前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[BI仪表盘联动交互设计实践 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Dubbo
...pler.probability=1.0 这里,spring.zipkin.base-url指定了Zipkin服务器的URL,而brave.sampler.probability=1.0则表示所有请求都会被追踪。 2.3 编写服务接口与实现 假设我们有一个简单的服务接口,用于处理用户订单: java public interface OrderService { String placeOrder(String userId); } 服务实现类如下: java @Service("orderService") public class OrderServiceImpl implements OrderService { @Override public String placeOrder(String userId) { // 模拟业务逻辑 System.out.println("Order placed for user: " + userId); return "Your order has been successfully placed!"; } } 2.4 启动服务并测试 完成上述配置后,启动Dubbo服务端。你可以试试调用placeOrder这个方法,然后看看在Zipkin的界面上有没有出现相应的追踪记录。 3. 深入探讨 从Dubbo到Jaeger的转变 虽然Zipkin是一个优秀的解决方案,但在某些场景下,你可能会发现它无法满足你的需求。例如,如果你需要更高级别的数据采样策略或是对追踪数据有更高的控制权。这时,Jaeger就成为一个不错的选择。Jaeger是Uber开源的分布式追踪系统,它提供了更多的定制选项和更好的性能表现。 将Dubbo与Jaeger集成的过程与Zipkin类似,主要区别在于依赖库的选择和一些配置细节。这里就不详细展开,但你可以按照类似的思路去尝试。 4. 结语 持续优化与未来展望 集成分布式追踪系统无疑为我们的Dubbo服务增添了一双“慧眼”,使我们能够在复杂多变的分布式环境中更加从容不迫。然而,这只是一个开始。随着技术日新月异,咱们得不停地充电,学些新工具新技能,才能跟上这变化的脚步嘛。别忘了时不时地检查和调整你的追踪方法,确保它们跟得上你生意的发展步伐。 希望这篇文章能为你提供一些有价值的启示,让你在Dubbo与分布式追踪系统的世界里游刃有余。记住,每一次挑战都是成长的机会,勇敢地迎接它们吧!
2024-11-16 16:11:57
54
山涧溪流
转载文章
...同时,在DevOps实践中,日志聚合与智能分析平台如Splunk、Elasticsearch和Logstash(ELK Stack)等也在日志管理领域崭露头角,它们提供了强大的搜索过滤功能以及机器学习算法支持,能够帮助企业快速定位问题、预测潜在风险,并有效提高运维工作效率。 综上所述,日志筛选与分析不仅是IT运维的重要一环,也是当今网络安全与合规保障的关键手段。了解并掌握最新的日志处理技术和解决方案,有助于企业和组织在面对日益复杂的网络环境时,更好地维护信息系统的稳定性和安全性。
2023-11-12 11:51:46
151
转载
转载文章
Consul
...力尝试新的东西,不断实践,这样才能让咱们的系统在面对那些越来越棘手的安全问题时,还能稳稳地跑起来,不卡顿,不掉链子。就像是个超级英雄,无论遇到什么险境,都能挺身而出,保护好大家的安全。所以啊,咱们得加油干,让系统变得更强大,更聪明,这样才能在未来的挑战中,立于不败之地!
2024-08-26 15:32:27
125
落叶归根
Dubbo
...与维护。同时,理解和实践DevOps理念,注重基础设施即代码(Infrastructure as Code, IaC)以及持续集成/持续部署(CI/CD)等现代软件工程方法,亦是提高服务质量和团队协作效率的关键所在。
2023-06-21 10:00:14
436
春暖花开-t
Hibernate
...缓存应用:深入探索与实践 一、引言 缓存的力量 在开发中,性能优化是一个永恒的主题,而缓存技术则是提升系统响应速度的有效手段之一。Hibernate作为一款优秀的对象关系映射(ORM)工具,提供了多种缓存机制来帮助开发者优化应用性能。本文将深入探讨Hibernate的属性级缓存与局部缓存的应用,通过实际代码示例来展示它们如何在实际项目中发挥作用。 二、属性级缓存概述 属性级缓存是Hibernate提供的一种缓存策略,它允许我们为实体类中的特定属性配置缓存行为。嘿,兄弟!这种灵活度超级棒,能让我们针对各种数据访问方式来调整优化。比如,你有没有那种属性,就是大家经常去查看,却很少动手改的?对这些,咱们可以直接开个缓存,这样每次查数据就不需要老是跑去数据库翻找了,省时又省力!这招儿,是不是挺接地气的? 代码示例: java @Entity public class User { @Id private Long id; // 属性级缓存配置 @Cacheable private String name; // 其他属性... } 在这里,@Cacheable注解用于指定属性name应该被缓存。这就好比你去超市买东西,之前买过的东西放在了购物车里,下次再买的时候,你不用再去货架上找,直接从购物车拿就好了。这样省去了走来走去的时间,是不是感觉挺方便的?同理,在访问User对象的name属性时,如果已经有缓存了,就直接从缓存里取,不需要再跑一趟数据库,效率高多了! 三、局部缓存详解 局部缓存(Local Cache)是一种更高级的缓存机制,它允许我们在应用程序的特定部分(如一个服务层、一个模块等)内部共享缓存实例。哎呀,这个技术啊,它能帮咱们干啥呢?就是说,当你一次又一次地请求相同的信息,比如浏览网页的时候,每次都要重新加载一堆重复的数据,挺浪费时间的对不对?有了这个方法,就像给咱们的电脑装了个超级省电模式,能避免这些重复的工作,大大提升咱们上网的速度和效率。特别是面对海量的相似查询,效果简直不要太明显!就像是在超市里买东西,你不用每次结账都重新排队,直接走绿色通道,是不是感觉轻松多了?