前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[SpringBoot文件切片下载实现]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
ActiveMQ
...多才多艺的家伙呢! 实现细节: - 消息格式:采用JSON格式,便于解析和处理。 - 消息队列:使用ActiveMQ作为消息中间件,确保消息的可靠传递。 - 语言间通信:通过统一的消息API接口,确保不同语言环境的客户端能够一致地发送和接收消息。 - 负载均衡:通过配置多个ActiveMQ实例,实现消息系统的高可用性和负载均衡。 四、结论与展望 ActiveMQ在多语言环境下的部署不仅提升了开发效率,也增强了系统的灵活性和可扩展性。哎呀,你知道的,编程这事儿,就像是个拼图游戏,每个程序员手里的拼图都代表一种编程语言。每种语言都有自己的长处,比如有的擅长处理并发任务,有的则在数据处理上特别牛。所以,聪明的开发者会好好规划,把最适合的拼图放在最合适的位置上。这样一来,咱们就能打造出既快又稳的分布式系统了。就像是在厨房里,有的人负责洗菜切菜,有的人专门炒菜,分工合作,效率噌噌往上涨!哎呀,你懂的,现在微服务这东西越来越火,加上云原生应用也搞得风生水起的,这不,多语言环境下的应用啊,那可真是遍地开花。你看,ActiveMQ这个家伙,它就像个大忙人似的,天天在多语言环境中跑来跑去,传递消息,可不就是缺不了它嘛!这货一出场,就给多语言环境下的消息通信添上了不少色彩,推动它往更高级的方向发展,你说它是不是有两把刷子? --- 通过上述内容的探讨,我们不仅了解了如何在多语言环境下部署和使用ActiveMQ,还看到了其实现复杂业务逻辑的强大潜力。无论是对于企业级应用还是新兴的微服务架构,ActiveMQ都是一个值得信赖的选择。哎呀,随着科技这玩意儿天天在变新,我们能期待的可是超棒的创新点子和解决办法!这些新鲜玩意儿能让我们在不同语言的世界里写程序时更爽快,系统的运行也更顺溜,就像喝了一大杯冰凉透心的柠檬水一样,那叫一个舒坦!
2024-10-09 16:20:47
65
素颜如水
Apache Lucene
...使用示例 2. 编码实现 以下是一个简单的Java代码片段,展示了如何使用FuzzyQuery进行模糊搜索: java import org.apache.lucene.analysis.Analyzer; import org.apache.lucene.document.Document; import org.apache.lucene.document.Field; import org.apache.lucene.document.TextField; import org.apache.lucene.index.DirectoryReader; import org.apache.lucene.index.IndexReader; import org.apache.lucene.index.IndexWriter; import org.apache.lucene.index.IndexWriterConfig; import org.apache.lucene.queryparser.classic.QueryParser; import org.apache.lucene.search.; import org.apache.lucene.store.Directory; import org.apache.lucene.store.RAMDirectory; public class FuzzySearchExample { public static void main(String[] args) throws Exception { Directory indexDir = new RAMDirectory(); // 创建内存索引 Analyzer analyzer = new StandardAnalyzer(); // 使用标准分析器 // 假设我们有一个文档集合,这里只创建一个简单的文档 Document doc = new Document(); doc.add(new TextField("content", "Lucene is awesome", Field.Store.YES)); IndexWriterConfig config = new IndexWriterConfig(analyzer); IndexWriter writer = new IndexWriter(indexDir, config); writer.addDocument(doc); writer.close(); String queryTerm = "Lucenes"; // 用户输入的模糊查询词 float fuzziness = 1f; // 设置模糊度,例如1代表允许一个字符的差异 QueryParser parser = new QueryParser("content", analyzer); FuzzyQuery fuzzyQuery = new FuzzyQuery(parser.parse(queryTerm), fuzziness); IndexReader reader = DirectoryReader.open(indexDir); TopDocs topDocs = searcher.search(fuzzyQuery, 10); // 返回最多10个匹配结果 for (ScoreDoc scoreDoc : topDocs.scoreDocs) { Document hitDoc = searcher.doc(scoreDoc.doc); System.out.println("Score: " + scoreDoc.score + ", Hit: " + hitDoc.get("content")); } reader.close(); } } 这段代码首先创建了一个简单的索引,然后构造了一个FuzzyQuery实例,指定要搜索的关键词和允许的最大编辑距离。搜索时,我们能看到即使用户输入的不是完全匹配的"Lucene",而是"Lucenes",FuzzyQuery也能返回相关的结果。 四、FuzzyQuery优化策略 3. 性能与优化 当处理大量数据时,FuzzyQuery可能会变得较慢,因为它的计算复杂度与搜索词的长度和索引的大小有关。为了提高效率,可以考虑以下策略: - 前缀匹配:使用PrefixQuery结合FuzzyQuery,仅搜索具有相同前缀的文档,这可以减少搜索范围。 - 阈值调整:根据应用需求调整模糊度阈值,更严格的阈值可以提高精确度,但搜索速度会下降。 - 分批处理:如果搜索结果过多,可以分批处理,先缩小范围,再逐步细化。 五、结论 4. 未来展望与总结 FuzzyQuery在提高搜索灵活性的同时,也对性能提出了挑战。要想在项目里游刃有余,得深入理解那些神奇的机制和巧妙的策略,这样才能精准又高效,就像个武林高手一样,既能一击即中,又能快如闪电。Lucene那强大的模糊搜索绝不仅仅是纠错能手,它还能在你打字时瞬间给出超贴心的拼写建议,让找东西变得超级简单,简直提升了搜寻乐趣好几倍!随着科技日新月异,Lucene这家伙也越变越聪明,咱们可真盼着瞧见那些超酷的新搜索招数,让找东西这事变得更聪明又快捷,就像点穴一样精准! 在构建现代应用程序时,了解并善用这些高级查询工具,无疑会让我们的搜索引擎更具竞争力。希望这个简单示例能帮助你开始在项目中运用FuzzyQuery,提升搜索的精准度和易用性。
2024-06-11 10:54:39
497
时光倒流
Nginx
...著称,功能强大,配置文件简单易懂,而且用起来特别省资源,简直不要太棒!但就像任何其他软件一样,它也有自己的脆弱点,尤其是在权限设置方面。这次咱们要聊聊Nginx权限设置时容易踩的坑,还会告诉你咋样才能避开这些麻烦事儿。 一、权限设置的重要性 1.1 初识权限设置 想象一下,你是一个城堡的守护者,而Nginx就是那座城堡的大门。要是你没把权限设好,那可就麻烦了。到时候,不管是心怀不轨的坏蛋还是啥的,都能大摇大摆地闯进你的地盘,随便拿走你的财宝,甚至把整个城堡都给拆了!权限设置对于保护服务器资源免受未授权访问至关重要。如果配置不当,可能会导致敏感数据泄露、服务被滥用等严重后果。 1.2 权限设置的基本概念 - 用户(User):操作系统中的账户,比如root或普通用户。 - 组(Group):用户可以归属于多个组,这样就可以对一组文件或目录进行统一管理。 - 权限(Permissions):读(read)、写(write)和执行(execute)权限,分别用r、w、x表示。 1.3 示例代码 假设我们有一个网站,其根目录位于/var/www/html。为了让Web服务器能顺利读取这个目录里的文件,我们得确保Nginx使用的用户账户有足够的权限。通常情况下,Nginx以www-data用户身份运行: bash sudo chown -R www-data:www-data /var/www/html sudo chmod -R 755 /var/www/html 这里,755权限意味着所有者(即www-data用户)可以读、写和执行文件,而组成员和其他用户只能读和执行(但不能修改)。 二、常见的权限设置错误 2.1 错误示例1:过度宽松的权限 bash sudo chmod -R 777 /var/www/html 这个命令将使任何人都可以读、写和执行该目录及其下所有文件。虽然这个方法在开发时挺管用的,但真要是在生产环境里用,那简直就是一场灾难啊!要是谁有了这个目录的权限,那他就能随便改或者删里面的东西,这样可就麻烦大了,安全隐患多多啊。 2.2 错误示例2:忽略SELinux/AppArmor 许多Linux发行版都默认启用了SELinux或AppArmor这样的强制访问控制(MAC)系统。要是咱们不重视这些安全措施,只靠老掉牙的Unix权限设置,那可就得做好准备迎接各种意料之外的麻烦了。例如,在CentOS上,如果我们没有正确配置SELinux策略,可能会导致Nginx无法访问某些文件。 2.3 错误示例3:不合理的用户分配 有时候,我们会不小心让Nginx以root用户身份运行。这样做虽然看似方便,但实际上是非常危险的。因为一旦Nginx被攻击,攻击者就有可能获得系统的完全控制权。因此,始终要确保Nginx以非特权用户身份运行。 2.4 错误示例4:忽略文件系统权限 即使我们已经为Nginx设置了正确的权限,但如果文件系统本身存在漏洞(如ext4的某些版本中的稀疏超级块问题),也可能导致安全风险。因此,定期检查并更新文件系统也是非常重要的。 三、如何避免权限设置错误 3.1 学习最佳实践 了解并遵循行业内的最佳实践是避免错误的第一步。比如,应该始终限制对敏感文件的访问,确保Web服务器仅能访问必要的资源。 3.2 使用工具辅助 利用如auditd这样的审计工具可以帮助我们监控和记录权限更改,以便及时发现潜在的安全威胁。 3.3 定期审查配置 定期审查和测试你的Nginx配置文件,确保它们仍然符合当前的安全需求。这就像是看看有没有哪里锁得不够紧,或者是不是该再加把锁来确保安全。 3.4 保持警惕 安全永远不是一次性的工作。随着网络环境的变化和技术的发展,新的威胁不断出现。保持对最新安全趋势的关注,并适时调整你的防御策略。 四、结语 让我们一起变得更安全 通过这篇文章,我希望你能对Nginx权限设置的重要性有所认识,并了解到一些常见的错误以及如何避免它们。记住,安全是一个持续的过程,需要我们不断地学习、实践和改进。让我们携手努力,共同打造一个更加安全的网络世界吧! --- 以上就是关于Nginx权限设置错误的一篇技术文章。希望能帮到你,如果有啥不明白的或者想多了解点儿啥,尽管留言,咱们一起聊聊!
