前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[React状态管理在SwipeableD...]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Dubbo
...存储服务提供者信息的组件,负责管理服务的注册与发现。常见的服务注册中心包括Zookeeper和Nacos。当服务提供者启动时,它会向注册中心注册自己的信息;而当服务消费者需要调用某个服务时,则会从注册中心获取服务提供者的地址列表。如果服务注册中心出现问题,比如配置错误或服务未能正确注册,那么消费者将无法找到对应的服务,进而导致调用失败。 No provider available , 这是一个典型的Dubbo错误提示,表示消费者无法找到可用的服务提供者。这种情况可能由多种因素引起,比如服务提供者未正确注册到注册中心、注册中心本身存在问题(如网络中断或配置错误),或是消费者端的地址列表为空。解决此类问题的关键在于检查服务端的状态、服务注册中心的工作情况以及客户端配置是否准确。
2025-03-20 16:29:46
63
雪落无痕
Spark
Spark应用程序执行时出现错误的日志记录:一个深入探索 一、引言 日志记录的重要性 在软件开发领域,尤其是大规模数据处理项目中,如使用Apache Spark构建的分布式计算框架,日志记录成为了不可或缺的一部分。哎呀,这些家伙可真是帮了大忙了!它们就像是你编程时的私人侦探,随时盯着你的代码,一有风吹草动就给你报信。特别是当你遇上疑难杂症,它们能迅速揪出问题所在,就像医生找病因一样专业。有了它们,找bug、修bug的过程变得快捷又高效,简直就像开了挂一样爽快!哎呀,咱们这篇文章啊,就是要好好聊聊在Spark这个超级棒的大数据处理工具里,咱们可能会遇到的各种小麻烦,还有呢,怎么用那些日志记录来帮咱们找到问题的根儿。你想象一下,就像你在厨房里做饭,突然发现菜炒糊了,这时候你就会看看锅底,找找是火开太大了还是调料放多了,对吧?这文章呢,就是想教你用同样的方法,在大数据的世界里,通过查看日志,找出你的Spark程序哪里出了问题,然后迅速解决它,让一切恢复正常。是不是听起来既实用又有趣?咱们这就开始吧! 二、Spark错误类型概述 Spark应用程序可能遭遇多种错误类型,从内存溢出、任务失败到网络通信异常等。这些错误通常由日志系统捕获并记录下来,为后续分析提供依据。下面,我们将通过几个具体的错误示例来了解如何阅读和解析Spark日志文件。 三、实例代码 简单的Spark Word Count应用 首先,让我们构建一个简单的Spark Word Count应用作为起点。这个应用旨在统计文本文件中单词的频率。 scala import org.apache.spark.SparkConf import org.apache.spark.SparkContext object WordCount { def main(args: Array[String]) { val conf = new SparkConf().setAppName("Word Count").setMaster("local") val sc = new SparkContext(conf) val textFile = sc.textFile("file:///path/to/your/textfile.txt") val counts = textFile.flatMap(line => line.split(" ")) .map(word => (word, 1)) .reduceByKey(_ + _) counts.saveAsTextFile("output") sc.stop() } } 四、错误日志分析 内存溢出问题 在实际运行上述应用时,如果输入文本文件过大,可能会导致内存溢出错误。日志文件中可能会出现类似以下的信息: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 37.0 failed 1 times, most recent failure: Lost task 0.3 in stage 37.0 (TID 208, localhost): java.lang.OutOfMemoryError: Java heap space 这段日志信息清晰地指出错误原因(OutOfMemoryError: Java heap space),并提供了关键细节,包括任务编号、所在节点以及错误类型。针对这一问题,可以通过增加Spark集群的内存资源或者优化数据处理逻辑来解决。 五、调试策略与最佳实践 1. 使用日志级别 调整日志级别(如INFO、DEBUG)可以帮助开发者在日志中获取更多详细信息。 2. 定期检查日志 通过自动化工具定期检查日志文件,可以及时发现潜在问题。 3. 利用Spark UI Spark自带的Web UI提供了详细的作业监控界面,直观显示任务状态和性能指标。 4. 错误重试机制 合理配置Spark任务的重试策略,避免因一次失败而影响整体进程。 5. 性能监控工具 集成性能监控工具(如Prometheus、Grafana)有助于实时监控系统性能,预防内存泄漏等严重问题。 六、总结与展望 日志记录是Spark应用程序开发和维护过程中的关键环节。哎呀,你知道吗?程序员们在遇到bug(小错误)的时候,那可是得使出浑身解数了!他们可不是对着电脑屏幕发呆,而是会仔细地分析问题,就像侦探破案一样。找到问题的源头后,他们就开始了他们的“调试大作战”,就像是医生给病人开药一样精准。通过这些努力,他们能优化代码,让程序跑得更顺畅,就像给汽车加了润滑剂,不仅跑得快,还稳当当的。这样,我们的应用就能更加可靠,用户用起来也更舒心啦!哎呀,你懂的,随着咱们每天产生的数据就像自来水一样哗哗流,那处理这些数据的大数据工具就得越来越厉害才行。特别是那些记录我们操作痕迹的日志管理系统,不仅要快得跟闪电一样,操作起来还得像玩手机游戏一样简单,最好还能自己动脑筋分析出点啥有价值的信息来。这样,未来日志记录这事儿就不仅仅是记录,还能帮我们找到问题、优化流程,简直就是一大神器嘛!所以,你看,这发展方向就是越来越智能、好用、高效,让科技真正服务于人,而不是让人被科技牵着鼻子走。 --- 通过本文的探讨,我们不仅学习了如何理解和利用Spark的日志信息来诊断问题,还了解了一些实用的调试技巧和最佳实践。希望这些内容能帮助你更有效地管理你的Spark应用程序,确保其在复杂的数据处理场景下稳定运行。
2024-09-07 16:03:18
141
秋水共长天一色
Kafka
...成为企业架构中的关键组件。然而,尽管Kafka在消息可靠性方面表现出色,但在实际应用中仍面临诸多挑战。例如,今年初某大型电商公司在促销活动期间遭遇了Kafka集群的性能瓶颈,导致订单处理延迟增加,最终影响了用户体验。这一事件引发了业界对Kafka在高并发场景下优化策略的关注。 针对此类问题,专家建议企业应更加注重Kafka的调优与监控。一方面,可以通过调整batch.size和linger.ms参数,优化批量发送效率,从而降低网络开销;另一方面,借助Prometheus和Grafana等工具实时监控集群状态,及时发现潜在风险。此外,随着云原生技术的普及,越来越多的企业开始将Kafka部署在容器化环境中。这种趋势不仅提升了资源利用率,还简化了运维流程。例如,阿里云推出的Kafka on ACK服务,就为企业提供了一站式解决方案,帮助企业快速构建稳定可靠的流处理系统。 与此同时,Kafka社区也在不断迭代更新,最新版本引入了多项新特性,如异步压缩算法和动态分区扩展等,进一步增强了系统的灵活性和扩展性。这些改进为企业应对复杂业务场景提供了更多可能性。不过,技术的进步也带来了新的学习曲线,开发者需要持续关注官方文档和最佳实践,以确保自身技能跟上行业发展的步伐。 总而言之,Kafka的广泛应用离不开对其特性的深刻理解以及合理配置。未来,随着5G、物联网等新兴技术的兴起,Kafka将在实时数据处理领域发挥更大的作用。企业和开发者唯有不断提升技术水平,才能在激烈的市场竞争中占据有利位置。
2025-04-11 16:10:34
95
幽谷听泉
NodeJS
...,适合构建各种Web应用;而Docker则可以让我们的应用轻松打包成容器,无论是在开发环境还是生产环境中都能保持一致的状态。这话让我一下就想起了小时候玩积木的场景——不管你东拆西挪、反复折腾,只要那些最基本的积木块没动,整座“高楼”就稳得跟啥似的,塌不下来! 那么问题来了:如果我想在我的Node.js项目里用上Docker,该怎么操作呢?别急,咱们一步一步来。 --- 2. 为什么选择Docker? 首先,让我们聊聊为什么要用Docker。简单来说,Docker解决了两个核心痛点: - 环境一致性:想象一下,你在本地调试好的Node.js程序,在服务器上跑却报错。哎呀,这可能是你的服务器上装的软件版本不一样,或者是系统设置没调成一个样儿,所以才出问题啦!Docker可厉害了,它把整个运行环境——比如Node.js、各种依赖库,还有配置文件啥的——全都打包成一个“镜像”,就像是给你的应用做一个完整的备份。这样,无论你什么时候部署,都像是复制了一份一模一样的东西,绝不会出岔子! - 高效部署:传统的部署方式可能是手动上传文件到服务器再启动服务,不仅费时还容易出错。而Docker只需要推送镜像,然后在目标机器上拉取并运行即可,省去了很多麻烦。 当然,这些优点的背后离不开Docker的核心概念——镜像、容器和仓库。简单来说啊,镜像就像是做菜的菜谱,容器就是按照这个菜谱写出来的菜,仓库呢,就是放这些菜谱的地方,想做菜的时候随时拿出来用就行啦!听起来是不是有点抽象?没关系,接下来我们会一步步实践! --- 3. 准备工作 搭建Node.js项目 既然要学怎么用Docker部署Node.js应用,那我们得先有个项目吧?这里我假设你已经会用npm初始化一个Node.js项目了。如果没有的话,可以按照以下步骤操作: bash mkdir my-node-app cd my-node-app npm init -y 这会在当前目录下生成一个package.json文件,用于管理项目的依赖。接下来,我们随便写点代码让这个项目动起来。比如新建一个index.js文件,内容如下: javascript // index.js const http = require('http'); const hostname = '127.0.0.1'; const port = 3000; const server = http.createServer((req, res) => { res.statusCode = 200; res.setHeader('Content-Type', 'text/plain'); res.end('Hello World\n'); }); server.listen(port, hostname, () => { console.log(Server running at http://${hostname}:${port}/); }); 现在你可以直接运行它看看效果: bash node index.js 打开浏览器访问http://127.0.0.1:3000/,你会看到“Hello World”。不错,我们的基础项目已经搭建好了! --- 4. 第一步 编写Dockerfile 接下来我们要做的就是给这个项目添加Docker的支持。为此,我们需要创建一个特殊的文件叫Dockerfile。这个名字是固定的,不能改哦。 进入项目根目录,创建一个空文件名为Dockerfile,然后在里面输入以下内容: dockerfile 使用官方的Node.js镜像作为基础镜像 FROM node:16-alpine 设置工作目录 WORKDIR /app 将当前目录下的所有文件复制到容器中的/app目录 COPY . /app 安装项目依赖 RUN npm install 暴露端口 EXPOSE 3000 启动应用 CMD ["node", "index.js"] 这段代码看起来有点复杂,但其实逻辑很简单: 1. FROM node:16-alpine 告诉Docker从官方的Node.js 16版本的Alpine镜像开始构建。 2. WORKDIR /app 指定容器内的工作目录为/app。 3. COPY . /app 把当前项目的文件拷贝到容器的/app目录下。 4. RUN npm install 在容器内执行npm install命令,安装项目的依赖。 5. EXPOSE 3000 声明应用监听的端口号。 6. CMD ["node", "index.js"]:定义容器启动时默认执行的命令。 保存完Dockerfile后,我们可以试着构建镜像了。 --- 5. 构建并运行Docker镜像 在项目根目录下运行以下命令来构建镜像: bash docker build -t my-node-app . 这里的. 表示当前目录,my-node-app是我们给镜像起的名字。构建完成后,可以用以下命令查看是否成功生成了镜像: bash docker images 输出应该类似这样: REPOSITORY TAG IMAGE ID CREATED SIZE my-node-app latest abcdef123456 2 minutes ago 150MB 接着,我们可以启动容器试试看: bash docker run -d -p 3000:3000 my-node-app 参数解释: - -d:以后台模式运行容器。 - -p 3000:3000:将主机的3000端口映射到容器的3000端口。 - my-node-app:使用的镜像名称。 启动成功后,访问http://localhost:3000/,你会发现依然可以看到“Hello World”!这说明我们的Docker化部署已经初步完成了。 --- 6. 进阶 多阶段构建优化镜像大小 虽然上面的方法可行,但生成的镜像体积有点大(大约150MB左右)。有没有办法让它更小呢?答案是有!这就是Docker的“多阶段构建”。 修改后的Dockerfile如下: dockerfile 第一阶段:构建阶段 FROM node:16-alpine AS builder WORKDIR /app COPY package.json ./ RUN npm install COPY . . RUN npm run build 假设你有一个build脚本 第二阶段:运行阶段 FROM node:16-alpine WORKDIR /app COPY --from=builder /app/dist ./dist 假设build后的文件存放在dist目录下 COPY package.json ./ RUN npm install --production EXPOSE 3000 CMD ["node", "dist/index.js"] 这里的关键在于“--from=builder”,它允许我们在第二个阶段复用第一个阶段的结果。这样就能让开发工具和测试依赖 stays 在它们该待的地方,而不是一股脑全塞进最终的镜像里,这样一来镜像就能瘦成一道闪电啦! --- 7. 总结与展望 写到这里,我相信你已经对如何用Docker部署Node.js应用有了基本的认识。虽然过程中可能会遇到各种问题,但每一次尝试都是成长的机会。记得多查阅官方文档,多动手实践,这样才能真正掌握这项技能。 未来,随着云计算和微服务架构的普及,容器化将成为每个开发者必备的技能之一。所以,别犹豫啦,赶紧去试试呗!要是你有什么不懂的,或者想聊聊自己的经历,就尽管来找我聊天,咱们一起唠唠~咱们一起进步! 最后,祝大家都能早日成为Docker高手!😄
2025-05-03 16:15:16
29
海阔天空
转载文章
...一步选择中都采取当前状态下最好或最优(即最有利)的选择,从而希望导致结果是全局最好或最优的算法设计思想。在文章中,贪心算法被列为《算法导论》所涵盖的高级策略之一,这种策略假设在局部上做出最优决策将最终导向全局最优解,常用于解决特定类型的问题,如背包问题、霍夫曼编码等。 自顶向下的方法 , 自顶向下的方法是一种系统学习和教学的方法论,在《计算机网络自顶向下方法》这本书中得到应用。这种方法从整体架构出发,首先理解高层的概念和功能,再逐步深入到各个层次的具体实现细节。在网络领域的学习中,意味着先介绍并理解整个网络协议栈的顶层——应用层的功能和交互方式,然后逐层向下探究传输层、网络层直至数据链路层和物理层的工作原理,使读者能够循序渐进地掌握计算机网络的运行机制。 数据平面 , 在《计算机网络自顶向下方法》第7版中,作者将网络层的内容分为了两章,其中“数据平面”这一名词指的是网络层中负责处理数据包转发的部分。数据平面主要关注如何根据路由表或其他信息快速而有效地将数据包从源主机发送至目标主机,涉及的关键技术和组件包括路由器的数据包转发引擎、转发表以及相关协议(如IP协议)的具体操作。 控制平面 , 与上述“数据平面”对应,在《计算机网络自顶向下方法》一书中提到的“控制平面”是指网络层中负责管理、配置和维护网络状态的部分,主要关注路由协议、拓扑变化检测、路由更新以及确保数据平面中的转发表是最新的和准确的。控制平面与数据平面相互独立又紧密配合,共同确保网络数据传输的正确性和高效性。
2023-12-11 11:49:14
119
转载
转载文章
...s)是一个开源的容器管理系统,由Google开发并捐赠给Cloud Native Computing Foundation (CNCF)。在本文中,Kubernetes被用于管理和调度集群中的容器资源,包括为Pod和容器分配内存资源、设置内存申请和限制等操作。 Pod , 在Kubernetes中,Pod是其基本的部署单元,它代表了集群上运行的一个应用实例或一组紧密相关的容器。每个Pod可以包含一个或多个共享存储和网络资源的容器,这些容器一起构成了完成特定任务的应用逻辑实体。文中通过创建和配置Pod来演示如何对内存资源进行管理。 Heapster , Heapster是一个已不再维护的Kubernetes监控工具,它能够收集集群中的资源使用数据,如CPU、内存等,并将这些数据发送到后端存储系统以便进一步分析和可视化。在本文的具体实验步骤中,虽然并非必需组件,但用户可以通过Heapster获取Pod的内存使用情况以验证内存资源配置是否生效。 内存请求与限制 , 在Kubernetes中,内存请求(requests.memory)是指容器向系统声明的最低内存需求量,而内存限制(limits.memory)则是容器可使用的最大内存额度。当Kubernetes调度器决定将Pod分配到哪个节点时,会考虑每个节点剩余的内存资源以及Pod内所有容器的内存请求。同时,如果容器试图分配超过其内存限制的资源,Kubernetes会采取相应措施(例如终止容器)以防止整个系统的稳定性受到影响。
2023-12-23 12:14:07
494
转载
Hadoop
...柱”之一,它专门用来管理海量的数据,就像一个超级大的仓库,能把成千上万的数据文件整整齐齐地存放在不同的电脑上,还能保证它们既安全又容易取用。简单来说,就是把一个大文件分成很多小块,然后把这些小块分散存储在不同的服务器上。这么做的好处嘛,简直太明显了!就算哪台机器突然“罢工”了,数据也能稳稳地保住,完全不会丢。而且呢,还能同时对这些数据进行处理,效率杠杠的! 但是,任何技术都有它的局限性。HDFS虽然功能强大,但在实际应用中也可能会遇到各种问题,比如读取速度慢。这可能是由于网络延迟、磁盘I/O瓶颈或者其他因素造成的。那么,具体有哪些原因会导致HDFS读取速度变慢呢?接下来,我们就来一一分析。 二、可能的原因及初步排查 1. 网络延迟过高 想象一下,你正在家里看电影,突然发现画面卡顿了,这是因为你的网络连接出了问题。同样地,在HDFS中,如果网络延迟过高,也会导致读取速度变慢。比如说,假如你的数据节点散落在天南海北的各种数据中心里,那数据跑来跑去就得花更多时间,就像你在城市两端都有家一样,来回折腾肯定比在同一个小区里串门费劲得多。 示例代码: java Configuration conf = new Configuration(); FileSystem fs = FileSystem.get(conf); Path filePath = new Path("/user/hadoop/input/file.txt"); FSDataInputStream in = null; try { in = fs.open(filePath); byte[] buffer = new byte[1024]; int bytesRead = in.read(buffer); while (bytesRead != -1) { bytesRead = in.read(buffer); } } catch (IOException e) { e.printStackTrace(); } finally { if (in != null) { try { in.close(); } catch (IOException e) { e.printStackTrace(); } } } 这段代码展示了如何从HDFS中读取文件。如果你发现每次执行这段代码时都需要花费很长时间,那么很可能是网络延迟的问题。 2. 数据本地性不足 还记得小时候玩过的接力赛吗?如果接力棒总是从一个人传到另一个人再传回来,效率肯定不高。这就跟生活中的事儿一样啊,在HDFS里头,要是数据没分配到离客户端最近的那个数据节点上,那不是干等着嘛,多浪费时间呀! 解决方案: 可以通过调整副本策略来改善数据本地性。比如说,默认设置下,HDFS会把文件的备份分散存到集群里的不同机器上。不过呢,如果你想让这个过程变得更高效或者更适合自己的需求,完全可以去调整那个叫dfs.replication的参数! xml dfs.replication 3 3. 磁盘I/O瓶颈 磁盘读写速度是影响HDFS性能的一个重要因素。要是你的服务器用的是那些老掉牙的机械硬盘,那读文件的速度肯定就慢得像乌龟爬了。 实验验证: 为了测试磁盘I/O的影响,可以尝试将一部分数据迁移到SSD上进行对比实验。好啦,想象一下,你手头有一堆日志文件要对付。先把它们丢到普通的老硬盘(HDD)里待着,然后又挪到固态硬盘(SSD)上,看看读取速度变了多少。是不是感觉像在玩拼图游戏,只不过这次是在折腾文件呢? 三、进阶优化技巧 经过前面的分析,我们可以得出结论:要提高HDFS的读取速度,不仅仅需要关注硬件层面的问题,还需要从软件配置上下功夫。以下是一些更高级别的优化建议: 1. 增加带宽 带宽就像是高速公路的车道数量,车道越多,车辆通行就越顺畅。对于HDFS来说,增加带宽意味着可以同时传输更多的数据块。 实际操作: 联系你的网络管理员,询问是否有可能升级现有的网络基础设施,比如更换更快的交换机或者部署新的光纤线路。 2. 调整副本策略 默认情况下,HDFS会将每个文件的三个副本均匀分布在整个集群中。然而,在某些特殊场景下,这种做法并不一定是最优解。比如说,你家APP平时就爱扎堆在那几个服务器节点上干活儿,那就可以把副本都放一块儿,这样它们串门聊天、传文件啥的就方便多了,也不用跑太远浪费时间啦! 配置修改: xml dfs.block.local-path-access.enabled true 3. 使用缓存机制 缓存就像冰箱里的剩饭,拿出来就能直接吃,不用重新加热。HDFS也有类似的机制,叫做“DataNode Cache”。打开这个功能之后啊,那些经常用到的数据就会被暂时存到内存里,这样下次再用的时候就嗖的一下快多了! 启用步骤: bash hadoop dfsadmin -setSpaceQuota 100g /cachedir hadoop dfs -cache /inputfile /cachedir 四、总结与展望 通过今天的讨论,我相信大家都对HDFS读取速度慢的原因有了更深的理解。其实,无论是网络延迟、数据本地性还是磁盘I/O瓶颈,都不是不可克服的障碍。其实吧,只要咱们肯花点心思去琢磨、去试试,肯定能找出个适合自己情况的办法。 最后,我想说的是,作为一名技术人员,我们应该始终保持好奇心和探索精神。不要害怕失败,也不要急于求成,因为每一次挫折都是一次成长的机会。希望这篇文章能给大家带来启发,让我们一起努力,让Hadoop变得更加高效可靠吧! --- 以上就是我对“HDFS读取速度慢”的全部看法和建议。如果你还有其他想法或者遇到类似的问题,请随时留言交流。咱们共同进步,一起探索大数据世界的奥秘!