这就是这个技术带来的好处,让我们的操作更流畅,体验更棒! 代码示例: java @Service public class UserService { @Autowired private SessionFactory sessionFactory; private final LocalCache userCache = new LocalCache<>(sessionFactory, User.class, String.class); public String getNameById(Long userId) { return userCache.get(userId, User.class.getName()); } public void setNameById(Long userId, String name) { userCache.put(userId, name); } } 在这段代码中,UserService类使用了LocalCache来缓存User对象的name属性。哎呀,你知道不?咱们这里有个小妙招,每次想查查某个用户ID对应的用户名时,就直接去个啥叫“缓存”的地方翻翻,速度快得跟闪电似的!这样就不需要再跑回那个大老远的数据库里去找了。多省事儿啊,对吧? 四、属性级缓存与局部缓存的综合应用 在实际项目中,通常需要结合使用属性级缓存和局部缓存来达到最佳性能效果。例如,在一个高并发的电商应用中,商品信息的查询频率非常高,而商品的详细描述可能很少改变。在这种情况下,我们可以为商品的ID和描述属性启用属性级缓存,并在商品详情页面的服务层中使用局部缓存来存储最近访问的商品信息,从而实现双重缓存优化。 综合应用示例: java @Entity public class Product { @Id private Long productId; @Cacheable private String productName; @Cacheable private String productDescription; // 其他属性... } @Service public class ProductDetailService { @Autowired private SessionFactory sessionFactory; private final LocalCache productCache = new LocalCache<>(sessionFactory, Product.class); public Product getProductDetails(Long productId) { Product product = productCache.get(productId); if (product == null) { product = loadProductFromDB(productId); productCache.put(productId, product); } return product; } private Product loadProductFromDB(Long productId) { // 查询数据库逻辑 } } 这里,我们为商品的名称和描述属性启用了属性级缓存,而在ProductDetailService中使用了局部缓存来存储最近查询的商品信息,实现了对数据库的高效访问控制。 五、总结与思考 通过上述的讨论与代码示例,我们可以看到属性级缓存与局部缓存在Hibernate中的应用不仅可以显著提升应用性能,还能根据具体业务场景灵活调整缓存策略,实现数据访问的优化。在实际开发中,理解和正确使用这些缓存机制对于构建高性能、低延迟的系统至关重要。哎呀,你知道不?随着数据库这玩意儿越来越牛逼,用它的人也越来越多,那咱们用来提速的缓存方法啊,肯定也会跟着变花样!就像咱们吃东西,以前就那么几种口味,现在五花八门的,啥都有。开发大神们呢,就得跟上这节奏,多看看新技术,别落伍了。这样啊,咱们用的东西才能越来越快,体验感也越来越好!所以,关注新技术,拥抱变化,是咱们的必修课!
2024-10-11 16:14:14
102
桃李春风一杯酒
转载文章
...导图整理 算法分析与设计 北大慕课课程 知识点 思维导图整理 数据结构 王道考研 知识点 经典题型 思维导图整理 人工智能导论 王万良慕课课程 知识点 思维导图整理 红黑树 一张导图解决红黑树全部插入和删除问题 包含详细操作原理 情况对比 各种常见排序算法的时间/空间复杂度 是否稳定 算法选取的情况 改进 思维导图整理 人工智能课件 算法分析课件 Python课件 数值分析课件 机器学习课件 图像处理课件 考研相关科目 知识点 思维导图整理 考研经验--东南大学软件学院软件工程 东南大学 软件工程 906 数据结构 C++ 历年真题 思维导图整理 东南大学 软件工程 复试3门科目历年真题 思维导图整理 高等数学 做题技巧 易错点 知识点(张宇,汤家凤)思维导图整理 考研 线性代数 惯用思维 做题技巧 易错点 (张宇,汤家凤)思维导图整理 高等数学 中值定理 一张思维导图解决中值定理所有题型 考研思修 知识点 做题技巧 同类比较 重要会议 1800易错题 思维导图整理 考研近代史 知识点 做题技巧 同类比较 重要会议 1800易错题 思维导图整理 考研马原 知识点 做题技巧 同类比较 重要会议 1800易错题 思维导图整理 考研数学课程笔记 考研英语课程笔记 考研英语单词词根词缀记忆 考研政治课程笔记 Python相关技术 知识点 思维导图整理 Numpy常见用法全部OneNote笔记 全部笔记思维导图整理 Pandas常见用法全部OneNote笔记 全部笔记思维导图整理 Matplotlib常见用法全部OneNote笔记 全部笔记思维导图整理 PyTorch常见用法全部OneNote笔记 全部笔记思维导图整理 Scikit-Learn常见用法全部OneNote笔记 全部笔记思维导图整理 Java相关技术/ssm框架全部笔记 Spring springmvc Mybatis jsp 科技相关 小米手机 小米 红米 历代手机型号大全 发布时间 发布价格 常见手机品牌的各种系列划分及其特点 历代CPU和GPU的性能情况和常见后缀的含义 思维导图整理 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_43959833/article/details/115670535。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-01-12 18:13:21