2024-12-14 16:30:28
82
素颜如水_
转载文章
...程,并会区分其于面向实现编程的区别。下面先讲一讲依赖倒置原则,再过渡到案例解释。 本文目的在于用极其简单的图解帮助新手来简单的理解面向接口开发,并不会提出很高深的理论支持来描述。 文章若有错误的内容,希望大佬指正 依赖倒置原则 什么是依赖倒置原则: 高层模块不应该依赖低层模块,二者都应该依赖其抽象 抽象不应该依赖细节,细节应该依赖抽象 针对接口编程,不要针对实现编程 即: 每个类尽量继承自接口或者抽象类 优点:减少类之间的耦合,提高代码的稳定性,代码的可读性维护性。 案例: 背景: 现在有一个用户类叫Ggzx(也就是我),想要学习一些课程,简单的来实现调用学习的方法,然后在一个Test类之中输入学习的内容。但是我暂时只学java和web,但是可能我后面还要学习Spring,SpringMVC… 1.面向实现编程 public class Ggzx {public void stduyJava(){System.out.println("学习了java课程");}public void studyWeb(){System.out.println("学习了Web课程");} } public class Test {public static void main(String[] args) {Ggzx ggzx=new Ggzx();ggzx.studyJava();ggzx.studyPython();ggzx.studyGo();} } 分析: 上面使用的面向实现编程,但是Test作为我们控制的"应用层",也就是高层,而Ggzx作为低层,其实这样在比较简单的例子中,其实是没问题的,因为假如不需要扩展,仅仅是实现两个很简单的功能,并没有必要去面向接口开发,但是一般在开发中通常有很复杂的开发环境和开发需求。 现在如果想添加新的功能,学习其他的课程,怎么办??? 继续使用面向实现编程,直接在 Ggzx 类中直接添加新的方法,可以完成这个功能需求。 用上面的方法实现有没有缺点??? 学习的课程和 Ggzx 类耦合比较严重。是学习的课程只能通过Ggzx 才能得到 。并且是想要学习新的课程也要在 Ggzx 类中不断添加和修改 —>高耦合 Ggzx 作为当前 demo 的底层,经常的被改动,高层Test依赖于低层 Ggzx 的实现 ---->对应依赖倒置原则中的:高层过度依赖低层了 2.面向接口编程(简单版) 为了解决上面出现的问题,我们可以考虑把学习的课程抽出来成为一个类。到现在,类和类之间的耦合其实就已经降低很多了。然后将其当做参数传入Ggzx里面,然后调用课程里面的学习方法 //web课程类public class WebCourse {public void studyCourse() {System.out.println("学习了Web课程");} } //这里是Java课程类public class JavaCourse {public void studyCourse() {System.out.println("学习Java课程");} } 当我们写出来这两个类,想要对Ggzx里面的学习方法进行编写的时候,有没有发现其实有一些小问题呢???? Ggzx里面接收这些类的参数是什么?? 难道要这样? //以下是Ggzx类中的内容public void studyJava(JavaCourse javaCourse){}public void studyWeb(WebCourse webCourse){} nonono,如果这样做,虽然当前已经把课程类和 Ggzx 用户剥离一点点了,但是是还是形同虚设,课程类虽然分离开了,但是还是像狗皮膏药一样贴在 Ggzx 类中,但是看着还是很难受,高层 Test 调用方法还是得依赖 Ggzx 里面有什么方法 每次加入新课程,都需要修改底层功能 如何修改??? 接口是个好东西,课程类之间是不是都包含同样一个方法,被学习的方法( studyCourse ),那么我们可以将所有课程类都实现一个ICourse课程! 对应上面的问题,我们该传入什么参数能解决问题??可以传入一个接口 改编后的 UML 图解展示(Ggzx 被废弃,用新的 NewGgzx 代替):(如果没了解过UML类图,或者是纯小白,只需要知道一个大框是一个类,虚线表示实现了箭头方向的接口,小m是方法 即可) 观察上面的UML图 WebCourse 和 JavaCourse 实现自同一个接口 ICourse,每个课程都有自己的 studyXxx 方法。 这样好在什么地方? - 课程类和Ggzx类是解耦的,无论你增加多少个课程类,只要实现了ICourse接口,都能直接传入Ggzx的studyMyCourse()方法中 public interface ICourse {void studyCourse();} public class WebCourse implements ICourse{@Overridepublic void studyCourse() {System.out.println("学习了Web课程");} } public class NewGgzx {public void studyMyCourse(ICourse iCourse){iCourse.studyCourse();} } 上面就是案例的面向接口编程,我们可以看到,在 NewGgzx 类中,我们可以传入一个实现 ICourse 接口的课程类,我们在Test类中调用的时候,只需要传入一个课程类即可调用学习方法,这样当想扩展新的内容,只需要创建一个新的课程类实现 ICourse 即可 Test使用 NewGgzx newGgzx =new NewGgzx();newGgzx.studyMoocCourse(new WebCourse());newGgzx.studyMoocCourse(new com.ggzx.design.priciple.dependenceiversion.JavaCourse()); 从面向实现到面向接口,我们处理问题的方法改变了: 开始时,我们需要考虑在Test类中调用Ggzx里面的哪一种学习方法,即注重调用什么方法能够实现特定的课程 到面向接口编程,我们考虑传入什么课程即可实现学习 当业务需求拓展时,拓展方法也改变了: 面向实现:需要改变底层的代码来协调我们需要使用的功能,用上面的例子来解释就是:当你想要学习一个课程,你就需要改变你底层的实现,增加新的代码 面向接口:想学习什么课程,不会对其他课程造成影响,也不会影响到低层的Ggzx 。实际操作就是增加一门新的课程即可,实现接口之后,传入这个类到Ggzx的方法中就可以学习这一门课了 相对于细节的多变性,抽象的东西更稳定,以抽象为基础搭建的架构比以细节搭建的架构更加稳定 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_52410356/article/details/122828154。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-08-26 15:35:43
633
转载
ZooKeeper
...深入解读这些新特性的实现原理及其在实际项目中的最佳实践。 4. 行业动态观察:《云原生时代下,ZooKeeper面临的挑战与机遇》——随着云计算和容器化技术的发展,ZooKeeper作为传统的分布式协调服务,在云原生环境下面临着新的挑战和机遇。该篇报道分析了ZooKeeper如何适应快速变化的技术趋势,并与其他新兴的分布式协调工具进行比较,展望未来发展趋势。 5. 开源社区热点:《Apache Curator库在ZooKeeper使用中的重要角色》——Curator是专为ZooKeeper设计的开源Java客户端库,它简化了ZooKeeper的复杂操作,提供了一套高级API以更好地遵循ZooKeeper的设计原则。了解Curator的应用可以加深对ZooKeeper在实际开发中高效利用的理解。 以上延伸阅读内容旨在帮助读者紧跟分布式系统领域的发展步伐,从理论到实践全方位拓展对ZooKeeper设计原则的认知和应用能力。
2024-02-15 10:59:33
31
人生如戏-t
转载文章
...e_alloc函数来实现。 kmalloc() 申请的内存位于物理内存映射区域,而且在物理上也是连续的,它们与真实的物理地址只有一个固定的偏移,因为存在较简单的转换关系,所以对申请的内存大小有限制,不能超过128KB。 较常用的flags()有: GFP_ATOMIC —— 不能睡眠; GFP_KERNEL —— 可以睡眠; GFP_DMA —— 给 DMA 控制器分配内存,需要使用该标志。 2.3.4 vmalloc vmalloc() 函数则会在虚拟内存空间给出一块连续的内存区,但这片连续的虚拟内存在物理内存中并不一定连续。由于 vmalloc() 没有保证申请到的是连续的物理内存,因此对申请的内存大小没有限制,如果需要申请较大的内存空间就需要用此函数了。 注意vmalloc和vfree时可以睡眠的,因此不能从中断上下问调用。 一般情况下,内存只有在要被 DMA 访问的时候才需要物理上连续,但为了性能上的考虑,内核中一般使用 kmalloc(),而只有在需要获得大块内存时才使用 vmalloc()。例如,当模块被动态加载到内核当中时,就把模块装载到由 vmalloc() 分配的内存上。 本篇文章为转载内容。原文链接:https://secdev.blog.csdn.net/article/details/109731954。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-26 20:46:17
231
转载
Apache Solr