2025-05-04 16:24:39
102
月影清风
Kafka
...分区数量。太多的话,管理起来麻烦;太少的话,可能无法充分利用资源。我一般会根据预计的消息量来决定分区的数量。比如说,如果一秒能收到几千条消息,那分区设成10到20个就挺合适的。毕竟分区太多太少了都不好,得根据实际情况来调,不然可能会卡壳或者资源浪费啊! 2.3 消费者组(Consumer Group):团队协作的秘密武器 最后,我们来说消费者组(Consumer Group)。消费者组是一组消费者的集合,它们共同消费同一个主题的消息。每个消费者组都有一个唯一的名称,这个名字同样非常重要。 java // 创建一个消费者组 kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic user_events --group my_consumer_group 消费者组的设计理念是为了实现负载均衡和故障恢复。比如说,如果有两个小伙伴在一个小组里,系统就会帮他们自动分配任务(也就是主题的分区),这样大家就不会抢来抢去,重复干同样的活儿啦!而且呢,要是有个消费者挂掉了或者出问题了,其他的消费者就会顶上来,接手它负责的那些分区,接着干活儿,完全不受影响。 --- 3. 组织结构 Kafka的大脑与四肢 3.1 集群(Cluster):Kafka的心脏 Kafka集群是由多个Broker组成的,Broker是Kafka的核心组件,负责存储和转发消息。一个Broker就是一个节点,多个Broker协同工作,形成一个分布式的系统。 java // 启动Kafka Broker nohup kafka-server-start.sh config/server.properties & Broker的数量决定了系统的容错能力和性能。其实啊,通常咱们都会建议弄三个Broker,为啥呢?就怕万一有个家伙“罢工”了,比如突然挂掉或者出问题,别的还能顶上,整个系统就不耽误干活啦!不过,Broker的数量也不能太多,否则会增加管理和维护的成本。 3.2 Zookeeper:Kafka的大脑 Zookeeper是Kafka的协调器,它负责管理集群的状态和配置。没有Zookeeper,Kafka就无法正常运作。比如说啊,新添了个Broker(也就是那个消息中转站),Zookeeper就会赶紧告诉其他Broker:“嘿,快看看这位新伙伴,更新一下你们的状态吧!”还有呢,要是某个分区的老大换了(Leader切换了),Zookeeper也会在一旁默默记好这笔账,生怕漏掉啥重要信息似的。 java // 启动Zookeeper nohup zookeeper-server-start.sh config/zookeeper.properties & 虽然Zookeeper很重要,但它也有一定的局限性。比如,它可能会成为单点故障,影响整个系统的稳定性。因此,近年来Kafka也在尝试去掉对Zookeeper的依赖,开发了自己的内部协调机制。 3.3 日志(Log):Kafka的四肢 日志是Kafka存储消息的地方,每个分区对应一个日志文件。嘿,这个日志设计可太聪明了!它用的是顺序写入的方法,就像一条直线往前跑,根本不用左顾右盼,写起来那叫一个快,效率直接拉满! java // 查看日志路径 cat config/server.properties | grep log.dirs 日志的大小可以通过参数log.segment.bytes来控制。默认值是1GB,你可以根据实际情况调整。要是日志文件太大了,查个东西就像在大海捞针一样慢吞吞的;但要是弄得太小吧,又老得换新的日志文件,麻烦得很,还费劲。 --- 4. 实战演练 从零搭建一个Kafka环境 说了这么多理论,咱们来实际操作一下吧!假设我们要搭建一个简单的Kafka环境,用来收集用户的登录日志。 4.1 安装Kafka和Zookeeper 首先,我们需要安装Kafka和Zookeeper。可以从官网下载最新的二进制包,解压后按照文档配置即可。 bash 下载Kafka wget https://downloads.apache.org/kafka/3.4.0/kafka_2.13-3.4.0.tgz 解压 tar -xzf kafka_2.13-3.4.0.tgz 4.2 创建主题和消费者 接下来,我们创建一个名为login_logs的主题,并启动一个消费者来监听消息。 bash 创建主题 bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 3 --topic login_logs 启动消费者 bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic login_logs --from-beginning 4.3 生产消息 最后,我们可以编写一个简单的Java程序来生产消息。 java import org.apache.kafka.clients.producer.KafkaProducer; import org.apache.kafka.clients.producer.ProducerRecord; import java.util.Properties; public class KafkaProducerExample { public static void main(String[] args) { Properties props = new Properties(); props.put("bootstrap.servers", "localhost:9092"); props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer"); props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer"); KafkaProducer producer = new KafkaProducer<>(props); for (int i = 0; i < 10; i++) { producer.send(new ProducerRecord<>("login_logs", "key" + i, "value" + i)); } producer.close(); } } 这段代码会向login_logs主题发送10条消息,每条消息都有一个唯一的键和值。 --- 5. 总结 Kafka的魅力在于细节 好了,到这里咱们的Kafka之旅就告一段落了。通过这篇文章,我希望大家能更好地理解Kafka的命名规范和组织结构。Kafka为啥这么牛?因为它在设计的时候真是把每个小细节都琢磨得特别透。就像给主题起名字吧,分个区啦,还有消费者组怎么配合干活儿,这些地方都能看出人家确实是下了一番功夫的,真不是随便凑合出来的! 当然,Kafka的学习之路还有很多内容需要探索,比如监控、调优、安全等等。其实我觉得啊,只要你把命名的规矩弄明白了,东西该怎么放也心里有数了,那你就算是走上正轨啦,成功嘛,它就已经在向你招手啦!加油吧,朋友们! --- 希望这篇文章对你有所帮助,如果有任何疑问,欢迎随时交流哦!
2025-04-05 15:38:52
95
彩虹之上
转载文章
...采用了更为先进的内存管理技术,如颜色指针、读屏障等,以实现更低延迟的并发标记清理过程。关注这些前沿GC算法的研究与发展,可以更全面地了解现代JVM如何高效处理大规模堆内存引用关系。 2. G1垃圾收集器与RSet深入解读:G1作为当前HotSpot JVM推荐的默认垃圾收集器,其内部机制中除了卡表外,Remembered Set(RSet)也是关键组件。详细了解RSet如何辅助卡表追踪跨区域引用,以及分区并发压缩等特性,将有助于读者掌握G1高效回收内存的具体实现原理。 3. 实际生产环境案例分析:通过阅读一些大型互联网企业或开源社区分享的实战经验文章,了解他们在使用CMS、G1等垃圾收集器时如何针对特定业务场景调整卡表相关参数,解决实际遇到的性能瓶颈问题。比如,如何根据应用特点选择合适的卡表大小、调整扫描频率以平衡GC开销与应用响应时间。 4. 学术研究论文:查阅近年来关于垃圾收集器优化的学术论文,比如《A Study of the G1 Garbage Collector》、《The Z Garbage Collector》等,可深入了解卡表设计背后的理论依据,以及研究人员为提升GC效率所做的各种尝试和改进。 5. 官方文档及源码阅读:直接研读Oracle官方发布的Java SE HotSpot VM Garbage Collection Tuning Guide,以及JDK源码中的CardTableBarrierSet等相关类实现,可以更直观地把握卡表的具体工作流程和技术细节。同时,关注JDK开发团队的博客、邮件列表讨论等,获取第一手的更新信息和未来发展方向。
2023-12-16 20:37:50
246
转载
转载文章
...些年在之前OPC成功应用的基础上推出了一个新的OPC标准-OPC UA。处于通讯效率上的考虑,很多厂家生产了OPCUA设备模块,内置处理器,性价比不错。不过这不是本文关注的重点。 概念 OPC UA(OPC Unified Architecture)是指OPC统一体系架构,是一种基于服务的、跨越平台的解决方案。 特点 扩展了OPC的应用平台。传统的基于COM/DCOM 的OPC技术只能基于Windows操作系统,OPC UA支持拓展到Linux和Unix平台。这使得基于OPC UA的标准产品可以更好地实现工厂级的数据采集和管理; 不再基于DCOM通讯,不需要进行DCOM安全设置; OPC UA定义了统一数据和服务模型,使数据组织更为灵活,可以实现报警与事件、数据存取、历史数据存取、控制命令、复杂数据的交互通信; OPC UA比OPC DA更安全。OPC UA传递的数据是可以加密的,并对通信连接和数据本身都可以实现安全控制。新的安全模型保证了数据从原始设备到MES,ERP系统,从本地到远程的各级自动化和信息化系统的可靠传递; OPC UA可以穿越防火墙,实现Internet 通讯。 依赖 我们通常不会从头写,可以基于OpcUa.core.dll库和OpcUa.Client.dll库,而且附上这2个库的源代码。 配置OpcUA Server 您可以安装任何一款支持OPCUA的服务端软件进行以下配置(此为示例配置,您可根据你的实际情况进行配置) 1、OpcUa Server Url:opc.tcp://192.168.100.1:4840。 2、OpcUa EndPoint:[UaServer@cMT-EAB9] [None] [None] [opc.tcp://192.168.100.1:4840/G01] 3、PLC Device Name:Siemens S7-1200/S7-1500 4、Account:user1 5、Password:自己设置 6、在PLC中开了2个数据块,分别为DB4长度110个字、DB5长度122个字。 7、对应第4块创建标签,第一个名称为DB4.0-99,地址为DB4DBW0.100,数据类型为Short,长度100,即定义长度最长为100的Short数组。第二个名称为DB4.100-109,地址为DB4DBW100.10,数据类型为Short,方便快速读取。 5、对应第5块创建3个标签,第一个名称为DB5.0-99,地址为DB5DBW0.100,数据类型为Short,第二个名称为DB5.100-121, 地址为DB5DBW100.22,数据类型为Short,即定义长度最长为100的Short数组。方便快速读取。第三个标签名称为DB5DBW64,地址为DB5DBW64,数据类型为Short。 具体如下图: 关键代码 using System;using System.Collections.Generic;using System.Linq;using Opc.Ua.Helper;using Mesnac.Equips;namespace Mesnac.Equip.OPC.OpcUa.OPCUA{public class Equip : BaseEquip{region 字段定义private bool _isOpen = false; //是否已打开设备private bool _isClosing = false; //是否正在关闭设备private OPCUAClass myOpcHelper; //OPCUA设备访问辅助对象private Dictionary<string, string> dicTags = null; //保存标签集合private Dictionary<string, object> readResult = null; //设备标签数据缓存private int stepLen = 250; //标签变量的步长设置private string groupNamePrefix = "DB"; //数据块号前缀private string childTagFlag = "~"; //子元素标签标志符private System.Threading.Thread innerReadThread = null; //内部读取线程对象private int innerReadRate = 1000; //内部读取频率endregionregion 属性定义/// <summary>/// OPCUA Server Url/// </summary>public string OpcUaServerUrl{get{//return (this.Main.ConnType as Mesnac.Equips.Connection.OPCUA.ConnType).OpcUaServerUrl;return "opc.tcp://192.168.1.102:4840";//return "opc.tcp://192.168.100.1:4840";//return "opc.tcp://192.168.100.2:4840";} }/// <summary>/// 要连接的OPCUA服务器上的服务名/// </summary>public string OpcUaServiceName{get{//return (this.Main.ConnType as Mesnac.Equips.Connection.OPCUA.ConnType).OpcUaServiceName;return "[UaServer@cMT-9F1F] [None] [None] [opc.tcp://192.168.1.102:4840/G01]";//return "[UaServer@cMT-EAB9] [None] [None] [opc.tcp://192.168.100.1:4840/G01]";//return "[UaServer@cMT-EA5B] [None] [None] [opc.tcp://192.168.100.2:4840/G02]";//return "[UaServer@cMT-EA5B] [None] [None] [opc.tcp://192.168.100.2:4840/G01]";} }/// <summary>/// 要连接的OPCUA服务器上指定服务名下的PLC的名称/// </summary>public string PLCName{get{//return (this.Main.ConnType as Mesnac.Equips.Connection.OPCUA.ConnType).PLCName;//return "Feeding";return "Siemens_192.168.2.1";//return "Rockwell_192.168.1.10";} }/// <summary>/// OPCUA服务器的访问账户/// </summary>public string Account{get{//return (this.Main.ConnType as Mesnac.Equips.Connection.OPCUA.ConnType).Account;return "user1";} }/// <summary>/// OPCUA服务器的访问密码/// </summary>public string Password{get{//return (this.Main.ConnType as Mesnac.Equips.Connection.OPCUA.ConnType).Password;return "1";} }endregionregion BaseEquip成员实现/// <summary>/// 打开连接设备/// </summary>/// <returns>成功返回true,失败返回false</returns>public override bool Open(){lock (this){this._isClosing = false;if (this._isOpen == true && this.myOpcHelper != null){return true;}this.State = false;this.myOpcHelper = new OPCUAClass();this.dicTags = this.myOpcHelper.ConnectOPCUA(this.OpcUaServerUrl, this.Account, this.Password, this.OpcUaServiceName, this.PLCName); //连接OPCServerif (this.dicTags == null || this.dicTags.Count == 0){this.myOpcHelper = null;Console.WriteLine("OPC连接失败!");this.State = false;return false;}else{this.State = true;this._isOpen = true;region 初始化读取结果this.readResult = new Dictionary<string, object>();foreach (Equips.BaseInfo.Group group in this.Group.Values){if (!group.IsAutoRead){continue;}int groupMinStart = group.Start;int groupMaxEnd = group.Start + group.Len;int groupMaxLen = group.Len;foreach (Equips.BaseInfo.Group g in this.Group.Values){if (!g.IsAutoRead){continue;}if (g.Block == group.Block){if (g.Start < group.Start){groupMinStart = g.Start;}if (g.Start + g.Len > groupMaxEnd){groupMaxEnd = g.Start + g.Len;} }}groupMaxLen = groupMaxEnd - groupMinStart;int tagCount = groupMaxLen % this.stepLen == 0 ? groupMaxLen / this.stepLen : groupMaxLen / this.stepLen + 1;int currLen = 0;for (int i = 0; i < tagCount; i++){string tagName = String.Empty;if (tagCount == 1){tagName = String.Format("{0}-{1}", groupMinStart, groupMinStart + groupMaxLen - 1);currLen = groupMaxLen;}else if (i == tagCount - 1){tagName = String.Format("{0}-{1}", groupMinStart + (i this.stepLen), groupMinStart + (i this.stepLen) + (groupMaxLen % this.stepLen == 0 ? this.stepLen : groupMaxLen % this.stepLen) - 1);currLen = groupMaxLen % this.stepLen;}else{tagName = String.Format("{0}-{1}", groupMinStart + (i this.stepLen), groupMinStart + (i this.stepLen) + this.stepLen - 1);currLen = this.stepLen;}string tagFullName = String.Format("{0}{1}.{2}", groupNamePrefix, group.Block, tagName);if (!this.readResult.ContainsKey(tagFullName)){bool exists = false;region 判断读取结果标签组的范围是否包括了此标签 比如tagFullName DB5.220-299,在readResult中存在 DB5.200-299,则认为已存在,不需要再添加string[] beginend = null;int begin = 0;int end = 0;string[] startstop = tagFullName.Replace(String.Format("{0}{1}.", groupNamePrefix, group.Block), String.Empty).Split(new char[] { '-' });int start = 0;int stop = 0;bool parseResult = false;if (startstop.Length == 2){parseResult = int.TryParse(startstop[0], out start);if (parseResult){parseResult = int.TryParse(startstop[1], out stop);} }if (parseResult){int existsMinBegin = 0; //已存在标签的最小开始索引int existsMaxEnd = 0; //已存在标签的最大结束索引bool isContinue = true; //标签值是否连续string[] existsTags = this.readResult.Keys.ToArray<string>();foreach (string tag in existsTags){if (tag.StartsWith(String.Format("{0}{1}.", groupNamePrefix, group.Block)) && tag.Contains(".") && tag.Contains("-")){string[] tagname = tag.Split(new char[] { '.' });if (tagname.Length == 2){beginend = tagname[1].Split(new char[] { '-' });if (beginend.Length == 2){parseResult = int.TryParse(beginend[0], out begin);if (parseResult){parseResult = int.TryParse(beginend[1], out end);}region 计算最小开始索引和最大结束索引if (begin < existsMinBegin){existsMinBegin = begin;region 判断标签值是否连续if (existsMaxEnd != 0 && begin != existsMaxEnd + 1){isContinue = false;}endregion}if (end > existsMaxEnd){existsMaxEnd = end;}endregion} }if (parseResult){if (start >= begin && stop <= end){exists = true;break;}if (isContinue){if (start >= existsMinBegin && stop <= existsMaxEnd){exists = true;break;} }} }} }endregionif (!exists){ushort[] groupData = new ushort[currLen];this.readResult[tagFullName] = groupData;Console.WriteLine(tagFullName);} }}//int tagCount = group.Len % this.stepLen == 0 ? group.Len / this.stepLen : group.Len / this.stepLen + 1;//int currLen = 0;//for (int i = 0; i < tagCount; i++)//{// string tagName = String.Empty;// if (tagCount == 1)// {// tagName = String.Format("{0}-{1}", group.Start, group.Start + group.Len - 1);// currLen = group.Len;// }// else if (i == tagCount - 1)// {// tagName = String.Format("{0}-{1}", group.Start + (i this.stepLen), group.Start + (i this.stepLen) + (group.Len % this.stepLen == 0 ? this.stepLen : group.Len % this.stepLen) - 1);// currLen = group.Len % this.stepLen;// }// else// {// tagName = String.Format("{0}-{1}", group.Start + (i this.stepLen), group.Start + (i this.stepLen) + this.stepLen - 1);// currLen = this.stepLen;// }// string tagFullName = String.Format("{0}{1}.