740
转载
MemCache
...对的方式存储数据,其设计初衷是为了提供快速的数据访问,而不涉及复杂的数据结构和事务管理。这就好比你有一款游戏,它的规则设定里就没有考虑过时间旅行或者穿越时空的事情。所以,你不能在游戏中实现回到过去修改错误或者尝试不同的未来路径。同理,这个系统也一样,它的设计初衷没有考虑到版本更新时的逻辑问题,所以自然也就无法直接支持多版本控制了。 第三部分:实现多版本控制的方法 1. 使用命名空间进行版本控制 一个简单的策略是为每个数据项创建一个命名空间,其中包含当前版本的键和历史版本的键。例如: python import memcache mc = memcache.Client(['127.0.0.1:11211'], debug=0) def set_versioned_data(key, version, data): mc.set(f'{key}_{version}', data) mc.set(key, data) 保存最新版本 设置数据 set_versioned_data('product', 'v1', {'name': 'Product A', 'price': 10}) 更新数据并设置新版本 set_versioned_data('product', 'v2', {'name': 'Product A (Updated)', 'price': 15}) 2. 利用时间戳进行版本控制 另一种方法是在数据中嵌入一个时间戳字段,作为版本标识。这种方法在数据频繁更新且版本控制较为简单的情况下适用。 python import time def set_timestamped_data(key, timestamp, data): mc.set(f'{key}_{timestamp}', data) mc.set(key, data) 设置数据 set_timestamped_data('product', int(time.time()), {'name': 'Product A', 'price': 10}) 更新数据 set_timestamped_data('product', int(time.time()) + 1, {'name': 'Product A (Updated)', 'price': 15}) 第四部分:优化与挑战 在实际应用中,选择何种版本控制策略取决于具体业务需求。比如说,假设你老是得翻查过去的数据版本,那用时间戳或者命名空间跟数据库的搜索功能搭伙用,可能会是你的最佳选择。就像你去图书馆找书,用书名和出版日期做检索,比乱翻一气效率高多了。这方法就像是给你的数据做了个时间轴或者标签系统,让你想看哪段历史一搜就出来,方便得很!同时,考虑到内存资源的限制,应合理规划版本的数量,避免不必要的内存占用。 结论 Memcached本身不提供内置的多版本控制功能,但通过一些简单的编程技巧,我们可以实现这一需求。无论是使用命名空间还是时间戳,关键在于根据业务逻辑选择最适合的实现方式。哎呀,你知不知道在搞版本控制的时候,咱们得好好琢磨琢磨性能优化和资源管理这两块儿?这可是关乎咱们系统稳不稳定的头等大事,还有能不能顺畅运行的关键!别小瞧了这些细节,它们能让你的程序像开了挂一样,不仅跑得快,而且用起来还特别省心呢!所以啊,做这些事儿的时候,可得细心点,别让它们成为你系统的绊脚石! 后记 在开发过程中,面对复杂的数据管理和版本控制需求,灵活运用现有工具和技术,往往能取得事半功倍的效果。嘿!小伙伴们,咱们一起聊聊天呗。这篇文章呢,就是想给那些正跟咱们遇到相似难题的编程大神们一点灵感和方向。咱们的目标啊,就是一块儿把技术这块宝地给深耕细作,让它开出更绚烂的花,结出更甜美的果子。加油,程序员朋友们,咱们一起努力,让代码更有灵魂,让技术更有温度!
2024-09-04 16:28:16
97
岁月如歌
Superset
...高数据的实时性。 在实践层面,一些企业已经开始采用自动化工具和流程,定期检查数据更新状态,自动触发数据刷新或异常处理,进一步提升了数据管理的智能化水平。同时,随着云计算和边缘计算技术的发展,越来越多的企业开始探索在数据产生源头或靠近数据消费端进行数据处理,以减少数据传输延迟,实现真正的实时数据分析。 综上所述,面对数据更新延迟的挑战,企业需要从数据源配置、数据加载优化、缓存管理、网络优化以及自动化流程等多个维度入手,采取综合策略。随着技术的不断进步和创新,未来有望看到更多高效、智能的数据管理和分析解决方案,助力企业更好地利用数据驱动的决策优势。
2024-08-21 16:16:57
111
青春印记
Redis
...断跟进并学习这些最新实践无疑具有极高的价值。
2023-05-29 08:16:28
270
草原牧歌_t
Kafka
...。这是Kafka架构设计中非常重要的一部分。 1.1 副本的概念 在Kafka中,一个主题(Topic)可以被划分为多个分区(Partition),而每个分区可以拥有多个副本。副本分为领导者副本(Leader Replica)和追随者副本(Follower Replica)。想象一下,领导者副本就像是个大忙人,既要处理所有的读写请求,还得不停地给其他小伙伴分配任务。而那些追随者副本呢,就像是一群勤勤恳恳的小弟,只能等着老大分活儿给他们,然后照着做,保持和老大的一致。 2. 数据复制策略 接下来,让我们来看看Kafka是如何实现这些副本之间的数据同步的。Kafka的数据复制策略主要依赖于一种叫做“拉取”(Pull-based)的机制。这就意味着那些小弟们得主动去找老大,打听最新的消息。 2.1 拉取机制的优势 采用拉取机制有几个好处: - 灵活性:追随者可以根据自身情况灵活调整同步频率。 - 容错性:如果追随者副本暂时不可用,不会影响到领导者副本和其他追随者副本的工作。 - 负载均衡:领导者副本不需要承担过多的压力,因为所有的读取操作都是由追随者完成的。 2.2 实现示例 让我们来看一下如何在Kafka中配置和实现这种数据复制策略。