...查看了Solr的日志文件,发现确实存在一些索引碎片。为了优化索引,我执行了以下命令: bash curl http://localhost:8983/solr/mycollection/update?optimize=true&maxSegments=1 这个命令会将所有索引合并成一个段,并释放未使用的空间。运行后,查询速度确实有所提升,但这只是暂时的解决方案。 2.2 缓存设置 接着,我又检查了Solr的缓存设置。Solr提供了多种缓存机制,如Query Result Cache、Document Cache等,这些缓存可以显著提高查询性能。我调整了配置文件solrconfig.xml中的相关参数: xml size="512" initialSize="128" autowarmCount="64" eternal="true" ttiMillis="0" ttlMillis="0"/> 通过调整缓存大小和预热数量,我发现查询响应时间有所改善,但还是不够稳定。 3. 深入分析 外部依赖的影响 3.1 网络延迟 在排除了内部配置问题后,我开始怀疑是否有外部因素在作祟。经过一番排查,我发现网络延迟可能是罪魁祸首之一。Solr在处理查询时,得从好几个地方找信息,如果网速慢得像乌龟爬,那查询速度肯定也会变慢。我用ping命令测了一下和数据库服务器的连接,发现确实有点儿延时,挺磨人的。为了解决这个问题,我在想是不是可以在Solr服务器和数据库服务器中间加一台缓存服务器。这样就能少直接去查数据库了,效率应该能提高不少。 3.2 第三方API调用 除了网络延迟外,第三方API调用也可能是导致性能不稳定的另一个原因。Solr在处理某些查询时,可能需要调用外部服务来获取额外的数据。如果这些服务响应缓慢,整个查询过程也会变慢。我翻了一下Solr的日志,发现有些查询卡在那儿等外部服务回应,结果等超时了。为了搞定这个问题,我在Solr里加了个异步召唤的功能,这样Solr就能一边等着外部服务响应,一边还能接着处理别的查询请求了。具体代码如下: java public void handleExternalRequest() { CompletableFuture.supplyAsync(() -> { // 调用外部服务获取数据 return fetchDataFromExternalService(); }).thenAccept(result -> { // 处理返回的数据 processResult(result); }); } 4. 实践经验分享 配置波动与性能优化 4.1 动态配置管理 在实践中,我发现Solr的配置文件经常需要根据实际需求进行调整。然而,频繁地修改配置文件可能导致系统性能不稳定。为了更好地管理配置文件的变化,我建议使用动态配置管理工具,如Zookeeper。Zookeeper可帮我们在不耽误Solr正常运转的前提下更新配置,这样就不用担心因为调整设置而影响性能了。 4.2 监控与报警 最后,我强烈建议建立一套完善的监控和报警机制。通过实时盯着Solr的各种表现(比如查询速度咋样、CPU用得多不多等),我们就能赶紧发现状况,然后迅速出手解决。另外,咱们得设定好警报线,就像给系统设个底线。一旦性能掉到这线下,它就会自动给我们发警告。这样我们就能赶紧找出毛病,及时修好,不让小问题拖成大麻烦。例如,可以使用Prometheus和Grafana来搭建监控系统,代码示例如下: yaml Prometheus配置 global: scrape_interval: 15s scrape_configs: - job_name: 'solr' static_configs: - targets: ['localhost:8983'] json // Grafana仪表盘JSON配置 { "dashboard": { "panels": [ { "type": "graph", "title": "Solr查询响应时间", "targets": [ { "expr": "solr_query_response_time_seconds", "legendFormat": "{ {instance} }" } ] } ] } } 5. 结语 共勉与展望 总的来说,Solr查询性能不稳定是一个复杂的问题,可能涉及多方面的因素。咱们得从内部设置、外部依赖还有监控报警这些方面一起考虑,才能找出个靠谱的解决办法。在这个过程中,我也学到了很多,希望大家能够从中受益。未来,我将继续探索更多关于Solr优化的方法,希望能与大家共同进步! 希望这篇文章对你有所帮助,如果你有任何疑问或想法,欢迎随时交流讨论。
2025-02-08 16:04:27
36
蝶舞花间
Kibana
...如何在Kibana中实现自定义数据聚合函数,解锁数据洞察的新维度。 一、为何需要自定义数据聚合函数? 在数据科学和业务分析领域,我们经常遇到需要对数据进行定制化的分析需求。比如说,咱们得算出一堆数据里头某个指标的具体数值,就像找出一堆水果中最大的那个苹果。或者,我们还能根据时间序列,也就是按照时间顺序排列的数据,来预测未来的走向,就像是看天气预报,预测明天会不会下雨。还有就是,分析用户的个性化行为,比如有的人喜欢早起刷微博,有的人则习惯晚上熬夜看剧,我们要找出这些不同模式,就像是理解朋友的性格差异,知道什么时候找他们聊天最有效。哎呀,你知道的,有时候我们手上的数据,它们就像一群不听话的小孩,现有的那些内置工具啊,就像妈妈的规则,根本管不住他们。这就逼得我们得自己发明一些新的小把戏,比如自定义的数据聚合函数,这样就能更灵活地把这些数据整理成我们需要的样子啦。就像是给每个小孩量身定制的玩具,既符合他们的特性,又能让他们乖乖听话,多好啊! 二、Kibana自定义聚合函数的实现 在Kibana中,实现自定义聚合函数主要依赖于_scripted_metric聚合类型。这种类型的聚合允许用户编写JavaScript代码来定义自己的聚合逻辑。下面,我们将通过一个简单的示例来展示如何实现一个自定义聚合函数。 示例:计算数据的“活跃天数” 假设我们有一个日志数据集,每条记录代表一次用户操作,我们需要计算用户在某段时间内的活跃天数(即每天至少有一次操作)。 步骤1:定义聚合代码 首先,我们需要编写JavaScript代码来实现我们的逻辑。以下是一个示例: javascript { "aggs": { "active_days": { "scripted_metric": { "init_script": "total_days = 0", "map_script": "if (doc['timestamp'].value > 0) { total_days++; }", "combine_script": "return total_days", "reduce_script": "return sum" } } }, "script_fields": { "timestamp": { "script": { "source": "doc['timestamp'].value", "lang": "painless" } } } } 解释: - init_script:初始化变量total_days为0。 - map_script:当timestamp字段值大于0时,将total_days加1。 - combine_script:返回当前total_days的值。 - reduce_script:用于汇总多个聚合结果,这里使用sum函数将所有total_days值相加。 步骤2:执行聚合 在Kibana中创建一个新的搜索查询,选择_scripted_metric聚合类型,并粘贴上述代码片段。确保数据源正确,然后运行查询以查看结果。 三、实战应用与优化 在实际项目中,自定义聚合函数可以极大地增强数据分析的能力。例如,你可能需要根据业务需求调整map_script中的条件,或者优化init_script和combine_script以提高性能。 实践建议: - 测试与调试:在部署到生产环境前,务必充分测试自定义聚合函数,确保其逻辑正确且性能良好。 - 性能考虑:自定义聚合函数可能会增加查询的复杂度和执行时间,特别是在处理大量数据时。合理设计脚本,避免不必要的计算,以提升效率。 - 可读性:保持代码简洁、注释清晰,方便团队成员理解和维护。 四、结语 自定义数据聚合函数是Kibana强大的功能之一,它赋予了用户无限的创造空间,能够针对特定业务需求进行精细的数据分析。通过本文的探索,相信你已经掌握了基本的实现方法。嘿,兄弟!你得记住,实践就是那最棒的导师。别老是坐在那里空想,多动手做做看,不断试验,然后调整改进。这样啊,你的数据洞察力,那可是能突飞猛进的。就像种花一样,你得浇水、施肥、修剪,它才会开花结果。所以,赶紧去实践吧,让自己的技能开枝散叶!在数据的海洋中航行,自定义聚合函数就是你手中的指南针,引领你发现更多宝藏。
2024-09-16 16:01:07
167
心灵驿站
JQuery
...原有系统的稳定性,又实现了新功能的快速迭代。 此外,有专家提醒,尽管jQuery在某些领域仍有价值,但开发者不应忽视其潜在的安全隐患。近年来,多起因jQuery版本过旧而导致的安全漏洞事件敲响了警钟。因此,定期更新jQuery版本、及时修补已知漏洞至关重要。同时,随着WebAssembly技术的兴起,未来可能会出现更多超越传统JavaScript框架的新工具,这或许会对jQuery的地位构成挑战。 综上所述,虽然jQuery正处于转型期,但它依然是前端开发领域的一块基石。无论是继续深耕还是寻找替代方案,都需要开发者根据具体业务需求做出理性判断。在这个快速变化的时代,保持开放的心态和持续学习的态度才是应对技术变革的最佳策略。
2025-05-08 16:16:22
60
蝶舞花间
转载文章
...turn + “任意实现了 IEnumerator 接口的对象”。重要!(可嵌套) Unity 中,常见的、直接或间接实现了 IEnumerator 接口的类有: ------------------------------------------------------------------------------------------------ CustomYieldInstruction (abstarct) ——|> IEnumerator (interface) ------------------------------------------------------------------------------------------------ WaitUnitil (sealed) ——|> CustomYieldInstruction WaitWhile (sealed) ——|> CustomYieldInstruction WaitForSecondsRealtime (非sealed,但未发现子类) ——|> CustomYieldInstruction WWW (非sealed,但未发现子类) ——|> CustomYieldInstruction ------------------------------------------------------------------------------------------------ 随着Unity更新或在一些可选的Package中,可能有更多。。。 ------------------------------------------------------------------------------------------------ 8、yield return + “任意继承了 YieldInstruction 类 ([UsedByNativeCode],源码C层中无具体实现) 的对象”。重要!