{2}", groupNamePrefix, group.Block, tagName);// if (!this.readResult.ContainsKey(tagFullName))// {// short[] groupData = new short[currLen];// this.readResult[tagFullName] = groupData;// }//} }endregionregion 开启内部定时读取if (this.innerReadThread == null){this.innerReadRate = this.Main.ReadHz / 2;this.innerReadThread = new System.Threading.Thread(this.InnerAutoRead);this.innerReadThread.Start();}endregion}return this.State;} }/// <summary>/// 从设备读取数据/// </summary>/// <param name="block">要读取的块号</param>/// <param name="start">要读取的起始字</param>/// <param name="len">要读取的长度</param>/// <param name="buff">读取成功后的输出数据</param>/// <returns>成功返回true,失败返回false</returns>public override bool Read(string block, int start, int len, out object[] buff){lock (this){buff = null;if (this._isClosing){return false;}string readstrflag = String.Format("{0}{1}.{2}-{3}", this.groupNamePrefix, block, start, start + len - 1);System.Text.StringBuilder sbtaglength = new System.Text.StringBuilder();string startTag = String.Empty;string groupName = String.Format("{0}{1}", this.groupNamePrefix, block); //要读取的OPCServer块List<ushort> groupData = new List<ushort>();List<string> groupTagNames = new List<string>();int startIndex = 0;try{if (!Open()){return false;}//return true;string[] keys = this.readResult.Keys.ToArray<string>();foreach (string key in keys){if (key.StartsWith(groupName) && key.Replace(String.Format("{0}.", groupName), String.Empty).Contains("-")){groupTagNames.Add(key);} }groupTagNames.Sort(); //对块标签进行排序foreach (string key in groupTagNames){if (String.IsNullOrEmpty(startTag)){startTag = key.Replace(String.Format("{0}.", groupName), String.Empty);}ushort[] values;if (this.readResult[key] is ushort[]){values = this.readResult[key] as ushort[];}else{values = new ushort[] { (ushort)this.readResult[key] };}sbtaglength.Append(String.Format("tagName={0}, buff length = {1}", key, values.Length));groupData.AddRange(values);}buff = new object[len];if (!String.IsNullOrEmpty(startTag)){string strStartIndex = startTag.Substring(0, startTag.IndexOf("-"));int.TryParse(strStartIndex, out startIndex);startIndex = start - startIndex;Array.Copy(groupData.ToArray(), startIndex, buff, 0, buff.Length);}else{}return true;}catch (Exception ex){Console.WriteLine(String.Join(";", groupTagNames.ToArray<string>()));Console.WriteLine("data length = " + groupData.Count);Console.WriteLine(this.Name + "读取失败[" + readstrflag + "]:" + ex.Message);Console.WriteLine(sbtaglength.ToString());this.State = false;return false;} }}/// <summary>/// 写入数据到设备/// </summary>/// <param name="block">要写入的块号</param>/// <param name="start">要写入的起始字</param>/// <param name="buff">要写如的数据</param>/// <returns>成功返回true,失败返回false</returns>public override bool Write(int block, int start, object[] buff){bool result = true;lock (this){try{if (this._isClosing){return false;}if (!Open()){return false;}bool isWrite = false;region 按标签变量写入string itemId = "";foreach (Equips.BaseInfo.Group group in this.Group.Values){if (group.Block == block.ToString()){foreach (Equips.BaseInfo.Data data in group.Data.Values){if (group.Start + data.Start == start && data.Len == buff.Length){if (this.dicTags.ContainsKey(data.Name)){itemId = this.dicTags[data.Name];}break;} }} }if (!String.IsNullOrEmpty(itemId)){UInt16[] intBuff = new UInt16[buff.Length];for (int i = 0; i < intBuff.Length; i++){intBuff[i] = 0;if (!UInt16.TryParse(buff[i].ToString(), out intBuff[i])){Console.WriteLine("在写入OPCUA标签时把buff中的元素转为UInt16类型失败!");} }result = this.myOpcHelper.WriteUInt16(itemId, intBuff);if (!result){Console.WriteLine(String.Format("标签变量[{0}]写入失败!", itemId));return false;}else{Console.WriteLine("按标签变量写入..." + itemId);isWrite = true;} }if (isWrite){return true;}endregionregion 按块写入region 先读取相应标签数数据string startTag = String.Empty;string groupName = String.Format("{0}{1}", this.groupNamePrefix, block); //要读取的OPCServer块List<ushort> groupData = new List<ushort>();string[] keys = readResult.Keys.Where(o => o.StartsWith(groupName) && o.Contains("-")).OrderBy(c => c).ToArray<string>();foreach (string key in keys){if (String.IsNullOrEmpty(startTag)){startTag = key.Replace(String.Format("{0}.", groupName), String.Empty);}string[] beginEnd = key.Replace(String.Format("{0}.", groupName), String.Empty).Split(new char[] { '-' });if (beginEnd.Length != 2){Console.WriteLine(String.Format("标签变量[{0}]未按约定方式命名,请按[DB块号].[起始字-结束字]方式标签变量进行命名!", String.Format("{0}.{1}", key)));return false;}int begin = 0;int end = 0;int.TryParse(beginEnd[0], out begin);int.TryParse(beginEnd[1], out end);region 写入之前,先读取一下PLC的值if ((start >= begin && start <= end) || ((start + buff.Length - 1) >= begin && (start + buff.Length - 1) <= end) || (start < begin && (start + buff.Length - 1) > end)){this.ReadTag(key);if (this.readResult.ContainsKey(key) && this.readResult[key] is Array){Console.WriteLine("read = " + key);groupData.AddRange(this.readResult[key] as ushort[]);}else{Console.WriteLine(String.Format("读取结果中不包含标签变量[{0}]的值!", String.Format("{0}", key)));} }else{if (this.readResult.ContainsKey(key) && this.readResult[key] is Array){Console.WriteLine("no read = " + key);groupData.AddRange(this.readResult[key] as ushort[]);} }endregion}endregionif (String.IsNullOrEmpty(startTag)){Console.WriteLine("写入失败,未在OPCUAserver中找到对应的标签,block = {0}, start = {1}, len = {2}", block, start, buff.Length);return false;}region 更新标签中对应的数据后,再写回OPCServerint startIndex = 0;string strStartIndex = startTag.Substring(0, startTag.IndexOf("-"));int.TryParse(strStartIndex, out startIndex);startIndex = start - startIndex;ushort[] newDataBuffer = groupData.ToArray();for (int i = 0; i < buff.Length; i++){ushort svalue = 0;ushort.TryParse(buff[i].ToString(), out svalue);newDataBuffer[startIndex + i] = svalue;}int index = 0;string[] keys2 = readResult.Keys.Where(o => o.StartsWith(groupName) && o.Contains("-")).OrderBy(c => c).ToArray<string>();foreach (string key2 in keys2){string[] beginEnd = key2.Replace(String.Format("{0}.", groupName), String.Empty).Split(new char[] { '-' });if (beginEnd.Length != 2){Console.WriteLine(String.Format("标签变量[{0}]未按约定方式命名,请按[DB块号].[起始字-结束字]方式标签变量进行命名!", String.Format("{0}", key2)));return false;}int begin = 0;int end = 0;int.TryParse(beginEnd[0], out begin);int.TryParse(beginEnd[1], out end);if ((start >= begin && start <= end) || ((start + buff.Length - 1) >= begin && (start + buff.Length - 1) <= end) || (start < begin && (start + buff.Length - 1) > end)){//Console.WriteLine("---------------------------------------------------------");//Console.WriteLine("start = " + start);//Console.WriteLine("start + buff.Length - 1 = " + (start + buff.Length -1));//Console.WriteLine("begin = " + begin);//Console.WriteLine("end = " + end);//Console.WriteLine("---------------------------------------------------------");if (!this.dicTags.ContainsKey(key2)){Console.WriteLine(String.Format("写入失败:标签变量[{0}]在OpcUA Server中未定义!", String.Format("{0}", key2)));return false;}int len = (this.readResult[key2] as ushort[]).Length;ushort[] tagDataBuff = new ushort[len];//Console.WriteLine("newDataBuff");//Console.WriteLine(String.Join(",", newDataBuffer));//Console.WriteLine("index = " + index);//Console.WriteLine("tagDataBuff.Length = " + tagDataBuff.Length);//Array.Copy(newDataBuffer, begin, tagDataBuff, 0, tagDataBuff.Length);int existsMinBegin = this.GetExistsMinBeginByBlock(block.ToString());Array.Copy(newDataBuffer, begin - existsMinBegin, tagDataBuff, 0, tagDataBuff.Length);index += tagDataBuff.Length;//Console.WriteLine("Write " + key2);//Console.WriteLine(String.Join(",", tagDataBuff));//Console.WriteLine("写入标签:" + this.dicTags[key2]);result = this.myOpcHelper.WriteUInt16(this.dicTags[key2], tagDataBuff);if (!result){Console.WriteLine(String.Format("向标签变量[{0}]中写入值失败!", String.Format("{0}", key2)));return false;}else{this.ReadTag(key2);Console.WriteLine("写入...");}//Console.WriteLine("---------------------------------------------------------");} }endregionendregionreturn result;}catch (Exception ex){Console.WriteLine(this.Name + "写入失败:" + ex.Message);return false;} }}/// <summary>/// 关闭方法,断开与设备的连接释放资源/// </summary>public override void Close(){try{this._isClosing = true;System.Threading.Thread.Sleep(this.Main.ReadHz);if (this.innerReadThread != null){this.innerReadThread.Abort();this.innerReadThread = null;} }catch (Exception ex){Console.WriteLine("关闭内部读取OPCUA线程异常:" + ex.Message);}try{if (this.myOpcHelper != null){this.myOpcHelper.Close();this.myOpcHelper = null;this.State = false;this._isOpen = false;} }catch (Exception ex){Console.WriteLine("关于与OPCUA服务连接异常:" + ex.Message);} }endregionregion 辅助方法/// <summary>/// 获取某个数据块标签的最小开始索引/// </summary>/// <param name="block">块号</param>/// <returns>返回数据块标签的最小开始索引</returns>private int GetExistsMinBeginByBlock(string block){int existsMinBegin = 99999; //已存在标签的最小开始索引int existsMaxEnd = 0; //已存在标签的最大结束索引bool isContinue = true; //标签值是否连续string[] existsTags = this.readResult.Keys.ToArray<string>();string[] beginend = null;bool parseResult = false;int begin = 0;int end = 0;foreach (string tag in existsTags){if (tag.StartsWith(String.Format("{0}{1}.", groupNamePrefix, block)) && tag.Contains(".") && tag.Contains("-")){string[] tagname = tag.Split(new char[] { '.' });if (tagname.Length == 2){beginend = tagname[1].Split(new char[] { '-' });if (beginend.Length == 2){parseResult = int.TryParse(beginend[0], out begin);if (parseResult){parseResult = int.TryParse(beginend[1], out end);}region 计算最小开始索引和最大结束索引if (begin < existsMinBegin){existsMinBegin = begin;region 判断标签值是否连续if (existsMaxEnd != 0 && begin != existsMaxEnd + 1){isContinue = false;}endregion}if (end > existsMaxEnd){existsMaxEnd = end;}endregion} }if (parseResult){//} }}return existsMinBegin;}/// <summary>/// 读取标签/// </summary>/// <param name="tagName"></param>private void ReadTag(string tagName){UInt16[] buff = null;if (this.dicTags.ContainsKey(tagName)){if (this.myOpcHelper.ReadUInt16(this.dicTags[tagName], out buff)){//Console.WriteLine("tagName={0}, buff length = {1}", tagName, buff.Length);if (this.readResult.ContainsKey(tagName)){this.readResult[tagName] = buff;}else{this.readResult.Add(tagName, buff);} }else{Console.WriteLine("Mesnac.Equip.OPC.OpcUa.OPCUA.Equip.ReadTag Exception 读取标签:[{0}]失败!", tagName);} }else{Console.WriteLine("Mesnac.Equip.OPC.OpcUa.OPCUA.Equip.ReadTag Exception OPCUA Server中未定义此标签:[{0}]!", tagName);} }/// <summary>/// 内部自动读取方法/// </summary>private void InnerAutoRead(){while (this._isOpen && this._isClosing == false){try{if (this.myOpcHelper == null){this._isClosing = true;this.State = false;return;}lock (this){string[] keys = this.readResult.Keys.ToArray<string>();foreach (string key in keys){this.ReadTag(key);} }System.Threading.Thread.Sleep(this.innerReadRate);}catch (Exception ex){Console.WriteLine("Mesnac.Equip.OPC.OpcUa.OPCUA.Equip.InnerAutoRead Exception : " + ex.Message);} }this.innerReadThread = null;}endregionregion 析构方法~Equip(){this.Close();}endregion} } 代码下载 代码下载 本篇文章为转载内容。原文链接:https://blog.csdn.net/zlbdmm/article/details/96714776。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-05-10 18:43:00
269
转载
转载文章