首先,我们需要定义一个主题,并指定其副本的数量: python from kafka.admin import KafkaAdminClient, NewTopic admin_client = KafkaAdminClient(bootstrap_servers='localhost:9092') topic_list = [NewTopic(name="example_topic", num_partitions=3, replication_factor=3)] admin_client.create_topics(new_topics=topic_list) 这段代码创建了一个名为example_topic的主题,它有三个分区,并且每个分区都有三个副本。 3. 副本同步的实际应用 现在我们已经了解了副本同步的基本原理,那么它在实际应用中是如何工作的呢? 3.1 故障恢复 当一个领导者副本出现故障时,Kafka会自动选举出一个新的领导者。这时候,新上任的大佬会继续搞定读写请求,而之前的小弟们就得重新变回小弟,开始跟新大佬取经,同步最新的消息。 3.2 负载均衡 在集群中,不同的分区可能会有不同的领导者副本。这就相当于把消息的收发任务分给了不同的小伙伴,这样大家就不会挤在一个地方排队了,活儿就干得更顺溜了。 3.3 实际案例分析 假设有一个电商网站使用Kafka来处理订单数据。要是其中一个分区的大佬挂了,系统就会自动转而听命于另一个健健康康的大佬。虽然在这个过程中可能会出现一会儿数据卡顿的情况,但总的来说,这并不会拖慢整个系统的进度。 4. 总结与展望 通过上面的讨论,我们可以看到副本同步和数据复制策略对于提高Kafka系统的稳定性和可靠性有多么重要。当然,这只是Kafka众多功能中的一个小部分,但它确实是一个非常关键的部分。以后啊,随着技术不断进步,咱们可能会见到更多新颖的数据复制方法,这样就能让Kafka跑得更快更稳了。 最后,我想说的是,学习技术就像是探险一样,充满了挑战但也同样充满乐趣。希望大家能够享受这个过程,不断探索和进步! --- 以上就是我对Kafka副本同步数据复制策略的一些理解和分享。希望对你有所帮助!如果有任何问题或想法,欢迎随时交流讨论。
2024-10-19 16:26:57
57
诗和远方
Java
...currentCombination) { if (remaining == 0) { System.out.println(currentCombination); return; } for (Integer prime : primes) { if (prime > remaining) break; currentCombination.add(prime); findPrimeSums(remaining - prime, primes, currentCombination); currentCombination.remove(currentCombination.size() - 1); } } } 这段代码里,findPrimeSums方法就是一个递归函数。这玩意儿呢,要收三个东西当输入:一个是剩下的数字,一个是所有的素数小弟们列好队等着用,还有一个是咱们现在正在拼凑的那个组合。当剩余数字为0时,我们就找到了一组有效的组合。 --- 四、结果展示 数字的无限可能性 运行上面的代码后,你会看到类似如下的输出: [2, 2, 2, 2, 2] [2, 2, 2, 3, 1] [2, 2, 3, 3] [2, 3, 5] [3, 7] 哇哦!原来10可以有这么多不同的拆分方式呢!每一组都是由素数组成的,并且它们的和正好等于10。 在这个过程中,我一直在想,为什么会有这么多种可能性呢?是不是因为素数本身就具有某种特殊的规律?还是说这只是数学世界中的一种巧合? 不管怎样,我觉得这种探索的过程真的很迷人。每一次运行程序,都像是在打开一个新的宝藏箱,里面装满了未知的答案。 --- 五、总结与展望 好了朋友们,今天的旅程到这里就要结束了。我们不仅学会了如何用Java找到素数,还掌握了如何用递归的方法拆分数字。虽然过程有点复杂,但每一步都很值得回味。 未来,如果你对这个问题感兴趣,不妨尝试优化代码,或者挑战更大的数字。也许你会发现更多有趣的规律呢! 最后,希望大家都能喜欢编程带来的乐趣。记住,学习编程就像学习一门新的语言,多实践、多思考,总有一天你会说得非常流利!再见啦,下次见!
2025-03-17 15:54:40
64
林中小径
转载文章
... PMF:probability mass function,概率质量函数,是离散型随机变量在各特定取值上的概率。与概率密度函数(PDF:probability density function)的不同之处在于:概率质量函数是对离散型随机变量定义的,本身代表该值的概率;概率密度函数是针对连续型随机变量定义的,本身不是概率(连续型随机变量单点测度为0),只有在对连续随机变量的pdf在某一给定的区间内进行积分才是概率。 notation 假设X 是一个定义在可数样本空间S 上的离散型随机变量S⊆R ,则其概率质量函数PMF为: fX(x)={Pr(X=x),0,x∈Sx∈R∖S 注意这在所有实数上,包括那些X 不可能等于的实数值上,都定义了pmf,只不过在这些X 不可能取的实数值上,fX(x) 取值为0(x∈R∖S,Pr(X=x)=0 )。 离散型随机变量概率质量函数(pmf)的不连续性决定了其累积分布函数(cdf)也不连续。 共轭先验(conjugate prior) 所谓共轭(conjugate),描述刻画的是两者之间的关系,单独的事物不构成共轭,举个通俗的例子,兄弟这一概念,只能是两者才能构成兄弟。所以,我们讲这两个人是兄弟关系,A是B的兄弟,这两个分布成共轭分布关系,A是B的共轭分布。 p(θ|X)=p(θ)p(X|θ)p(x) p(X|θ) :似然(likelihood) p(θ) :先验(prior) p(X) :归一化常数(normalizing constant) 我们定义:如果先验分布(p(θ) )和似然函数(p(X|θ) )可以使得先验分布(p(θ) )和后验分布(p(θ|X) )有相同的形式(如,Beta(a+k, b+n-k)=Beta(a, b)binom(n, k)),那么就称先验分布与似然函数是共轭的(成Beta分布与二项分布是共轭的)。 