(可嵌套) Unity 中,常见的、直接或间接继承了 YieldInstruction 类的类有: ------------------------------------------------------------------------------------------------ WaitForSeconds (sealed) ——|> YieldInstruction Coroutine (sealed) ——|> YieldInstruction (Coroutine 是 StartCoroutine方法的返回值,意味着协程中可嵌套协程) WaitForEndOfFrame (sealed) ——|> YieldInstruction WaitForFixedUpdate (sealed) ——|> YieldInstruction AsyncOperation ——|> YieldInstruction ------------------------------------------------------------------------------------------------ AssetBundleCreateRequest (非sealed,但未发现子类) ——|> AsyncOperation AssetBundleRecompressOperation (非sealed,但未发现子类) ——|> AsyncOperation AssetBundleRequest (非sealed,但未发现子类) ——|> AsyncOperation ResourceRequest (非sealed,但未发现子类) ——|> AsyncOperation UnityEngine.Networking.UnityWebRequestAsyncOperation (非sealed,但未发现子类) ——|> AsyncOperation UnityEngine.iOS.OnDemandResourcesRequest (sealed) ——|> AsyncOperation ------------------------------------------------------------------------------------------------ 随着Unity更新或在一些可选的Package中,可能有更多。。。 ------------------------------------------------------------------------------------------------ 测试验证 第2、3、4、5、6条 如下: using System.Collections;using UnityEngine;public class Test : MonoBehaviour{void Start(){StartCoroutine(Func1());}IEnumerator Func1(){Debug.Log("Time.frameCount: " + Time.frameCount);yield return null;Debug.Log("Time.frameCount: " + Time.frameCount);yield return 0;Debug.Log("Time.frameCount: " + Time.frameCount);yield return 1;Debug.Log("Time.frameCount: " + Time.frameCount);yield return 99; //其他整数Debug.Log("Time.frameCount: " + Time.frameCount);yield return 0.5f; //浮点数值Debug.Log("Time.frameCount: " + Time.frameCount);yield return false; //bool值Debug.Log("Time.frameCount: " + Time.frameCount);yield return "Hi NRatel!"; //字符串Debug.Log("Time.frameCount: " + Time.frameCount);yield return new Object(); //任意对象Debug.Log("Time.frameCount: " + Time.frameCount);} } 测试验证 第7条 如下: using System.Collections;using UnityEngine;public class Test : MonoBehaviour{void Start(){StartCoroutine(Func1());}IEnumerator Func1(){Debug.Log("Func1");yield return Func2();}IEnumerator Func2(){Debug.Log("Func2");yield return Func3();}IEnumerator Func3(){Debug.Log("Func3");yield return null;} } 三、Unity协程实现原理 1、C 的迭代器。 现在已经知道:协程肯定与IEnumerator有关,因为启动协程时需要一个 IEnumerator 对象。 而 IEnumerator 是C实现的 迭代器模式 中的 枚举器(用于迭代的游标)。 迭代器相关接口定义如下: namespace System.Collections{//可枚举(可迭代)对象接口public interface IEnumerable{IEnumerator GetEnumerator();}//迭代游标接口public interface IEnumerator{object Current { get; }bool MoveNext();void Reset();} } 参考 MSDN C文档中对于 IEnumerator、IEnumerable、迭代器 的描述。 利用 IEnumerator 对象,可以对与之关联的 IEnumerable 集合 进行迭代: 1)、通过 IEnumerator 的 Current 方法,可以获取集合中位于枚举数当前位置的元素。 2)、通过 IEnumerator 的 MoveNext 方法,可以将枚举数推进到集合的下一个元素。如果 MoveNext 越过集合的末尾, 则枚举器将定位在集合中最后一个元素之后, 同时 MoveNext 返回 false。 当枚举器位于此位置时, 对 MoveNext 的后续调用也将返回 false 。如果最后一次调用 MoveNext 时返回 false,则 Current 未定义(结果为null)。 3)、通过 IEnumerator 的 Reset 方法,可以将“迭代游标” 设置为其初始位置,该位置位于集合中第一个元素之前。 2、C 的 yield 关键字。 C编译器在生成IL代码时,会将一个返回值类型为 IEnumerator 的方法(其中包含一系列的 yield return 语句),构建为一个实现了 IEnumerator 接口的对象。 注意,yield 是C的关键字,而非Unity定义!IEnumerator 对象 也可以直接用于迭代,并非只能被Unity的 StartCoroutine 使用! using System.Collections;using UnityEngine;public class Test : MonoBehaviour{void Start(){IEnumerator e = Func();while (e.MoveNext()){Debug.Log(e.Current);} }IEnumerator Func(){yield return 1;yield return "Hi NRatel!";yield return 3;} } 对上边C代码生成的Dll进行反编译,查看IL代码: 3、Unity 的协程。 Unity 协程是在逐帧迭代的,这点可以从 Unity 脚本生命周期 中看出。 可以大胆猜测一下,实现出自己的协程(功能相似,能够说明逐帧迭代的原理,不是Unity源码): using System;using System.Collections;using System.Collections.Generic;using UnityEngine;public class Test : MonoBehaviour{private Dictionary<IEnumerator, IEnumerator> recoverDict; //key:当前迭代器 value:子迭代器完成后需要恢复的父迭代器private IEnumerator enumerator;private void Start(){//Unity自身的协程//StartCoroutine(Func1());//自己实现的协程StarMyCoroutine(Func1());}private void StarMyCoroutine(IEnumerator e){recoverDict = new Dictionary<IEnumerator, IEnumerator>();enumerator = e;recoverDict.Add(enumerator, null); //完成后不需要恢复任何迭代器}private void LateUpdate(){if (enumerator != null){DoEnumerate(enumerator);} }private void DoEnumerate(IEnumerator e){object current;if (e.MoveNext()){current = e.Current;}else{//迭代结束IEnumerator recoverE = recoverDict[e];if (recoverE != null){recoverDict.Remove(e);}//恢复至父迭代器, 若没有则会至为nullenumerator = recoverE;return;}//null,什么也不做,下一帧继续if (current == null) { return; }Type type = current.GetType();//基础类型,什么也不做,下一帧继续if (current is System.Int32) { return; }if (current is System.Boolean) { return; }if (current is System.String) { return; }//IEnumerator 类型, 等待内部嵌套的IEnumerator迭代完成再继续if (current is