...发人员 – 助理系统管理员 专家级 – 专家架构师 – 专家开发运维 认证共有5个,如果要参加专家级认证必须先通过助理级认证,其中“专家开发运维(devops)”的认证则通过任意(开发 or 运维)的助理级认证即可 3.2 获得认证后的收益? 对个人 – 可以证明个人在AWS平台上具备设计、部署和管理高可用、低成本、安全应用的能力 – 在工作上或社区中得到尊重和认可 – 可以把认证放到简历中,linkedin中整合了AWS认证徽章 对企业雇主 – 具备AWS上服务和工具的使用的认可 – 客户认可,降低AWS项目实施风险 – 增加客户满意度 3.3 再认证模式 因为AWS的服务在更新,因此每两年要重新认证(证件的有效期2年),再次参加考试时,题目、时间将会更少,且认证费用更低 3.4 助理架构师认证的知识领域 四大知识域 1 设计:高可用、高效率、可容错低、可扩展的系统 2 实施和部署:强调部署操作能力 3 数据安全性:在部署操作时,始终保持数据保存和传输的安全 4 排除故障:在系统出现问题时,可以快速找到问题并解决问题 知识权重 - 设计:60%的题目 - 实施和部署:10%的题目 - 数据安全:20%的题目 - 排除故障:10%的题目 PS:考试不会按照上面的次序、考试不会注明考试题目的分类 3.5 认证过程 需要在网上注册,找到距离家里比较近的地方考试(考点) 到了现场需要携带身份证,证明自己 并不允许带手机入场 证件上必须有照片 签署NDA保证不会泄露考题 考试中心的电脑中考试(80分钟,55个考题) 考试后马上知道分数和是否通过(不会看到每道题目是否正确) 通过后的成绩、认证证书等将发到email邮箱中 3.6 考试机制 助理级别考试的重点是:单一服务和小规模的组合服务的掌握程度 所有题目都是选择题(多选或单选) 不惩罚打错,所以留白没意义,可以猜一个 55道题 可以给不确定的题目打标签,没提交前都可以回来改答案 3.7 题目示例 单选题 多选题(会告诉你有多少个答案) 汇总查看答案以及mark(标记) 4 AWS架构的7大设计原则 4.1 松耦合 松耦合是容错、运维自动扩容的基础,在设计上应该尽量减少模块间的依赖性,将不会成为未来应用调整、发展的阻碍 松耦合模式的情况 不要标示(依赖)特定对象,依赖特定对象耦合性将非常高 – 使用负载均衡器 – 域名解析 – 弹性IP – 可以动态找到配合的对象,为松耦合带来方便,为应用将来的扩展带来好处 不要依赖其他模块的正确处理或及时的处理 – 使用尽量使用异步的处理,而不是同步的(SQS可以帮到用户) 4.2 模块出错后工作不会有问题 问问某个模块出了问题,应用会怎么样? 在设计的时候,在出了问题会有影响的模块,进行处理,建立自动恢复性 4.3 实现弹性 在设计上,不要假定模块是正常的、始终不变的 – 可以配合AutoScaling、EIP和可用区AZ来满足 允许模块的失败重启 – 无状态设计比有状态设计好 – 使用ELB、云监控去检测“实例”运行状态 有引导参数的实例(实现自动配置) – 例如:加入user data在启动的时候,告知它应该做的事情 在关闭实例的时候,保存其配置和个性化 – 例如用DynamoDB保存session信息 弹性后就不会为了超配资源而浪费钱了 4.4 安全是整体的事,需要在每个层面综合考虑 基础架构层 计算/网络架构层 数据层 应用层 4.5 最小授权原则 只付于操作者完成工作的必要权限 所有用户的操作必须授权 三种类型的权限能操作AWS – 主账户 – IAM用户 – 授权服务(主要是开发的app) 5 设计:高可用、高效率、可容错、可扩展的系统 本部分的目标是设计出高可用、高效率低成本、可容错、可扩展的系统架构 - 高可用 – 了解AWS服务自身的高可靠性(例如弹性负载均衡)—-因为ELB是可以多AZ部署的 – 用好这些服务可以减少可用性的后顾之忧 - 高效率(低成本) – 了解自己的容量需求,避免超额分配 – 利用不同的价格策略,例如:使用预留实例 – 尽量使用AWS的托管服务(如SNS、SQS) - 可容错 – 了解HA和容错的区别 – 如果说HA是结果,那么容错则是保障HA的一个重要策略 – HA强调系统不要出问题,而容错是在系统出了问题后尽量不要影响业务 - 可扩展性 – 需要了解AWS哪些服务自身就可以扩展,例如SQS、ELB – 了解自动伸缩组(AS) 运用好 AWS 7大架构设计原则的:松耦合、实现弹性 6 实施和部署设计 本部分的在设计的基础上找到合适的工具来实现 对比第一部分“设计”,第一章主要针对用什么,而第二章则讨论怎么用 主要考核AWS云的核心的服务目录和核心服务,包括: 计算机和网络 – EC2、VPC 存储和内容分发 – S3、Glacier 数据库相关分类 – RDS 部署和管理服务 – CloudFormation、CloudWatch、IAM 应用服务 – SQS、SNS 7 数据安全 数据安全的基础,是AWS责任共担的安全模型模型,必须要读懂 数据安全包括4个层面:基础设施层、计算/网络层、数据层、应用层 - 基础设施层 1. 基础硬件安全 2. 授权访问、流程等 - 计算/网络层 1. 主要靠VPC保障网络(防护、路由、网络隔离、易管理) 2. 认识安全组和NACLs以及他们的差别 安全组比ACL多一点,安全组可以针对其他安全组,ACL只能针对IP 安全组只允许统一,ACL可以设置拒绝 安全组有状态!很重要(只要一条入站规则通过,那么出站也可以自动通过),ACL没有状态(必须分别指定出站、入站规则) 安全组的工作的对象是网卡(实例)、ACL工作的对象是子网 认识4种网关,以及他们的差别 共有4种网关,支撑流量进出VPC internet gatway:互联网的访问 virtual private gateway:负责VPN的访问 direct connect:负责企业直连网络的访问 vpc peering:负责VPC的peering的访问 数据层 数据传输安全 – 进入和出AWS的安全 – AWS内部传输安全 通过https访问API 链路的安全 – 通过SSL访问web – 通过IP加密访问VPN – 使用直连 – 使用OFFLINE的导入导出 数据的持久化保存 – 使用EBS – 使用S3访问 访问 – 使用IAM策略 – 使用bucket策略 – 访问控制列表 临时授权 – 使用签名的URL 加密 – 服务器端加密 – 客户端加密 应用层 主要强调的是共担风险模型 多种类型的认证鉴权 给用户在应用层的保障建议 – 选择一种认证鉴权机制(而不要不鉴权) – 用安全的密码和强安全策略 – 保护你的OS(如打开防火墙) – 用强壮的角色来控制权限(RBAC) 判断AWS和用户分担的安全中的标志是,哪些是AWS可以控制的,那些不能,能的就是AWS负责,否则就是用户(举个例子:安全组的功能由AWS负责—是否生效,但是如何使用是用户负责—自己开放所有端口跟AWS无关) AWS可以保障的 用户需要保障的 工具与服务 操作系统 物理内部流程安全 应用程序 物理基础设施 安全组 网络设施 虚拟化设施 OS防火墙 网络规则 管理账号 8 故障排除 问题经常包括的类型: - EC2实例的连接性问题 - 恢复EC2实例或EBS卷上的数据 - 服务使用限制问题 8.1 EC2实例的连接性问题 经常会有多个原因造成无法连接 外部VPC到内部VPC的实例 – 网关(IGW–internet网关、VPG–虚拟私有网关)的添加问题 – 公司网络到VPC的路由规则设置问题 – VPC各个子网间的路由表问题 – 弹性IP和公有IP的问题 – NACLs(网络访问规则) – 安全组 – OS层面的防火墙 8.2 恢复EC2实例或EBS卷上的数据 注意EBS或EC2没有任何强绑定关系 – EBS是可以从旧实例上分离的 – 如有必要尽快做 将EBS卷挂载到新的、健康的实例上 执行流程可以针对恢复没有工作的启动卷(boot volume) – 将root卷分离出来 – 像数据一样挂载到其他实例 – 修复文件 – 重新挂载到原来的实例中重新启动 8.3 服务使用限制问题 AWS有很多软性限制 – 例如AWS初始化的时候,每个类型的EBS实例最多启动20个 还有一些硬性限制例如 – 每个账号最多拥有100个S3的bucket – …… 别的服务限制了当前服务 – 例如无法启动新EC2实例,原因可能是EBS卷达到上限 – Trusted Advisor这个工具可以根据服务水平的不同给出你一些限制的参考(从免费试用,到商业试用,和企业试用的建议) 常见的软性限制 公共的限制 – 每个用户最多创建20个实例,或更少的实例类型 – 每个区域最多5个弹性ip – 每个vpc最多100个安全组 – 最多20个负载均衡 – 最多20个自动伸缩组 – 5000个EBS卷、10000个快照,4w的IOPS和总共20TB的磁盘 – …更多则需要申请了 你不需要记住限制 – 知道限制,并保持数值敏感度就好 – 日后遇到问题时可以排除掉软限制的相关的问题 9. 总结 9.1 认证的主要目标是: 确认架构师能否搜集需求,并且使用最佳实践,在AWS中构建出这个系统 是否能为应用的整个生命周期给出指导意见 9.2 希望架构师(助理或专家级)考试前的准备: 深度掌握至少1门高级别语言(c,c++,java等) 掌握AWS的三份白皮书 – aws概览 – aws安全流程 – aws风险和应对 – 云中的存储选项 – aws的架构最佳实践 按照客户需求,使用AWS组件来部署混合系统的经验 使用AWS架构中心网站了解更多信息 9.3 经验方面的建议 助理架构师 – 至少6个月的实际操作经验、在AWS中管理生产系统的经验 – 学习过AWS的基本课程 专家架构师 – 至少2年的实际操作经验、在AWS中管理多种不同种类的复杂生产系统的经验(多种服务、动态伸缩、高可用、重构或容错) – 在AWS中执行构建的能力,架构的高级概念能力 9.4 相关资源 认证学习的资源地址 - 可以自己练习,模拟考试需要付费的 接下来就去网上报名参加考试 本篇文章为转载内容。原文链接:https://blog.csdn.net/QXK2001/article/details/51292402。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-29 22:08:40
270
转载
转载文章
...-> 打开任务管理器 Ctrl + Shift -> 在提供了多个键盘布局时切换键盘布局 Ctrl + 空格键 -> 打开或关闭中文输入法编辑器 (IME) 二、alt、shift相关 Alt + Tab -> 在打开的应用之间切换 Alt + F4 -> 关闭活动项,或者退出活动应用 Shift + F10 -> 显示选定项的快捷菜单 Shift 加任意箭头键 -> 在窗口中或桌面上选择多个项目,或者在文档中选择文本 Shift + Delete -> 无需先将选定项移动到“回收站”,直接将其删除 三、win(windows徽标的简称)相关 win + L -> 锁定电脑 win + D -> 显示和隐藏桌面 win + E -> 打开“文件资源管理器” win + I -> 打开“设置” win + M -> 最小化所有窗口 win + Shift + M -> 将最小化的窗口还原到桌面 win + P -> 选择演示显示模式 win + K -> 打开“连接”快速操作 win + L -> 锁定电脑或切换帐户 win + Tab -> 打开“任务视图” win + R -> 打开运行窗口 四、其他快捷键 End -> 显示活动窗口的底端 Home -> 显示活动窗口的顶端 F11 -> 最大化或最小化活动窗口 五、运行窗口快捷命令 先输入win+ R 本小结转载地址:https://blog.csdn.net/qq_42402854/article/details/93162387 1.calc:启动计算器 2.appwiz.cpl:程序和功能 3.certmgr.msc:证书管理实用程序 4.charmap:启动字符映射表 5.chkdsk.exe:Chkdsk磁盘检查(管理员身份运行命令提示符) 6.cleanmgr: 打开磁盘清理工具 7.cliconfg:SQL SERVER 客户端网络实用工具 8.cmstp:连接管理器配置文件安装程序 9.cmd:CMD命令提示符 10.自动关机命令 Shutdown -s -t 600:表示600秒后自动关机 shutdown -a :可取消定时关机 Shutdown -r -t 600:表示600秒后自动重启 rundll32 user32.dll,LockWorkStation:表示锁定计算机 11.colorcpl:颜色管理,配置显示器和打印机等中的色彩 12.CompMgmtLauncher:计算机管理 13.compmgmt.msc:计算机管理 14.credwiz:备份或还原储存的用户名和密码 15.comexp.msc:打开系统组件服务 16.control:控制面版 17.dcomcnfg:打开系统组件服务 18.Dccw:显示颜色校准 19.devmgmt.msc:设备管理器 20.desk.cpl:屏幕分辨率 21.dfrgui:优化驱动器 Windows 7→dfrg.msc:磁盘碎片整理程序 22.dialer:电话拨号程序 23.diskmgmt.msc:磁盘管理 24.dvdplay:DVD播放器 25.dxdiag:检查DirectX信息 26.eudcedit:造字程序 27.eventvwr:事件查看器 28.explorer:打开资源管理器 29.Firewall.cpl:Windows防火墙 30.FXSCOVER:传真封面编辑器 31.fsmgmt.msc:共享文件夹管理器 32.gpedit.msc:组策略 33.hdwwiz.cpl:设备管理器 34.inetcpl.cpl:Internet属性 35.intl.cpl:区域 36.iexpress:木马捆绑工具,系统自带 37.joy.cpl:游戏控制器 38.logoff:注销命令 39.lusrmgr.msc:本地用户和组 40.lpksetup:语言包安装/删除向导,安装向导会提示下载语言包 41.lusrmgr.msc:本机用户和组 42.main.cpl:鼠标属性 43.mmsys.cpl:声音 44.magnify:放大镜实用程序 45.mem.exe:显示内存使用情况(如果直接运行无效,可以先管理员身份运行命令提示符,在命令提示符里输入mem.exe>d:a.txt 即可打开d盘查看a.txt,里面的就是内存使用情况了。当然什么盘什么文件名可自己决定。) 46.MdSched:Windows内存诊断程序 47.mmc:打开控制台 48.mobsync:同步命令 49.mplayer2:简易widnows media player 50.Msconfig.exe:系统配置实用程序 51.msdt:微软支持诊断工具 52.msinfo32:系统信息 53.mspaint:画图 54.Msra:Windows远程协助 55.mstsc:远程桌面连接 56.NAPCLCFG.MSC:客户端配置 57.ncpa.cpl:网络连接 58.narrator:屏幕“讲述人” 59.Netplwiz:高级用户帐户控制面板,设置登陆安全相关的选项 60.netstat : an(TC)命令检查接口 61.notepad:打开记事本 62.Nslookup:IP地址侦测器 63.odbcad32:ODBC数据源管理器 64.OptionalFeatures:打开“打开或关闭Windows功能”对话框 65.osk:打开屏幕键盘 66.perfmon.msc:计算机性能监测器 67.perfmon:计算机性能监测器 68.PowerShell:提供强大远程处理能力 69.printmanagement.msc:打印管理 70.powercfg.cpl:电源选项 71.psr:问题步骤记录器 72.Rasphone:网络连接 73.Recdisc:创建系统修复光盘 74.Resmon:资源监视器 75.Rstrui:系统还原 76.regedit.exe:注册表 77.regedt32:注册表编辑器 78.rsop.msc:组策略结果集 79.sdclt:备份状态与配置,就是查看系统是否已备份 80.secpol.msc:本地安全策略 81.services.msc:本地服务设置 82.sfc /scannow:扫描错误并复原/windows文件保护 83.sfc.exe:系统文件检查器 84.shrpubw:创建共享文件夹 85.sigverif:文件签名验证程序 86.slui:Windows激活,查看系统激活信息 87.slmgr.vbs -dlv :显示详细的许可证信息 88.snippingtool:截图工具,支持无规则截图 89.soundrecorder:录音机,没有录音时间的限制 90.StikyNot:便笺 91.sysdm.cpl:系统属性 92.sysedit:系统配置编辑器 93.syskey:系统加密,一旦加密就不能解开,保护系统的双重密码 94.taskmgr:任务管理器(旧版) 95.TM任务管理器(新版) 96.taskschd.msc:任务计划程序 97.timedate.cpl:日期和时间 98.UserAccountControlSettings用户账户控制设置 99.utilman:辅助工具管理器 100.wf.msc:高级安全Windows防火墙 101.WFS:Windows传真和扫描 102.wiaacmgr:扫描仪和照相机向导 103.winver:关于Windows 104.wmimgmt.msc:打开windows管理体系结构(WMI) 105.write:写字板 106.wscui.cpl:操作中心 107.wuapp:Windows更新 108.wscript:windows脚本宿主设置 六、小结 键盘快捷键会大大提高使用效率,让你在外行面前显得更酷。持续更新中…感谢点赞,评论与转发,谢谢! 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_44168588/article/details/121208530。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-01 13:38:26
91
转载
转载文章
...谈redis的架构和组件 Redis的数据一致性问题(分布式多节点环境&单机环境) Docker容器 1.3 Java中间件三面 技术三面考察范围: 主要谈到了高并发的实现方案 以及中间件:redis、rocketmq、kafka等的架构设计思路 最后问了平时怎么提升技术的技术 三面题目 高并发情况下,系统是如何支撑大量的请求的? 接着上面的问题,延伸到了中间件,kafka、redis、rocketmq、mycat等设计思路和适用场景等 最近上过哪些技术网站;最近再看那些书。 工作和生活中遇见最大的挑战,怎么去克服? 未来有怎样的打算 1.4 Java中间件四面 最后,你懂的,主要就是HR走流程了,主要问了未来的职业规划。 02 头条Java后台3面 2.1 头条一面 讲讲jvm运行时数据库区 讲讲你知道的垃圾回收算法 jvm内存模型jmm 内存泄漏与内存溢出的区别 select、epool 的区别?底层的数据结构是什么? mysql数据库默认存储引擎,有什么优点 优化数据库的方法,从sql到缓存到cpu到操作系统,知道多少说多少 什么情景下做分表,什么情景下做分库 linkedList与arrayList区别 适用场景 array list是如何扩容的 volatile 关键字的作用?Java 内存模型? java lock的实现,公平锁、非公平锁 悲观锁和乐观锁,应用中的案例,mysql当中怎么实现,java中的实现 2.2 头条二面 Java 内存分配策略? 多个线程同时请求内存,如何分配? Redis 底层用到了哪些数据结构? 使用 Redis 的 set 来做过什么? Redis 使用过程中遇到什么问题? 搭建过 Redis 集群吗? 如何分析“慢查询”日志进行 SQL/索引 优化? MySQL 索引结构解释一下?(B+ 树) MySQL Hash 索引适用情况?举下例子? 2.3 头条三面 如何保证数据库与redis缓存一致的Redis 的并发竞争问题是什么? 如何解决这个问题? 了解 Redis 事务的 CAS 方案吗? 如何保证 Redis 高并发、高可用? Redis 的主从复制原理,以及Redis 的哨兵原理? 如果让你写一个消息队列,该如何进行架构设计啊?说一下你的思路。 MySQL数据库主从同步怎么实现? 秒杀模块怎么设计的,如何压测,抗压手段 03 今日头条Java后台研发三面 3.1 一面 concurrent包下面用过哪些? countdownlatch功能实现 synchronized和lock区别,重入锁thread和runnable的区别 AtomicInteger实现原理(CAS自旋) java并发sleep与wait、notify与notifyAll的区别 如何实现高效的同步链表 java都有哪些加锁方式(synchronized、ReentrantLock、共享锁、读写锁等) 设计模式(工厂模式、单例模式(几种情况)、适配器模式、装饰者模式) maven依赖树,maven的依赖传递,循环依赖 3.2 二面 synchronized和reentrantLock的区别,synchronized用在代码快、方法、静态方法时锁的都是什么? 介绍spring的IOC和AOP,分别如何实现(classloader、动态代理)JVM的内存布局以及垃圾回收原理及过程 讲一下,讲一下CMS垃圾收集器垃圾回收的流程,以及CMS的缺点 redis如何处理分布式服务器并发造成的不一致OSGi的机制spring中bean加载机制,bean生成的具体步骤,ioc注入的方式spring何时创建- applicationContextlistener是监听哪个事件? 介绍ConcurrentHashMap原理,用的是哪种锁,segment有没可能增大? 解释mysql索引、b树,为啥不用平衡二叉树、红黑树 Zookeeper如何同步配置 3.3 三面 Java线程池ThreadPoolEcecutor参数,基本参数,使用场景 MySQL的ACID讲一下,延伸到隔离级别 dubbo的实现原理,说说RPC的要点 GC停顿原因,如何降低停顿? JVM如何调优、参数怎么调? 如何用工具分析jvm状态(visualVM看堆中对象的分配,对象间的引用、是否有内存泄漏,jstack看线程状态、是否死锁等等) 描述一致性hash算法 分布式雪崩场景如何避免? 再谈谈消息队列 04 抖音Java 三面 4.1 一面: hashmap,怎么扩容,怎么处理数据冲突? 怎么高效率的实现数据迁移? Linux的共享内存如何实现,大概说了一下。 socket网络编程,说一下TCP的三次握手和四次挥手同步IO和异步IO的区别? Java GC机制?GC Roots有哪些? 红黑树讲一下,五个特性,插入删除操作,时间复杂度? 快排的时间复杂度,最坏情况呢,最好情况呢,堆排序的时间复杂度呢,建堆的复杂度是多少 4.2 二面: 自我介绍,主要讲讲做了什么和擅长什么 设计模式了解哪些? AtomicInteger怎么实现原子修改的? ConcurrentHashMap 在Java7和Java8中的区别? 为什么Java8并发效率更好?什么情况下用HashMap,什么情况用ConcurrentHashMap? redis数据结构? redis数据淘汰机制? 4.3 三面(约五十分钟): mysql实现事务的原理(MVCC) MySQL数据主从同步是如何实现的? MySQL索引的实现,innodb的索引,b+树索引是怎么实现的,为什么用b+树做索引节点,一个节点存了多少数据,怎么规定大小,与磁盘页对应。 如果Redis有1亿个key,使用keys命令是否会影响线上服务? Redis的持久化方式,aod和rdb,具体怎么实现,追加日志和备份文件,底层实现原理的话知道么? 遇到最大困难是什么?怎么克服? 未来的规划是什么? 你想问我什么? 05 百度三面 5.1 百度一面 自我介绍 Java中的多态 为什么要同时重写hashcode和equals Hashmap的原理 Hashmap如何变线程安全,每种方式的优缺点 垃圾回收机制 Jvm的参数你知道的说一下 设计模式了解的说一下啊 手撕一个单例模式 手撕算法:反转单链表 手撕算法:实现类似微博子结构的数据结构,输入一系列父子关系,输出一个类似微博评论的父子结构图 手写java多线程 手写java的soeket编程,服务端和客户端 手撕算法: 爬楼梯,写出状态转移方程 智力题:时针分针什么时候重合 5.2 百度二面(现场) 自我介绍 项目介绍 服务器如何负载均衡,有哪些算法,哪个比较好,一致性哈希原理,怎么避免DDOS攻击请求打到少数机器。 TCP连接中的三次握手和四次挥手,四次挥手的最后一个ack的作用是什么,为什么要time wait,为什么是2msl。 数据库的备份和恢复怎么实现的,主从复制怎么做的,什么时候会出现数据不一致,如何解决。 Linux查看cpu占用率高的进程 手撕算法:给定一个数字三角形,找到从顶部到底部的最小路径和。每一步可以移动到下面一行的相邻数字上。 然后继续在这个问题上扩展 求出最短那条的路径 递归求出所有的路径 设计模式讲一下熟悉的 会不会滥用设计模式 多线程条件变量为什么要在while体里 你遇到什么挫折,怎么应对和处理 5.3 百度三面(现场) 自我介绍 项目介绍 Redis的特点 Redis的持久化怎么做,aof和rdb,有什么区别,有什么优缺点。 Redis使用哨兵部署会有什么问题,我说需要扩容的话还是得集群部署。 说一下JVM内存模型把,有哪些区,分别干什么的 说一下gc算法,分代回收说下 MySQL的引擎讲一下,有什么区别,使用场景呢 分布式事务了解么 反爬虫的机制,有哪些方式 06 蚂蚁中间件团队面试题 6.1 蚂蚁中间件一面: 自我介绍 JVM垃圾回收算法和垃圾回收器有哪些,最新的JDK采用什么算法。 新生代和老年代的回收机制。 讲一下ArrayList和linkedlist的区别,ArrayList与HashMap的扩容方式。 Concurrenthashmap1.8后的改动。 Java中的多线程,以及线程池的增长策略和拒绝策略了解么。 Tomcat的类加载器了解么 Spring的ioc和aop,Springmvc的基本架构,请求流程。 HTTP协议与Tcp有什么区别,http1.0和2.0的区别。 Java的网络编程,讲讲NIO的实现方式,与BIO的区别,以及介绍常用的NIO框架。 索引什么时候会失效变成全表扫描 介绍下分布式的paxos和raft算法 6.2 蚂蚁中间件二面 你在项目中怎么用到并发的。 消息队列的使用场景,谈谈Kafka。 你说了解分布式服务,那么你怎么理解分布式服务。 Dubbo和Spring Clound的区别,以及使用场景。 讲一下docker的实现原理,以及与JVM的区别。 MongoDB、Redis和Memcached的应用场景,各自优势 MongoDB有事务吗 Redis说一下sorted set底层原理 讲讲Netty为什么并发高,相关的核心组件有哪些 6.3 蚂蚁中间件三面 完整的画一个分布式集群部署图,从负载均衡到后端数据库集群。 分布式锁的方案,Redis和Zookeeper哪个好,如果是集群部署,高并发情况下哪个性能更好。 分布式系统的全局id如何实现。 数据库万级变成亿级,你如何来解决。 常见的服务器雪崩是由什么引起的,如何来防范。 异地容灾怎么实现 常用的高并发技术解决方案有哪些,以及对应的解决步骤。 07 京东4面(Java研发) 7.1 一面(基础面:约1小时) 自我介绍,主要讲讲做了什么和擅长什么 springmvc和spring-boot区别 @Autowired的实现原理 Bean的默认作用范围是什么?其他的作用范围? 索引是什么概念有什么作用?MySQL里主要有哪些索引结构?哈希索引和B+树索引比较? Java线程池的原理?线程池有哪些?