前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[Mybatis 0版本配置与使用 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
JSON
...,咱们得把JSON的使用窍门玩得贼溜,可别浪费了它的那些个优点。把它用得风生水起,让它在咱们的项目里发光发热,发挥出最大的价值,这才是正经事!当我们面对网站数据导入这样的需求时,不妨试着借助JSON的力量,你会发现,数据的搬运原来可以如此轻松自如,充满了无限可能!
2023-10-11 22:09:42
754
林中小径
Tornado
...以在 React 中使用 WebSocket API 来连接这个 WebSocket 服务器并实现双向通信。 4. 集成挑战与解决方案 在实际项目中,集成 Tornado 和前端框架可能会遇到一些挑战。比如,如何处理跨域请求、如何管理复杂的路由系统等。下面是一些常见的问题及解决方案。 4.1 跨域请求 如果你的前端应用和后端服务不在同一个域名下,你可能会遇到跨域请求的问题。Tornado 提供了一个简单的装饰器来解决这个问题。 示例代码: python from tornado import web class MainHandler(tornado.web.RequestHandler): @web.asynchronous @web.gen.coroutine def get(self): self.set_header("Access-Control-Allow-Origin", "") self.set_header("Access-Control-Allow-Methods", "GET, POST, OPTIONS") self.set_header("Access-Control-Allow-Headers", "Content-Type") self.write("Hello, world!") 在这个例子中,我们设置了允许所有来源的跨域请求,并允许 GET 和 POST 方法。 4.2 路由管理 前端框架通常有自己的路由系统。为了更好地管理路由,我们可以在Tornado里用URLSpec类来设置一些更复杂的规则,这样路由管理起来就轻松多了。 示例代码: python import tornado.ioloop import tornado.web class MainHandler(tornado.web.RequestHandler): def get(self): self.write("Hello, world!") class UserHandler(tornado.web.RequestHandler): def get(self, user_id): self.write(f"User ID: {user_id}") def make_app(): return tornado.web.Application([ (r"/", MainHandler), (r"/users/(\d+)", UserHandler), ]) if __name__ == "__main__": app = make_app() app.listen(8888) tornado.ioloop.IOLoop.current().start() 在这个例子中,我们定义了两个路由:一个是根路径 /,另一个是 /users/。这样,我们就可以更灵活地管理 URL 路由了。 5. 结语 通过以上的讨论,我们可以看到,虽然 Tornado 和前端框架的集成有一些挑战,但通过一些技巧和最佳实践,我们可以轻松地解决这些问题。希望这篇文章能帮助你在开发过程中少走弯路,享受编程的乐趣! 最后,我想说,编程不仅仅是解决问题的过程,更是一种创造性的活动。每一次挑战都是一次成长的机会。希望你能在这个过程中找到乐趣,不断学习和进步!
2025-01-01 16:19:35
114
素颜如水
Tomcat
...攻击呢? 一种方法是使用HTTP-only cookie。当我们设置cookie时,我们可以指定是否允许JavaScript访问这个cookie。如果我们将此选项设为true,则JavaScript将不能读取这个cookie,从而避免了XSS攻击。例如: css Cookie = "name=value; HttpOnly" 另一种方法是在服务器端过滤所有的输入数据。这种方法可以确保用户输入的数据不会被恶意脚本篡改。比如,假如我们手头有个登录页面,那我们就能瞅瞅用户输入的用户名和密码对不对劲儿。要是发现不太对,咱就直接把这次请求给拒了,同时还得告诉他们哪里出了岔子,返回一个错误消息提醒一下。例如: php-template if (username != "admin" || password != "password") { return false; } 最后,我们还需要定期更新Tomcat和其他软件的安全补丁,以及使用最新的安全技术和工具,以提高我们的防御能力。另外,咱们还可以用上一些防火墙和入侵检测系统,就像给咱的网络装上电子眼和防护盾一样,实时留意着流量动态,一旦发现有啥不对劲的行为,就能立马出手拦截,确保安全无虞。 当然,除了上述方法外,还有很多其他的方法可以防止跨站脚本攻击(XSS),比如使用验证码、限制用户提交的内容类型等等。这些都是值得我们深入研究和实践的技术。 总的来说,防止访问网站时出现的安全性问题,如跨站脚本攻击(XSS)或SQL注入,是一项非常重要的任务。作为开发小哥/小姐姐,咱们得时刻瞪大眼睛,绷紧神经,不断提升咱的安全防护意识和技术能力。这样一来,才能保证我们的网站能够安安稳稳、健健康康地运行,不给任何安全隐患留空子钻。只有这样,我们才能赢得用户的信任和支持,实现我们的业务目标。"
2023-08-10 14:14:15
282
初心未变-t
转载文章
...<!-- 要想使用flex布局实现横向滚动,就要在scroll-view里加一层容器包裹,并且使用子组件才会出现滚动效果 --><view class="nav-bar-wrap"><block v-for="(item,index) in navbarArr" :key="index"><view class="nav-bar-item" @click="onNavbarItem(item.id)" :id="item.id"><image :src="item.pic_url" /><text>{ {item.name} }</text></view></block></view></scroll-view></view><view class="slider"><view class="slider-inside .slider-inside-location" :style="{left:lefts}"></view></view></view></template><script>export default {name: "scroll",data() {return {lefts:0} },props: {navbarArr: {type: Array},left: {type: Number} },created: function(e) {console.log(this.left,"leftinfo")},methods: {onNavbarItem(id) {console.log(id)// const id = options.currentTarget.dataset.id// wx.navigateTo({// url: /pages/mysignup/mysignup?id=${id},// })},scroll(event) {let that = thisconsole.log(event)let scrollLeft = event.detail.scrollLeft;let scrllWidth = event.detail.scrollWidth - 375;// that.left = ${(scrollLeft) / scrllWidth 100}%// this.$emit("changeLeft",that.lefts)// 32是剩余要滑动的地方let newLeft = scrollLeft / scrllWidth 32that.lefts =newLeft + 'rpx'} }}</script><style>.all {position: relative;height: 330rpx;overflow: hidden;background: fff;}scroll-view {white-space: nowrap;}/ 去除滚动条 /::-webkit-scrollbar {display: none;width: 0;height: 0;color: transparent;}.nav-bar-wrap {display: flex;flex-flow: column wrap;height: 330rpx;}.nav-bar-item {width: 187.5rpx;display: flex;flex-direction: column;align-items: center;padding-top: 28rpx;}.nav-bar-item image {display: block;height: 90rpx;width: 90rpx;margin: 0;}.nav-bar-item text {margin-top: 5rpx;line-height: 32rpx;font-size: 25rpx;}.slider {position: relative;margin-left: 50%;/ left: 50%; /transform: translateX(-50%);width: 64rpx;height: 6rpx;border-radius: 3rpx;background: eee;}.slider-inside {/ transform: translateX(-50%); /width: 32rpx;height: 100%;border-radius: 3rpx;background-color: 11BEA7;}.slider-inside-location {position: absolute;/ left: 50%; /}</style> 使用组件:<template><view><scroll :navbarArr="navbarArr" :left="left" @changeLeft="changeLeft"></scroll></view></template><script>import scroll from "../../components/scroll.vue"export default {components:{scroll},data() {return {navbarArr: [{pic_url: '../static/images/ic_57@2x.png',name: '骨科',id: 1},{pic_url: '../static/images/ic_59@2x.png',name: '检验科',id: 2},{pic_url: '../static/images/ic_56@2x.png',name: '外壳',id: 3},{pic_url: '../static/images/ic_53@2x.png',name: '口腔科',id: 4},{pic_url: '../static/images/ic_54@2x.png',name: '猫科',id: 5},{pic_url: '../static/images/ic_52@2x.png',name: '内科',id: 6},{pic_url: '../static/images/ic_50@2x.png',name: '皮肤科',id: 7},{pic_url: '../static/images/ic_52@2x.png',name: '肾病',id: 8},{pic_url: '../static/images/ic_58@2x.png',name: '血透科',id: 9},{pic_url: '../static/images/ic_62@2x.png',name: '肾病',id: 10},{pic_url: '../static/images/ic_64@2x.png',name: '血透科',id: 11},],left:0.65625} },methods: {changeLeft(e){let that = thisthat.left = e} },}</script> 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_45584157/article/details/117958700。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-05-06 12:38:02
624
转载
Impala
...个工具,特别是如何在使用过程中选择合适的数据类型以及如何通过这些选择来优化性能。说实话,最开始我也是一头雾水,不过后来我就像是找到了乐子,越玩越过瘾,感觉就像在玩解谜游戏一样。让我们一起走进这个神奇的世界吧! 2. 数据类型的重要性 2.1 为什么选择合适的数据类型很重要? 数据类型是数据库的灵魂。选对了数据类型,不仅能让你的查询结果更靠谱,还能让查询快得像闪电一样!想象一下,如果你选错了数据类型来处理海量数据,那可就麻烦大了。不仅白白占用了宝贵的存储空间,查询速度也会变得跟蜗牛爬似的。最惨的是,整个系统可能会慢得让你怀疑人生,就像乌龟在赛跑中领先一样夸张。 2.2 Impala支持的主要数据类型 在Impala中,我们有多种数据类型可以选择: - 整型:如TINYINT, SMALLINT, INT, BIGINT。 - 浮点型:如FLOAT, DOUBLE。 - 字符串:如STRING, VARCHAR, CHAR。 - 日期时间:如TIMESTAMP。 - 布尔型:BOOLEAN。 每种数据类型都有其适用场景,选择合适的类型就像是为你的数据穿上最合身的衣服。 3. 如何选择合适的数据类型 3.1 整型的选择 示例代码: sql CREATE TABLE numbers ( id TINYINT, value SMALLINT, count INT, total BIGINT ); 在这个例子中,id 可能只需要一个非常小的范围,所以 TINYINT 是一个不错的选择。而 value 和 count 则可以根据实际需求选择 SMALLINT 或 INT。要是你得对付那些超级大的数字,比如说计算网站的点击量,那 BIGINT 可就派上用场了。 3.2 浮点型的选择 示例代码: sql CREATE TABLE prices ( product_id INT, price FLOAT, discount_rate DOUBLE ); 在处理价格和折扣率这类数据时,FLOAT 足够满足大部分需求。不过,如果是要做金融计算这种得特别精确的事情,还是用 DOUBLE 类型吧,这样数据才靠谱。 3.3 字符串的选择 示例代码: sql CREATE TABLE users ( user_id INT, name STRING, email VARCHAR(255) ); 对于用户名称和电子邮件地址这种信息,我们可以使用 STRING 类型。如果知道字段的最大长度,推荐使用 VARCHAR,这样可以节省一些存储空间。 3.4 日期时间的选择 示例代码: sql CREATE TABLE orders ( order_id INT, order_date TIMESTAMP, delivery_date TIMESTAMP ); 在处理订单日期和交货日期这样的信息时,TIMESTAMP 类型是最直接的选择。这个不仅能存日期,还能带上具体的时间,特别适合用来做时间上的研究和分析。 3.5 布尔型的选择 示例代码: sql CREATE TABLE active_users ( user_id INT, is_active BOOLEAN ); 如果你有一个字段需要表示某种状态是否开启(如用户账户是否激活),那么 BOOLEAN 类型就是最佳选择。它只有两种取值:TRUE 和 FALSE,非常适合用来简化逻辑判断。 4. 性能优化技巧 4.1 减少数据冗余 尽量避免不必要的数据冗余。例如,在多个表中重复存储相同的字符串数据(如用户姓名)。可以考虑使用外键或者创建一个独立的字符串存储表来减少重复数据。 4.2 使用分区表 分区表可以帮助我们更好地管理和优化大型数据集。把数据按时间戳之类的东西分个区,查询起来会快很多,特别是当你 dealing with 时间序列数据的时候。 示例代码: sql CREATE TABLE sales ( year INT, month INT, day INT, amount DECIMAL(10,2) ) PARTITION BY (year, month); 在这个例子中,我们将 sales 表按年份和月份进行了分区,这样查询某个特定时间段的数据就会变得非常高效。 4.3 使用索引 合理利用索引可以大大提高查询速度。不过,在建索引的时候得好好想想,毕竟索引会吃掉一部分存储空间,而且在往里面添加或修改数据时,还得额外花工夫去维护。 示例代码: sql CREATE INDEX idx_user_email ON users(email); 通过在 email 字段上创建索引,我们可以快速查找特定邮箱的用户记录。 5. 结论 通过本文的学习,我们了解了如何在Impala中选择合适的数据类型以及如何通过这些选择来优化查询性能。希望这些知识能够帮助你在实际工作中做出更好的决策。记住啊,选数据类型和搞性能优化这事儿,就跟学骑自行车一样,得不停地练。别害怕摔跤,每次跌倒都是长经验的好机会!祝你在这个过程中找到乐趣,享受数据带来的无限可能!
2025-01-15 15:57:58
35
夜色朦胧
c++
...不匹配的问题,你可以使用C++提供的类型转换功能。最常见的是static_cast, dynamic_cast, reinterpret_cast, 和 const_cast。 示例二:使用类型转换 cpp include int main() { int a = 5; float b = 3.14; float result = static_cast(a) + b; // 首先将整型转换为浮点型 std::cout << "a + b = " << result << std::endl; return 0; } 通过static_cast(a),我们将整型a转换为浮点型,然后与b相加,避免了类型不匹配的错误。 4. 深入探讨 类型安全与兼容性 类型转换不仅解决了问题,还涉及到了程序的类型安全性和兼容性。哎呀,兄弟,用对了类型转换,你的代码就像变魔术一样灵活,能适应各种场合,可是一不小心用多了,就像在厨房里放太多调料,味道可能就怪怪的,还可能影响速度,甚至有时候你都发现不了问题出在哪。所以啊,用类型转换得有个度,不能太贪心,适量就好! 5. 实例三 类型转换与函数参数 考虑这样一个场景,你需要将不同的类型作为函数的参数传递,而这些类型之间可能存在转换的需求: cpp include template auto add(T a, U b) -> decltype(a + b) { return a + b; } int main() { int a = 5; float b = 3.14; auto result = add(a, b); std::cout << "a + b = " << result << std::endl; return 0; } 这里我们定义了一个模板函数add,它可以接受任意类型的参数,并且通过decltype确保了返回类型的一致性,即使输入类型不同。 6. 结论 从困惑到精通 通过以上的示例和讨论,我们可以看到类型不匹配在C++编程中的常见性和解决方法。哎呀,这事儿关键啊,就是得搞懂不同类型的转换规则,还有怎么在编程的时候机智地用上类型转换,这样子才能避免踩坑!就像是在玩变形金刚的游戏,知道怎么变形成不同的形态,才能在战斗中游刃有余,对吧?所以,这事儿可得仔细琢磨,别让小错误给你整得满头大汗的。随着实践的增多,你会逐渐习惯于处理这类问题,从而在编程过程中更加游刃有余。 编程是一门艺术,也是一门需要不断学习和实践的技能。哎呀,遇到C++这种语言的类型不匹配问题了?别急,咱得有点好奇心,敢想敢干才行!就像在探险一样,每次遇到难题都是新发现的机会。别怕动手尝试,多实践几次,你会发现,驾驭这门强大的语言其实挺有趣的。就像解开一个又一个谜题,每一次成功都让你成就感满满。别忘了,创作精彩代码,就跟做艺术品一样,需要点想象力和创意。加油,你肯定能做出让人眼前一亮的作品!
