前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[方向感知 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
HBase
...建议大家按照以下几个方向逐一排查: 3.1 Region分布不均怎么办? 如果发现某些RegionServer的压力过大,而其他节点却很空闲,这可能是由于Region分布不均造成的。解决方法很简单,调整负载均衡策略即可。 示例代码: bash hbase shell balance_switch true 上面这条命令会开启自动负载均衡功能。当然,你也可以手动执行balancer命令强制进行一次平衡操作。 3.2 GC时间过长怎么办? GC时间过长往往意味着内存不足。这时候你需要检查HBase的堆内存设置,并适当增加Xmx参数值。 示例代码: xml hbase.regionserver.heapsize 8g 将heapsize调大一些,看看是否能缓解GC压力。 --- 4. 第三步 实战演练——真实案例分享 为了让大家更直观地感受到性能优化的过程,我来分享一个真实的案例。有一天,我们团队收到用户的吐槽:“你们这个查询也太慢了吧?等得我花都谢了!”我们赶紧查看了一下情况,结果发现是RegionServer上某个Region在搞事情,一直在上演“你进我也进”的读写冲突大戏,把自己整成了个“拖油瓶”。 解决方案: 1. 首先,定位问题区域。通过以下命令查看哪些Region正在发生大量读写: sql scan 'hbase:metrics' 2. 然后,调整Compaction策略。如果发现Compaction过于频繁,可以尝试降低触发条件: xml hbase.hregion.majorcompaction 86400000 最终,经过一系列调整后,查询速度果然得到了显著提升。这种成就感真的让人欲罢不能! --- 5. 结语 保持好奇心,不断学习进步 检查HBase集群的性能并不是一件枯燥无味的事情,相反,它充满了挑战性和乐趣。每次解决一个问题,都感觉是在玩拼图游戏,最后把所有碎片拼在一起的时候,那成就感真的太爽了,简直没法用语言形容! 最后,我想说的是,无论你是刚入门的新手还是经验丰富的老手,都不要停止学习的步伐。HBase的技术栈非常庞大,每一次深入研究都会让你受益匪浅。所以,让我们一起努力吧!💪 希望这篇文章对你有所帮助,如果你还有任何疑问,欢迎随时来找我交流哦~
2025-04-14 16:00:01
63
落叶归根
Spark
...!所以,你看,这发展方向就是越来越智能、好用、高效,让科技真正服务于人,而不是让人被科技牵着鼻子走。 --- 通过本文的探讨,我们不仅学习了如何理解和利用Spark的日志信息来诊断问题,还了解了一些实用的调试技巧和最佳实践。希望这些内容能帮助你更有效地管理你的Spark应用程序,确保其在复杂的数据处理场景下稳定运行。
2024-09-07 16:03:18
141
秋水共长天一色
MySQL
...将朝着自动化、智能化方向发展。 与此同时,开源社区也在积极贡献力量。Linux内核开发者近日宣布,将在即将发布的5.18版本中引入一项名为“FD-PIN”的新特性,该特性能够显著提高文件描述符管理效率,为数据库等高性能应用场景提供更多可能性。这无疑为解决“Too many open files”这类经典问题提供了全新思路。 综上所述,无论是从技术演进还是实际案例来看,如何高效管理数据库资源已成为当下亟待解决的重要课题。作为从业者,我们需要紧跟时代步伐,不断学习新技术,同时注重实践经验积累,唯有如此才能更好地应对未来的挑战。
2025-04-17 16:17:44
109
山涧溪流_
转载文章
...赤诚的心和坚定不移的方向。 如果你感兴趣,可以将下面代码复制到IDLE或者Spyder或者Pycharm,轻轻一点,属于你的图就成了。 