线程池工厂有哪些线程池类型,及其线程池参数是什么? hashmap原理,处理哈希冲突用的哪种方法? 还知道什么处理哈希冲突的方法? Java GC机制?GC Roots有哪些? Java怎么进行垃圾回收的?什么对象会进老年代?垃圾回收算法有哪些?为什么新生代使用复制算法? HashMap的时间复杂度?HashMap中Hash冲突是怎么解决的?链表的上一级结构是什么?Java8中的HashMap有什么变化?红黑树需要比较大小才能进行插入,是依据什么进行比较的?其他Hash冲突解决方式? hash和B+树的区别?分别应用于什么场景?哪个比较好? 项目里有个数据安全的,aes和md5的区别?详细点 7.2 二面(问数据库较多) 自我介绍 为什么MyISAM查询性能好? 事务特性(acid) 隔离级别 SQL慢查询的常见优化步骤? 说下乐观锁,悲观锁(select for update),并写出sql实现 TCP协议的三次握手和四次挥手过程? 用到过哪些rpc框架 数据库连接池怎么实现 Java web过滤器的生命周期 7.3 三面(综合面;约一个小时) 自我介绍。 ConcurrentHashMap 在Java7和Java8中的区别?为什么Java8并发效率更好?什么情况下用HashMap,什么情况用ConcurrentHashMap? 加锁有什么机制? ThreadLocal?应用场景? 数据库水平切分,垂直切分的设计思路和切分顺序 Redis如何解决key冲突 soa和微服务的区别? 单机系统演变为分布式系统,会涉及到哪些技术的调整?请从前面负载到后端详细描述。 设计一个秒杀系统? 7.4 四面(HR面) 你自己最大优势和劣势是什么 平时遇见过什么样的挑战,怎么去克服的 工作中遇见了技术解决不了的问题,你的应对思路? 你的兴趣爱好? 未来的职业规划是什么? 08 美团java高级开发3面 8.1 美团一面 自我介绍 项目介绍 Redis介绍 了解redis源码么 了解redis集群么 Hashmap的原理,增删的情况后端数据结构如何位移 hashmap容量为什么是2的幂次 hashset的源码 object类你知道的方法 hashcode和equals 你重写过hashcode和equals么,要注意什么 假设现在一个学生类,有学号和姓名,我现在hashcode方法重写的时候,只将学号参与计算,会出现什么情况? 往set里面put一个学生对象,然后将这个学生对象的学号改了,再put进去,可以放进set么?并讲出为什么 Redis的持久化?有哪些方式,原理是什么? 讲一下稳定的排序算法和不稳定的排序算法 讲一下快速排序的思想 8.2 美团二面 自我介绍 讲一下数据的acid 什么是一致性 什么是隔离性 Mysql的隔离级别 每个隔离级别是如何解决 Mysql要加上nextkey锁,语句该怎么写 Java的内存模型,垃圾回收 线程池的参数 每个参数解释一遍 然后面试官设置了每个参数,给了是个线程,让描述出完整的线程池执行的流程 Nio和IO有什么区别 Nio和aio的区别 Spring的aop怎么实现 Spring的aop有哪些实现方式 动态代理的实现方式和区别 Linux了解么 怎么查看系统负载 Cpu load的参数如果为4,描述一下现在系统处于什么情况 Linux,查找磁盘上最大的文件的命令 Linux,如何查看系统日志文件 手撕算法:leeetcode原题 22,Generate Parentheses,给定 n 对括号,请- 写一个函数以将其生成新的括号组合,并返回所有组合结果。 8.3 美团三面(现场) 三面没怎么问技术,问了很多技术管理方面的问题 自我介绍 项目介绍 怎么管理项目成员 当意见不一致时,如何沟通并说服开发成员,并举个例子 怎么保证项目的进度 数据库的索引原理 非聚簇索引和聚簇索引 索引的使用注意事项 联合索引 从底层解释最左匹配原则 Mysql对联合索引有优化么?会自动调整顺序么?哪个版本开始优化? Redis的应用 Redis的持久化的方式和原理 技术选型,一个新技术和一个稳定的旧技术,你会怎么选择,选择的考虑有哪些 说你印象最深的美团点评技术团队的三篇博客 最近在学什么新技术 你是怎么去接触一门新技术的 会看哪些书 怎么选择要看的书 最后 由于篇幅限制,小编在此截出几张知识讲解的图解,有需要的程序猿(媛)可以点赞后戳这里免费领取全部资料获取哦 子 怎么保证项目的进度 数据库的索引原理 非聚簇索引和聚簇索引 索引的使用注意事项 联合索引 从底层解释最左匹配原则 Mysql对联合索引有优化么?会自动调整顺序么?哪个版本开始优化? Redis的应用 Redis的持久化的方式和原理 技术选型,一个新技术和一个稳定的旧技术,你会怎么选择,选择的考虑有哪些 说你印象最深的美团点评技术团队的三篇博客 最近在学什么新技术 你是怎么去接触一门新技术的 会看哪些书 怎么选择要看的书 最后 由于篇幅限制,小编在此截出几张知识讲解的图解,有需要的程序猿(媛)可以点赞后戳这里免费领取全部资料获取哦 [外链图片转存中…(img-SFREePIJ-1624074891834)] [外链图片转存中…(img-5kF3pkiC-1624074891834)] [外链图片转存中…(img-HDVXfOMR-1624074891835)] [外链图片转存中…(img-RyaAC5jy-1624074891836)] [外链图片转存中…(img-iV32C5Ok-1624074891837)] 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_57285325/article/details/118051767。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-13 23:43:59
85
转载
转载文章
...标准,它为分布式事务管理器提供了一种跨多个资源(如数据库)进行协调的方式。在支付宝转账余额宝的例子中,XA协议允许一个事务管理器统一控制支付宝和余额宝两个数据库的事务,实现两阶段提交,从而确保两个数据库的数据一致性。 消息中间件 , 消息中间件是一种软件组件,用于应用程序之间传递异步消息,实现解耦、可靠传输和消息队列等功能。在文中提到的基于ActiveMQ的解决方案中,消息中间件充当了分布式事务协调者角色。当支付宝完成扣款后,会将消息插入到message表并发送至ActiveMQ,余额宝从消息队列消费消息并执行增款操作,通过这种方式实现了不同系统间的通信和事务协调,同时利用message表防止消息丢失和重复消费问题,确保了分布式事务的最终一致性。
2023-04-16 22:34:52
499
转载
转载文章
...现缺陷和与其他代码、组件的集成问题) 随时可部署 (高频率的集成可以尽可能地保证随时部署上线,缩短开发复杂软件的市场交付时间) 极大程度避免低级错误 (减少大量内容合并到主干分支的请看看,避免代码合并冲突和无法预料的行为) 低级错误:编译错误,安装问题,接口问题,性能问题等 难点 迁移遗留代码到现有CI系统,需要的投入通常爱预料之外 在文化和组织上如果没有采用敏捷原则或DecOps的工作方式,那么很可能没有持续不断的提交,那么CI的存在意义不大 随着业务增长、工具的更替、技术的演进。CI系统也必然随之改动,往往会导致阶段性的不稳定和人力物力的耗费 如果CI的基本设定不到位,开发流程将会增加特别的开销 注意点 CI流程的触发方式 跟踪触发式:在每次提交到源码版本管理系统时触发 计划任务:预配置好的计划 手动:无论是通过CI服务器的管理界面还是脚本,用户可以手工执行CI工作流 代码审核 可在持续集成服务器里使用代码分析工具(例如Sonar)来执行自动代码审查 自动代码审查通过后,可发起一个人工代码审查,揪出那些自动审查无法找出的问题,即验证业务需求,架构问题,代码是否可读,以及是否易于扩展。 可灵活配置代码审核策略,例如:如果某些人没有审查代码便阻止对主干分支的任何提交。 最常用的工具是Gerrit 持续交付 简述 持续交付简称CD或CDE,是一种能够使得软件在较短的循环中可靠的发布的软件工程方法 与持续集成相比,持续交付的重点在于 交付,其核心对象不在于代码,而在于可交付的产物。 由于持续集成仅仅针对于新旧代码的集成过程执行来了一定的测试,其变动到持续交付后还需要一些额外的流程 持续交付可以看作为是持续集成的下一步,它强调的是,不敢怎么更新,软件是随时随快可以交付的 有图可看出,持续交付在持续集成的基础上,将集成后的代码部署到更贴近真实的运行环境的[类生产环境]中 目的 持续交付永爱确保让代码能够快速、安全的部署到产品环境中,它通过将每一次改动都会提交到一个模拟产品环境中,使用严格的自动化测试,确保业务应用和服务能符合预期 好处 持续交付和持续集成的好处非常相似: 快速发布。能够应对业务需求,并更快地实现软件价值 编码→测试→上线→交付的频繁迭代周期缩短,同时获得迅速反馈 高质量的软件发布标准。整个交付过程标准化、可重复、可靠 整个交付过程进度可视化,方便团队人员了解项目完成度 更先进的团队协作方式。从需求分析、产品的用户体验到交互、设计、开发、测试、运维等角色密切协作,相比于传统的瀑布式软件团队,更少浪费 持续部署 简述 持续部署 意味着:通过自动化部署的手段将软件功能频繁的进行交付 持续部署是持续交付的下一步,指的是代码通过审批以后,自动化部署到生产环境。 持续部署是持续交付的最高阶段,这意味着,所有通过了一系列的自动化测试的改动都将自动部署到生产环境。它也可以被称为“Continuous Release” 持续化部署的目标是:代码在任何时候都是可部署的,可以进入生产阶段。 持续部署的前提是能自动化完成测试、构建、部署等步骤 注:持续交付不等于持续集成 与持续交付以及持续集成相比,持续部署强调了通过 automated deployment 的手段,对新的软件功能进行集成 目标 持续部署的目标是:代码在任何时刻都是可部署的,可以进入生产阶段 有很多的业务场景里,一种业务需要等待另外的功能特征出现才能上线,这是的持续部署成为不可能。虽然使用功能切换能解决很多这样的情况,但并不是没每次都会这样。所以,持续部署是否适合你的公司是基于你们的业务需求——而不是技术限制 优点 持续部署主要的好处是:可以相对独立地部署新的功能,并能快速地收集真实用户的反馈 敏捷开发 简述 敏捷开发就是一种以人为核心、迭代循环渐进的开发方式。 在敏捷开发中,软件仙姑的构建被切分成多个子项目,各个子项目的成果都经过测试,具备集成和可运行的特征。 简单的说就是把一个大的项目分为多个相互联系,但也可以独立运行的小项目,并分别完成,在此过程中软件一直处于可使用状态 注意事项 敏捷开的就是一种面临迅速变化的需求快速开发的能力,要注意一下几点: 敏捷开发不仅仅是一个项目快速完成,而是对整个产品领域需求的高效管理 敏捷开发不仅仅是简单的快,而是短周期的不断改进、提高和调整 敏捷开发不仅仅是一个版本只做几个功能,而是突出重点、果断放弃当前的非重要点 敏捷开发不仅仅是随时增加需求,而是每个迭代周期对需求的重新审核和排序 如何进行敏捷开发 1、组织建设 也就是团队建设,建立以产品经理为主导,包含产品、设计、前后台开发和测试的team,快速进行产品迭代开发;扁平化的团队管理,大家都有共同目标,更有成就感; 2、敏捷制度 要找准适合自身的敏捷开发方式,主要是制定一个完善的效率高的设计、开发、测试、上线流程,制定固定的迭代周期,让用户更有期待; 3、需求收集 这个任何方式下都需要有,需求一定要有交互稿,评审通过后,一定要确定功能需求列表、责任人、工作量、责任人等; 4、工具建设 是指能够快速完成某项事情的辅助工具,比如开发环境的一键安装,各种底层的日志、监控等平台,发布、打包工具等; 5、系统架构 略为超前架构设计:支持良好的扩容性和可维护性;组件化基础功能模块:代码耦合度低,模块间的依赖性小;插件化业务模块:降低营销活动与业务耦合度,自升级、自维护;客户端预埋逻辑;技术预研等等; 6、数据运营与灰度发布 点击率分析、用户路径分析、渠道选择、渠道升级控制等等 原则、特点和优势 敏捷开发技术的12个原则: 1.我们最优先要做的是通过尽早的、持续的交付有价值的软件来使客户满意。 2.即使到了开发的后期,也欢迎改变需求。 3.经常性地交付可以工作的软件,交付的间隔可以从几周到几个月,交付的时间间隔越短越好。 4.在整个项目开发期间,业务人员和开发人员必须天天都在一起工作。 5.围绕被激励起来的个人来构建项目。 6.在团队内部,最具有效果并且富有效率的传递信息的方法,就是面对面的交谈。 7.工作的软件是首要的进度度量标准。 8.敏捷过程提倡可持续的开发速度。 9.不断地关注优秀的技能和好的设计会增强敏捷能力。 10.简单使未完成的工作最大化。 11.最好的构架、需求和设计出自于自组织的团队。 12.每隔一定时间,团队会在如何才能更有效地工作方面进行反省,然后相应地对自己的行为进行调整。 特点: 个体和交互胜过过程和工具 可以工作的软件胜过面面俱到的文档 客户合作胜过合同谈判 响应变化胜过遵循计划 优势总结: 敏捷开发确实是项目进入实质开发迭代阶段,用户很快可以看到一个基线架构班的产品。敏捷注重市场快速反应能力,也即具体应对能力,客户前期满意度高 适用范围: 项目团队的人不能太多 项目经常发生变更 高风险的项目实施 开发人员可以参与决策 劣势总结: 敏捷开发注重人员的沟通 忽略文档的重要性 若项目人员流动太大,维护的时候很难 项目存在新手的比较多的时候,老员工会比较累 需要项目中存在经验较强的人,要不然大项目中容易遇到瓶颈问题 Open-falcon 简述 open-falcon是小米的监控系统,是一款企业级、高可用、可扩展的开源监控解决方案 公司用open-falcon来监控调度系统各种信息,便于监控各个节点的调度信息。在服务器安装了falcon-agent自动采集各项指标,主动上报 特点 强大灵活的数据采集 (自动发现,支持falcon-agent、snmp、支持用户主动push、用户自定义插件支持、opentsdb data model like(timestamp、endpoint、metric、key-value tags) ) 水平扩展能力 (支持每个周期上亿次的数据采集、告警判定、历史数据存储和查询 ) 高效率的告警策略管理 (高效的portal、支持策略模板、模板继承和覆盖、多种告警方式、支持callback调用 ) 人性化的告警设置 (最大告警次数、告警级别、告警恢复通知、告警暂停、不同时段不同阈值、支持维护周期 ) 高效率的graph组件 (单机支撑200万metric的上报、归档、存储(周期为1分钟) ) 高效的历史数据query组件 (采用rrdtool的数据归档策略,秒级返回上百个metric一年的历史数据 ) dashboard(面向用户的查询界面,可以看到push到graph中的所有数据,并查看数据发展趋势 ) (对维度的数据展示,用户自定义Screen) 高可用 (整个系统无核心单点,易运维,易部署,可水平扩展) 开发语言 (整个系统的后端,全部golang编写,portal和dashboard使用python编写。 ) 监控范围 Open-Falcon支持系统基础监控,第三方服务监控,JVM监控,业务应用监控 基础监控指的是Linux系统的指标监控,包括CPU、load、内存、磁盘、IO、网络等, 这些指标由Openfalcon的agent节点直接支持,无需插件 第三方服务监控指的是一些常见的服务监控,包括Mysql、Redis、Nginx等 OpenFalcon官网提供了很多第三方服务的监控插件,也可以自己实现插件,定义采集指标。而采集到的指标,也是通过插件先发送给agent,再由agent发送到OpenFalcon。 JVM监控主要通过插件完成,插件通过JVM开放的JMX通信端口,获取到JVM参数指标,并推送到agent节点,再由agent发送到OpenFalcon。 业务应用监控就是监控企业自主开发的应用服务 主要通过插件完成,插件通过JVM开放的JMX通信端口,获取到JVM参数指标,并推送到agent节点,再由agent发送到OpenFalcon。 数据流向 常见的OpenFalcon包含transfer、hbs、agent、judge、graph、API几个进程 以下是各个节点的数据流向图,主数据流向是agent -> transfer -> judge/graph: SNMP 简述 SNMP:简单网络管理协议,是TCP/IP协议簇 的一个应用层协议,由于SNMP的简单性,在Internet时代得到了蓬勃的发展 ,1992年发布了SNMPv2版本,以增强SNMPv1的安全性和功能。现在,已经有了SNMPv3版本(它对网络管理最大的贡献在于其安全性。增加了对认证和密文传输的支持 )。 一套完整的SNMP系统主要包括:管理信息库(MIB)、管理信息结构(SMI)和 SNMP报文协议 为什么要用SNMP 作为运维人员,我们很大一部分的工作就是为了保证我们的网络能够正常、稳定的运行。因此监控,控制,管理各种网络设备成了我们日常的工作 优点和好处 优点: 简单易懂,部署的开销成本也小 ,正因为它足够简单,所以被广泛的接受,事实上它已经成为了主要的网络管理标准。在一个网络设备上实现SNMP的管理比绝大部分其他管理方式都简单直接。 好处: 标准化的协议:SNMP是TCP/IP网络的标准网络管理协议。 广泛认可:所有主流供应商都支持SNMP。 可移植性:SNMP独立于操作系统和编程语言。 轻量级:SNMP增强对设备的管理能力的同时不会对设备的操作方式或性能产生冲击。 可扩展性:在所有SNMP管理的设备上都会支持相同的一套核心操作集。 广泛部署:SNMP是最流行的管理协议,最为受设备供应商关注,被广泛部署在各种各样的设备上。 MIB、SMI和SNMP报文 MIB 管理信息库MIB:任何一个被管理的资源都表示成一个对象,称为被管理的对象。 MIB是被管理对象的集合。 它定义了被管理对象的一系列属性:对象的名称、对象的访问权限和对象的数据类型等。 每个SNMP设备(Agent)都有自己的MIB。 MIB也可以看作是NMS(网管系统)和Agent之间的沟通桥梁。 MIB文件中的变量使用的名字取自ISO和ITU管理的对象表示符命名空间,他是一个分级数的结构 SMI SMI定义了SNNMP框架多用信息的组织、组成和标识,它还未描述MIB对象和表述协议怎么交换信息奠定了基础 SMI定义的数据类型: 简单类型(simple): Integer:整型是-2,147,483,648~2,147,483,647的有符号整数 octet string: 字符串是0~65535个字节的有序序列 OBJECT IDENTIFIER: 来自按照ASN.1规则分配的对象标识符集 简单结构类型(simple-constructed ): SEQUENCE 用于列表。这一数据类型与大多数程序设计语言中的“structure”类似。一个SEQUENCE包括0个或更多元素,每一个元素又是另一个ASN.1数据类型 SEQUENCE OF type 用于表格。这一数据类型与大多数程序设计语言中的“array”类似。一个表格包括0个或更多元素,每一个元素又是另一个ASN.1数据类型。 应用类型(application-wide): IpAddress: 以网络序表示的IP地址。因为它是一个32位的值,所以定义为4个字节; counter:计数器是一个非负的整数,它递增至最大值,而后回零。在SNMPv1中定义的计数器是32位的,即最大值为4,294,967,295; Gauge :也是一个非负整数,它可以递增或递减,但达到最大值时保持在最大值,最大值为232-1; time ticks:是一个时间单位,表示以0.01秒为单位计算的时间; SNMP报文 SNMP规定了5种协议数据单元PDU(也就是SNMP报文),用来在管理进程和代理之间的交换。 get-request操作:从代理进程处提取一个或多个参数值。 get-next-request操作:从代理进程处提取紧跟当前参数值的下一个参数值。 set-request操作:设置代理进程的一个或多个参数值。 get-response操作:返回的一个或多个参数值。这个操作是由代理进程发出的,它是前面三种操作的响应操作。 trap操作:代理进程主动发出的报文,通知管理进程有某些事情发生。 操作命令 SNMP协议之所以易于使用,这是因为它对外提供了三种用于控制MIB对象的基本操作命令。它们是:Get、Set 和 Trap。 Get:管理站读取代理者处对象的值 Set:管理站设置代理者处对象的值 Trap: 代理者主动向管理站通报重要事件 SLA 简述 SLA(服务等级协议):是关于网络服务供应商和客户之间的一份合同,其中定义了服务类型、服务质量和客户付款等术语 一个完整的SLA同时也是一个合法的文档,包括所涉及的当事人、协定条款(包含应用程序和支持的服务)、违约的处罚、费用和仲裁机构、政策、修改条款、报告形式和双方的义务等。同样服务提供商可以对用户在工作负荷和资源使用方面进行规定。 KPI 简述 KPI(关键绩效指标):是通过对组织内部流程的输入端、输出端的关键参数进行设置、取样、计算、分析,衡量流程绩效的一种目标式量化管理指标,是把企业的战略目标分解为可操作的工作目标的工具,是企业绩效管理的基础。 KPI可以是部门主管明确部门的主要责任,并以此为基础,明确部门人员的业绩衡量指标,建立明确的切实可行的KPI体系,是做好绩效管理的关键。 KPI(关键绩效指标)是用于衡量工作人员工作绩效表现的量化指标,是绩效计划的重要组成部分 转载于:https://www.cnblogs.com/woshinideyugegea/p/11242034.html 本篇文章为转载内容。原文链接:https://blog.csdn.net/anqiongsha8211/article/details/101592137。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-19 16:00:05
45
转载
转载文章
...点识别出对基础设施与应用的影响,提前识别风险并采取应对措施。 技术选型明确之后,在公司或部门内部推广与评审,让开发人员、架构师、测试人员、运维人员相关人员与团队理解与认同方案,听取他们意见,他们是直接使用容器的客户,不要让他们有抱怨。 最后是落地策略,一般是选取一些辅助业务先试点,在实践过程中不断总结经验。 商业目标 容器技术是以应用为中心的轻量级虚拟化技术,而传统的Xen与KVM是以资源为中心的虚拟化技术,这是两者的本质差异。以应用为中心是容器技术演进的指导原则,正是在这个原则指导下,容器技术相对于传统虚拟化有几个特点:打包既部署、镜像分层、应用资源调度。 打包即部署:打包即部署是指在容器镜像制作过程包含了传统软件包部署的过程(安装依赖的操作系统库或工具、创建用户、创建运行目录、解压、设置文件权限等等),这么做的好处是把应用及其依赖封装到了一个相对封闭的环境,减少了应用对外部环境的依赖,增强了应用在各种不同环境下的行为一致性,同时也减少了应用部署时间。 镜像分层:容器镜像包是分层结构,同一个主机上的镜像层是可以在多个容器之间共享的,这个机制可以极大减少镜像更新时候拉取镜像包的时间,通常应用程序更新升级都只是更新业务层(如Java程序的jar包),而镜像中的操作系统Lib层、运行时(如Jre)层等文件不会频繁更新。因此新版本镜像实质有变化的只有很小的一部分,在更新升级时候也只会从镜像仓库拉取很小的文件,所以速度很快。 应用资源调度:资源(计算/存储/网络)都是以应用为中心的,中心体现在资源分配是按照应用粒度分配资源、资源随应用迁移。 基于上述容器技术特点,可以推导出容器技术的3大使用场景:CI/CD、提升资源利用率、弹性伸缩。这3个使用场景自然推导出通用的商业层面收益:CI/CD提升研发效率、提升资源利用率降低成本、按需弹性伸缩在体验与成本之间达成平衡。 当然,除了商业目标之外,可能还有其他一些考虑因素,如基于容器技术实现计算任务调度平台、保持团队技术先进性等。 CI/CD提升研发效率 为什么容器技术适合CI/CD CI/CD是DevOps的关键组成部分,DevOps是一套软件工程的流程,用于持续提升软件开发效率与软件交付质量。DevOps流程来源于制造业的精益生产理念,在这个领域的领头羊是丰田公司,《丰田套路》这本书总结丰田公司如何通过PDCA(Plan-Do-Check-Act)方法实施持续改进。PDCA通常也称为PDCA循环,PDCA实施过程简要描述为:确定目标状态、分析当前状态、找出与目标状态的差距、制定实施计划、实施并总结、开始下一个PDCA过程。 DevOps基本也是这么一个PDCA流程循环,很容易认知到PDCA过程中效率是关键,同一时间段内,实施更多数量的PDCA过程,收益越高。在软件开发领域的DevOps流程中,各种等待(等待编译、等待打包、等待部署等)、各种中断(部署失败、机器故障)是影响DevOps流程效率的重要因素。 容器技术出来之后,将容器技术应用到DevOps场景下,可以从技术手段消除DevOps流程中的部分等待与中断,从而大幅度提升DevOps流程中CI/CD的效率。 容器的OCI标准定义了容器镜像规范,容器镜像包与传统的压缩包(zip/tgz等)相比有两个关键区别点:1)分层存储;2)打包即部署。 分层存储可以极大减少镜像更新时候拉取镜像包的时间,通常应用程序更新升级都只是更新业务层(如Java程序的jar包),而镜像中的操作系统Lib层、运行时(如Jre)层等文件不会频繁更新。因此新版本镜像实质有变化的只有很小的一部分,在更新升级时候也只会从镜像仓库拉取很小的文件,所以速度很快。 打包即部署是指在容器镜像制作过程包含了传统软件包部署的过程(安装依赖的操作系统库或工具、创建用户、创建运行目录、解压、设置文件权限等等),这么做的好处是把应用及其依赖封装到了一个相对封闭的环境,减少了应用对外部环境的依赖,增强了应用在各种不同环境下的行为一致性,同时也减少了应用部署时间。 基于容器镜像的这些优势,容器镜像用到CI/CD场景下,可以减少CI/CD过程中的等待时间,减少因环境差异而导致的部署中断,从而提升CI/CD的效率,提升整体研发效率。 CI/CD的关键诉求与挑战 快 开发人员本地开发调试完成后,提交代码,执行构建与部署,等待部署完成后验证功能。这个等待的过程尽可能短,否则开发人员工作容易被打断,造成后果就是效率降低。如果提交代码后几秒钟就能够完成部署,那么开发人员几乎不用等待,工作也不会被打断;如果需要好几分钟或十几分钟,那么可以想象,这十几分钟就是浪费了,这时候很容易做点别的事情,那么思路又被打断了。 所以构建CI/CD环境时候,快是第一个需要考虑的因素。要达到快,除了有足够的机器资源免除排队等待,引入并行编译技术也是常用做法,如Maven3支持多核并行构建。 自定义流程 不同行业存在不同的行业规范、监管要求,各个企业有一套内部质量规范,这些要求都对软件交付流程有定制需求,如要求使用商用的代码扫描工具做安全扫描,如构建结果与企业内部通信系统对接发送消息。 