IEnumerator){//切换至子迭代器enumerator = current as IEnumerator;recoverDict.Add(enumerator, e);return;}//YieldInstruction 类型, 猜测也是类似IEnumerator的实现if (current is YieldInstruction){//省略实现return;} }IEnumerator Func1(){Debug.Log("Time.frameCount: " + Time.frameCount);yield return null;Debug.Log("Time.frameCount: " + Time.frameCount);yield return "Hi NRatel!";Debug.Log("Time.frameCount: " + Time.frameCount);yield return 3;Debug.Log("Time.frameCount: " + Time.frameCount);yield return new WaitUntil(() =>{return Time.frameCount == 20;});Debug.Log("Time.frameCount: " + Time.frameCount);yield return Func2();Debug.Log("Time.frameCount: " + Time.frameCount);}IEnumerator Func2(){Debug.Log("XXXXXXXXX");yield return null;Debug.Log("YYYYYYYYY");yield return Func3(); //嵌套 IEnumerator}IEnumerator Func3(){Debug.Log("AAAAAAAA");yield return null;Debug.Log("BBBBBBBB");yield return null;} } 对比结果,基本可以达成协程作用,包括 IEnumerator 嵌套。 但是 Time.frameCount 的结果不同,想来实现细节必然是有差别的。 四、部分Unity源码分析 1、CustomYieldInstruction 类 可以继承该类,并实现自己的、需要异步等待的类。 原理: 当协程中 yield return “一个CustomYieldInstruction的子类”; 其实就相当于在原来的 迭代器A 中,插入了一个 新的迭代器B。 当迭代程序进入 B ,如果 keepWaiting 为 true,MoveNext() 就总是返回 true。 上面已经说过,迭代器在迭代时,MoveNext() 返回false 才标志着迭代完成! 那么,B 就总是完不成,直到 keepWaiting 变为 false。 这样 A 运行至 B处就 处于了 等待B完成的状态,相当于A挂起了。 猜测 YieldInstruction 也是类似的实现。 // Unity C reference source// Copyright (c) Unity Technologies. For terms of use, see// https://unity3d.com/legal/licenses/Unity_Reference_Only_Licenseusing System.Collections;namespace UnityEngine{public abstract class CustomYieldInstruction : IEnumerator{public abstract bool keepWaiting{get;}public object Current{get{return null;} }public bool MoveNext() { return keepWaiting; } public void Reset() {} }} 2、WaitUntil 类 语义为 “等待...直到满足...” 继承自 CustomYieldInstruction,需要等待时让 m_Predicate 返回 false (keepWating为true)。 // Unity C reference source// Copyright (c) Unity Technologies. For terms of use, see// https://unity3d.com/legal/licenses/Unity_Reference_Only_Licenseusing System;namespace UnityEngine{public sealed class WaitUntil : CustomYieldInstruction{Func<bool> m_Predicate;public override bool keepWaiting { get { return !m_Predicate(); } }public WaitUntil(Func<bool> predicate) { m_Predicate = predicate; } }} 3、WaitWhile 类 语义为 “等待...如果满足...” 继承自 CustomYieldInstruction,需要等待时让 m_Predicate 返回 true (keepWating为true)。 与 WaitUntil 的实现恰好相反。 // Unity C reference source// Copyright (c) Unity Technologies. For terms of use, see// https://unity3d.com/legal/licenses/Unity_Reference_Only_Licenseusing System;namespace UnityEngine{public sealed class WaitWhile : CustomYieldInstruction{Func<bool> m_Predicate;public override bool keepWaiting { get { return m_Predicate(); } }public WaitWhile(Func<bool> predicate) { m_Predicate = predicate; } }} 本篇文章为转载内容。原文链接:https://blog.csdn.net/NRatel/article/details/102870744。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-24 16:50:42
389
转载
Kotlin
...继承、接口等概念得以实现,使得代码结构清晰,易于维护和扩展。 功能性编程(FP) , 功能性编程是一种编程范式,强调使用函数来表达计算过程,避免改变状态和使用副作用。Kotlin通过支持高阶函数、局部函数、递归等功能,将功能性编程的特性融入到语言中,提供了一种更简洁、更易于测试的编程方式。 跨平台开发(multi-platform development) , 跨平台开发是指编写一次代码可以在多个平台上运行的技术。Kotlin通过Kotlin/JS和Kotlin/Native等技术,支持在多种操作系统和设备上开发应用,包括Web浏览器、Android、iOS等,大大提高了开发效率和代码复用性。 零成本抽象(zero-cost abstractions) , 零成本抽象是Kotlin设计哲学的一部分,指的是在使用抽象概念(如泛型、高阶函数等)时,不会增加额外的运行时开销或代码复杂度。这使得开发者能够使用更高级别的抽象而不担心性能损失,从而提高代码的可读性和可维护性。 现代软件开发(modern software development) , 现代软件开发是指采用最新技术和最佳实践来创建高质量、可扩展和安全的软件系统的过程。Kotlin作为一门现代编程语言,结合了简洁的语法、强大的功能特性和跨平台支持,为现代软件开发提供了有力的工具,助力开发者构建更高效、更安全的应用程序。
2024-07-25 00:16:35
266
风轻云淡
转载文章
...取360度旋转特征值实现准确的识别。 ClearType 效果 , ClearType 是一种微软开发的字体平滑技术,旨在提高液晶显示器上文本的显示质量。它通过次像素渲染技术改善了屏幕上的文本边缘,使其看起来更清晰、更易于阅读。文中指出,竹子在生成验证码时遇到了未对 Graphics 填充底色的问题,导致原本应具有的 ClearType 效果消失,使得验证码中的文字边缘出现毛边,视觉效果受到影响。 验证码(CAPTCHA) , 验证码全称“Completely Automated Public Turing test to tell Computers and Humans Apart”,是一种区分计算机程序与人类用户的安全测试手段。在本文情境下,竹子改进了一种旋转式验证码生成方法,该方法利用随机字符串、图像处理技术和类神经网络进行文字辨识,从而增强验证码的安全性,防止自动化脚本进行恶意攻击或滥用网站服务。
2023-05-27 09:38:56
249
转载
Mongo
...添加额外的管道步骤来实现: javascript db.users.aggregate([ { $lookup: { from: "orders", localField: "userId", foreignField: "userId", as: "orderDetails" } }, { $project: { _id: 1, name: 1, email: 1, firstOrderStatus: { $arrayElemAt: ["$orderDetails.status", 0] } } } ]) 这段代码使用了$arrayElemAt函数来提取orderDetails数组的第一个元素对应的status值。 --- 4. 总结与反思 这次经历教会了我什么? 经过这次折腾,我对MongoDB的聚合框架有了更深的理解。其实呢,它虽然挺灵活的,但这也意味着我们得更小心翼翼地把握查询逻辑,不然很容易就出问题啦!特别是处理那些涉及多个集合的操作时,你得弄明白每一步到底干了啥,不然就容易出岔子。 最后,我想说的是,无论是在编程还是生活中,遇到困难并不可怕,可怕的是放弃思考。只要愿意花时间去研究和实践,总会找到解决问题的办法。希望大家都能从中受益匪浅! 好了,今天的分享就到这里啦!如果你也有类似的经历或者疑问,欢迎随时留言交流哦~
2025-04-28 15:38:33
17
柳暗花明又一村_
RabbitMQ