第一个图from matplotlib import pyplot as plt 调节图形大小,宽,高plt.figure(figsize=(6,9))定义饼状图的标签,标签是列表labels = [ '实践与经验','交流与反馈','培训与学习']每个标签占多大,会自动去算百分比sizes = [70,20,10]colors = ['red','yellowgreen','lightskyblue']colors = ['gray','00FFFF','FF1493']灰、粉、蓝绿将某部分爆炸出来, 使用括号,将第一块分割出来,数值的大小是分割出来的与其他两块的间隙explode = (0.05,0.05,0)patches,l_text,p_text = plt.pie(sizes,explode=explode,labels=labels,colors=colors,labeldistance = 1.1,autopct = '%3.1f%%',shadow = False,startangle = 90,pctdistance = 0.6)labeldistance,文本的位置离远点有多远,1.1指1.1倍半径的位置autopct,圆里面的文本格式,%3.1f%%表示小数有三位,整数有一位的浮点数shadow,饼是否有阴影startangle,起始角度,0,表示从0开始逆时针转,为第一块。一般选择从90度开始比较好看pctdistance,百分比的text离圆心的距离patches, l_texts, p_texts,为了得到饼图的返回值,p_texts饼图内部文本的,l_texts饼图外label的文本改变文本的大小方法是把每一个text遍历。调用set_size方法设置它的属性for t in l_text:t.set_size(25)for t in p_text:t.set_size(20) 设置x,y轴刻度一致,这样饼图才能是圆的plt.axis('equal')plt.legend(loc="upper left",frameon=False,fontsize=20,borderaxespad=-5)plt.title('721法则', y=-0.1,fontsize=30,loc="center")plt.savefig("721法则.png")plt.show() 下图还是我画的,当然,没有上面那个美观。 第二个图import matplotlib.pyplot as pltplt.rcParams['font.family']='SimHei'plt.figure(figsize=(6, 9))labels = '实践与经验','交流与反馈','培训与学习'sizes = [70.0,20.0,10.0]explode = (0.1,0,0)colors = ['gray','00FFFF','FF1493']plt.pie(sizes,explode=explode,labels=labels,colors=colors,labeldistance=1.1,\autopct='%d%%',shadow=True,counterclock=False)plt.legend(loc="upper left",frameon=False,fontsize=18,borderaxespad=-5)plt.axis('equal')plt.title('721法则', y=-0.1,fontsize=18)plt.savefig("721法则.png")plt.show() 结论:我们不但要会画,还要学着画得尽可能美,实践是唯一的途径。 Python入门教程 如果你现在还是不会Python也没关系,下面我会给大家免费分享一份Python全套学习资料, 包含视频、源码、课件,希望能帮到那些不满现状,想提升自己却又没有方向的朋友,可以和我一起来学习交 流。 ① Python所有方向的学习路线图,清楚各个方向要学什么东西 ② 600多节Python课程视频,涵盖必备基础、爬虫和数据分析 ③ 100多个Python实战案例,含50个超大型项目详解,学习不再是只会理论 ④ 20款主流手游迫解 爬虫手游逆行迫解教程包 ⑤ 爬虫与反爬虫攻防教程包,含15个大型网站迫解 ⑥ 爬虫APP逆向实战教程包,含45项绝密技术详解 ⑦ 超300本Python电子好书,从入门到高阶应有尽有 ⑧ 华为出品独家Python漫画教程,手机也能学习 ⑨ 历年互联网企业Python面试真题,复习时非常方便 👉Python学习视频600合集👈 观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。 👉实战案例👈 光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。 👉100道Python练习题👈 检查学习结果。 👉面试刷题👈 资料领取 上述这份完整版的Python全套学习资料已经上传CSDN官方,朋友们如果需要可以微信扫描下方CSDN官方认证二维码输入“领取资料” 即可领取 好文推荐 了解python的前景:https://blog.csdn.net/weixin_49891576/article/details/127187029 了解python的兼职:https://blog.csdn.net/weixin_49891576/article/details/127125308 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_49891576/article/details/130861900。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-04 23:38:21