几个常见的先验分布与其共轭分布 先验分布 共轭分布 伯努利分布 beta distribution Multinomial Dirichlet Distribution Gaussian, Given variance, mean unknown Gaussian Distribution Gaussian, Given mean, variance unknown Gamma Distribution Gaussian, both mean and variance unknown Gaussian-Gamma Distribution 最大似然估计(MLE) 首先来看,大名鼎鼎的贝叶斯公式: p(θ|X)=p(θ)p(X|θ)p(X) 可将θ 看成欲估计的分布的参数,X 表示样本,p(X|θ) 则表示似然。 现给定样本集\mathcal{D}=\{x_1,x_2,\ldots,x_N\}D={x1,x2,…,xN} ,似然函数为: p(\mathcal{D}|\theta)=\prod_{n=1}^Np(x_n|\theta) p(D|θ)=∏n=1Np(xn|θ) 为便于计算,再将其转换为对数似然函数形式: \ln p(\mathcal{D}|\theta)=\sum_{n=1}^N\ln p(x_n|\theta) lnp(D|θ)=∑n=1Nlnp(xn|θ) 我们不妨以伯努利分布为例,利用最大似然估计的方式计算其分布的参数(pp ),伯努利分布其概率密度函数(pdf)为: f_X(x)=p^x(1-p)^{1-x}=\left \{ \begin{array}{ll} p,&\mathrm{x=1},\\ q\equiv1-p ,&\mathrm{x=0},\\ 0,&\mathrm{otherwise} \end{array} \right. fX(x)=px(1−p)1−x=⎧⎩⎨⎪⎪p,q≡1−p,0,x=1,x=0,otherwise 整个样本集的对数似然函数为: \ln p(\mathcal{D}|\theta)=\sum_{n=1}^N\ln p(x_n|\theta)=\sum_{n=1}^N\ln (\theta^{x_n}(1-\theta)^{1-x_n})=\sum_{n=1}^Nx_n\ln\theta+(1-x_n)\ln(1-\theta) lnp(D|θ)=∑n=1Nlnp(xn|θ)=∑n=1Nln(θxn(1−θ)1−xn)=∑n=1Nxnlnθ+(1−xn)ln(1−θ) 等式两边对\thetaθ 求导: \frac{\partial \ln(\mathcal{D}|\theta)}{\partial \theta}=\frac{\sum_{n=1}^Nx_n}{\theta}-\frac{N}{1-\theta}+\frac{\sum_{n=1}^Nx_n}{1-\theta} ∂ln(D|θ)∂θ=∑Nn=1xnθ−N1−θ+∑Nn=1xn1−θ 令其为0,得: θml=∑Nn=1xnN Beta分布 f(μ|a,b)=Γ(a+b)Γ(a)Γ(b)μa−1(1−μ)b−1=1B(a,b)μa−1(1−μ)b−1 Beta 分布的峰值在a−1b+a−2 处取得。其中Γ(x)≡∫∞0ux−1e−udu 有如下性质: Γ(x+1)=xΓ(x)Γ(1)=1andΓ(n+1)=n! 我们来看当先验分布为 Beta 分布时的后验分布: p(θ)=1B(a,b)θa−1(1−θ)b−1p(X|θ)=(nk)θk(1−θ)n−kp(θ|X)=1B(a+k,b+n−k)θa+k−1(1−θ)b+n−k−1 对应于python中的math.gamma()及matlab中的gamma()函数(matlab中beta(a, b)=gamma(a)gamma(b)/gamma(a+b))。 条件概率(conditional probability) P(X|Y) 读作: P of X given Y ,下划线读作given X :所关心事件 Y :条件(观察到的,已发生的事件),conditional 条件概率的计算 仍然从样本空间(sample space)的角度出发。此时我们需要定义新的样本空间(给定条件之下的样本空间)。所以,所谓条件(conditional),本质是对样本空间的进一步收缩,或者叫求其子空间。 比如一个人答题,有A,B,C,D 四个选项,在答题者对题目一无所知的情况下,他答对的概率自然就是 14 ,而是如果具备一定的知识,排除了 A,C 两个错误选项,此时他答对的概率简单计算就增加到了 12 。 本质是样本空间从S={A,B,C,D} ,变为了S′={B,D} 。 新样本空间下P(A|排除A/C)=0,P(C|排除A/C)=0 ,归纳出来,也即某实验结果(outcome,oi )与某条件Y 不相交,则: P(oi|Y)=0 最后我们得到条件概率的计算公式: P(oi|Y)=P(oi)P(o1)+P(o2)+⋯+P(on)=P(oi)P(Y)Y={o1,o2,…,on} 考虑某事件X={o1,o2,q1,q2} ,已知条件Y={o1,o2,o3} 发生了,则: P(X|Y)=P(o1|Y)+P(o2|Y)+0+0=P(o1)P(Y)+P(o2)P(Y)=P(X∩Y)P(Y) 条件概率与贝叶斯公式 条件概率: P(X|Y)=P(X∩Y)P(Y) 贝叶斯公式: P(X|Y)=P(X)P(Y|X)P(Y) 其实是可从条件概率推导贝叶斯公式的: P(A|B)=P(B|A)=P(A|B)P(B)===P(B|A)=P(A∩B)P(B)P(A∩B)P(A)P(A∩B)P(B)P(B)P(A∩B)P(A)P(B|A)P(A|B)P(B)P(A) 证明:P(B,p|D)=P(B|p,D)P(p|D) P(B,p|D)====P(B,p,D)P(D)P(B|p,D)P(p,D)P(D)P(B|p,D)P(p,D)P(D)P(B|p,D)P(p|D) References [1] 概率质量函数 本篇文章为转载内容。原文链接:https://blog.csdn.net/lanchunhui/article/details/49799405。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-02-26 12:45:04
517
转载
转载文章