2024-09-14 16:07:23
22
笑傲江湖
转载文章
...系。虽然文章没有直接使用“离职对话机制”这一名词,但提到了建立开放、诚实且富有建设性的离职沟通方式,实际上就是倡导构建一种有效的离职对话机制。
2023-04-02 14:22:56
134
转载
RabbitMQ
...集成。例如,我们可以使用amqplib库来编写Node.js代码,如下所示: javascript const amqp = require('amqplib'); async function publishHttpMessage(url) { const connection = await amqp.connect('amqp://localhost'); const channel = await connection.createChannel(); // 创建一个HTTP Exchange await channel.exchangeDeclare( 'http_requests', // Exchange name 'topic', // Exchange type (HTTP requests use topic) { durable: false } // Durable exchanges are not needed for HTTP ); // 发送HTTP请求消息 const message = { routingKey: 'http.request.', // Match all HTTP requests body: JSON.stringify({ url }), }; await channel.publish('http_requests', message.routingKey, Buffer.from(JSON.stringify(message))); console.log(Published HTTP request to ${url}); await channel.close(); await connection.close(); } // 调用函数并发送请求 publishHttpMessage('https://example.com/api/v1'); 这种方式允许API Gateway接收来自客户端的HTTP请求,然后将这些请求转化为RabbitMQ的消息,进一步转发给后端处理服务。 4. gRPC集成 gRPC-RabbitMQ Bridge 对于gRPC,我们可能需要一个中间件桥接器,如grpc-gateway和protobuf-rpc。例如,gRPC客户端可以通过gRPC Gateway将请求转换为HTTP请求,然后由RabbitMQ处理。这里有一个简化版的伪代码示例: python from google.api import service_pb2_grpc from grpc_gateway import services_pb2, gateway class RabbitMQGrpcHandler(service_pb2_grpc.MyServiceServicer): def UnaryCall(self, request, context): Convert gRPC request to RabbitMQ message rabbit_message = services_pb2.MyRequestToProcess(request.to_dict()) Publish the message to RabbitMQ with channel: channel.basic_publish( exchange='gRPC_Requests', routing_key=rabbit_message.routing_key, body=json.dumps(rabbit_message), properties=pika.BasicProperties(content_type='application/json') ) Return a response or acknowledge the call return services_pb2.MyResponse(status="Accepted") Start the gRPC server with the RabbitMQ handler server = grpc.server(futures.ThreadPoolExecutor(max_workers=10)) service_pb2_grpc.add_MyServiceServicer_to_server(RabbitMQGrpcHandler(), server) server.add_insecure_port('[::]:50051') server.start() 这样,gRPC客户端发出的请求经过gRPC Gateway的适配,最终被RabbitMQ处理,实现异步解耦。 5. 特点和应用场景 - 灵活性:HTTP和gRPC集成使得RabbitMQ能够适应各种服务间的通信需求,无论是API网关、微服务架构还是跨语言通信。 - 解耦:生产者和消费者不需要知道对方的存在,提高了系统的可维护性和扩展性。 - 扩展性:RabbitMQ的集群模式允许在高并发场景下轻松扩展。 - 错误处理:消息持久化和重试机制有助于处理暂时性的网络问题。 - 安全性:通过SSL/TLS可以确保消息传输的安全性。 6. 结论 RabbitMQ的强大之处在于它能跨越多种协议,提供了一种通用的消息传递平台。你知道吗,咱们可以像变魔术那样,把HTTP和gRPC这两个家伙灵活搭配起来,这样就能构建出一个超级灵动、随时能扩展的分布式系统,就跟你搭积木一样,想怎么拼就怎么拼,特别给力!当然啦,实际情况是会根据咱们项目的需求和手头现有的技术工具箱灵活调整具体实现方式,不过无论咋整,RabbitMQ都像是个超级靠谱的邮差,让各个服务之间的交流变得贼顺畅。
2024-02-23 11:44:00
92
笑傲江湖-t
MemCache
...锋利的工具一样,如果使用方法不对头,就可能惹出些麻烦来。这当中一个常见的问题就是所谓的“缓存雪崩”。 2. 缓存雪崩的概念解析 --- 缓存雪崩是指缓存系统在同一时刻大面积失效或者无法提供服务,导致所有请求直接涌向后端数据库,进而引发数据库压力激增甚至崩溃的情况。这种情况如同雪崩一般,瞬间释放出巨大的破坏力。 3. 缓存雪崩的风险源分析 --- - 缓存集中过期:例如,如果大量缓存在同一时间点过期,那么这些原本可以通过缓存快速响应的请求,会瞬时全部转向数据库查询。 - 缓存集群故障:当整个MemCache集群出现故障或重启时,所有缓存数据丢失,也会触发缓存雪崩。 - 网络异常:网络抖动或分区可能导致客户端无法访问到MemCache服务器,从而引发雪崩效应。 4. MemCache应对缓存雪崩的策略与实战代码示例 --- (1)设置合理的过期时间分散策略 为避免大量缓存在同一时间点过期,可以采用随机化过期时间的方法,例如: python import random def set_cache(key, value, expire_time): 基础过期时间 base_expire = 60 60 1小时 随机增加一个范围内的过期时间 delta_expire = random.randint(0, 60 5) 在0-5分钟内随机 total_expire = base_expire + delta_expire memcache_client.set(key, value, time=total_expire) (2)引入二级缓存或本地缓存备份 在MemCache之外,还可以设置如Redis等二级缓存,或者在应用本地进行临时缓存,以防止MemCache集群整体失效时完全依赖数据库。 (3)限流降级与熔断机制 当检测到缓存雪崩可能发生时(如缓存大量未命中),可以启动限流策略,限制对数据库的访问频次,并返回降级内容(如默认值、错误页面等)。下面是一个简单的限流实现示例: python from ratelimiter import RateLimiter limiter = RateLimiter(max_calls=100, period=60) 每分钟最多100次数据库查询 def get_data_from_db(key): if not limiter.hit(): raise Exception("Too many requests, fallback to default value.") 实际执行数据库查询操作... data = db.query_data(key) return data 同时,结合熔断器模式,如Hystrix,可以在短时间内大量失败后自动进入短路状态,不再尝试访问数据库。 (4)缓存预热与更新策略 在MemCache重启或大规模缓存失效后,可预先加载部分热点数据,即缓存预热。另外,我们可以采用异步更新或者懒加载的方式来耍个小聪明,处理缓存更新的问题。这样一来,就不会因为网络偶尔闹情绪、卡个壳什么的,引发可怕的雪崩效应了。 总结起来,面对MemCache中的缓存雪崩风险,我们需要理解其根源,运用多维度的防御策略,并结合实际业务场景灵活调整,才能确保我们的系统具备更高的可用性和韧性。在这个过程里,我们不断摸爬滚打,亲身实践、深刻反思,然后再一步步优化提升。这正是技术引人入胜之处,同样也是每一位开发者在成长道路上必经的重要挑战和修炼课题。
2023-12-27 23:36:59
88
蝶舞花间
MemCache