105
转载
Mongo
...析向更智能、更高效的方向发展。 总的来说,MongoDB作为现代大数据处理的重要工具之一,正以其独特的优势和持续的技术创新,引领着大数据时代的变革。面对未来的大数据挑战,MongoDB及相关技术将持续进化,为构建更加智慧、高效的数据驱动型社会奠定坚实的基础。
2024-08-13 15:48:45
148
柳暗花明又一村
转载文章
...和产品质量。这一研究方向为未来智能工厂中的实时精密控制提供了新的解决方案。 同时,在硬件接口标准化方面,国际电工委员会(IEC)正积极推动包括PWM输出和模拟量输入输出在内的通信协议统一化,以促进不同制造商设备间的无缝集成,降低系统开发难度和成本。 综上所述,无论是从控制器核心技术的演进,还是激光振镜控制系统智能化的发展趋势,以及行业标准的规范化推进,都显示出了工业自动化领域的勃勃生机与广阔前景。对于技术人员而言,紧跟这些前沿动态,掌握更高效、精确的运动控制技术,无疑将极大地推动自身业务水平的提升与创新。
2023-12-04 17:33:09
338
转载
转载文章
...业结构转变的一个重要方向,相较于传统的劳动密集型行业,该行业对于技术知识和专业技能的要求较高,其从业人员收入水平也往往高于其他行业。 农民工市民化进程 , 农民工市民化是指农村户籍人口在城市长期稳定就业并居住,逐步融入城市社会生活,享有与城镇居民同等的公共服务和社会保障的过程。《2020年北京市外来新生代农民工监测报告》中的农民工市民化进程动态监测调查,旨在了解农民工在京的工作条件、生活需求及其向市民角色转变的程度和面临的问题,以推动相关政策制定和服务改善。
2023-06-28 17:16:54
62
转载
.net
Hive
Apache Lucene
...ene有望在以下几个方向上实现突破: 1. 性能优化与资源管理:通过算法优化和硬件加速技术,进一步提高处理速度和资源利用率,满足大流量、高并发场景的需求。 2. 集成AI与机器学习:引入深度学习、自然语言处理等AI技术,增强检索系统的智能性和个性化推荐能力。 3. 跨语言与多模态搜索:随着全球化的进程加快,支持更多语言的处理和多模态(文本、图像、语音等)搜索将成为重要发展方向。 4. 隐私保护与安全:在数据安全和个人隐私日益受到重视的背景下,开发基于差分隐私、同态加密等技术的检索系统,保障用户数据的安全性。 结语 Apache Lucene作为一款成熟且仍在不断演进的全文检索库,在现代搜索引擎架构中发挥着不可或缺的作用。面对未来的挑战,它不仅需要持续优化现有功能,还需不断创新,以适应不断变化的市场需求和技术发展趋势。通过融合前沿技术,Apache Lucene有望在未来的信息检索领域中继续引领创新,为用户提供更高效、更智能、更安全的搜索体验。 --- 这篇“延伸阅读”旨在讨论Apache Lucene在当前及未来可能面临的技术挑战与发展方向,强调其在现代搜索引擎架构中的核心地位,并提出可能的解决方案和展望。通过深入分析当前应用优势、面临的挑战及未来发展趋势,为读者提供了一个全面而前瞻性的视角。
2024-07-25 00:52:37
391
青山绿水
Hadoop
...HDFS发展提供新的方向。 此外,国内多家互联网巨头也在积极布局自研的大规模分布式文件系统。比如阿里巴巴集团推出的飞天平台就整合了多种先进的存储技术,旨在为企业提供更加灵活、可靠的存储服务。这类本土化创新不仅满足了国内市场日益增长的需求,也为国际同行树立了标杆。 值得注意的是,尽管技术进步带来了诸多便利,但我们也必须警惕随之而来的潜在风险。例如,过度依赖第三方云服务商可能导致数据主权问题;而复杂系统的引入则可能增加管理难度。因此,在享受技术创新红利的同时,企业和开发者还需审慎评估自身的安全策略和技术选型。 总之,随着技术的不断发展,HDFS及其相关生态正经历着深刻的变革。未来,我们期待看到更多创新性的解决方案涌现出来,助力各行各业更好地应对数字化转型带来的挑战。