...在RabbitMQ中实现消息的重新入队? 引言 在构建高效、可扩展的分布式系统时,消息队列扮演着至关重要的角色。哎呀,你知道吗?这些东西超级厉害的!它们就像我们日常生活中那个超级棒的快递员,能帮我们在不同的地方之间传递信息,而且还是在不打扰我们的情况下悄悄进行的那种。不仅如此,它们还能把大家手头的任务平均分配给每个人,就像是食堂里的阿姨,总能把饭分得均匀,让大家都能吃饱。还有,它们还能把重要的信息记录下来,就像我们小时候写日记一样,重要的事情不会忘记。所以,有了它们,我们的工作和生活就变得更加高效和有序了!哎呀,你知道那款叫RabbitMQ的消息中间件吗?这家伙在咱们开发者圈里可火得不得了,简直就是个消息传递的神器!为啥呢?因为它不仅成熟稳定,功能还贼强大,各种特性多到数不清,简直就是咱们搞技术的小伙伴们的最爱!用它来处理消息,那叫一个顺畅,效率杠杠的,怪不得这么多人对它情有独钟呢!本文旨在深入探讨如何在RabbitMQ中实现消息的重新入队机制,这是一个关键的功能,对于处理异常场景、优化系统性能至关重要。 第一部分:理解消息重新入队的基本概念 消息重新入队,简单来说,就是当消费者无法处理消息或者消息处理失败时,RabbitMQ自动将消息重新放入队列的过程。哎呀,这个机制就像是系统的超级救生员,专门负责不让任何消息失踪,还有一套超级厉害的技能,能在系统出状况的时候及时出手,让它重新变得稳稳当当的。就像你出门忘了带钥匙,但有备用钥匙在手,就能轻松解决问题一样,这个机制就是系统的那个备用钥匙,关键时刻能救大急! 第二部分:消息重新入队的关键因素 - 消息持久化:消息是否持久化决定了消息在RabbitMQ服务器重启后是否能继续存在。启用持久化(basic.publish()方法中的mandatory参数设置为true)是实现消息重新入队的基础。 - 确认机制:通过配置confirm.select,可以确保消息被正确地投递到队列中。这有助于检测消息投递失败的情况,从而触发重新入队流程。 - 死信交换:当消息经过一系列处理后仍不符合接收条件时,可能会被转移到死信队列中。合理配置死信策略,可以避免死信积累,确保消息正常流转。 第三部分:实现消息重新入队的步骤 步骤一:配置持久化 在RabbitMQ中,确保消息持久化是实现重新入队的第一步。通过生产者代码添加持久化标志: python import pika connection = pika.BlockingConnection(pika.ConnectionParameters('localhost')) channel = connection.channel() channel.queue_declare(queue='my_queue', durable=True) message = "Hello, RabbitMQ!" channel.basic_publish(exchange='', routing_key='my_queue', body=message, properties=pika.BasicProperties(delivery_mode=2)) 设置消息持久化 connection.close() 步骤二:使用确认机制 通过confirm.select来监听消息确认状态,确保消息成功到达队列: python def on_delivery_confirmation(method_frame): if method_frame.method.delivery_tag in sent_messages: print(f"Message {method_frame.method.delivery_tag} was successfully delivered") else: print("Failed to deliver message") sent_messages = [] connection = pika.BlockingConnection(pika.ConnectionParameters('localhost')) channel = connection.channel() channel.confirm_delivery() channel.basic_consume(queue='my_queue', on_message_callback=callback, auto_ack=False) channel.start_consuming() 步骤三:处理异常与重新入队 在消费端,通过捕获异常并重新发送消息到队列来实现重新入队: python import pika def callback(ch, method, properties, body): try: process_message(body) except Exception as e: print(f"Error processing message: {e}") ch.basic_nack(delivery_tag=method.delivery_tag, requeue=True) def process_message(message): 处理逻辑... pass connection = pika.BlockingConnection(pika.ConnectionParameters('localhost')) channel = connection.channel() channel.queue_declare(queue='my_queue') channel.basic_qos(prefetch_count=1) channel.basic_consume(queue='my_queue', on_message_callback=callback) channel.start_consuming() 第四部分:实践与优化 在实际应用中,合理设计队列的命名空间、消息TTL、死信策略等,可以显著提升系统的健壮性和性能。此外,监控系统状态、定期清理死信队列也是维护系统健康的重要措施。 结语 消息重新入队是RabbitMQ提供的一种强大功能,它不仅增强了系统的容错能力,还为开发者提供了灵活的错误处理机制。通过上述步骤的学习和实践,相信你已经对如何在RabbitMQ中实现消息重新入队有了更深入的理解。嘿,兄弟!听我一句,你得明白,做事情可不能马虎。每一个小步骤,每一个细节,都像是你在拼图时放的一块小片儿,这块儿放对了,整幅画才好看。所以啊,在你搞设计或者实现方案的时候,千万要细心点儿,谨慎点儿,别急躁,慢慢来,细节决定成败你知道不?这样出来的成果,才能经得起推敲,让人满意!愿你在构建分布式系统时,能够充分利用RabbitMQ的强大功能,打造出更加稳定、高效的应用。
2024-08-01 15:44:54
179
素颜如水
Dubbo
...过Future接口来实现。当客户端发起异步调用时,它会生成一个Future对象,并在服务器端返回结果后,通过这个对象获取结果。这种方式允许客户端在调用完成之前进行其他操作,从而充分利用了系统资源。 2. 实现异步调用的步骤 假设我们有一个简单的服务接口 HelloService,其中包含一个异步调用的方法 sayHelloAsync。 java public interface HelloService { CompletableFuture sayHelloAsync(String name); } @Service @Reference(async = true) public class HelloServiceImpl implements HelloService { @Override public CompletableFuture sayHelloAsync(String name) { return CompletableFuture.supplyAsync(() -> "Hello, " + name); } } 在这段代码中,HelloService 接口定义了一个异步方法 sayHelloAsync,它返回一个 CompletableFuture 类型的结果。哎呀,兄弟!你瞧,咱们的HelloServiceImpl就像个小机灵鬼,它可聪明了,不仅实现了接口,还在sayHelloAsync方法里玩起了高科技,用CompletableFuture.supplyAsync这招儿,给咱们来了个异步大戏。这招儿一出,嘿,整个程序都活了起来,后台悄悄忙活,不耽误事儿,等干完活儿,那结果直接就送到咱们手里,方便极了! 3. 客户端调用异步方法 在客户端,我们可以通过调用 Future 对象的 thenAccept 方法来处理异步调用的结果,或者使用 whenComplete 方法来处理结果和异常。 java @Autowired private HelloService helloService; public void callHelloAsync() { CompletableFuture future = helloService.sayHelloAsync("World"); future.thenAccept(result -> { System.out.println("Received response: " + result); }); } 这里,我们首先通过注入 HelloService 实例来调用 sayHelloAsync 方法,然后使用 thenAccept 方法来处理异步调用的结果。这使得我们在调用方法时就可以进行其他操作,而无需等待结果返回。 4. 性能优化与实战经验 在实际应用中,利用Dubbo的异步调用可以显著提升系统的性能。例如,在电商系统中,商品搜索、订单处理等高并发场景下,通过异步调用可以避免因阻塞等待导致的系统响应延迟,提高整体系统的响应速度和处理能力。 同时,合理的异步调用策略也需要注意以下几点: - 错误处理:确保在处理异步调用时正确处理可能发生的异常,避免潜在的错误传播。 - 超时控制:为异步调用设置合理的超时时间,避免长时间等待单个请求影响整个系统的性能。 - 资源管理:合理管理线程池大小和任务队列长度,避免资源过度消耗或任务积压。 结语 通过本文的介绍,我们不仅了解了Dubbo异步调用的基本原理和实现方式,还通过具体的代码示例展示了如何在实际项目中应用这一特性。哎呀,你知道吗?当咱们玩儿的分布式系统越来越复杂,就像拼积木一样,一块儿比一块儿大,这时候就需要一个超级厉害的工具来帮我们搭房子了。这个工具就是Dubbo,它就像是个万能遥控器,能让我们在不同的小房间(服务)之间畅通无阻地交流,特别适合咱们现在搭建高楼大厦(分布式应用)的时候用。没有它,咱们可得费老鼻子劲儿了!兄弟,掌握Dubbo的异步调用这招,简直是让你的程序跑得飞快,就像坐上了火箭!而且,这招还能让咱们在设计程序时有更多的花样,就像是厨师有各种调料一样,能应付各种复杂的菜谱,无论是大鱼大肉还是小清新,都能轻松搞定。这样,你的系统就既能快又能灵活,简直就是程序员界的武林高手嘛!