...(nodes) 使用一致性哈希决定key对应的节点 node, _ = ring.get_node('your_key') 2. 数据的分布式存储 上述的一致性哈希算法能够保证当新增或减少节点时,对已存在的大部分键值对的映射关系影响较小,从而实现数据的均衡分布。此外,咱们得牢牢记住一个大原则:如果有那么些关系紧密的数据兄弟,最好让它们挤在同一台MemCache服务器上,这样可以有效避免因为跨节点访问而产生的网络开销,懂我意思吧? 3. 同步更新问题及其解决思路 MemCache本身不具备数据同步功能,因此在分布式环境下进行数据更新时,需要通过应用层逻辑来保障一致性。常见的一种做法是“先更新数据库,再清除相关缓存”。 python 假设我们有一个更新用户信息的方法 def update_user_info(user_id, new_info): 先更新数据库 db.update_user(user_id, new_info) 清除MemCache中相关的缓存数据 memcached_client.delete(f'user_{user_id}') 另一种策略是引入消息队列,例如使用Redis Pub/Sub或者RabbitMQ等中间件,当数据库发生变更时,发布一条消息通知所有MemCache节点删除对应的缓存项。 4. MemCache节点的维护与监控 为了保证MemCache集群的稳定运行,我们需要定期对各个节点进行健康检查和性能监控,及时发现并处理可能出现的内存溢出、节点失效等问题。可以通过编写运维脚本定期检查,或者接入诸如Prometheus+Grafana这样的监控工具进行可视化管理。 bash 示例:简单的shell脚本检查MemCache节点状态 for node in $(cat memcache_nodes.txt); do echo "Checking ${node}..." telnet $node 11211 <<< stats | grep -q 'STAT bytes 0' if [ $? -eq 0 ]; then echo "${node} is down or not responding." else echo "${node} is up and running." fi done 总的来说,要在分布式环境中有效管理和维护多个MemCache节点,并实现数据的分布式存储与同步更新,不仅需要合理设计数据分布策略,还需要在应用层面对数据一致性进行把控,同时配合完善的节点监控和运维体系,才能确保整个缓存系统的高效稳定运行。在整个探险历程中,咱们得时刻动脑筋、动手尝试、灵活应变、优化咱的计划,这绝对是一个挑战多多、趣味盎然的过程,让人乐在其中。
2023-11-14 17:08:32
69
凌波微步
DorisDB
使用DorisDB构建实时推荐系统的实践之旅 1. 引言 在当今大数据和人工智能的时代,实时推荐系统已成为众多互联网企业的核心竞争力之一。在这场靠数据推动的创新赛跑里,Apache Doris,也就是DorisDB,凭借能力超群、实时分析速度快得飞起,还有那简单易用的操作体验,硬是让自己在众多选手中C位出道,妥妥地成了搭建实时推荐系统的绝佳拍档。今天,让我们一起深入探讨如何利用DorisDB的力量,构建出响应迅速、精准度高的实时推荐系统。 2. DorisDB 一款为实时分析而生的数据库 DorisDB是一款开源的MPP (大规模并行处理) 分析型数据库,它专为海量数据的实时分析查询而设计。它的列式存储方式、向量化执行引擎,再加上分布式架构的设计,让其在应对实时推荐场景时,面对高并发查询和低延迟需求,简直就像一把切菜的快刀,轻松驾驭,毫无压力。 3. 实时推荐系统的需求与挑战 构建实时推荐系统,我们需要解决的关键问题包括:如何实时捕获用户行为数据?如何快速对大量数据进行计算以生成实时推荐结果?这就要求底层的数据存储和处理平台必须具备高效的数据写入、查询以及实时分析能力。而DorisDB正是这样一款能完美应对这些挑战的工具。 4. 使用DorisDB构建实时推荐系统的实战 (1)数据实时写入 假设我们正在处理用户点击流数据,以下是一个简单的使用Python通过DorisDB的Java SDK将数据插入到表中的示例: java // 导入相关库 import org.apache.doris.hive.DorisClient; import org.apache.doris.thrift.TStatusCode; // 创建Doris客户端连接 DorisClient client = new DorisClient("FE_HOST", "FE_PORT"); // 准备要插入的数据 String sql = "INSERT INTO recommend_events(user_id, item_id, event_time) VALUES (?, ?, ?)"; List params = Arrays.asList(new Object[]{"user1", "item1", System.currentTimeMillis()}); // 执行插入操作 TStatusCode status = client.executeInsert(sql, params); // 检查执行状态 if (status == TStatusCode.OK) { System.out.println("Data inserted successfully!"); } else { System.out.println("Failed to insert data."); } (2)实时数据分析与推荐生成 利用DorisDB强大的SQL查询能力,我们可以轻松地对用户行为数据进行实时分析。例如,计算用户最近的行为热度以实时更新用户的兴趣标签: sql SELECT user_id, COUNT() as recent_activity FROM recommend_events WHERE event_time > NOW() - INTERVAL '1 HOUR' GROUP BY user_id; 有了这些实时更新的兴趣标签,我们就可以进一步结合协同过滤、深度学习等算法,在DorisDB上直接进行实时推荐结果的生成与计算。 5. 结论与思考 通过上述实例,我们能够深刻体会到DorisDB在构建实时推荐系统过程中的优势。无论是实时的数据写入、嗖嗖快的查询效率,还是那无比灵活的SQL支持,都让DorisDB在实时推荐系统的舞台上简直就像鱼儿游进了水里,畅快淋漓地展现它的实力。然而,选择技术这事儿可不是一次性就完事大吉了。要知道,业务会不断壮大,技术也在日新月异地进步,所以我们得时刻紧跟DorisDB以及其他那些最尖端技术的步伐。我们要持续打磨、优化咱们的实时推荐系统,让它变得更聪明、更精准,这样一来,才能更好地服务于每一位用户,让大家有更棒的体验。 6. 探讨与展望 尽管本文仅展示了DorisDB在实时推荐系统构建中的初步应用,但在实际项目中,可能还会遇到更复杂的问题,比如如何实现冷热数据分离、如何优化查询性能等。这都需要我们在实践中不断探索与尝试。不管怎样,DorisDB这款既强大又好用的实时分析数据库,可真是帮我们敲开了高效、精准实时推荐系统的神奇大门,让一切变得可能。未来,期待更多的开发者和企业能够借助DorisDB的力量,共同推动推荐系统的革新与发展。
2023-05-06 20:26:51
445
人生如戏
HessianRPC
...时,从连接池中获取,使用完毕后归还,避免频繁创建和销毁连接带来的性能损耗。 2.2 连接池在HessianRPC中的作用 对于HessianRPC,连接池可以显著减少网络开销,特别是在高并发场景下,避免了频繁的TCP三次握手,提高了响应速度。不过嘛,我们要琢磨的是怎么恰当地摆弄那个连接池,别整得太过了反而浪费资源,这是接下来的头等大事。 四、连接池优化策略 3.1 连接池大小设置 - 理论上,连接池大小应根据系统的最大并发请求量来设定。要是设置得不够给力,咱们的新链接就可能像赶集似的不断涌现,让服务器压力山大;可要是设置得太过豪放,又会像个大胃王一样猛吞内存,资源紧张啊。 - 示例代码: java HessianProxyFactory factory = new HessianProxyFactory(); factory.setConnectionPoolSize(100); // 设置连接池大小为100 MyService service = (MyService) factory.create("http://example.com/api"); 3.2 连接超时和重试策略 - 针对网络不稳定的情况,我们需要设置合理的连接超时时间,并在超时后尝试重试。 - 示例代码: java factory.setConnectTimeout(5000); // 设置连接超时时间为5秒 factory.setRetryCount(3); // 设置最多重试次数为3次 3.3 连接池维护 - 定期检查连接池的状态,清理无用连接,防止连接老化导致性能下降。 - 示例代码(使用Apache HttpClient的PoolingHttpClientConnectionManager): java CloseableHttpClient httpClient = HttpClients.custom() .setConnectionManager(new PoolingHttpClientConnectionManager()) .build(); 五、连接池优化实践与反思 4.1 实践案例 在实际项目中,我们可以通过监控系统的连接数、请求成功率等指标,结合业务场景调整连接池参数。例如,根据负载均衡器的流量数据动态调整连接池大小。 4.2 思考与挑战 尽管连接池优化有助于提高性能,但过度优化也可能带来复杂性。你知道吗,我们总是在找寻那个奇妙的平衡点,就是在提升功能强大度的同时,还能让代码像诗一样简洁,易读又易修,这事儿挺有意思的,对吧? 六、结论 HessianRPC的连接池优化是一个持续的过程,需要根据具体环境和需求进行动态调整。要想真正摸透它的运作机制,还得把你实践经验的那套和实时监控的数据结合起来,这样咱才能找出那个最对路的项目优化妙招,懂吧?记住,优化不是目的,提升用户体验才是关键。希望这篇文章能帮助你更好地理解和应用HessianRPC连接池优化技术。
2024-03-31 10:36:28
503
寂静森林
转载文章
