 案例2:多步骤处理流程 有时候,一个任务可能会涉及到多个阶段的处理,比如过滤、映射、聚合等等。在这种情况下,合理安排缓存的位置尤为重要。 python from pyspark.sql import SparkSession spark = SparkSession.builder.appName("WordCount").getOrCreate() df = spark.read.text("hdfs://path/to/input.txt") 第一步:将文本拆分为单词 words = df.selectExpr("split(value, ' ') as words").select("words.") 第二步:缓存中间结果 words.cache() 第三步:统计每个单词的出现次数 word_counts = words.groupBy("value").count() word_counts.show() 这里,我们在第一步处理完之后立即调用了.cache()方法,目的是为了保留中间结果,方便后续步骤复用。要是不这么干啊,那每走一步都得把上一步的算一遍,想想就费劲,效率肯定低得让人抓狂。 四、总结与展望 通过今天的讨论,相信大家对Spark的分布式缓存有了更深刻的认识。虽然它能带来显著的性能提升,但也并非万能药。其实啊,要想把它用得溜、用得爽,就得先搞懂它是怎么工作的,再根据具体的情况去灵活调整。不然的话,它的那些本事可就都浪费啦! 未来,随着硬件条件的不断改善以及算法优化的持续推进,相信Spark会在更多领域展现出更加卓越的表现。嘿,咱们做开发的嘛,就得有颗永远好奇的心!就跟追剧似的,新技术一出就得赶紧瞅两眼,说不定哪天就用上了呢。别怕麻烦,多学点东西总没错,说不定哪天就能整出个大招儿来! 最后,感谢大家耐心阅读这篇文章。如果你有任何疑问或者想法,欢迎随时交流!让我们一起努力,共同进步吧!
2025-05-02 15:46:14
81
素颜如水
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
jobs
- 列出当前Shell会话中的后台作业及其状态。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"