在团队协同方面,不同的公司,对DevOps流程在不同团队之间分工有差异,典型的有开发者负责代码编写构建出构建物(如jar包),而部署模板、配置由运维人员负责;有的企业开发人员负责构建并部署到测试环境;有的企业开发人员直接可以部署到生产环境。这些不同的场景,对CI/CD的流程、权限管控都有定制需求。 提升资源利用率 OCI标准包含容器镜像标准与容器运行时标准两部分,容器运行时标准聚焦在定义如何将镜像包从镜像仓库拉取到本地并更新、如何隔离运行时资源这些方面。得益于分层存储与打包即部署的特性,容器镜像从到镜像仓库拉取到本地运行速度非常快(通常小于30秒,依赖镜像本身大小等因素),基于此可以实现按需分配容器运行时资源(cpu与内存),并限定单个容器资源用量;然后根据容器进程资源使用率设定弹性伸缩规则,实现自动的弹性伸缩。 这种方式相对于传统的按峰值配置资源方式,可以提升资源利用率。 按需弹性伸缩在体验与成本之间达成平衡 联动弹性伸缩 应用运行到容器,按需分配资源之后,理想情况下,Kubernetes的池子里没有空闲的资源。这时候扩容应用实例数,新扩容的实例会因资源不足调度失败。这时候需要资源池能自动扩容,加入新的虚拟机,调度新扩容的应用。 由于应用对资源的配比与Flavor有要求,因此新加入的虚拟机,应当是与应用所需要的资源配比与Flavor一致的。缩容也是类似。 弹性伸缩还有一个诉求点是“平滑”,对业务做到不感知,也称为“优雅”扩容/缩容。 请求风暴 上面提到的弹性伸缩一般是有计划或缓慢增压的场景,存在另外一种无法预期的请求风暴场景,这种场景的特征是无法预测、突然请求量增大数倍或数十倍、持续时间短。典型的例子如行情交易系统,当行情突变的时候,用户访问量徒增,持续几十分钟或一个小时。 这种场景的弹性诉求,要求短时间内能将资源池扩大数倍,关键是速度要快(秒级),否则会来不及扩容,系统已经被冲垮(如果无限流的话)。 目前基于 Virtual Kubelet 与云厂家的 Serverless 容器,理论上可以提供应对请求风暴的方案。不过在具体实施时候,需要考虑传统托管式Kubernetes容器管理平台与Serverless容器之间互通的问题,需要基于具体厂家提供的能力来评估。 基于容器技术实现计算调度平台 计算(大数据/AI训练等)场景的特征是短时间内需要大量算力,算完即释放。容器的环境一致性以及调度便利性适合这种场景。 技术选型 容器技术是属于基础设施范围,但是与传统虚拟化技术(Xen/KVM)比较,容器技术是应用虚拟化,不是纯粹的资源虚拟化,与传统虚拟化存在差异。在容器技术选型时候,需要结合当前团队在应用管理与资源管理的现状,对照容器技术与虚拟化技术的差异,选择最合适的容器技术栈。 什么是容器技术 (1)容器是一种轻量化的应用虚拟化技术。 在讨论具体的容器技术栈的时候,先介绍目前几种常用的应用虚拟化技术,当前有3种主流的应用虚拟化技术: LXC,MicroVM,UniKernel(LibOS)。 LXC: Linux Container,通过 Linux的 namespace/cgroups/chroot 等技术隔离进程资源,目前应用最广的docker就是基于LXC实现应用虚拟化的。 MicroVM: MicroVM 介于 传统的VM 与 LXC之间,隔离性比LXC好,但是比传统的VM要轻量,轻量体现在体积小(几M到几十M)、启动快(小于1s)。 AWS Firecracker 就是一种MicroVM的实现,用于AWS的Serverless计算领域,Serverless要求启动快,租户之间隔离性好。 UniKernel: 是一种专用的(特定编程语言技术栈专用)、单地址空间、使用 library OS 构建出来的镜像。UniKernel要解决的问题是减少应用软件的技术栈层次,现代软件层次太多导致越来越臃肿:硬件+HostOS+虚拟化模拟+GuestOS+APP。UniKernel目标是:硬件+HostOS+虚拟化模拟+APP-with-libos。 三种技术对比表: 开销 体积 启动速度 隔离/安全 生态 LXC 低(几乎为0) 小 快(等同进程启动) 差(内核共享) 好 MicroVM 高 大 慢(小于1s) 好 中(Kata项目) UniKernel 中 中 中 好 差 根据上述对比来看,LXC是应用虚拟化首选的技术,如果LXC无法满足隔离性要,则可以考虑MicroVM这种技术。当前社区已经在着手融合LXC与MicroVM这两种技术,从应用打包/发布调度/运行层面统一规范,Kubernetes集成Kata支持混合应用调度特性可以了解一下。 UniKernel 在应用生态方面相对比较落后,目前在追赶中,目前通过 linuxkit 工具可以在UniKernel应用镜像中使用docker镜像。这种方式笔者还未验证过,另外docker镜像运行起来之后,如何监控目前还未知。 从上述三种应用虚拟化技术对比,可以得出结论: (2)容器技术与传统虚拟化技术不断融合中。 再从规范视角来看容器技术,可以将容器技术定义为: (3)容器=OCI+CRI+辅助工具。 OCI规范包含两部分,镜像规范与运行时规范。简要的说,要实现一个OCI的规范,需要能够下载镜像并解压镜像到文件系统上组成成一个文件目录结构,运行时工具能够理解这个目录结构并基于此目录结构管理(创建/启动/停止/删除)进程。 容器(container)的技术构成就是实现OCI规范的技术集合。 对于不同的操作系统(Linux/Windows),OCI规范的实现技术不同,当前docker的实现,支持Windows与Linux与MacOS操作系统。当前使用最广的是Linux系统,OCI的实现,在Linux上组成容器的主要技术: chroot: 通过分层文件系统堆叠出容器进程的rootfs,然后通过chroot设置容器进程的根文件系统为堆叠出的rootfs。 cgroups: 通过cgroups技术隔离容器进程的cpu/内存资源。 namesapce: 通过pid, uts, mount, network, user namesapce 分别隔离容器进程的进程ID,时间,文件系统挂载,网络,用户资源。 网络虚拟化: 容器进程被放置到独立的网络命名空间,通过Linux网络虚拟化veth, macvlan, bridge等技术连接主机网络与容器虚拟网络。 存储驱动: 本地文件系统,使用容器镜像分层文件堆叠的各种实现驱动,当前推荐的是overlay2。 广义的容器还包含容器编排,即当下很火热的Kubernetes。Kubernetes为了把控容器调度的生态,发布了CRI规范,通过CRI规范解耦Kubelet与容器,只要实现了CRI接口,都可以与Kubelet交互,从而被Kubernetes调度。OCI规范的容器实现与CRI标准接口对接的实现是CRI-O。 辅助工具用户构建镜像,验证镜像签名,管理存储卷等。 容器定义 容器是一种轻量化的应用虚拟化技术。 容器=OCI+CRI+辅助工具。 容器技术与传统虚拟化技术不断融合中。 什么是容器编排与调度 选择了应用虚拟化技术之后,还需要应用调度编排,当前Kubernetes是容器领域内编排的事实标准,不管使用何种应用虚拟化技术,都已经纳入到了Kubernetes治理框架中。 Kubernetes 通过 CRI 接口规范,将应用编排与应用虚拟化实现解耦:不管使用何种应用虚拟化技术(LXC, MicroVM, LibOS),都能够通过Kubernetes统一编排。 当前使用最多的是docker,其次是cri-o。docker与crio结合kata-runtime都能够支持多种应用虚拟化技术混合编排的场景,如LXC与MicroVM混合编排。 docker(now): Moby 公司贡献的 docker 相关部件,当前主流使用的模式。 docker(daemon) 提供对外访问的API与CLI(docker client) containerd 提供与 kubelet 对接的 CRI 接口实现 shim负责将Pod桥接到Host namespace。 cri-o: 由 RedHat/Intel/SUSE/IBM/Hyper 公司贡献的实现了CRI接口的符合OCI规范的运行时,当前包括 runc 与 kata-runtime ,也就是说使用 cir-o 可以同时运行LXC容器与MicroVM容器,具体在Kata介绍中有详细说明。 CRI-O: 实现了CRI接口的进程,与 kubelet 交互 crictl: 类似 docker 的命令行工具 conmon: Pod监控进程 other cri runtimes: 其他的一些cri实现,目前没有大规模应用到生产环境。 容器与传统虚拟化差异 容器(container)的技术构成 前面主要讲到的是容器与编排,包括CRI接口的各种实现,我们把容器领域的规范归纳为南向与北向两部分,CRI属于北向接口规范,对接编排系统,OCI就属于南向接口规范,实现应用虚拟化。 简单来讲,可以这么定义容器: 容器(container) ~= 应用打包(build) + 应用分发(ship) + 应用运行/资源隔离(run)。 build-ship-run 的内容都被定义到了OCI规范中,因此也可以这么定义容器: 容器(container) == OCI规范 OCI规范包含两部分,镜像规范与运行时规范。简要的说,要实现一个OCI的规范,需要能够下载镜像并解压镜像到文件系统上组成成一个文件目录结构,运行时工具能够理解这个目录结构并基于此目录结构管理(创建/启动/停止/删除)进程。 容器(container)的技术构成就是实现OCI规范的技术集合。 对于不同的操作系统(Linux/Windows),OCI规范的实现技术不同,当前docker的实现,支持Windows与Linux与MacOS操作系统。当前使用最广的是Linux系统,OCI的实现,在Linux上组成容器的主要技术: chroot: 通过分层文件系统堆叠出容器进程的rootfs,然后通过chroot设置容器进程的根文件系统为堆叠出的rootfs。 cgroups: 通过cgroups技术隔离容器进程的cpu/内存资源。 namesapce: 通过pid, uts, mount, network, user namesapce 分别隔离容器进程的进程ID,时间,文件系统挂载,网络,用户资源。 网络虚拟化: 容器进程被放置到独立的网络命名空间,通过Linux网络虚拟化veth, macvlan, bridge等技术连接主机网络与容器虚拟网络。 存储驱动: 本地文件系统,使用容器镜像分层文件堆叠的各种实现驱动,当前推荐的是overlay2。 广义的容器还包含容器编排,即当下很火热的Kubernetes。Kubernetes为了把控容器调度的生态,发布了CRI规范,通过CRI规范解耦Kubelet与容器,只要实现了CRI接口,都可以与Kubelet交互,从而被Kubernetes调度。OCI规范的容器实现与CRI标准接口对接的实现是CRI-O。 容器与虚拟机差异对比 容器与虚拟机的差异可以总结为2点:应用打包与分发的差异,应用资源隔离的差异。当然,导致这两点差异的根基是容器是以应用为中心来设计的,而虚拟化是以资源为中心来设计的,本文对比容器与虚拟机的差异,更多的是站在应用视角来对比。 从3个方面对比差异:资源隔离,应用打包与分发,延伸的日志/监控/DFX差异。 1.资源隔离 隔离机制差异 容器 虚拟化 mem/cpu cgroup, 使用时候设定 require 与 limit 值 QEMU, KVM network Linux网络虚拟化技术(veth,tap,bridge,macvlan,ipvlan), 跨虚拟机或出公网访问:SNAT/DNAT, service转发:iptables/ipvs, SR-IOV Linux网络虚拟化技术(veth,tap,bridge,macvlan,ipvlan), QEMU, SR-IOV storage 本地存储: 容器存储驱动 本地存储:virtio-blk 差异引入问题与实践建议 应用程序未适配 cgroup 的内存隔离导致问题: 典型的是 JVM 虚拟机,在 JVM 启动时候会根据系统内存自动设置 MaxHeapSize 值,通常是系统内存的1/4,但是 JVM 并未考虑 cgroup 场景,读系统内存时候任然读取主机的内存来设置 MaxHeapSize,这样会导致内存超过 cgroup 限制从而导致进程被 kill 。问题详细阐述与解决建议参考Java inside docker: What you must know to not FAIL。 多次网络虚拟化问题: 如果在虚拟机内使用容器,会多一层网络虚拟化,并加入了SNAT/DNAT技术, iptables/ipvs技术,对网络吞吐量与时延都有影响(具体依赖容器网络方案),对问题定位复杂度变高,同时还需要注意网络内核参数调优。 典型的网络调优参数有:转发表大小 /proc/sys/net/netfilter/nf_conntrack_max 使用iptables 作为service转发实现的时候,在转发规则较多的时候,iptables更新由于需要全量更新导致非常耗时,建议使用ipvs。详细参考[华为云在 K8S 大规模场景下的 Service 性能优化实践](https://zhuanlan.zhihu.com/p/37230013)。 容器IP地址频繁变化不固定,周边系统需要协调适配,包括基于IP地址的白名单或防火墙控制策略需要调整,CMDB记录的应用IP地址需要适配动态IP或者使用服务名替代IP地址。 存储驱动带来的性能损耗: 容器本地文件系统是通过联合文件系统方式堆叠出来的,当前主推与默认提供的是overlay2驱动,这种模式应用写本地文件系统文件或修改已有文件,使用Copy-On-Write方式,也就是会先拷贝源文件到可写层然后修改,如果这种操作非常频繁,建议使用 volume 方式。 2.应用打包与分发 应用打包/分发/调度差异 容器 虚拟化 打包 打包既部署 一般不会把应用程序与虚拟机打包在一起,通过部署系统部署应用 分发 使用镜像仓库存储与分发 使用文件存储 调度运行 使用K8S亲和/反亲和调度策略 使用部署系统的调度能力 差异引入问题与实践建议 部署提前到构建阶段,应用需要支持动态配置与静态程序分离;如果在传统部署脚本中依赖外部动态配置,这部分需要做一些调整。 打包格式发生变化,制作容器镜像需要注意安全/效率因素,可参考Dockerfile最佳实践 容器镜像存储与分发是按layer来组织的,镜像在传输过程中放篡改的方式是传统软件包有差异。 3.监控/日志/DFX 差异 容器 虚拟化 监控 cpu/mem的资源上限是cgroup定义的;containerd/shim/docker-daemon等进程的监控 传统进程监控 日志采集 stdout/stderr日志采集方式变化;日志持久化需要挂载到volume;进程会被随机调度到其他节点导致日志需要实时采集否则分散很难定位 传统日志采集 问题定位 进程down之后自动拉起会导致问题定位现场丢失;无法停止进程来定位问题因为停止即删除实例 传统问题定位手段 差异引入问题实践与建议 使用成熟的监控工具,运行在docker中的应用使用cadvisor+prometheus实现采集与警报,cadvisor中预置了常用的监控指标项 对于docker管理进程(containerd/shim/docker-daemon)也需要一并监控 使用成熟的日志采集工具,如果已有日志采集Agent,则可以考虑将日志文件挂载到volume后由Agent采集;需要注意的是stderr/stdout输出也要一并采集 如果希望容器内应用进程退出后保留现场定位问题,则可以将Pod的restartPolicy设置为never,进程退出后进程文件都还保留着(/var/lib/docker/containers)。但是这么做的话需要进程没有及时恢复,会影响业务,需要自己实现进程重拉起。 团队配合 与周边的开发团队、架构团队、测试团队、运维团队评审并交流方案,与周边团队达成一致。 落地策略与注意事项 逐步演进过程中网络互通 根据当前已经存在的基础实施情况,选择容器化落地策略。通常使用逐步演进的方式,由于容器化引入了独立的网络namespace导致容器与传统虚拟机进程网络隔离,逐步演进过程中如何打通隔离的网络是最大的挑战。 分两种场景讨论: 不同服务集群之间使用VIP模式互通: 这种模式相对简单,基于VIP做灰度发布。 不同服务集群之间使用微服务点对点模式互通(SpringCloud/ServiceComb/Dubbo都是这一类): 这种模式相对复杂,在逐步容器化过程中,要求容器网络与传统虚拟机网络能够互通(难点是在虚拟机进程内能够直接访问到容器网络的IP地址),当前解决这个问题有几种方法。 自建Kubernetes场景,可使用开源的kube-router,kube-router 使用BGP协议实现容器网络与传统虚拟机网络之间互通,要求网络交换机支持BGP协议。 使用云厂商托管Kubernetes场景,选择云厂商提供的VPC-Router互通的网络插件,如阿里云的Terway网络插件, 华为云的Underlay网络模式。 选择物理机还是虚拟机 选择物理机运行容器还是虚拟机运行容器,需要结合基础设施与业务隔离性要求综合考虑。分两种场景:自建IDC、租用公有云。 自建IDC: 理想情况是使用物理机组成一个大集群,根据业务诉求,对资源保障与安全性要求高的应用,使用MicorVM方式隔离;普通应用使用LXC方式隔离。所有物理机在一个大集群内,方便削峰填谷提升资源利用率。 租用公有云:当前公有云厂家提供的裸金属服务价格较贵且只能包周期,使用裸金属性价比并不高,使用虚拟机更合适。 集群规模与划分 选择集群时候,是多个应用共用一个大集群,还是按应用分组分成多个小集群呢?我们把节点规模数量>=1000的定义为大集群,节点数<1000的定义为小集群。 大集群的优点是资源池共享容器,方便资源调度(削峰填谷);缺点是随着节点数量与负载数量的增多,会引入管理性能问题(需要量化): DNS 解析表变大,增加/删除 Service 或 增加/删除 Endpoint 导致DNS表刷新慢 K8S Service 转发表变大,导致工作负载增加/删除刷新iptables/ipvs记录变慢 etcd 存储空间变大,如果加上ConfigMap,可能导致 etcd 访问时延增加 小集群的优点是不会有管理性能问题,缺点是会导致资源碎片化,不容易共享。共享分两种情况: 应用之间削峰填谷:目前无法实现 计算任务与应用之间削峰填谷:由于计算任务是短时任务,可以通过上层的任务调度软件,在多个集群之间分发计算任务,从而达到集群之间资源共享的目的。 选择集群规模的时候,可以参考上述分析,结合实际情况选择适合的集群划分。 Helm? Helm是为了解决K8S管理对象散碎的问题,在K8S中并没有"应用"的概念,只有一个个散的对象(Deployment, ConfigMap, Service, etc),而一个"应用"是多个对象组合起来的,且这些对象之间还可能存在一定的版本配套关系。 Helm 通过将K8S多个对象打包为一个包并标注版本号形成一个"应用",通过 Helm 管理进程部署/升级这个"应用"。这种方式解决了一些问题(应用分发更方便)同时也引入了一些问题(引入Helm增加应用发布/管理复杂度、在K8S修改了对象后如何同步到Helm)。对于是否需要使用Helm,建议如下: 在自运维模式下不使用Helm: 自运维模式下,很多场景是开发团队交付一个运行包,运维团队负责部署与配置下发,内部通过兼容性或软件包与配置版本配套清单、管理软件包与配置的配套关系。 在交付软件包模式下使用Helm: 交付软件包模式下,Helm 这种把散碎组件组装为一个应用的模式比较适合,使用Helm实现软件包分发/部署/升级场比较简单。 Reference DOCKER vs LXC vs VIRTUAL MACHINES Cgroup与LXC简介 Introducing Container Runtime Interface (CRI) in Kubernetes frakti rkt appc-spec OCI 和 runc:容器标准化和 docker Linux 容器技术史话:从 chroot 到未来 Linux Namespace和Cgroup Java inside docker: What you must know to not FAIL QEMU,KVM及QEMU-KVM介绍 kvm libvirt qemu实践系列(一)-kvm介绍 KVM 介绍(4):I/O 设备直接分配和 SR-IOV [KVM PCI/PCIe Pass-Through SR-IOV] prometheus-book 到底什么是Unikernel? The Rise and Fall of the Operating System The Design and Implementation of the Anykernel and Rump Kernels UniKernel Unikernel:从不入门到入门 OSv 京东如何打造K8s全球最大集群支撑万亿电商交易 Cloud Native App Hub 更多云最佳实践 https://best.practices.cloud 本篇文章为转载内容。原文链接:https://blog.csdn.net/sinat_33155975/article/details/118013855。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-17 15:03:28
225
转载
转载文章
...dowmanager管理的surface作为生产方产生页面,交由surfaceflinger进行合成。 VSYNC Android系统每隔16ms发出VSYNC信号,触发对UI进行渲染,VSYNC是一种在PC上很早就有应用,可以理解为一种定时中断技术。 tearing 问题: 早期的 Android 是没有 vsync 机制的,CPU 和 GPU 的配合也比较混乱,这也造成著名的 tearing 问题,即 CPU/GPU 直接更新正在显示的屏幕 buffer 造成画面撕裂。 后续 Android 引入了双缓冲机制,但是 buffer 的切换也需要一个比较合适的时机,也就是屏幕扫描完上一帧后的时机,这也就是引入 vsync 的原因。 早先一般的屏幕刷新率是 60fps,所以每个 vsync 信号的间隔也是 16ms,不过随着技术的更迭以及厂商对于流畅性的追求,越来越多 90fps 和 120fps 的手机面世,相对应的间隔也就变成了 11ms 和 8ms。 VSYNC信号种类: 1.屏幕产生的硬件VSYNC:硬件VSYNC是一种脉冲信号,起到开关和触发某种操作的作用。 2.由SurfaceFlinger将其转成的软件VSYNC信号,经由Binder传递给Choreographer Choreographer: 编舞者,用于注册VSYNC信号并接收VSYNC信号回调,当内部接收到这个信号时最终会调用到doFrame进行帧的绘制操作。 Choreographer在系统中流程: 如何通过Choreographer计算掉帧情况:原理就是: 通过给Choreographer设置FrameCallback,在每次绘制前后看时间差是16.6ms的多少倍,即为前后掉帧率。 使用方式如下: //Application.javapublic void onCreate() {super.onCreate();//在Application中使用postFrameCallbackChoreographer.getInstance().postFrameCallback(new FPSFrameCallback(System.nanoTime()));}public class FPSFrameCallback implements Choreographer.FrameCallback {private static final String TAG = "FPS_TEST";private long mLastFrameTimeNanos = 0;private long mFrameIntervalNanos;public FPSFrameCallback(long lastFrameTimeNanos) {mLastFrameTimeNanos = lastFrameTimeNanos;mFrameIntervalNanos = (long)(1000000000 / 60.0);}@Overridepublic void doFrame(long frameTimeNanos) {//初始化时间if (mLastFrameTimeNanos == 0) {mLastFrameTimeNanos = frameTimeNanos;}final long jitterNanos = frameTimeNanos - mLastFrameTimeNanos;if (jitterNanos >= mFrameIntervalNanos) {final long skippedFrames = jitterNanos / mFrameIntervalNanos;if(skippedFrames>30){//丢帧30以上打印日志Log.i(TAG, "Skipped " + skippedFrames + " frames! "+ "The application may be doing too much work on its main thread.");} }mLastFrameTimeNanos=frameTimeNanos;//注册下一帧回调Choreographer.getInstance().postFrameCallback(this);} } UI绘制全路径分析: 有了前面几个概念,这里我们让SurfaceFlinger结合View的绘制流程用一张图来表达整个绘制流程: 生产者:APP方构建Surface的过程。 消费者:SurfaceFlinger UI绘制全路径分析卡顿原因: 接下来,我们逐个分析,看看都会有哪些原因可能造成卡顿: 1.渲染流程 1.Vsync 调度:这个是起始点,但是调度的过程会经过线程切换以及一些委派的逻辑,有可能造成卡顿,但是一般可能性比较小,我们也基本无法介入; 2.消息调度:主要是 doframe Message 的调度,这就是一个普通的 Handler 调度,如果这个调度被其他的 Message 阻塞产生了时延,会直接导致后续的所有流程不会被触发 3.input 处理:input 是一次 Vsync 调度最先执行的逻辑,主要处理 input 事件。如果有大量的事件堆积或者在事件分发逻辑中加入大量耗时业务逻辑,会造成当前帧的时长被拉大,造成卡顿,可以尝试通过事件采样的方案,减少 event 的处理 4.动画处理:主要是 animator 动画的更新,同理,动画数量过多,或者动画的更新中有比较耗时的逻辑,也会造成当前帧的渲染卡顿。