2025-05-04 16:24:39
103
月影清风
转载文章
...描述TCP连接中单个方向(客户端或服务端)所有相关信息的核心数据结构。它包含了该方向的状态(如TCP连接建立、接收数据或关闭等)、数据收集标志、正常数据缓冲区及其偏移量与字节数统计、紧急数据缓冲区及其相关控制变量等。通过half_stream结构体,Libnids能够有效地管理和分析TCP连接中的数据传输情况。 端口扫描 , 端口扫描是一种网络安全检测技术,也是攻击者探测目标主机开放服务、寻找潜在漏洞的重要手段。在本文上下文中,Libnids库具备检测端口扫描攻击的能力,通过设定参数scan_num_hosts和scan_delay等,可以监控同时扫描的端口数量和两次扫描之间的间隔时间,当发现有超出阈值的端口扫描活动时,会触发相应的警告或防御机制,帮助管理员识别并抵御可能的网络攻击。
2023-02-08 17:36:31
306
转载
Sqoop
...,将成为行业发展的新方向。同时,开源社区的持续贡献也将推动工具的创新,为企业提供更多低成本、高效率的解决方案。总之,数据迁移领域的技术创新正在加速演进,为企业的数据管理带来了前所未有的机遇和挑战。
2025-03-22 15:39:31
93
风中飘零
转载文章
...I算法也是值得关注的方向。例如,运用深度学习和强化学习技术优化消除类游戏的智能提示系统,能有效提高玩家体验并延长游戏生命周期。一篇发表在“自然”杂志子刊上的论文就研究了AI在连连看等消除类游戏中的应用,展示了通过机器学习预测最佳消除路径的可能性。 总的来说,在继续深入实践HTML、CSS、JavaScript基础开发的同时,紧跟Web技术前沿进展,结合先进的编程语言、图形处理技术和AI算法,将有助于开发者打造出更为丰富、流畅且富有挑战性的消除类游戏产品,不断满足日益增长的用户体验需求。
2023-06-08 15:26:34
516
转载
转载文章
...来估计重力加速度及其方向,进而确定重力向量和IMU的原始偏差,为后续VIO过程提供准确的初始条件。这个过程中要求IMU在采集这些数据时处于静止状态,以便准确提取出重力分量。
2023-09-13 20:38:56
310
转载
Kafka
...普遍关注其未来的演进方向。尽管Confluent正在推动KRaft(Kafka Raft-based Controller)项目,试图完全摆脱ZooKeeper的依赖,但在短期内,ZooKeeper仍将在许多传统部署环境中占据主导地位。因此,对于正在使用Kafka的企业而言,如何平衡现有基础设施与新技术之间的过渡,成为了一个值得深思的问题。 从长远来看,Kafka的成功离不开开源社区的支持。正如Apache软件基金会所倡导的理念,“开放、协作、共享”始终是推动技术创新的核心动力。在未来,随着更多企业和开发者加入到Kafka生态中,我们有理由相信,这一技术将继续保持旺盛的生命力,并在更多领域发挥重要作用。
2025-04-05 15:38:52
95
彩虹之上
转载文章
...伸阅读可以从以下几个方向进行: 1. 最新GC算法进展:随着JDK版本的不断更新,Oracle和OpenJDK社区对垃圾收集器进行了持续优化。例如,最新的ZGC和Shenandoah GC采用了更为先进的内存管理技术,如颜色指针、读屏障等,以实现更低延迟的并发标记清理过程。关注这些前沿GC算法的研究与发展,可以更全面地了解现代JVM如何高效处理大规模堆内存引用关系。 2. G1垃圾收集器与RSet深入解读:G1作为当前HotSpot JVM推荐的默认垃圾收集器,其内部机制中除了卡表外,Remembered Set(RSet)也是关键组件。详细了解RSet如何辅助卡表追踪跨区域引用,以及分区并发压缩等特性,将有助于读者掌握G1高效回收内存的具体实现原理。 3. 实际生产环境案例分析:通过阅读一些大型互联网企业或开源社区分享的实战经验文章,了解他们在使用CMS、G1等垃圾收集器时如何针对特定业务场景调整卡表相关参数,解决实际遇到的性能瓶颈问题。比如,如何根据应用特点选择合适的卡表大小、调整扫描频率以平衡GC开销与应用响应时间。 4. 学术研究论文:查阅近年来关于垃圾收集器优化的学术论文,比如《A Study of the G1 Garbage Collector》、《The Z Garbage Collector》等,可深入了解卡表设计背后的理论依据,以及研究人员为提升GC效率所做的各种尝试和改进。 5. 官方文档及源码阅读:直接研读Oracle官方发布的Java SE HotSpot VM Garbage Collection Tuning Guide,以及JDK源码中的CardTableBarrierSet等相关类实现,可以更直观地把握卡表的具体工作流程和技术细节。同时,关注JDK开发团队的博客、邮件列表讨论等,获取第一手的更新信息和未来发展方向。