...一个二维数组都费劲,使用java的那种形式会出错。 多维数组:c中无论是几维数组只用一个中括号[]来表示。 //二维数组:int[,] array=new int[3,2];//初始化:int[,] arr = new int[2,3]{ {1,2,3},{4,5,6} }; 与java总类似的int[][]两个中括号的定义是交错数组,相当于一个一维数组的嵌入 //交错数组:后一个中括号中不能有值int[][] arr = new int[2][];//初始化int[][] arr = new int[2][]{new int{1,3,2},new int{4,5,6} }; 对于数组也可以使用循环赋值初始化。 2.项目中前端需要显示数据库中特定值考前的下拉菜单 使用sql语句: 将数据表中的的特定语句放在最前面:方式一:select from [dbo].[CTS_DUTIES] where [DUTIES_ID] ='特定值'union all select from [dbo].[CTS_DUTIES] where [DUTIES_ID] <>'特定值'方式二:select case when [DUTIES_ID] ='特定值' then 0 else 1 end flag, FROM [dbo].[CTS_DUTIES]ORDER BY flag asc 3.在一个下拉列表中选择的是一个树级菜单 使用的控件: 在ASPxDropDownEdit控件中嵌入一个TreeList控件。 <!--js程序--><script type="text/javascript">function ss() {var key = treeListUnit.GetFocusedNodeKey();Panel_call.PerformCallback(key);ASPxItem.HideDropDown();}</script><!--htmlbody中程序--><td><dx:ASPxCallbackPanel ID="ASPxCallbackPanel_call" ClientInstanceName="Panel_call" runat="server" Width="200px" OnCallback="ASPxCallbackPanel_call_Callback"><PanelCollection><dx:PanelContent><dx:ASPxDropDownEdit ID="dropdown_branch" Theme="Moderno" runat="server" Width="170px" EnableAnimation="False"ClientInstanceName="ASPxItem" OnPreRender="ASPxDropDownEdit2_PreRender"><DropDownWindowTemplate><div style="height: 300px; width: 270px; overflow: auto"><dx:ASPxTreeList ID="ASPxTreeList1" runat="server" AutoGenerateColumns="False" Theme="Aqua"ClientInstanceName="treeListUnit"KeyFieldName="MenuId" ParentFieldName="UpperMenuId"><SettingsText LoadingPanelText="正在加载..." /><Styles><AlternatingNode Enabled="True" CssClass="GridViewAlBgColor" /><Header HorizontalAlign="Center" /><%--d8d8d8--%><FocusedNode BackColor="d8d8d8" ForeColor="teal"></FocusedNode></Styles><Columns><dx:TreeListTextColumn Caption="组织架构名称" FieldName="MenuName" VisibleIndex="0"><CellStyle HorizontalAlign="Left"></CellStyle><EditFormSettings VisibleIndex="0" Visible="True" /></dx:TreeListTextColumn></Columns><SettingsLoadingPanel Text="正在加载..." /><Settings SuppressOuterGridLines="True" GridLines="Horizontal" /><SettingsBehavior AllowFocusedNode="True" AutoExpandAllNodes="true" ExpandCollapseAction="NodeDblClick" /><ClientSideEvents NodeDblClick="function(s, e) {ss();}" /><Border BorderStyle="Solid" /></dx:ASPxTreeList></div><div><dx:ASPxHiddenField ID="ASPxHiddenField_orgname" ClientInstanceName="hid_orgname" runat="server"></dx:ASPxHiddenField></div></DropDownWindowTemplate></dx:ASPxDropDownEdit></dx:PanelContent></PanelCollection></dx:ASPxCallbackPanel></td> HiddenField的作用是将数据库中的ID放置在隐藏域,在文本框中显示名称。 //treelist的获取与绑定DataTable dt = comm.SELECT_DATA(string.Format("select from POWER_CONSTRUC_TPERSON where SERIAL_ID='{0}'", edit.Split(',')[0])).Tables[0];ASPxTreeList treeList = (ASPxTreeList)dropdown_branch.FindControl("ASPxTreeList1");treeList.DataSource = org_manager.GetZT_ORGANIZATION();treeList.DataBind();//隐藏域获取以及绑定ASPxHiddenField hidden_org = (ASPxHiddenField)dropdown_branch.FindControl("ASPxHiddenField_orgname");//单位信息hidden_orgperson.UNIT_CODE = hidden_org.Get("hidden_org").ToString(); 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_43357889/article/details/103888475。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-20 18:50:13
307
转载
Apache Atlas
...门之间对数据的理解和使用方式差异巨大,导致数据利用率低。 解决方案:使用Apache Atlas建立统一的数据目录,标记各类型数据,并设置搜索规则,使得所有员工都能快速找到所需数据。 代码示例: python from atlasclient.client import Atlas 创建Atlas客户端实例 atlas = Atlas('http://localhost:21000', 'admin', 'password') 定义数据目录结构 data_directory = { "name": "ecommerce_products", "description": "A directory for all ecommerce product data.", "classification": "Data_Catalog" } 注册数据目录 response = atlas.entity.create_entity(data_directory) print(response) 此代码片段展示了如何使用Python客户端API向Atlas注册一个新的数据目录。 3.2 加强数据安全控制 背景:一家金融机构需要严格控制敏感信息的访问权限。 解决方案:通过Apache Atlas实施细粒度的数据访问控制策略,如基于角色的访问控制(RBAC)。 代码示例: python 定义用户角色及对应的权限 roles = [ {"name": "admin", "permissions": ["read", "write"]}, {"name": "analyst", "permissions": ["read"]} ] for role in roles: 创建角色 response = atlas.discovery.find_entities_by_type(role['name']) if not response.entities: atlas.discovery.create_entity({"typeName": role['name'], "attributes": {"name": role['name']} }) print(f"Role {role['name']} created.") 该示例演示了如何使用Atlas API动态创建用户角色及其权限。 3.3 数据质量监控 背景:一家电信公司希望实时监控网络数据的质量,以保障服务稳定。 解决方案:结合Apache Atlas与数据质量监控工具,定期检查数据完整性、准确性等指标。 代码示例: python 假设已定义好数据质量规则 quality_rules = [{"field": "connection_status", "rule": "must_be_online"}] 应用规则到指定数据集 for rule in quality_rules: response = atlas.discovery.find_entities_by_type(rule['field']) if response.entities: 执行具体的数据质量检查逻辑 pass 此段代码用于根据预设的数据质量规则检查特定字段的数据状态。 4. 结语 从上述案例中我们可以看出,Apache Atlas不仅提供了丰富的功能来满足企业数据治理的需求,而且通过灵活的API接口,能够轻松集成到现有的IT环境中。当然啦,要想让工具用得好,企业得先明白数据治理有多重要,还得有条不紊地去规划和执行才行。未来,随着技术的发展,相信Apache Atlas会在更多场景下发挥其独特价值。 --- 以上就是关于“Apache Atlas:数据治理效能提升的案例研究”的全部内容。希望这篇分析能让大家更清楚地看到数据治理对现代企业有多重要,还能学到怎么用Apache Atlas这个强大的工具来升级自己的数据管理系统,让它变得更高效、更好用。如果您有任何疑问或想要分享您的看法,请随时留言交流!