2024-08-03 16:26:04
340
春暖花开
转载文章
...果你是用Python实现相关的机器学习项目,那么Numpy对你而言是非常有帮助的。 Numpy API文档写得很好,以下是一些参考资料,读者可以阅读它们来了解更多关于Numpy的工作原理及某些特定的功能。 Numpy参考 Numpy数组创建例程 Numpy数组操作例程 Numpy线性代数 Scipy线性代数 如果你同时也在寻找关于Numpy和Scipy更多的资源,下面有几个好的参考教材: 2017·用Python进行数据分析 2017·Elegant Scipy 2015·Numpy指南 作者信息 Jason Brownlee,机器学习专家,专注于机器学习教育 文章原标题《Top Resources for Learning Linear Algebra for Machine Learning》,作者:Jason Brownlee, 译者:海棠,审阅:袁虎。 原文链接 干货好文,请关注扫描以下二维码: 本篇文章为转载内容。原文链接:https://blog.csdn.net/yunqiinsight/article/details/79722954。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-14 09:21:43
326
转载
Etcd
...实战演练 用Etcd实现分布式事务 现在咱们来实战一下,看看怎么用Etcd搞定分布式事务。假设我们要实现一个简单的库存管理系统。 3.1 场景描述 假设我们有两个服务A和服务B,服务A负责扣减库存,服务B负责记录日志。要让这两个步骤像一个整体似的,中间不能出岔子,那我们就得靠Etcd来管着分布式锁和事务了。 3.2 代码实现 Step 1: 初始化Etcd客户端 python import etcd3 client = etcd3.client(host='localhost', port=2379) Step 2: 获取分布式锁 python 创建一个租约,有效期为10秒 lease = client.lease(10) 尝试获取锁 lock_key = '/inventory-lock' try: lock_result = client.put(lock_key, 'locked', lease=lease) print("Lock acquired!") except Exception as e: print(f"Failed to acquire lock: {e}") Step 3: 执行事务操作 python 假设当前库存是100件 stock_key = '/inventory' current_stock = int(client.get(stock_key)[0].decode('utf-8')) if current_stock >= 10: 开始事务 success, _ = client.transaction( compare=[ client.transactions.version(stock_key) == current_stock ], success=[ client.transactions.put(stock_key, str(current_stock - 10)) ], failure=[] ) if success: print("Inventory updated successfully!") else: print("Failed to update inventory due to race condition.") else: print("Not enough stock available.") Step 4: 释放锁 python 租约到期后自动释放锁 lease.revoke() print("Lock released.") --- 4. 总结与展望 写到这里,我觉得咱们已经掌握了如何用Etcd来进行分布式事务管理。其实啊,事情没那么吓人!别看整个流程听着挺绕的,但只要你把分布式锁、事务操作还有观察者模式这些“法宝”都搞明白了,不管啥情况都能游刃有余地搞定,妥妥的! 不过,我也想提醒大家,分布式事务并不是万能药。有时候,过度依赖分布式事务反而会让系统变得更加复杂。所以,在实际开发中,我们需要根据业务需求权衡利弊。 最后,希望大家都能用好Etcd这个利器,让自己的分布式系统更加健壮和高效!如果你还有其他问题,欢迎随时来找我讨论,咱们一起进步!
2025-03-21 15:52:27
54
凌波微步
HessianRPC
...sianRPC而言,实现这一目标的关键在于: - 输入验证:确保所有传入的Hessian对象都经过严格的类型检查和边界值检查,防止任意构造的输入导致的错误行为。 - 异常处理:合理设置异常处理机制,确保异常信息不会泄露敏感信息,并提供足够的日志记录,以便后续分析和审计。 - 权限控制:通过API层面的权限校验,确保只有被授权的客户端能够调用特定的服务方法。 四、HessianRPC实例代码示例 下面是一个简单的HessianRPC服务端实现,用于展示如何在服务层实现基本的安全措施: java import org.apache.hessian.io.HessianInput; import org.apache.hessian.io.HessianOutput; import org.apache.hessian.message.MessageFactory; public class SimpleService { public String echo(String message) throws Exception { // 基本的输入验证 if (message == null || message.isEmpty()) { throw new IllegalArgumentException("Message cannot be null or empty"); } return message; } public void run() { try (ServerFactory sf = ServerFactory.createServerFactory(8080)) { sf.addService(new SimpleServiceImpl()); sf.start(); } catch (Exception e) { e.printStackTrace(); } } } class SimpleServiceImpl implements SimpleService { @Override public String echo(String message) { return "Echo: " + message; } } 这段代码展示了如何通过简单的异常处理和输入验证来增强服务的安全性。尽管这是一个简化的示例,但它为理解如何在实际应用中集成安全措施提供了基础。 五、结论与展望 HessianRPC虽然在自动化安全检测方面存在一定的支持,但其核心依赖于开发者对安全实践的深入理解和实施。通过采用现代的编程模式、遵循最佳实践、利用现有的安全工具和技术,开发者可以显著提升HessianRPC服务的安全性。哎呀,未来啊,软件工程的那些事儿和安全技术就像开挂了一样突飞猛进。想象一下,HessianRPC这些好东西,还有它的好伙伴们,它们会变得超级厉害,能自动帮我们检查代码有没有啥安全隐患,就像个超级安全小卫士。这样一来,咱们开发分布式系统的时候,就不用那么担心安全问题了,可以更轻松地搞出既安全又高效的系统,爽歪歪! --- 通过上述内容,我们不仅深入探讨了HessianRPC在自动化安全检测方面的支持情况,还通过具体的代码示例展示了如何在实践中应用这些安全措施。嘿,小伙伴们!这篇小文的目的是要咱们一起嗨起来,共同关注分布式系统的安全性。咱们得动动脑筋,别让那些不怀好意的小家伙有机可乘。怎么样,是不是觉得有点热血沸腾?咱们要团结起来,探索更多新鲜有趣的安全策略和技术,让我们的代码更安全,世界更美好!一起加油吧,开发者们!