...与第三方支付平台之间交互的数据格式、传输方式以及业务逻辑。在本文中,支付接口提供了支付宝、QQ钱包、微信支付及财付通等多种支付方式的即时到账功能,允许商户通过调用API实现订单支付、查询、退款等操作,同时支持免签约和无需企业认证。 MD5签名算法 , MD5签名算法是一种广泛应用于数据完整性校验和身份认证的加密散列函数。在支付接口场景下,MD5签名算法用于生成并验证请求和响应的签名字符串,确保交易信息在传输过程中未被篡改。具体实施时,会将待签名参数按特定顺序排序后拼接成字符串,再使用商户私钥(即商户KEY)通过MD5算法生成签名,以保证交易的安全性。 服务器异步通知(notify_url) , 服务器异步通知是支付平台在完成一笔支付交易后,主动向商户系统发送交易结果的一种机制。在支付成功或失败等关键节点,支付平台通过GET请求的方式,将包含交易状态、金额、订单号等重要信息的参数发送到商户预先设置好的notify_url地址上。商户系统收到异步通知后,需对参数进行有效性验证,并根据通知内容更新订单状态和执行后续业务逻辑处理,如确认发货、增加用户余额等。在文中,商户在收到异步通知后,需要返回SUCCESS字符串作为接收成功的标志,否则支付平台会按照策略重新通知商户,确保交易结果能够及时准确地传递给商户系统。
2023-12-18 16:55:58
91
转载
MySQL
...仅体现在传统的数据库设计与查询优化中,而且在前沿的信息技术和人工智能研究中也发挥着不可或缺的作用。对于技术人员来说,深入理解并灵活运用无限极分类方法,无疑将有助于解决实际问题,提升系统的性能与智能化水平。
2023-08-24 16:14:06
59
星河万里_t
转载文章
...el的各项配置与最佳实践,无疑将极大地提升开发效率和代码质量。建议密切关注Babel的官方博客和技术论坛,及时掌握最新动态和技术趋势,以应对日新月异的前端开发挑战。
2024-01-16 22:15:54
121
转载
Javascript
...性化的服务体验。这些实践表明,异常处理不仅仅是编程中的技术细节,更是现代软件工程中不可或缺的一部分。在未来,随着物联网设备的普及和技术边界的不断拓展,如何高效地管理和利用异常信息将成为衡量一个系统成熟度的重要指标之一。因此,无论是开发者还是企业管理者,都应该加强对异常处理的认识,将其视为保障产品质量和服务水平的关键环节。此外,值得注意的是,尽管当前的技术手段已经相当先进,但在实际应用过程中仍需警惕过度依赖自动化工具可能带来的隐患,比如过度拟合或误报等问题。为此,建议在部署任何新的异常处理方案之前,务必进行充分的测试和评估,确保其能够在真实环境中稳定运行。总之,随着科技的进步和社会需求的变化,异常处理的重要性只会愈发凸显,值得每一位从业者给予足够的重视。
2025-03-28 15:37:21
56
翡翠梦境
c++
...合最新技术趋势和业界实践,进一步深入理解这一概念及其在现代软件开发中的实际应用。 面向未来:C++的现代异常处理 随着C++11的发布,异常处理得到了显著改进,引入了更强大的特性,如范围基元(range-based for loops)和智能指针(smart pointers),旨在提高代码的可读性和安全性。在此背景下,std::length_error作为C++标准库的一部分,不仅保持了其原有的功能,而且在现代异常处理框架中扮演着更加重要的角色。 实际案例:动态资源管理与异常处理 在实际开发中,面对复杂的系统和海量数据处理,正确地管理资源分配和回收显得尤为重要。以在线服务为例,系统需要实时处理大量用户请求,同时确保资源的高效利用和合理分配。在这种场景下,std::length_error可以用于捕捉容器操作中的异常情况,如尝试在已满的缓冲区中添加数据,从而避免潜在的资源泄露或系统崩溃。 引经据典:最佳实践与开源贡献 为了提高代码质量和可维护性,业界倡导采用统一的异常处理模式。例如,Google的C++风格指南推荐使用std::expected库来封装可能的结果,从而优雅地处理非预期情况,同时保持代码的清晰和可读性。这种模式不仅限于std::length_error的应用,而是扩展到了整个异常处理流程,强调了预防性编程的重要性。 时效性:现代软件开发的趋势 在云计算和微服务架构的推动下,软件开发正朝着分布式、高并发的方向发展。在这种环境下,std::length_error这样的异常处理机制成为确保系统稳定性和健壮性的基石。开发人员需要不断学习和适应新的工具和最佳实践,如使用现代C++库(如Boost或Pika)来优化并行计算任务,同时有效地处理资源限制和错误情况。 结语:持续学习与实践的重要性 C++的复杂性和深度意味着,无论在学术研究还是工业实践中,都需要不断地探索和学习。std::length_error仅仅是众多C++特性之一,但它展示了异常处理在现代软件开发中的核心价值。通过实践和深入理解这些概念,开发人员不仅能构建更高质量的软件,还能为未来的挑战做好准备。 总之,随着技术的不断进步,对std::length_error的理解和应用不仅关乎当前项目的成功,更是对未来技术发展趋势的洞察。在这个快速变化的领域,持续学习和实践是实现个人和团队成长的关键。
2024-10-03 15:50:22
51
春暖花开
Nginx
... 3.1 学习最佳实践 了解并遵循行业内的最佳实践是避免错误的第一步。比如,应该始终限制对敏感文件的访问,确保Web服务器仅能访问必要的资源。 3.2 使用工具辅助 利用如auditd这样的审计工具可以帮助我们监控和记录权限更改,以便及时发现潜在的安全威胁。 3.3 定期审查配置 定期审查和测试你的Nginx配置文件,确保它们仍然符合当前的安全需求。这就像是看看有没有哪里锁得不够紧,或者是不是该再加把锁来确保安全。 3.4 保持警惕 安全永远不是一次性的工作。随着网络环境的变化和技术的发展,新的威胁不断出现。保持对最新安全趋势的关注,并适时调整你的防御策略。 四、结语 让我们一起变得更安全 通过这篇文章,我希望你能对Nginx权限设置的重要性有所认识,并了解到一些常见的错误以及如何避免它们。记住,安全是一个持续的过程,需要我们不断地学习、实践和改进。让我们携手努力,共同打造一个更加安全的网络世界吧! --- 以上就是关于Nginx权限设置错误的一篇技术文章。希望能帮到你,如果有啥不明白的或者想多了解点儿啥,尽管留言,咱们一起聊聊!