对动画的降帧和降复杂度其实解决的就是这个问题; 5.view 处理:主要是接下来的三大流程,过度绘制、频繁刷新、复杂的视图效果都是此处造成卡顿的主要原因。比如我们平时所说的降低页面层级,主要解决的就是这个问题; 6.measure/layout/draw:view 渲染的三大流程,因为涉及到遍历和高频执行,所以这里涉及到的耗时问题均会被放大,比如我们会降不能在 draw 里面调用耗时函数,不能 new 对象等等; 7.DisplayList 的更新:这里主要是 canvas 和 displaylist 的映射,一般不会存在卡顿问题,反而可能存在映射失败导致的显示问题; 8.OpenGL 指令转换:这里主要是将 canvas 的命令转换为 OpenGL 的指令,一般不存在问题 9.buffer 交换:这里主要指 OpenGL 指令集交换给 GPU,这个一般和指令的复杂度有关 10.GPU 处理:顾名思义,这里是 GPU 对数据的处理,耗时主要和任务量和纹理复杂度有关。这也就是我们降低 GPU 负载有助于降低卡顿的原因; 11.layer 合成:Android P 修改了 Layer 的计算方法 , 把这部分放到了 SurfaceFlinger 主线程去执行, 如果后台 Layer 过多, 就会导致 SurfaceFlinger 在执行 rebuildLayerStacks 的时候耗时 , 导致 SurfaceFlinger 主线程执行时间过长。 可以选择降低Surface层级来优化卡顿。 12.光栅化/Display:这里暂时忽略,底层系统行为; Buffer 切换:主要是屏幕的显示,这里 buffer 的数量也会影响帧的整体延迟,不过是系统行为,不能干预。 2.系统负载 内存:内存的吃紧会直接导致 GC 的增加甚至 ANR,是造成卡顿的一个不可忽视的因素; CPU:CPU 对卡顿的影响主要在于线程调度慢、任务执行的慢和资源竞争,比如 1.降频会直接导致应用卡顿; 2.后台活动进程太多导致系统繁忙,cpu \ io \ memory 等资源都会被占用, 这时候很容易出现卡顿问题 ,这种情况比较常见,可以使用dumpsys cpuinfo查看当前设备的cpu使用情况: 3.主线程调度不到 , 处于 Runnable 状态,这种情况比较少见 4.System 锁:system_server 的 AMS 锁和 WMS 锁 , 在系统异常的情况下 , 会变得非常严重 , 如下图所示 , 许多系统的关键任务都被阻塞 , 等待锁的释放 , 这时候如果有 App 发来的 Binder 请求带锁 , 那么也会进入等待状态 , 这时候 App 就会产生性能问题 ; 如果此时做 Window 动画 , 那么 system_server 的这些锁也会导致窗口动画卡顿 GPU:GPU 的影响见渲染流程,但是其实还会间接影响到功耗和发热; 功耗/发热:功耗和发热一般是不分家的,高功耗会引起高发热,进而会引起系统保护,比如降频、热缓解等,间接的导致卡顿。 如何监控卡顿 线下监控: 我们知道卡顿问题的原因错综复杂,但最终都可以反馈到CPU使用率上来 1.使用dumpsys cpuinfo命令 这个命令可以获取当时设备cpu使用情况,我们可以在线下通过重度使用应用来检测可能存在的卡顿点 A8S:/ $ dumpsys cpuinfoLoad: 1.12 / 1.12 / 1.09CPU usage from 484321ms to 184247ms ago (2022-11-02 14:48:30.793 to 2022-11-02 14:53:30.866):2% 1053/scanserver: 0.2% user + 1.7% kernel0.6% 934/system_server: 0.4% user + 0.1% kernel / faults: 563 minor0.4% 564/signserver: 0% user + 0.4% kernel0.2% 256/ueventd: 0.1% user + 0% kernel / faults: 320 minor0.2% 474/surfaceflinger: 0.1% user + 0.1% kernel0.1% 576/vendor.sprd.hardware.gnss@2.0-service: 0.1% user + 0% kernel / faults: 54 minor0.1% 286/logd: 0% user + 0% kernel / faults: 10 minor0.1% 2821/com.allinpay.appstore: 0.1% user + 0% kernel / faults: 1312 minor0.1% 447/android.hardware.health@2.0-service: 0% user + 0% kernel / faults: 1175 minor0% 1855/com.smartpos.dataacqservice: 0% user + 0% kernel / faults: 755 minor0% 2875/com.allinpay.appstore:pushcore: 0% user + 0% kernel / faults: 744 minor0% 1191/com.android.systemui: 0% user + 0% kernel / faults: 70 minor0% 1774/com.android.nfc: 0% user + 0% kernel0% 172/kworker/1:2: 0% user + 0% kernel0% 145/irq/24-70900000: 0% user + 0% kernel0% 575/thermald: 0% user + 0% kernel / faults: 300 minor... 2.CPU Profiler 这个工具是AS自带的CPU性能检测工具,可以在PC上实时查看我们CPU使用情况。 AS提供了四种Profiling Model配置: 1.Sample Java Methods:在应用程序基于Java的代码执行过程中,频繁捕获应用程序的调用堆栈 获取有关应用程序基于Java的代码执行的时间和资源使用情况信息。 2.Trace java methods:在运行时对应用程序进行检测,以在每个方法调用的开始和结束时记录时间戳。收集时间戳并进行比较以生成方法跟踪数据,包括时序信息和CPU使用率。 请注意与检测每种方法相关的开销会影响运行时性能,并可能影响性能分析数据。对于生命周期相对较短的方法,这一点甚至更为明显。此外,如果您的应用在短时间内执行大量方法,则探查器可能会很快超过其文件大小限制,并且可能无法记录任何进一步的跟踪数据。 3.Sample C/C++ Functions:捕获应用程序本机线程的示例跟踪。要使用此配置,您必须将应用程序部署到运行Android 8.0(API级别26)或更高版本的设备。 4.Trace System Calls:捕获细粒度的详细信息,使您可以检查应用程序与系统资源的交互方式 您可以检查线程状态的确切时间和持续时间,可视化CPU瓶颈在所有内核中的位置,并添加自定义跟踪事件进行分析。在对性能问题进行故障排除时,此类信息可能至关重要。要使用此配置,您必须将应用程序部署到运行Android 7.0(API级别24)或更高版本的设备。 使用方式: Debug.startMethodTracing("");// 需要检测的代码片段...Debug.stopMethodTracing(); 优点:有比较全面的调用栈以及图像化方法时间显示,包含所有线程的情况 缺点:本身也会带来一点的性能开销,可能会带偏优化方向 火焰图:可以显示当前应用的方法堆栈: 3.Systrace Systrace在前面一篇分析启动优化的文章讲解过 这里我们简单来复习下: Systrace用来记录当前应用的系统以及应用(使用Trace类打点)的各阶段耗时信息包括绘制信息以及CPU信息等。 使用方式: Trace.beginSection("MyApp.onCreate_1");alt(200);Trace.endSection(); 在命令行中: python systrace.py -t 5 sched gfx view wm am app webview -a "com.chinaebipay.thirdcall" -o D:\trac1.html 记录的方法以及CPU中的耗时情况: 优点: 1.轻量级,开销小,CPU使用率可以直观反映 2.右侧的Alerts能够根据我们应用的问题给出具体的建议,比如说,它会告诉我们App界面的绘制比较慢或者GC比较频繁。 4.StrictModel StrictModel是Android提供的一种运行时检测机制,用来帮助开发者自动检测代码中不规范的地方。 主要和两部分相关: 1.线程相关 2.虚拟机相关 基础代码: private void initStrictMode() {// 1、设置Debug标志位,仅仅在线下环境才使用StrictModeif (DEV_MODE) {// 2、设置线程策略StrictMode.setThreadPolicy(new StrictMode.ThreadPolicy.Builder().detectCustomSlowCalls() //API等级11,使用StrictMode.noteSlowCode.detectDiskReads().detectDiskWrites().detectNetwork() // or .detectAll() for all detectable problems.penaltyLog() //在Logcat 中打印违规异常信息// .penaltyDialog() //也可以直接跳出警报dialog// .penaltyDeath() //或者直接崩溃.build());// 3、设置虚拟机策略StrictMode.setVmPolicy(new StrictMode.VmPolicy.Builder().detectLeakedSqlLiteObjects()// 给NewsItem对象的实例数量限制为1.setClassInstanceLimit(NewsItem.class, 1).detectLeakedClosableObjects() //API等级11.penaltyLog().build());} } 线上监控: 线上需要自动化的卡顿检测方案来定位卡顿,它能记录卡顿发生时的场景。 自动化监控原理: 采用拦截消息调度流程,在消息执行前埋点计时,当耗时超过阈值时,则认为是一次卡顿,会进行堆栈抓取和上报工作 首先,我们看下Looper用于执行消息循环的loop()方法,关键代码如下所示: / Run the message queue in this thread. Be sure to call {@link quit()} to end the loop./public static void loop() {...for (;;) {Message msg = queue.next(); // might blockif (msg == null) {// No message indicates that the message queue is quitting.return;// This must be in a local variable, in case a UI event sets the loggerfinal Printer logging = me.mLogging;if (logging != null) {// 1logging.println(">>>>> Dispatching to " + msg.target + " " +msg.callback + ": " + msg.what);}...try {// 2 msg.target.dispatchMessage(msg);dispatchEnd = needEndTime ? SystemClock.uptimeMillis() : 0;} finally {if (traceTag != 0) {Trace.traceEnd(traceTag);} }...if (logging != null) {// 3logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);} 在Looper的loop()方法中,在其执行每一个消息(注释2处)的前后都由logging进行了一次打印输出。可以看到,在执行消息前是输出的">>>>> Dispatching to “,在执行消息后是输出的”<<<<< Finished to ",它们打印的日志是不一样的,我们就可以由此来判断消息执行的前后时间点。 具体的实现可以归纳为如下步骤: 1、首先,我们需要使用Looper.getMainLooper().setMessageLogging()去设置我们自己的Printer实现类去打印输出logging。这样,在每个message执行的之前和之后都会调用我们设置的这个Printer实现类。 2、如果我们匹配到">>>>> Dispatching to "之后,我们就可以执行一行代码:也就是在指定的时间阈值之后,我们在子线程去执行一个任务,这个任务就是去获取当前主线程的堆栈信息以及当前的一些场景信息,比如:内存大小、电脑、网络状态等。 3、如果在指定的阈值之内匹配到了"<<<<< Finished to ",那么说明message就被执行完成了,则表明此时没有产生我们认为的卡顿效果,那我们就可以将这个子线程任务取消掉。 这里我们使用blockcanary来做测试: BlockCanary APM是一个非侵入式的性能监控组件,可以通过通知的形式弹出卡顿信息。它的原理就是我们刚刚讲述到的卡顿监控的实现原理。 使用方式: 1.导入依赖 implementation 'com.github.markzhai:blockcanary-android:1.5.0' Application的onCreate方法中开启卡顿监控 // 注意在主进程初始化调用BlockCanary.install(this, new AppBlockCanaryContext()).start(); 3.继承BlockCanaryContext类去实现自己的监控配置上下文类 public class AppBlockCanaryContext extends BlockCanaryContext {....../ 指定判定为卡顿的阈值threshold (in millis), 你可以根据不同设备的性能去指定不同的阈值 @return threshold in mills/public int provideBlockThreshold() {return 1000;}....} 4.在Activity的onCreate方法中执行一个耗时操作 try {Thread.sleep(4000);} catch (InterruptedException e) {e.printStackTrace();} 5.结果: 可以看到一个和LeakCanary一样效果的阻塞可视化堆栈图 那有了BlockCanary的方法耗时监控方式是不是就可以解百愁了呢,呵呵。有那么容易就好了 根据原理:我们拿到的是msg执行前后的时间和堆栈信息,如果msg中有几百上千个方法,就无法确认到底是哪个方法导致的耗时,也有可能是多个方法堆积导致。 这就导致我们无法准确定位哪个方法是最耗时的。如图中:堆栈信息是T2的,而发生耗时的方法可能是T1到T2中任何一个方法甚至是堆积导致。 那如何优化这块? 这里我们采用字节跳动给我们提供的一个方案:基于 Sliver trace 的卡顿监控体系 Sliver trace 整体流程图: 主要包含两个方面: 检测方案: 在监控卡顿时,首先需要打开 Sliver 的 trace 记录能力,Sliver 采样记录 trace 执行信息,对抓取到的堆栈进行 diff 聚合和缓存。 同时基于我们的需要设置相应的卡顿阈值,以 Message 的执行耗时为衡量。对主线程消息调度流程进行拦截,在消息开始分发执行时埋点,在消息执行结束时计算消息执行耗时,当消息执行耗时超过阈值,则认为产生了一次卡顿。 堆栈聚合策略: 当卡顿发生时,我们需要为此次卡顿准备数据,这部分工作是在端上子线程中完成的,主要是 dump trace 到文件以及过滤聚合要上报的堆栈。分为以下几步: 1.拿到缓存的主线程 trace 信息并 dump 到文件中。 2.然后从文件中读取 trace 信息,按照数据格式,从最近的方法栈向上追溯,找到当前 Message 包含的全部 trace 信息,并将当前 Message 的完整 trace 写入到待上传的 trace 文件中,删除其余 trace 信息。 3.遍历当前 Message trace,按照(Method 执行耗时 > Method 耗时阈值 & Method 耗时为该层堆栈中最耗时)为条件过滤出每一层函数调用堆栈的最长耗时函数,构成最后要上报的堆栈链路,这样特征堆栈中的每一步都是最耗时的,且最底层 Method 为最后的耗时大于阈值的 Method。 之后,将 trace 文件和堆栈一同上报,这样的特征堆栈提取策略保证了堆栈聚合的可靠性和准确性,保证了上报到平台后堆栈的正确合理聚合,同时提供了进一步分析问题的 trace 文件。 可以看到字节给的是一整套监控方案,和前面BlockCanary不同之处就在于,其是定时存储堆栈,缓存,然后使用diff去重的方式,并上传到服务器,可以最大限度的监控到可能发生比较耗时的方法。 开发中哪些习惯会影响卡顿的发生 1.布局太乱,层级太深。 1.1:通过减少冗余或者嵌套布局来降低视图层次结构。比如使用约束布局代替线性布局和相对布局。 1.2:用 ViewStub 替代在启动过程中不需要显示的 UI 控件。 1.3:使用自定义 View 替代复杂的 View 叠加。 2.主线程耗时操作 2.1:主线程中不要直接操作数据库,数据库的操作应该放在数据库线程中完成。 2.2:sharepreference尽量使用apply,少使用commit,可以使用MMKV框架来代替sharepreference。 2.3:网络请求回来的数据解析尽量放在子线程中,不要在主线程中进行复制的数据解析操作。 2.4:不要在activity的onResume和onCreate中进行耗时操作,比如大量的计算等。 2.5:不要在 draw 里面调用耗时函数,不能 new 对象 3.过度绘制 过度绘制是同一个像素点上被多次绘制,减少过度绘制一般减少布局背景叠加等方式,如下图所示右边是过度绘制的图片。 4.列表 RecyclerView使用优化,使用DiffUtil和notifyItemDataSetChanged进行局部更新等。 5.对象分配和回收优化 自从Android引入 ART 并且在Android 5.0上成为默认的运行时之后,对象分配和垃圾回收(GC)造成的卡顿已经显著降低了,但是由于对象分配和GC有额外的开销,它依然又可能使线程负载过重。 在一个调用不频繁的地方(比如按钮点击)分配对象是没有问题的,但如果在在一个被频繁调用的紧密的循环里,就需要避免对象分配来降低GC的压力。 减少小对象的频繁分配和回收操作。 好了,关于卡顿优化的问题就讲到这里,下篇文章会对卡顿中的ANR情况的处理,这里做个铺垫。 如果喜欢我的文章,欢迎关注我的公众号。 点击这看原文链接: 参考 Android卡顿检测及优化 一文读懂直播卡顿优化那些事儿 “终于懂了” 系列:Android屏幕刷新机制—VSync、Choreographer 全面理解! 深入探索Android卡顿优化(上) 西瓜卡顿 & ANR 优化治理及监控体系建设 5376)] 参考 Android卡顿检测及优化 一文读懂直播卡顿优化那些事儿 “终于懂了” 系列:Android屏幕刷新机制—VSync、Choreographer 全面理解! 深入探索Android卡顿优化(上) 西瓜卡顿 & ANR 优化治理及监控体系建设 本篇文章为转载内容。原文链接:https://blog.csdn.net/yuhaibing111/article/details/127682399。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-26 08:05:57
214
转载
转载文章
...MS) 支持OLAP应用,采用MPP(Massively Parallel Processing:大规模并行处理系统)架构模式 支持OLTP应用,读写性能可扩展 集群级别的ACID特性 多租户安全 也可被用作分布式Key-Value存储 事务处理与数据分析处理混合型数据库 支持丰富的SQL语句类型,比如:关联子查询 支持绝大部分PostgreSQL的SQL语句 分布式多版本并发控制(MVCC:Multi-version Concurrency Control) 支持JSON和XML格式 Postgres-XL缺少的功能 内建的高可用机制 使用外部机制实现高可能,如:Corosync/Pacemaker 有未来功能提升的空间 增加节点/重新分片数据(re-shard)的简便性 数据重分布(redistribution)期间会锁表 可采用预分片(pre-shard)方式解决,在同台物理服务器上建立多个数据节点,每个节点存储一个数据分片。数据重分布时,将一些数据节点迁出即可 某些外键、唯一性约束功能 Postgres-XL架构 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-M9lFuEIP-1640133702200)(./assets/postgre-xl.jpg)] 基于开源项目Postgres-XC XL增加了MPP,允许数据节点间直接通讯,交换复杂跨节点关联查询相关数据信息,减少协调器负载。 多个协调器(Coordinator) 应用程序的数据库连入点 分析查询语句,生成执行计划 多个数据节点(DataNode) 实际的数据存储 数据自动打散分布到集群中各数据节点 本地执行查询 一个查询在所有相关节点上并行查询 全局事务管理器(GTM:Global Transaction Manager) 提供事务间一致性视图 部署GTM Proxy实例,以提高性能 Postgre-XL主要组件 GTM (Global Transaction Manager) - 全局事务管理器 GTM是Postgres-XL的一个关键组件,用于提供一致的事务管理和元组可见性控制。 GTM Standby GTM的备节点,在pgxc,pgxl中,GTM控制所有的全局事务分配,如果出现问题,就会导致整个集群不可用,为了增加可用性,增加该备用节点。当GTM出现问题时,GTM Standby可以升级为GTM,保证集群正常工作。 GTM-Proxy GTM需要与所有的Coordinators通信,为了降低压力,可以在每个Coordinator机器上部署一个GTM-Proxy。 Coordinator --协调器 协调器是应用程序到数据库的接口。它的作用类似于传统的PostgreSQL后台进程,但是协调器不存储任何实际数据。实际数据由数据节点存储。协调器接收SQL语句,根据需要获取全局事务Id和全局快照,确定涉及哪些数据节点,并要求它们执行(部分)语句。当向数据节点发出语句时,它与GXID和全局快照相关联,以便多版本并发控制(MVCC)属性扩展到集群范围。 Datanode --数据节点 用于实际存储数据。表可以分布在各个数据节点之间,也可以复制到所有数据节点。数据节点没有整个数据库的全局视图,它只负责本地存储的数据。接下来,协调器将检查传入语句,并制定子计划。然后,根据需要将这些数据连同GXID和全局快照一起传输到涉及的每个数据节点。数据节点可以在不同的会话中接收来自各个协调器的请求。但是,由于每个事务都是惟一标识的,并且与一致的(全局)快照相关联,所以每个数据节点都可以在其事务和快照上下文中正确执行。 Postgres-XL继承了PostgreSQL Postgres-XL是PostgreSQL的扩展并继承了其很多特性: 复杂查询 外键 触发器 视图 事务 MVCC(多版本控制) 此外,类似于PostgreSQL,用户可以通过多种方式扩展Postgres-XL,例如添加新的 数据类型 函数 操作 聚合函数 索引类型 过程语言 安装 环境说明 由于资源有限,gtm一台、另外两台身兼数职。 主机名 IP 角色 端口 nodename 数据目录 gtm 192.168.20.132 GTM 6666 gtm /nodes/gtm 协调器 5432 coord1 /nodes/coordinator xl1 192.168.20.133 数据节点 5433 node1 /nodes/pgdata gtm代理 6666 gtmpoxy01 /nodes/gtm_pxy1 协调器 5432 coord2 /nodes/coordinator xl2 192.168.20.134 数据节点 5433 node2 /nodes/pgdata gtm代理 6666 gtmpoxy02 /nodes/gtm_pxy2 要求 GNU make版本 3.8及以上版本 [root@pg ~] make --versionGNU Make 3.82Built for x86_64-redhat-linux-gnuCopyright (C) 2010 Free Software Foundation, Inc.License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>This is free software: you are free to change and redistribute it.There is NO WARRANTY, to the extent permitted by law. 需安装GCC包 需安装tar包 用于解压缩文件 默认需要GNU Readline library 其作用是可以让psql命令行记住执行过的命令,并且可以通过键盘上下键切换命令。但是可以通过--without-readline禁用这个特性,或者可以指定--withlibedit-preferred选项来使用libedit 默认使用zlib压缩库 可通过--without-zlib选项来禁用 配置hosts 所有主机上都配置 [root@xl2 11] cat /etc/hosts127.0.0.1 localhost192.168.20.132 gtm192.168.20.133 xl1192.168.20.134 xl2 关闭防火墙、Selinux 所有主机都执行 关闭防火墙: [root@gtm ~] systemctl stop firewalld.service[root@gtm ~] systemctl disable firewalld.service selinux设置: [root@gtm ~]vim /etc/selinux/config 设置SELINUX=disabled,保存退出。 