2024-09-08 16:12:35
102
岁月静好
Beego
...统。以下是几种常见的实现方式: 1. 基于角色的访问控制(RBAC) - 这是一种常用的权限管理模型,它通过将权限分配给角色,再将角色分配给用户的方式简化了权限管理。 - 示例代码: go type Role struct { ID int64 Name string } type User struct { ID int64 Username string Roles []Role // 用户可以拥有多个角色 } func (u User) HasPermission(permission string) bool { for _, role := range u.Roles { if role.Name == permission { return true } } return false } 2. JWT(JSON Web Token)认证 - JWT允许你在不依赖于服务器端会话的情况下验证用户身份,非常适合微服务架构。 - 示例代码: go package main import ( "github.com/astaxie/beego" "github.com/dgrijalva/jwt-go" "net/http" "time" ) var jwtSecret = []byte("your_secret_key") type Claims struct { Username string json:"username" jwt.StandardClaims } func loginHandler(c beego.Context) { username := c.Input().Get("username") password := c.Input().Get("password") // 这里应该有验证用户名和密码的逻辑 token := jwt.NewWithClaims(jwt.SigningMethodHS256, Claims{ Username: username, StandardClaims: jwt.StandardClaims{ ExpiresAt: time.Now().Add(time.Hour 72).Unix(), }, }) tokenString, err := token.SignedString(jwtSecret) if err != nil { c.Ctx.ResponseWriter.WriteHeader(http.StatusInternalServerError) return } c.Data[http.StatusOK] = []byte(tokenString) } func authMiddleware() beego.ControllerFunc { return func(c beego.Controller) { tokenString := c.Ctx.Request.Header.Get("Authorization") token, err := jwt.ParseWithClaims(tokenString, &Claims{}, func(token jwt.Token) (interface{}, error) { return jwtSecret, nil }) if claims, ok := token.Claims.(Claims); ok && token.Valid { // 将用户信息存储在session或者全局变量中 c.SetSession("user", claims.Username) c.Next() } else { c.Ctx.ResponseWriter.WriteHeader(http.StatusUnauthorized) } } } 3. 中间件与拦截器 - 利用Beego的中间件机制,我们可以为特定路由添加权限检查逻辑,从而避免重复编写相同的权限校验代码。 - 示例代码: go func AuthRequiredMiddleware() beego.ControllerFunc { return func(c beego.Controller) { if !c.GetSession("user").(string) { c.Redirect("/login", 302) return } c.Next() } } func init() { beego.InsertFilter("/admin/", beego.BeforeRouter, AuthRequiredMiddleware) } 四、实际应用案例分析 让我们来看一个具体的例子,假设我们正在开发一款在线教育平台,需要对不同类型的用户(学生、教师、管理员)提供不同的访问权限。例如,只有管理员才能删除课程,而学生只能查看课程内容。 1. 定义用户类型 - 我们可以通过枚举类型来表示不同的用户角色。 - 示例代码: go type UserRole int const ( Student UserRole = iota Teacher Admin ) 2. 实现权限验证逻辑 - 在每个需要权限验证的操作之前,我们都需要先判断当前登录用户是否具有相应的权限。 - 示例代码: go func deleteCourse(c beego.Controller) { if userRole := c.GetSession("role"); userRole != Admin { c.Ctx.ResponseWriter.WriteHeader(http.StatusForbidden) return } // 执行删除操作... } 五、总结与展望 通过上述讨论,我们已经了解了如何在Beego框架下实现基本的用户权限管理系统。当然,实际应用中还需要考虑更多细节,比如异常处理、日志记录等。另外,随着业务越做越大,你可能得考虑引入一些更复杂的权限管理系统了,比如可以根据不同情况灵活调整的权限分配,或者可以精细到每个小细节的权限控制。这样能让你的系统管理起来更灵活,也更安全。 最后,我想说的是,无论采用哪种方法,最重要的是始终保持对安全性的高度警惕,并不断学习最新的安全知识和技术。希望这篇文章能对你有所帮助! --- 希望这样的风格和内容符合您的期待,如果有任何具体需求或想要进一步探讨的部分,请随时告诉我!
2024-10-31 16:13:08
166
初心未变
Material UI
...通过自定义Chip来实现。比如: jsx label="摇滚" icon={} color="error" /> 还有哦,有时候你可能会遇到一些动态数据,比如从后台获取的一组选项。这种情况下,你可以用循环来生成ChipGroup的内容,代码如下: jsx const musicTypes = ['摇滚', '爵士', '流行', '古典']; return ( value={selectedTypes} onChange={handleTypeChange} > {musicTypes.map((type) => ( ))} ); 看到没?是不是特别方便?这种灵活性真的让人爱不释手! --- 5. 总结与反思 好了,到这里咱们就差不多聊完了ChipGroup的所有知识点啦!其实吧,我觉得这个组件真的挺实用的,无论是做前端还是后端,都能帮我们省去很多麻烦事。对啊,刚开始接触的时候确实会有点迷糊,感觉云里雾里的。不过别担心,多试着上手操作个几次,慢慢你就明白了,其实一点都不难! 话说回来,我觉得学习任何技术都得抱着一种探索的心态,不能死记硬背。嘿嘿,说到ChipGroup,我当初也是被它折腾了好一阵子呢!各种属性啊、方法啊,全都得自己动手试一遍,慢慢摸索才知道咋用。就像吃 unfamiliar 的菜一样,一开始啥都不懂,只能一个劲儿地尝,最后才找到门道!所以说啊,大家要是用的时候碰到啥难题,别急着抓头发,先去瞅瞅官方文档呗,说不定就有答案了。实在不行,就自己动手试试,有时候动手一做,豁然开朗的感觉就来了! 总之呢,希望大家都能用好这个组件,把它变成自己的得力助手!如果有啥疑问或者更好的玩法,欢迎随时交流哦~ 😊
2025-05-09 16:08:24
87
月下独酌
Redis
...和删除元素,适合用于实现队列、栈或者保存事件历史记录。列表的特性使其在处理序列化数据或消息队列时非常有用。 代码示例: bash 向列表尾部添加元素 redis-cli rpush messages "Hello" redis-cli rpush messages "World" 从列表头部弹出元素 redis-cli lpop messages 查看列表中的元素 redis-cli lrange messages 0 -1 移除列表中的指定元素 redis-cli lrem messages "World" 1 思考过程: 列表的动态性质使得它们成为处理实时数据流的理想选择。比如说,在咱们常用的聊天软件里头,新来的消息就像新鲜出炉的面包一样,被放到了面包篮的最底下,而那些老掉牙的消息就给挤到一边去了,这样做的目的就是为了保证咱们聊天界面能一直保持最新鲜、最实时的状态。就像是在超市里,你每次买完东西,最前面的架子上总是最新的商品,那些旧货就被推到后面去一样。 4. 集合(Sets) 集合是无序、不重复的元素集合,适合用于存储唯一项或进行元素计数。Redis的集合操作既高效又安全,是实现去重、投票系统或用户兴趣聚合的理想选择。 代码示例: bash 向集合添加元素 redis-cli sadd users alice bob charlie 检查元素是否在集合中 redis-cli sismember users alice 移除集合中的元素 redis-cli srem users bob 计算集合的大小 redis-cli scard users 思考过程: 集合的唯一性保证了数据的纯净度,同时其高效的操作速度使其成为处理大量用户交互数据的首选。在投票系统中,用户的选择会被自动去重,确保了统计的准确性。 结语 Redis提供的这些数据结构,无论是单独使用还是结合使用,都能极大地提升应用的性能和灵活性。通过上述代码示例和思考过程的展示,我们可以看到,Redis不仅仅是一个简单的键值存储系统,而是内存世界中的一把万能钥匙,帮助我们解决各种复杂问题。哎呀,不管你是想捣鼓个能秒回消息的聊天软件,还是想要打造个能精准推荐的神器,亦或是设计一套复杂到让人头大的分布式计算平台,Redis这货简直就是你的秘密武器啊!它就像个全能的魔法师,能搞定各种棘手的问题,让你在编程的路上顺风顺水,轻松应对各种挑战。在未来的开发旅程中,掌握这些数据结构的使用技巧,将使你能够更加游刃有余地应对各种挑战。
2024-08-20 16:11:43
98
百转千回
Dubbo
...新的服务元数据中心,实现了服务实例的精确管理和动态配置更新,使得在服务消费者出现异常时能更快地完成服务路由切换。同时,新版Dubbo也优化了原有的集群容错策略,配合精准的熔断降级规则,能够在大规模服务调用场景中有效避免雪崩效应,提升系统的韧性和自愈能力。 此外,考虑到云环境的复杂性和不确定性,社区围绕Dubbo开展了大量关于服务网格(Service Mesh)的研究和实践工作,旨在通过Istio、Envoy等服务代理层,为分布式系统提供更为精细的流量控制和可观测性,进而提升对消费者宕机或网络不稳定等问题的应对能力。 综上所述,无论是Dubbo框架自身的迭代升级,还是与新兴服务治理理念和技术的深度融合,都在不断丰富和完善其在面对服务消费者异常时的应对策略。未来,随着更多实战经验的积累和技术生态的发展,Dubbo将继续为保障分布式系统稳定性和提升服务质量发挥关键作用。因此,对于相关领域的开发者和运维人员来说,紧跟Dubbo的最新进展,深入理解并合理运用其容错机制,无疑将成为构建健壮、可靠的微服务架构体系的重要一环。
2024-03-25 10:39:14
484
山涧溪流
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
ln -s /path/original_file /path/symlink
- 创建指向原始文件的符号链接。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"