2024-12-14 16:30:28
82
素颜如水_
Apache Solr
...有其他异常信息。 在实践中,我们可以尝试如下代码实现: java // 创建DataImporter对象 DataImporter importer = new DataImporter(); // 设置数据库连接参数 importer.setDataSource(new JdbcDataSource()); importer.setSql("SELECT FROM table_name"); // 执行数据导入 importer.fullImport("/path/to/solr/home"); 如果以上步骤无法解决问题,建议查阅相关文档或寻求专业人士的帮助。 1.2 集群配置错误 另一位开发者在2020年7月25日反馈了一个关于Solr集群配置的错误问题。其问题描述为:“淘淘商城第60讲——搭建Solr集群时,报错:org.apache.solr.common.SolrException: Could not find collection : core1”。读了这位开发者的文章,我们发现他在搭建Solr集群的时候,实实在在地碰到了上面提到的那些问题。 对于这个问题,我们可以从以下几个方面进行排查: - 首先,检查solr的配置文件,确认核心集合是否正确配置; - 其次,检查集群状态,确认所有节点是否都已经正常启动; - 最后,查看日志文件,查看是否有其他异常信息。 在实践中,我们可以尝试如下代码实现: java // 启动集群 CoreContainer cc = CoreContainer.create(CoreContainer.DEFAULT_CONFIG); cc.load(new File("/path/to/solr/home/solr.xml")); cc.start(); // 查询集群状态 Collections cores = cc.getCores(); for (SolrCore core : cores) { System.out.println(core.getName() + " status : " + core.getStatus()); } 如果以上步骤无法解决问题,建议查阅相关文档或寻求专业人士的帮助。 三、Solr代码执行漏洞排查及解决方法 近年来,随着Apache Solr的广泛应用,安全问题日益突出。嘿,你知道吗?在2019年11月19日曝出的一条消息,Apache Solr这个家伙在默认设置下有个不小的安全隐患。如果它以cloud模式启动,并且对外开放的话,那么远程的黑客就有机会利用这个漏洞,在目标系统上随心所欲地执行任何代码呢!就像是拿到了系统的遥控器一样,想想都有点让人捏把汗呐! 对于这个问题,我们可以从以下几个方面进行排查: - 首先,检查solr的安全配置,确保只允许受信任的IP地址访问; - 其次,关闭不必要的服务端功能,如远程管理、JMX等; - 最后,定期更新solr到最新版本,以获取最新的安全补丁。 在实践中,我们可以尝试如下代码实现: java // 关闭JMX服务 String configPath = "/path/to/solr/home/solr.xml"; File configFile = new File(configPath); DocumentBuilder db = DocumentBuilderFactory.newInstance().newDocumentBuilder(); Document doc = db.parse(configFile); Element root = doc.getDocumentElement(); if (!root.getElementsByTagName("jmx").isEmpty()) { Node jmxNode = root.getElementsByTagName("jmx").item(0); jmxNode.getParentNode().removeChild(jmxNode); } TransformerFactory tf = TransformerFactory.newInstance(); Transformer transformer = tf.newTransformer(); transformer.setOutputProperty(OutputKeys.INDENT, "yes"); transformer.setOutputProperty("{http://xml.apache.org/xslt}indent-amount", "2"); DOMSource source = new DOMSource(doc); StreamResult result = new StreamResult(new File(configPath)); transformer.transform(source, result); 如果以上步骤无法解决问题,建议查阅相关文档或寻求专业人士的帮助。 四、总结 总的来说,Apache Solr虽然强大,但在使用过程中也会遇到各种各样的问题。了解并搞定这些常见问题后,咱们就能把Solr的潜能发挥得更淋漓尽致,这样一来,工作效率蹭蹭上涨,用户体验也噌噌提升,妥妥的双赢局面!希望本文能对你有所帮助!