2023-12-16 20:37:50
246
转载
转载文章
...b也是一个值得关注的方向。CronJob作为Kubernetes的一部分,可以根据Cron表达式在集群中调度容器化的定时任务,实现了与容器编排平台的高度集成。 此外,在深入研究定时任务原理时,可以追溯到操作系统级别的定时器和调度算法,如Linux系统的timerfd和POSIX信号定时器机制,这些底层技术为上层应用提供精确且高效的定时服务。 总之,随着技术的演进与发展,Java定时任务的实现方式日趋丰富多样,开发者应根据实际应用场景选择最适合的技术方案,同时关注社区前沿动态,以确保所采用的定时任务技术始终与时俱进。
2023-10-27 18:50:19
344
转载
转载文章
...的时间比较久,改进的方向是使用flash控件来限制,使用flash来上传,也不会出现弹出层,这样比较大众化,更容易为用户接受一点。我会不断改进。 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_39849287/article/details/111489534。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-18 10:58:17
268
转载
转载文章
...份成功率,作为用户不感知的功能,占用太多系统资源造成卡顿 是不行的,备份耗时越久,被系统杀死等意外事件发生的概率也越高。 数据导出方案考量: 恢复成功率大概是30%。不需要事先备份,故备份大小和备份性能都是最优的。 备份方案考量: 备份方案的理论恢复成功率都为100%,需要考量的即为备份大小和性能。 拷贝:备份大小等于原文件大小。备份性能最好,直接拷贝文件,不需要运算。 Backup API: 备份大小等于原文件大小。备份性能最差,原因是热备份,需要用到锁机制。 .dump:因为重新进行了排序,备份大小小于原文件。备份性能居中,需要遍历数据库生成语句。 可以看出,比较折中的选择是 Dump ,备份大小具有明显优势,备份性能尚可,恢复性能较差但由于需要恢复的场景较少,算是可以接受的短板。 深入钻研 即使优化后的方案,对于大DB备份也是耗时耗电,对于移动APP来说,可能未必有这样的机会做这样重度的操作,或者频繁备份会导致卡顿和浪费使用空间。 备份思路的高成本迫使我们从另外的方案考虑,于是我们再次把注意力放在之前的Dump方案。 Dump 方案本质上是尝试从坏DB里读出信息,这个尝试一般来说会出现两种结果: DB的基本格式仍然健在,但个别数据损坏,读到损坏的地方SQLite返回SQLITE_CORRUPT错误, 但已读到的数据得以恢复。 基本格式丢失(文件头或sqlite_master损坏),获取有哪些表的时候就返回SQLITE_CORRUPT, 根本没法恢复。 第一种可以算是预期行为,毕竟没有损坏的数据能部分恢复。从成功率来看,不少用户遇到的是第二种情况,这种有没挽救的余地呢? 要回答这个问题,先得搞清楚sqlite_master是什么。它是一个每个SQLite DB都有的特殊的表, 无论是查看官方文档Database File Format,还是执行SQL语句 SELECT FROM sqlite_master;,都可得知这个系统表保存以下信息: 表名、类型(table/index)、 创建此表/索引的SQL语句,以及表的RootPage。sqlite_master的表名、表结构都是固定的, 由文件格式定义,RootPage 固定为 page 1。 正常情况下,SQLite 引擎打开DB后首次使用,需要先遍历sqlite_master,并将里面保存的SQL语句再解析一遍, 保存在内存中供后续编译SQL语句时使用。假如sqlite_master损坏了无法解析,“Dump恢复”这种走正常SQLite 流程的方法,自然会卡在第一步了。为了让sqlite_master受损的DB也能打开,需要想办法绕过SQLite引擎的逻辑。 由于SQLite引擎初始化逻辑比较复杂,为了避免副作用,没有采用hack的方式复用其逻辑,而是决定仿造一个只可以 读取数据的最小化系统。 