2024-11-10 15:39:45
119
烟雨江南
Mahout
...ity)。以下是一个使用皮尔逊相关系数计算用户相似度的例子: java // 创建Pearson相似度计算器 UserSimilarity similarity = new PearsonCorrelationSimilarity(model); // 使用GenericUserBasedRecommender类进行相似度计算 UserNeighborhood neighborhood = new NearestNUserNeighborhood(10, similarity, model); Recommender recommender = new GenericUserBasedRecommender(model, neighborhood, similarity); // 计算用户123与其他用户的相似度 List similarUsers = recommender.mostSimilarItems(123, 10); 这段代码首先创建了一个Pearson相关系数相似度计算器,然后定义了邻域模型(这里选择最近的10个用户),最后通过mostSimilarItems方法找到与用户123最相似的其他用户。 3. 深入思考 值得注意的是,选择何种相似度计算方法很大程度上取决于具体的应用场景和数据特性。比如,假如评分数据分布得比较均匀,那皮尔逊相关系数就是个挺不错的选择。但如果评分数据少得可怜,这时候余弦相似度可能就更显神通了。因为它压根不在乎具体的评分数值大小,只关心相对的偏好方向,所以在这种极端稀疏的情况下,效果可能会更好。 四、总结与探讨 Mahout为我们搭建推荐系统的用户相似度计算提供了有力支持。不过,在实际操作的时候,咱们得灵活应变,根据实际情况对参数进行微调,优化那个算法。有时候,为了更上一层楼的推荐效果,咱可能还需要把用户的社交关系、时间因素等其他信息一并考虑进去,让推荐结果更加精准、接地气儿。在我们一路摸索的过程中,可别光依赖冷冰冰的算法分析,更得把咱们用户的感受和体验揣摩透彻,这样才能够实实在在打造出符合每个人个性化需求的推荐系统,让大家用起来觉得贴心又满意。 总的来说,利用Mahout实现用户相似度计算并不复杂,关键在于理解不同相似度计算方法背后的数学原理以及它们在实际业务中的适用性。实践中,我们要善于运用这些工具,同时保持开放思维,不断迭代和优化我们的推荐策略。
2023-02-13 08:05:07
87
百转千回
Spark
...数据处理。 - 易于使用:提供了多种高级API,让开发变得更加直观。 - 灵活:支持批处理、流处理、机器学习等多种数据处理模式。 2.3 实战代码示例 假设我们有一个简单的数据集,存储在HDFS上,我们想用Spark读取并处理这些数据。下面是一个简单的Scala代码示例: scala // 导入Spark相关包 import org.apache.spark.sql.SparkSession // 创建SparkSession val spark = SparkSession.builder() .appName("IoT Data Sync") .getOrCreate() // 读取数据 val dataDF = spark.read.format("csv").option("header", "true").load("hdfs://path/to/iot_data.csv") // 显示前5行数据 dataDF.show(5) // 关闭SparkSession spark.stop() 3. 物联网设备数据同步与协调挑战 3.1 数据量大 物联网设备产生的数据量通常是海量的,而且这些数据往往需要实时处理。你可以想象一下,如果有成千上万的传感器在不停地吐数据,那得有多少数字在那儿疯跑啊!简直像海里的沙子一样多。 3.2 实时性要求高 物联网设备的数据往往需要实时处理。比如,在一个智能工厂里,如果传感器没能及时把数据传给中央系统做分析,那可能就会出大事儿,比如生产线罢工或者隐藏的安全隐患突然冒出来。 3.3 设备多样性 物联网设备种类繁多,不同设备可能采用不同的通信协议。这就意味着我们需要一个统一的方式来处理这些异构的数据源。 3.4 网络条件不稳定 物联网设备通常部署在各种环境中,网络条件往往不稳定。这就意味着我们需要的方案得有点抗压能力,在网络不给力的时候还能稳稳地干活。 4. 如何用Spark解决这些问题 4.1 使用Spark Streaming Spark Streaming 是Spark的一个扩展模块,专门用于处理实时数据流。它支持多种数据源,包括Kafka、Flume、TCP sockets等。下面是一个使用Spark Streaming从Kafka接收数据的例子: scala // 创建SparkStreamingContext val ssc = new StreamingContext(spark.sparkContext, Seconds(5)) // 创建Kafka流 val kafkaStream = KafkaUtils.createDirectStream[String, String]( ssc, PreferConsistent, Subscribe[String, String](topicsSet, kafkaParams) ) // 处理接收到的数据 kafkaStream.foreachRDD { rdd => val df = spark.read.json(rdd.map(_.value())) // 进一步处理数据... } // 开始处理流数据 ssc.start() ssc.awaitTermination() 4.2 利用DataFrame API简化数据处理 Spark的DataFrame API提供了一种结构化的方式来处理数据,使得我们可以更容易地编写复杂的查询。下面是一个使用DataFrame API处理数据的例子: scala // 假设我们已经有了一个DataFrame df import spark.implicits._ // 添加一个新的列 val enrichedDF = df.withColumn("timestamp", current_timestamp()) // 保存处理后的数据 enrichedDF.write.mode("append").json("hdfs://path/to/enriched_data") 4.3 弹性分布式数据集(RDD)的优势 Spark的核心概念之一就是RDD。RDD是一种不可变的、分区的数据集合,支持并行操作。这对于处理物联网设备产生的数据特别有用。下面是一个使用RDD的例子: scala // 创建一个简单的RDD val dataRDD = spark.sparkContext.parallelize(Seq(1, 2, 3, 4, 5)) // 对RDD进行映射操作 val mappedRDD = dataRDD.map(x => x 2) // 收集结果 val result = mappedRDD.collect() println(result.mkString(", ")) 4.4 容错机制 Spark的容错机制是其一大亮点。它通过RDD的血统信息(即RDD的操作历史)来重新计算丢失的数据。这就让Spark在处理像物联网设备这样的网络环境不稳定的情况时特别给力。 5. 结论 通过上述讨论,我们可以看到Spark确实是一个强大的工具,可以帮助我们有效地处理物联网设备产生的海量数据。虽说在实际操作中可能会碰到些难题,但只要我们好好设计和优化一下,Spark绝对能搞定这个活儿。希望这篇文章对你有所帮助,也欢迎你在实践中继续探索和分享你的经验!