2023-05-31 15:50:32
497
山涧溪流-t
ClickHouse
...专为超快的实时分析而设计。它的速度非常惊人,可以轻松应对TB甚至PB级别的数据量。 但是呢,就像所有工具都有自己的特点一样,ClickHouse也有它的局限性。其实呢,它的一个小短板就是,在面对跨数据库或者跨表的那种复杂查询时,有时候会有点招架不住,感觉有点使不上劲儿。这可不是说它不好,而是我们需要了解它的能力边界在哪里。 让我先举个例子吧。假设你有两个表A和B,分别存储了不同的业务数据。如果你打算在一个查询里同时用上这两个表的数据,然后搞点复杂的操作(比如说JOIN那种),你可能会发现,ClickHouse 并不像某些关系型数据库那么“丝滑”,有时候它可能会让你觉得有点费劲。这是为什么呢?让我们一起来探究一下。 --- 2. ClickHouse的工作原理揭秘 首先,我们要明白ClickHouse是怎么工作的。它用的是列式存储,简单说就是把一整列的数据像叠积木一样整整齐齐地堆在一起,而不是东一个西一个乱放。这种设计特别适合处理海量数据的情况,比如你只需要拿其中一小块儿,完全不用像行式存储那样一股脑儿把整条记录全读进来,多浪费时间啊! 但是这也带来了一个问题——当你想要执行跨表的操作时,事情就变得复杂了。为什么呢?因为ClickHouse的设计初衷并不是为了支持复杂的JOIN操作。它的查询引擎在处理简单的事儿,比如筛选一下数据或者做个汇总啥的,那是一把好手。但要是涉及到多张表格之间的复杂关系,它就有点转不过弯来了,感觉像是被绕晕了的小朋友。 举个例子来说,如果你有一张用户表User和一张订单表Order,你想找出所有购买了特定商品的用户信息,这听起来很简单对不对?但在ClickHouse里,这样的JOIN操作可能会导致性能下降,甚至直接失败。 sql SELECT u.id, o.order_id FROM User AS u JOIN Order AS o ON u.id = o.user_id; 这段SQL看起来很正常,但运行起来可能会让你抓狂。所以接下来,我们就来看看如何在这种情况下找到解决方案。 --- 3. 面临的挑战与解决之道 既然我们知道ClickHouse不太擅长处理复杂的跨表查询,那么我们应该怎么办呢?其实方法还是有很多的,只是需要我们稍微动点脑筋罢了。 方法一:数据预处理 最直接的办法就是提前做好准备。你可以先把两张表格的数据合到一块儿,变成一个新表格,之后就在这个新表格里随便查啥都行。虽然听起来有点麻烦,但实际上这种方法非常有效。 比如说,我们可以创建一个新的视图,将两张表的内容联合起来: sql CREATE VIEW CombinedData AS SELECT u.id AS user_id, u.name AS username, o.order_id FROM User AS u JOIN Order AS o ON u.id = o.user_id; 这样,当你需要查询相关信息时,就可以直接从这个视图中获取,而不需要每次都做JOIN操作。 方法二:使用Materialized Views 另一种思路是利用Materialized Views(物化视图)。简单说吧,物化视图就像是提前算好答案的一张表格。一旦下面的数据改了,这张表格也会跟着自动更新,就跟变魔术似的!这种方式特别适合于那些经常被查询的数据模式。 例如,如果我们知道某个查询会频繁出现,就可以事先定义一个物化视图来加速: sql CREATE MATERIALIZED VIEW AggregatedOrders TO AggregatedTable AS SELECT user_id, COUNT(order_id) AS order_count FROM Orders GROUP BY user_id; 通过这种方式,每次查询时都不需要重新计算这些统计数据,从而大大提高了效率。 --- 4. 实战演练 动手试试看! 好了,理论讲得差不多了,现在该轮到实战环节啦!我来给大家展示几个具体的例子,看看如何在实际场景中应用上述提到的方法。 示例一:合并数据到单表 假设我们有两个表:Sales 和 Customers,它们分别记录了销售记录和客户信息。现在我们想找出每个客户的总销售额。 sql -- 创建视图 CREATE VIEW SalesByCustomer AS SELECT c.customer_id, c.name, SUM(s.amount) AS total_sales FROM Customers AS c JOIN Sales AS s ON c.customer_id = s.customer_id GROUP BY c.customer_id, c.name; -- 查询结果 SELECT FROM SalesByCustomer WHERE total_sales > 1000; 示例二:使用物化视图优化查询 继续上面的例子,如果我们发现SalesByCustomer视图被频繁访问,那么就可以进一步优化,将其转换为物化视图: sql -- 创建物化视图 CREATE MATERIALIZED VIEW SalesSummary ENGINE = MergeTree() ORDER BY customer_id AS SELECT customer_id, name, SUM(amount) AS total_sales FROM Sales JOIN Customers USING (customer_id) GROUP BY customer_id, name; -- 查询物化视图 SELECT FROM SalesSummary WHERE total_sales > 1000; 可以看到,相比之前的视图方式,物化视图不仅减少了重复计算,还提供了更好的性能表现。 --- 5. 总结与展望 总之,尽管ClickHouse在处理跨数据库或表的复杂查询方面存在一定的限制,但这并不意味着它无法胜任大型项目的需求。其实啊,只要咱们好好琢磨一下怎么安排和设计,这些问题根本就不用担心啦,还能把ClickHouse的好处发挥得足足的! 最后,我想说的是,技术本身并没有绝对的好坏之分,关键在于我们如何运用它。希望今天的分享能帮助你在使用ClickHouse的过程中更加得心应手。如果还有任何疑问或者想法,欢迎随时交流讨论哦! 加油,我们一起探索更多可能性吧!
2025-04-24 16:01:03
24
秋水共长天一色
转载文章
...现代游戏开发中的最新实践和相关技术动态。近期,Unity官方持续优化协程功能,并在Unity 2021 LTS版本中引入了新的异步工作流API,如AsyncOperationHandle类,它提供了更强大的异步任务管理和资源加载能力,与协程机制相互补充,使得开发者能够更好地处理复杂的异步逻辑。 同时,在游戏性能优化方面,有开发者通过深入研究协程的执行机制,结合 Burst Compiler 和 Job System,实现更高效率的帧间任务调度。例如,通过自定义实现IEnumerator来配合协程进行数据预取和更新,以减少主线程负担,提升游戏流畅度。 此外,社区中有不少关于如何正确使用协程的最佳实践讨论,如避免滥用协程导致的内存泄漏问题,以及合理利用协程处理网络请求、动画序列、UI过渡等场景,这些实战经验对于Unity开发者来说具有很高的参考价值。 值得注意的是,随着C语言的发展,.NET框架中对异步编程模型的支持也在不断加强,诸如async/await关键词的引入为Unity异步编程带来了更多可能。尽管Unity引擎目前并未原生支持async/await,但开发者可以通过一些第三方库或者巧妙转换,将async/await与协程相结合,构建出更为简洁高效的异步代码结构。 综上所述,Unity协程作为游戏开发中的重要工具,在实际项目中扮演着不可或缺的角色。紧跟技术前沿,掌握协程与其他异步编程技术的融合应用,是提高游戏开发效率和用户体验的关键所在。
2023-11-24 16:50:42
389
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
echo $SHELL
- 显示当前使用的shell类型。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"