虽然仿造最小化系统可以跳过很多正确性校验,但sqlite_master里保存的信息对恢复来说也是十分重要的, 特别是RootPage,因为它是表对应的B-tree结构的根节点所在地,没有了它我们甚至不知道从哪里开始解析对应的表。 sqlite_master信息量比较小,而且只有改变了表结构的时候(例如执行了CREATE TABLE、ALTER TABLE 等语句)才会改变,因此对它进行备份成本是非常低的,一般手机典型只需要几毫秒到数十毫秒即可完成,一致性也容易保证, 只需要执行了上述语句的时候重新备份一次即可。有了备份,我们的逻辑可以在读取DB自带的sqlite_master失败的时候 使用备份的信息来代替。 到此,初始化必须的数据就保证了,可以仿造读取逻辑了。我们常规使用的读取DB的方法(包括dump方式恢复), 都是通过执行SQL语句实现的,这牵涉到SQLite系统最复杂的子系统——SQL执行引擎。我们的恢复任务只需要遍历B-tree所有节点, 读出数据即可完成,不需要复杂的查询逻辑,因此最复杂的SQL引擎可以省略。同时,因为我们的系统是只读的, 写入恢复数据到新 DB 只要直接调用 SQLite 接口即可,因而可以省略同样比较复杂的B-tree平衡、Journal和同步等逻辑。 最后恢复用的最小系统只需要: VFS读取部分的接口(Open/Read/Close),或者直接用stdio的fopen/fread、Posix的open/read也可以 B-tree解析逻辑 Database File Format 详细描述了SQLite文件格式, 参照之实现B-tree解析可读取 SQLite DB。 实现了上面的逻辑,就能读出DB的数据进行恢复了,但还有一个小插曲。我们知道,使用SQLite查询一个表, 每一行的列数都是一致的,这是Schema层面保证的。但是在Schema的下面一层——B-tree层,没有这个保证。 B-tree的每一行(或者说每个entry、每个record)可以有不同的列数,一般来说,SQLite插入一行时, B-tree里面的列数和实际表的列数是一致的。但是当对一个表进行了ALTER TABLE ADD COLUMN操作, 整个表都增加了一列,但已经存在的B-tree行实际上没有做改动,还是维持原来的列数。 当SQLite查询到ALTER TABLE前的行,缺少的列会自动用默认值补全。恢复的时候,也需要做同样的判断和支持, 否则会出现缺列而无法插入到新的DB。 解析B-tree方案上线后,成功率约为78%。这个成功率计算方法为恢复成功的 Page 数除以总 Page 数。 由于是我们自己的系统,可以得知总 Page 数,使用恢复 Page 数比例的计算方法比人数更能反映真实情况。 B-tree解析好处是准备成本较低,不需要经常更新备份,对大部分表比较少的应用备份开销也小到几乎可以忽略, 成功恢复后能还原损坏时最新的数据,不受备份时限影响。 坏处是,和Dump一样,如果损坏到表的中间部分,比如非叶子节点,将导致后续数据无法读出。 落地实践: 剥离封装RepairKit: 从WCDB框架中,剥离修复组件,并且封装其C++的原始API为OC管理类。 备份 master 表的时机: 我们发现 SQLite 里面 B+树 算法的实现是 向下分裂 的,也就是说当一个叶子页满了需要分裂时,原来的叶子页会成为内部节点,然后新申请两个页作为他的叶子页。这就保证了根节点一旦下来,是再也不会变动的。master 表只会在新创建表或者删除一个表时才会发生变化,而CoreData的机制表明每一次数据库的变动都要改动版本标识,那么我通过缓存和查询版本标识的变动来确定何时进行备份,避免频繁备份。 备份文件有效性: 既然 DB 可以损坏,那么这个备份文件也会损坏,怎么办呢?我用了双备份,每一个版本备份两个文件,如果一个备份恢复失败,就会启动另一个备份文件恢复。 介入恢复时机: 当CoreData初始化SQLite前,校验SQLite的Head完整性,如果不完整,进行介入修复。 经过我深入研究证明了这已经是最佳做法。 本篇文章为转载内容。原文链接:https://blog.csdn.net/a66666225/article/details/81637368。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-23 18:22:40
127
转载
转载文章