2025-01-06 16:12:37
72
灵动之光
Mongo
...,但我们可以利用文档版本戳(_v字段)模拟实现。每次更新前先读取文档的版本,更新时设置$currentDate以确保版本已更新,如果版本不符则更新失败。 javascript var user = db.users.find({ _id: 'user1' }).next(); var currentVersion = user._v; db.users.updateOne( { _id: 'user1', _v: currentVersion }, [ { $inc: { balance: 10 } }, { $currentDate: { _v: true } } ], { upsert: false, multi: false } ); 悲观锁(Pessimistic Locking): MongoDB提供了findAndModify命令(现已被findOneAndUpdate替代),它可以原子性地查找并更新文档,相当于对文档进行了锁定,防止并发写入冲突。 javascript db.users.findOneAndUpdate( { _id: 'user1' }, { $inc: { balance: 10 } }, { upsert: false, returnOriginal: false } ); 4. 集群环境下的并发控制 WiredTiger存储引擎 在MongoDB集群环境下,WiredTiger存储引擎实现了行级锁,对于并发写入有着很好的支持。每当你进行写操作的时候,系统都会把它安排到特定的小区域——我们叫它“数据段”。想象一下,这些数据段就像一个个小隔间,同一隔间里的写操作会排好队,一个接一个地有序进行,而不是一拥而上。这样一来,就不用担心几个写操作同时进行会让数据变得乱七八糟、不一致了,就像大家排队领饭,就不会出现你夹的菜跑到我碗里,我夹的肉又飞到他碗里的混乱情况啦。 5. 总结与思考 处理MongoDB中的并发写入问题,需要根据具体的应用场景选择合适的并发控制策略。无论是利用版本戳模拟乐观锁,还是借助于findAndModify实现悲观锁,抑或是依赖于WiredTiger存储引擎的行级锁,我们的目标始终是为了保证数据的一致性和完整性,提升用户体验。 对于开发者而言,理解并掌握这些策略并非一日之功,而是要在实践中不断摸索和优化。你知道吗,就像做一顿色香味俱全的大餐那样,构建一个稳定靠谱的分布式系统也得讲究门道。首先得精挑细选“食材”,也就是各种组件和技术;然后,就跟掌握火候一样,得精准地调控系统的各个环节。只有这样,才能确保每位“尝鲜者”都能吃得心满意足,开开心心地离开。
2023-06-24 13:49:52
71
人生如戏
Scala
... 使用try-catch块 其次,在实际创建URL对象时,可以将这部分代码包裹在一个try-catch块中,这样即使发生MalformedURLException,程序也不会完全崩溃,而是能够优雅地处理错误: scala try { val url = new java.net.URL("http://example.com") println(s"URL is valid: $url") } catch { case e: java.net.MalformedURLException => println("MalformedURLException occurred.") } 4. 处理异常 除了基本的异常捕获之外,我们还可以采取一些额外措施来增强程序的鲁棒性。例如,在catch块内部,我们可以记录错误日志,甚至向用户提供友好的提示信息,告知他们输入的URL存在格式问题,并建议正确的格式: scala try { val url = new java.net.URL("http://example.com") println(s"URL is valid: $url") } catch { case e: java.net.MalformedURLException => println("MalformedURLException occurred. Please ensure your URL is properly formatted.") // 记录错误日志 import java.io.PrintWriter import java.io.StringWriter val sw = new StringWriter() val pw = new PrintWriter(sw) e.printStackTrace(pw) println(sw.toString) } 进阶技巧:自定义URL验证函数 5. 自定义验证逻辑 为了进一步提高代码的可读性和复用性,我们可以封装上述功能,创建一个专门用于验证URL的函数。该函数不仅会检查URL格式,还会执行一些额外的安全检查,比如防止SQL注入等恶意行为: scala import java.net.URL def validateUrl(urlString: String): Option[URL] = { if (!isValidUrl(urlString)) { None } else { try { Some(new URL(urlString)) } catch { case _: MalformedURLException => None } } } // 测试 validateUrl("http://example.com") match { case Some(url) => println(s"Valid URL: $url") case None => println("Invalid URL.") } 结论 通过本文的学习,希望大家对Scala中处理URL相关的问题有了更深刻的理解。记住,预防总是优于治疗。在写代码的时候,提前想到可能会出的各种岔子,并且想办法避开它们,这样我们的程序就能更稳当、更靠谱了。当然,面对MalformedURLException这样的常见异常,保持冷静、合理应对同样重要。希望今天的分享能帮助大家写出更好的Scala代码! 最后,别忘了在日常开发中多实践、多总结经验,编程之路虽充满挑战,但每一步都值得骄傲。祝大家代码愉快!
2024-12-19 15:45:26
23
素颜如水
HessianRPC
...ion详解 当我们在使用HessianRPC进行远程调用时,如果出现"HessianURLException: 创建或处理URL时发生错误。"异常,这通常意味着在创建或解析目标服务的URL地址时出现了问题。比如URL格式不正确、网络不可达或者其他相关的I/O异常。 java try { // 错误的URL格式导致HessianURLException HelloService wrongService = (HelloService) factory.create(HelloService.class, "localhost:8080/hello"); } catch (MalformedURLException e) { System.out.println("HessianURLException: 创建或处理URL时发生错误。"); // 抛出异常 } 在这个例子中,由于我们没有提供完整的URL(缺少协议部分"http://"),所以HessianRPC无法正确解析并创建到服务端的连接,从而抛出了HessianURLException。 4. 解决方案与预防措施 面对HessianURLException,我们需要从以下几个方面着手解决问题: 4.1 检查URL格式 确保提供的URL是完整且有效的,包括协议(如"http://"或"https://")、主机名、端口号及资源路径等必要组成部分。 java // 正确的URL格式 HelloService correctService = (HelloService) factory.create(HelloService.class, "http://localhost:8080/hello"); 4.2 确保网络可达性 检查客户端和服务端之间的网络连接是否畅通无阻。如果服务端未启动或者防火墙阻止了连接请求,也可能引发此异常。 4.3 异常捕获与处理 在代码中合理地处理此类异常,给用户提供明确的错误信息提示。 java try { HelloService service = (HelloService) factory.create(HelloService.class, "http://localhost:8080/hello"); } catch (HessianConnectionException | MalformedURLException e) { System.err.println("无法连接到远程服务,请检查URL和网络状况:" + e.getMessage()); } 5. 总结 在我们的编程旅程中,理解并妥善处理像"HessianURLException: 创建或处理URL时发生错误"这样的异常,有助于提升系统的稳定性和健壮性。对于HessianRPC来说,每一个细节都可能影响到远程调用的成功与否。所以呢,真要解决这类问题,归根结底就俩大法宝:一个是牢牢掌握的基础知识,那叫一个扎实;另一个就是严谨到家的编码习惯了,这两样可真是缺一不可的关键所在啊!伙计们,让我们一起瞪大眼睛,鼓起勇气,把HessianRPC变成我们手里的神兵利器,让它在开发分布式应用时,帮我们飞速提升效率,让开发过程更轻松、更给力!