...于一维空间内的对齐和方向调整,尤其适用于导航栏、侧边栏等组件的布局。这两种现代布局方式不仅在兼容性上有所提升,而且大大简化了以往使用浮动、定位或表格布局时繁琐的计算过程。 同时,针对物理像素精确绘制的需求,CSS单位如“vw”、“vh”以及“calc()”函数的应用也日趋广泛。这些单位基于视口宽度和高度百分比,能更好地配合各种屏幕密度进行布局,并解决了1px边框在高DPR设备上的显示问题。 此外,最新的浏览器已经开始支持CSS环境变量(CSS Variables),这使得跨组件甚至跨页面的样式统一管理变得更加容易,进一步提升了移动端页面自适应设计的效率和灵活性。 综上所述,在移动端页面自适应方案的探索道路上,从早期的rem布局到如今CSS Grid、Flexbox等现代布局技术的广泛应用,开发者们正不断追求更高效、更便捷、更具前瞻性的解决方案,以应对日新月异的移动互联网时代挑战。而对于那些仍在使用或想要了解rem布局方案的开发者而言,适时关注并学习这些新的布局技术和策略,无疑将有助于其在未来的项目中打造出更为优质且适应力更强的移动端用户体验。
2023-03-23 12:01:53
133
转载
转载文章
...来对自己进行定位。 方向和选择: 人工智能?CV? NLP? 数据库?分布式系统?其他? 硕士?直博? 小老师?大牛老师? 以上这些选择因人而异,最好自己多了解、多与老师学长学姐交流,根据自己的兴趣、目前的发展以及自己未来的规划进行抉择。 夏令营(4-7月):从四月份开始就有的学校开始了夏令营申请,5-6月是夏令营申请的集中时间;参加夏令营基本都在6-7月份。夏令营的好处:老师名额多;时间比较充裕,可以较好的了解学校以及方向等;大多学校夏令营安排住宿。参加夏令营最重要的是专业排名(这是大多数学校初筛的最重要的依据,科研经历/比赛等都是次要的。当然顶会和ACM大牛除外)。 预推免(7-9月):有的学校夏令营开始后马上就开始预推免的报名与进行(例如哈工大从7月份开始到9月份有四批预推免的面试);大多数学校集中在9月中旬。如果夏令营已经有offer了可以在预推免时冲击更好的offer;如果夏令营没有拿到offer,建议此时以稳重为好。 九推:9月28号在推免系统正式填报推免志愿,录取。 个人简历:建议在寒假期间就把自己大学的经历都整理一遍,写好简历的初始版本;然后再找老师、学长学姐帮忙完善。 个人陈述:包括自己的情况介绍、科研经历、研究生期间的规划等,1000-1500字。网上有模板可以借鉴。 老师推荐信:基本都是自己写好找老师签字,如果老师能帮你手写的话,那太好不过了。 联系老师邮件:建议提前写好一个大概的模板,注意格式、内容以及邮件的标题等(例如XX大学-XXX-保研申请)。建议夏令营前或者初审过了及时联系自己喜欢的老师。 以上只是对各方面的简单介绍,每个方面详细的注意点网上好多资料,多多搜集就好。 PS:以上个人简历/个人陈述/老师推荐信模板如果有需要的私信我分享给你! 建议把以上材料都提前收集整理好,保研结束后发现我的材料文件夹3个多G...... 一年多来整理的保研资料 四、上科大信息学院夏令营(7.3-7.6) 本来没有打算报名上科大,一个同学把上科大宣传单给了我一份,看后感觉上科大实力比较强(虽然不是982/211)就报名了。 校园环境 上科大3号报到,4号-6号有开营活动、参观、自己联系老师面试(后来才知道即使拿到优营九月份也要再来面试,也就是说上科大夏令营拿到优营只是免去了九月预推免面试的初审,但是如果你足够优秀,老师比较中意,九月份就是来走一下过场。) 我参加了三个老师的面试。YY老师只是简单问了几个问题,有点水;HXM老师有一轮笔试(考的概率论比较多,编译原理、操作系统、计网也有涉及)+面试;YJY老师的一轮面试是课题组的学长学姐面的(自我介绍+项目),二轮面试和老师聊。 上科大给我的感觉就是学校小而精;老师比较好(比如YJY/GSH/TKW)、科研氛围浓厚、硬件设施完善(双人宿舍,独立卫浴,中央空调;学校地下全是停车场,下雨不用打伞可以直接走地下),但是由于建立才几年的时间,知名度不高。 学生宿舍 五、北理计算机夏令营(7.8-7.10) 北理今年入营的基本都是985和顶尖211,夏令营去了基本都能拿到优营!入营290+,夏令营参营240+,优营220+。 在北理主楼俯瞰 8号报到,领取宿舍钥匙、校园卡(北理夏令营包括食宿,每人发了一张100元的校园卡,可以在食堂、超市消费)。北理校园比较小、路比较窄;研究生宿舍三栋高层,有电梯,四人间,宿舍空间小、比较挤,大多数宿舍有空调(据说是宿舍的同学自己买或者租的),每一层有一个公共洗澡间。 9号上午宣讲,下午机试。机试两道题目难度不大,老师手动输入三个样例给分(4+3+3,每道题目满分10分)。