2023-10-16 10:44:02
531
柳暗花明又一村
转载文章
...现思路 类组织结构 使用彩色建模的思想组织类结构,类图: SceneObject 所有场景物体包括主角、怪物、互动物体等的抽象基类,仅有init()抽象方法 Character 拥有血量和攻击力的实体继承自Character,同时实现getATK()和beDamage()抽象方法用于处理攻击和受击逻辑 SceneItem 其他场景实体继承自SceneItem,无特殊属性和方法 Scene 场景管理类,能偶根据Json文件生成场景物体,保存了实体预制体,还拥有一个静态List和静态方法用于运行时向场景中添加新实体 InteractionMI 用于处理单个实体无法处理或不属于单个实体的逻辑,包括: 幽灵追踪主角时获取角色位置 帮助实体初始化定时器组件 减速陷阱是否可以回复主角速度 主角与灯、宝箱、武器的交互 DamageMI 包含静态方法Damage()专门用于处理伤害逻辑,方便后续服务器验证等逻辑 逻辑实现 主角 Protagonist类用于处理主角相关逻辑 受击逻辑 当主角不处于无敌状态,播放受击动画,扣除血量并进入无敌状态,定时器定时一秒后关闭无敌状态 交互逻辑 用户输入交互信号后,交由InteractionMI判断交互是否成功,返回交互信息,主角播放对应动画 武器逻辑 当主角获得武器后,主角身上保存武器的引用,与武器交互直接调用武器的对应方法(Drop(),Fire()) 结算逻辑 当主角HP小于等于0时,调用Scene的静态方法,请求场景结算 怪物 石像鬼 血量无限,没有受击逻辑,当检测组件检测到主角时,调用继承的Attack方法,攻击主角 幽灵 三种状态:die、patrol,chase 死亡状态下三秒后会在第一个导航点复活 巡逻状态下检测到主角会调用继承的Attack方法攻击主角 追逐状态下会每帧获得主角位置追逐主角 其他场景物品 灯光 初始化时添加计时器用于控制自动开关,用户交互后重置计时器 开启时使用一个锥形的检测器检测幽灵是否在范围内,如果在调用Damage对幽灵造成伤害 存在一个Box Collider,当玩家进入时,调用InteractionMI的方法,将InteractionMI保存的静态SwitchableLight引用置为自己,当玩家交互时这个引用不为null,则调用这个引用的SwitchableLight的ChangeLight方法完成开关灯的交互 减速陷阱 当玩家进入时,调用InteractionMI的方法,使其内置的静态_slowDownCount计数加一,并调用玩家的SetSpeedRatio方法使玩家减速 当玩家离开,设置计时器5秒后调用InteractionMI的方法,使其内置的静态_slowDownCount计数减一,当计数为零时才可以调用玩家的SetSpeedRatio方法使玩家回复正常速度 地刺陷阱 初始化时设置计时器,每三秒改变一次状态,当玩家进入,设置计时器每一秒对玩家造成一次伤害,当玩家离开,取消计时器 宝箱 内置public GameObject GWeapon;用于保存要生成的枪的预制体 当玩家第一次与宝箱交互,播放开宝箱动画,设置计时器1.2秒后根据预制体克隆一个武器,并将武器通过Scene的静态方法加入到Scene维护的SceneObject列表中,自身保存新生成的武器的引用 当武器生成后玩家再与宝箱交互则通过InteractionMI的方法将武器父节点设为玩家,玩家获得武器的引用,自身武器引用置为null 武器 内置private Transform _parent = null;用于保存父物体 Drop方法被调用时,若父物体不为空,设置自身刚体属性,设置速度使武器有抛出效果,设置计时器1秒后恢复到没有物理效果的状态,父物体置为空 Fire方法被调用,若能够开火,则生成并初始化一个子弹,生成时将保存的父物体的Transform给子弹,保证子弹能够向角色前方发射,开火后设置开火状态为不能开火,设置计时器0.5秒后恢复开火状态 当父物体信息为空,与其他交互逻辑类似,通过InteractionMI完成武器捡起的交互逻辑 子弹 初始化时设置初速度,启动定时器1秒后若没有销毁则自动销毁,若碰撞到幽灵,对幽灵造成伤害,其他碰撞销毁自己 本篇文章为转载内容。原文链接:https://blog.csdn.net/Zireael2019/article/details/126690910。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-03-11 12:57:03
768
转载
Saiku
...数据源支持。最近一次版本更新中,Saiku增强了对云原生环境的支持,简化了部署流程,并提升了处理大规模数据集时的响应速度,这无疑为大数据时代下的企业级应用提供了更有力的支撑。 综上所述,在数字化转型浪潮下,掌握像Saiku这样的现代化数据分析工具,不仅有助于企业提升决策效率,更能帮助企业从海量数据中提炼出具有战略价值的信息,从而实现业务增长和竞争力提升。因此,深入研究和熟练运用Saiku,已成为广大数据从业者提升自身核心竞争力的关键技能之一。
2023-10-04 11:41:45
102
初心未变
转载文章
...你是什么垃圾 3. 使用它告诉你,你是啥垃圾 AI垃圾分类 产品描述 如何进行垃圾分类已经成为居民生活的灵魂拷问,然而AI在垃圾分类的应用可以成为居民的得力助手。 针对目前业务需求,我们设计一款APP,来支撑我们的业务需求,主要提供文本,语音,图片分类功能。AI智能垃圾分类主要通过构建基于深度学习技术的图像分类模型,实现垃圾图片类别的精准识别重点处理图片分类问题。 采用深圳市垃圾分类标准,输出该物品属于可回收物、厨余垃圾、有害垃圾和其他垃圾分类。 垃圾分类-数据分析和预处理 整体数据探测 分析数据不同类别分布 分析图片长宽比例分布 切分数据集和验证集 数据可视化展示(可视化工具 pyecharts,seaborn,matplotlib) 代码结构 ├── data│ ├── garbage-classify-for-pytorch│ │ ├── train│ │ ├── train.txt│ │ ├── val│ │ └── val.txt│ └── garbage_label.txt├── analyzer│ ├── 01 垃圾分类_一级分类 数据分布.ipynb│ ├── 02 垃圾分类_二级分类 数据分析.ipynb│ ├── 03 数据加载以及可视化.ipynb│ ├── 03 数据预处理-缩放&裁剪&标准化.ipynb│ ├── garbage_label_40 标签生成.ipynb├── models│ ├── alexnet.py│ ├── densenet.py│ ├── inception.py│ ├── resnet.py│ ├── squeezenet.py│ └── vgg.py├── facebook│ ├── app_resnext101_WSL.py│ ├── facebookresearch_WSL-Images_resnext.ipynb│ ├── ResNeXt101_pre_trained_model.ipynb├── checkpoint│ ├── checkpoint.pth.tar│ ├── garbage_resnext101_model_9_9547_9588.pth├── utils│ ├── eval.py│ ├── json_utils.py│ ├── logger.py│ ├── misc.py│ └── utils.py├── args.py├── model.py├── transform.py├── garbage-classification-using-pytorch.py├── app_garbage.py data: 训练数据和验证数据、标签数据 checkpoint: 日志数据、模型文件、训练过程checkpoint中间数据 app_garbage.py:在线预测服务 garbage-classification-using-pytorch.py:训练模型 models:提供各种pre_trained_model ,例如:alexlet、densenet、resnet,resnext等 utils:提供各种工具类,例如;重新flask json 格式,日志工具类、效果评估 facebook: 提供facebook 分类器神奇的分类预测和数据预处理 analyzer: 数据分析和数据预处理模块 transform.py:通过pytorch 进行数据预处理 model.py: resnext101 模型集成以及调整、模型训练和验证函数封装 resnext101网络架构 pre_trained_model resnext101 网络架构原理 基于pytorch 数据处理、resnext101 模型分类预测 在线服务API 接口 垃圾分类-训练 python garbage-classification-using-pytorch.py \--model_name resnext101_32x16d \--lr 0.001 \--optimizer adam \--start_epoch 1 \--epochs 10 \--num_classes 40 model_name 模型名称 lr 学习率 optimizer 优化器 start_epoch 训练过程断点重新训练 num_classes 分类个数 垃圾分类-评估 python garbage-classification-using-pytorch.py \--model_name resnext101_32x16d \--evaluate \--resume checkpoint/checkpoint.pth.tar \--num_classes 40 model_name 模型名称 evaluate 模型评估 resume 指定checkpoint 文件路径,保存模型以及训练过程参数 垃圾分类-在线预测 python app_garbage.py \--model_name resnext101_32x16d \--resume checkpoint/garbage_resnext101_model_2_1111_4211.pth model_name 模型名称 resume 训练模型文件路径 模型预测 命令行验证和postman 方式验证 举例说明:命令行模式下预测 curl -X POST -F file=@cat.jpg http://ip:port/predict 最后,我们从0到1教大家掌握如何进行垃圾分类。通过本学习,让你彻底掌握AI图像分类技术在我们实际工作中的应用。 1. 你是什么垃圾? 2. 告诉你,你是什么垃圾 3. 使用它告诉你,你是啥垃圾 本篇文章为转载内容。原文链接:https://blog.csdn.net/shenfuli/article/details/103008003。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-10 23:48:11
517
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
cal
- 显示当前月份的日历。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"