下午机试结束我找到提前联系的LX老师聊了一个小时,老师人很nice,专心学术(据说她的研究生大都有一篇顶会论文)。 10号上午自己找老师面试。我又参加了院长实验室的面试,比较简单。下午正式面试,分了十多个组一起面试,总共四个小时。面试包括英文自我介绍、项目、研究生规划、是否打算读博、基础知识等,每人大概5-7分钟。面试结束就可以离校了。 六、北航计算机夏令营(7.11-7.14) 北航是不包含食宿的,所以入营人数较多,有600+。北航7.11上午报到+宣讲,下午机试分两组。北航机试类似CSP,可以多次提交,以最后一次为准,但是提交后不能实时出成绩。机试两个小时,包括两道题目,第一道题目比较简单,第二道题目稍微难一些,我第二道题目没有写完但是也过了机试,第二道题目即使没有写完也要能写多少写多少,把代码的思路写出来(有可能会人工判)。北航机试可以用CSP成绩代替,基本250分及以上就没问题,每年具体的情况不一样。11号晚上出机试通过名单(大概500+进340+)。 12号分组面试,每人20分钟,从上午八点一直面试到下午三点。面试包括抽取一道政治题谈看法、抽取一段英文读并翻译、基础知识(数学知识+计算机知识)、项目。政治题和英文翻译感觉大家都差不多(除非你英语特别差),主要的是基础知识面试,北航比较爱问数学问题线代、概率论、离散、高数;如果你的项目比较好的话,老师会着重问你的项目。问到我的问题有梯度、可微和可导、大数定理+中心极限定理等。12号晚上出优营名单,大概340+进180。北航是根据夏令营面试排名来定学硕和专硕的,大概有40个学硕的名额,其他都是专硕,不过北航学硕和专硕培养方式没有区别。 这是在我前面面试同学被问到的部分问题 13号领导师意向表,找导师签字,如果没有找到暑假期间或者九月份也可以再联系老师。 14号校医院体检,夏令营结束。 七、计算所(7.13-7.16) 计算所入营还是比较有难度的,但是即使没入营也可以自己联系老师,如果老师同意可以来参加面试,只是夏令营包括食宿,没入营的不包括食宿。计算所是分实验室面试的,可以参加多个实验室的面试,我参加了网数和智信的笔试+机试+面试。 智信12号笔试,14号机试+面试。笔试包括英文论文理解翻译、概率论题、计算机基础知识题目(操作系统,计网等)、CV题目(智信主要是做CV)。机试五道题目,一个小时,题目代码已经写好了,只需你补全,类似LeetCode,在学长的电脑上完成,有C++和Python可选,两种编程语言题目不同。C++用的是VS2017,会由人给你记每道题目完成的时间,会让你演示调试,结束后打包发送到一个邮箱里。 网数只有机试和面试,13号上午机试,15号面试。机试一个小时七道题目,在自己电脑上写然后拷到老师的优盘上。考察了包括链表、二叉树、图等,偏向于工程,据说今年的题目是计算所一个工程博士出的。机试70人,进入面试60人。面试每人15分钟,包括自我介绍,专业知识,是否读博,项目等。 计算所环境 八、一些建议和感想 一些建议: 提前准备,给自己定位,有针对性的准备,多在网上找经验贴;多和本校保研的学长学姐交流,多和同学交流,多搜集信息; 4月份前把简历、推荐信、个人陈述等写好,再不断修改完善; 最好能提前联系一个老师,以免拿到优营而没有找到好老师; 准备好专业知识,线代、概率论、数据结构、计网、计组、操作系统等; 如果编程能力不是特别强,最好大三开始就刷题,LeetCode的中档题难度基本就够用了; 一些体会与感想: 机会是留给有准备的人的,越努力越幸运! 做最坏的打算,做最好的准备。 保研是一场马拉松,坚持到底就是胜利。 遵道而行,但到半途需努力;会心不远,欲登绝顶莫辞劳。 也送给自己一句话:流年笑掷,未来可期! 以上仅代表个人观点与感想,如果对你有帮助记得点赞哦~如有问题,可以关注我的公主号【驭风者小窝】,我会尽我最大的努力帮助你! 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_28983299/article/details/118319985。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-05-02 23:03:36
120
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
pgrep process_pattern
- 根据进程名模式搜索进程ID。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"