This file controls the state of SELinux on the system. SELINUX= can take one of these three values: enforcing - SELinux security policy is enforced. permissive - SELinux prints warnings instead of enforcing. disabled - No SELinux policy is loaded.SELINUX=disabled SELINUXTYPE= can take one of three two values: targeted - Targeted processes are protected, minimum - Modification of targeted policy. Only selected processes are protected. mls - Multi Level Security protection. 安装依赖包 所有主机上都执行 yum install -y flex bison readline-devel zlib-devel openjade docbook-style-dsssl gcc 创建用户 所有主机上都执行 [root@gtm ~] useradd postgres[root@gtm ~] passwd postgres[root@gtm ~] su - postgres[root@gtm ~] mkdir ~/.ssh[root@gtm ~] chmod 700 ~/.ssh 配置SSH免密登录 仅仅在gtm节点配置如下操作: [root@gtm ~] su - postgres[postgres@gtm ~] ssh-keygen -t rsa[postgres@gtm ~] cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys[postgres@gtm ~] chmod 600 ~/.ssh/authorized_keys 将刚生成的认证文件拷贝到xl1到xl2中,使得gtm节点可以免密码登录xl1~xl2的任意一个节点: [postgres@gtm ~] scp ~/.ssh/authorized_keys postgres@xl1:~/.ssh/[postgres@gtm ~] scp ~/.ssh/authorized_keys postgres@xl2:~/.ssh/ 对所有提示都不要输入,直接enter下一步。直到最后,因为第一次要求输入目标机器的用户密码,输入即可。 下载源码 下载地址:https://www.postgres-xl.org/download/ [root@slave ~] ll postgres-xl-10r1.1.tar.gz-rw-r--r-- 1 root root 28121666 May 30 05:21 postgres-xl-10r1.1.tar.gz 编译、安装Postgres-XL 所有节点都安装,编译需要一点时间,最好同时进行编译。 [root@slave ~] tar xvf postgres-xl-10r1.1.tar.gz[root@slave ~] ./configure --prefix=/home/postgres/pgxl/[root@slave ~] make[root@slave ~] make install[root@slave ~] cd contrib/ --安装必要的工具,在gtm节点上安装即可[root@slave ~] make[root@slave ~] make install 配置环境变量 所有节点都要配置 进入postgres用户,修改其环境变量,开始编辑 [root@gtm ~]su - postgres[postgres@gtm ~]vi .bashrc --不是.bash_profile 在打开的文件末尾,新增如下变量配置: export PGHOME=/home/postgres/pgxlexport LD_LIBRARY_PATH=$PGHOME/lib:$LD_LIBRARY_PATHexport PATH=$PGHOME/bin:$PATH 按住esc,然后输入:wq!保存退出。输入以下命令对更改重启生效。 [postgres@gtm ~] source .bashrc --不是.bash_profile 输入以下语句,如果输出变量结果,代表生效 [postgres@gtm ~] echo $PGHOME 应该输出/home/postgres/pgxl代表生效 配置集群 生成pgxc_ctl.conf配置文件 [postgres@gtm ~] pgxc_ctl prepare/bin/bashInstalling pgxc_ctl_bash script as /home/postgres/pgxl/pgxc_ctl/pgxc_ctl_bash.ERROR: File "/home/postgres/pgxl/pgxc_ctl/pgxc_ctl.conf" not found or not a regular file. No such file or directoryInstalling pgxc_ctl_bash script as /home/postgres/pgxl/pgxc_ctl/pgxc_ctl_bash.Reading configuration using /home/postgres/pgxl/pgxc_ctl/pgxc_ctl_bash --home /home/postgres/pgxl/pgxc_ctl --configuration /home/postgres/pgxl/pgxc_ctl/pgxc_ctl.confFinished reading configuration. PGXC_CTL START Current directory: /home/postgres/pgxl/pgxc_ctl 配置pgxc_ctl.conf 新建/home/postgres/pgxc_ctl/pgxc_ctl.conf文件,编辑如下: 对着模板文件一个一个修改,否则会造成初始化过程出现各种神奇问题。 pgxcInstallDir=$PGHOMEpgxlDATA=$PGHOME/data pgxcOwner=postgres---- GTM Master -----------------------------------------gtmName=gtmgtmMasterServer=gtmgtmMasterPort=6666gtmMasterDir=$pgxlDATA/nodes/gtmgtmSlave=y Specify y if you configure GTM Slave. Otherwise, GTM slave will not be configured and all the following variables will be reset.gtmSlaveName=gtmSlavegtmSlaveServer=gtm value none means GTM slave is not available. Give none if you don't configure GTM Slave.gtmSlavePort=20001 Not used if you don't configure GTM slave.gtmSlaveDir=$pgxlDATA/nodes/gtmSlave Not used if you don't configure GTM slave.---- GTM-Proxy Master -------gtmProxyDir=$pgxlDATA/nodes/gtm_proxygtmProxy=y gtmProxyNames=(gtm_pxy1 gtm_pxy2) gtmProxyServers=(xl1 xl2) gtmProxyPorts=(6666 6666) gtmProxyDirs=($gtmProxyDir $gtmProxyDir) ---- Coordinators ---------coordMasterDir=$pgxlDATA/nodes/coordcoordNames=(coord1 coord2) coordPorts=(5432 5432) poolerPorts=(6667 6667) coordPgHbaEntries=(0.0.0.0/0)coordMasterServers=(xl1 xl2) coordMasterDirs=($coordMasterDir $coordMasterDir)coordMaxWALsernder=0 没设置备份节点,设置为0coordMaxWALSenders=($coordMaxWALsernder $coordMaxWALsernder) 数量保持和coordMasterServers一致coordSlave=n---- Datanodes ----------datanodeMasterDir=$pgxlDATA/nodes/dn_masterprimaryDatanode=xl1 主数据节点datanodeNames=(node1 node2)datanodePorts=(5433 5433) datanodePoolerPorts=(6668 6668) datanodePgHbaEntries=(0.0.0.0/0)datanodeMasterServers=(xl1 xl2)datanodeMasterDirs=($datanodeMasterDir $datanodeMasterDir)datanodeMaxWalSender=4datanodeMaxWALSenders=($datanodeMaxWalSender $datanodeMaxWalSender) 集群初始化,启动,停止 初始化 pgxc_ctl -c /home/postgres/pgxc_ctl/pgxc_ctl.conf init all 输出结果: /bin/bashInstalling pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Installing pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Reading configuration using /home/postgres/pgxc_ctl/pgxc_ctl_bash --home /home/postgres/pgxc_ctl --configuration /home/postgres/pgxc_ctl/pgxc_ctl.conf/home/postgres/pgxc_ctl/pgxc_ctl.conf: line 189: $coordExtraConfig: ambiguous redirectFinished reading configuration. PGXC_CTL START Current directory: /home/postgres/pgxc_ctlStopping all the coordinator masters.Stopping coordinator master coord1.Stopping coordinator master coord2.pg_ctl: directory "/home/postgres/pgxc/nodes/coord/coord1" does not existpg_ctl: directory "/home/postgres/pgxc/nodes/coord/coord2" does not existDone.Stopping all the datanode masters.Stopping datanode master datanode1.Stopping datanode master datanode2.pg_ctl: PID file "/home/postgres/pgxc/nodes/datanode/datanode1/postmaster.pid" does not existIs server running?Done.Stop GTM masterwaiting for server to shut down.... doneserver stopped[postgres@gtm ~]$ echo $PGHOME/home/postgres/pgxl[postgres@gtm ~]$ ll /home/postgres/pgxl/pgxc/nodes/gtm/gtm.^C[postgres@gtm ~]$ pgxc_ctl -c /home/postgres/pgxc_ctl/pgxc_ctl.conf init all/bin/bashInstalling pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Installing pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Reading configuration using /home/postgres/pgxc_ctl/pgxc_ctl_bash --home /home/postgres/pgxc_ctl --configuration /home/postgres/pgxc_ctl/pgxc_ctl.conf/home/postgres/pgxc_ctl/pgxc_ctl.conf: line 189: $coordExtraConfig: ambiguous redirectFinished reading configuration. PGXC_CTL START Current directory: /home/postgres/pgxc_ctlInitialize GTM masterERROR: target directory (/home/postgres/pgxc/nodes/gtm) exists and not empty. Skip GTM initilializationDone.Start GTM masterserver startingInitialize all the coordinator masters.Initialize coordinator master coord1.ERROR: target coordinator master coord1 is running now. Skip initilialization.Initialize coordinator master coord2.The files belonging to this database system will be owned by user "postgres".This user must also own the server process.The database cluster will be initialized with locale "en_US.UTF-8".The default database encoding has accordingly been set to "UTF8".The default text search configuration will be set to "english".Data page checksums are disabled.fixing permissions on existing directory /home/postgres/pgxc/nodes/coord/coord2 ... okcreating subdirectories ... okselecting default max_connections ... 100selecting default shared_buffers ... 128MBselecting dynamic shared memory implementation ... posixcreating configuration files ... okrunning bootstrap script ... okperforming post-bootstrap initialization ... creating cluster information ... oksyncing data to disk ... okfreezing database template0 ... okfreezing database template1 ... okfreezing database postgres ... okWARNING: enabling "trust" authentication for local connectionsYou can change this by editing pg_hba.conf or using the option -A, or--auth-local and --auth-host, the next time you run initdb.Success.Done.Starting coordinator master.Starting coordinator master coord1ERROR: target coordinator master coord1 is already running now. Skip initialization.Starting coordinator master coord22019-05-30 21:09:25.562 EDT [2148] LOG: listening on IPv4 address "0.0.0.0", port 54322019-05-30 21:09:25.562 EDT [2148] LOG: listening on IPv6 address "::", port 54322019-05-30 21:09:25.563 EDT [2148] LOG: listening on Unix socket "/tmp/.s.PGSQL.5432"2019-05-30 21:09:25.601 EDT [2149] LOG: database system was shut down at 2019-05-30 21:09:22 EDT2019-05-30 21:09:25.605 EDT [2148] LOG: database system is ready to accept connections2019-05-30 21:09:25.612 EDT [2156] LOG: cluster monitor startedDone.Initialize all the datanode masters.Initialize the datanode master datanode1.Initialize the datanode master datanode2.The files belonging to this database system will be owned by user "postgres".This user must also own the server process.The database cluster will be initialized with locale "en_US.UTF-8".The default database encoding has accordingly been set to "UTF8".The default text search configuration will be set to "english".Data page checksums are disabled.fixing permissions on existing directory /home/postgres/pgxc/nodes/datanode/datanode1 ... okcreating subdirectories ... okselecting default max_connections ... 100selecting default shared_buffers ... 128MBselecting dynamic shared memory implementation ... posixcreating configuration files ... okrunning bootstrap script ... okperforming post-bootstrap initialization ... creating cluster information ... oksyncing data to disk ... okfreezing database template0 ... okfreezing database template1 ... okfreezing database postgres ... okWARNING: enabling "trust" authentication for local connectionsYou can change this by editing pg_hba.conf or using the option -A, or--auth-local and --auth-host, the next time you run initdb.Success.The files belonging to this database system will be owned by user "postgres".This user must also own the server process.The database cluster will be initialized with locale "en_US.UTF-8".The default database encoding has accordingly been set to "UTF8".The default text search configuration will be set to "english".Data page checksums are disabled.fixing permissions on existing directory /home/postgres/pgxc/nodes/datanode/datanode2 ... okcreating subdirectories ... okselecting default max_connections ... 100selecting default shared_buffers ... 128MBselecting dynamic shared memory implementation ... posixcreating configuration files ... okrunning bootstrap script ... okperforming post-bootstrap initialization ... creating cluster information ... oksyncing data to disk ... okfreezing database template0 ... okfreezing database template1 ... okfreezing database postgres ... okWARNING: enabling "trust" authentication for local connectionsYou can change this by editing pg_hba.conf or using the option -A, or--auth-local and --auth-host, the next time you run initdb.Success.Done.Starting all the datanode masters.Starting datanode master datanode1.WARNING: datanode master datanode1 is running now. Skipping.Starting datanode master datanode2.2019-05-30 21:09:33.352 EDT [2404] LOG: listening on IPv4 address "0.0.0.0", port 154322019-05-30 21:09:33.352 EDT [2404] LOG: listening on IPv6 address "::", port 154322019-05-30 21:09:33.355 EDT [2404] LOG: listening on Unix socket "/tmp/.s.PGSQL.15432"2019-05-30 21:09:33.392 EDT [2404] LOG: redirecting log output to logging collector process2019-05-30 21:09:33.392 EDT [2404] HINT: Future log output will appear in directory "pg_log".Done.psql: FATAL: no pg_hba.conf entry for host "192.168.20.132", user "postgres", database "postgres"psql: FATAL: no pg_hba.conf entry for host "192.168.20.132", user "postgres", database "postgres"Done.psql: FATAL: no pg_hba.conf entry for host "192.168.20.132", user "postgres", database "postgres"psql: FATAL: no pg_hba.conf entry for host "192.168.20.132", user "postgres", database "postgres"Done.[postgres@gtm ~]$ pgxc_ctl -c /home/postgres/pgxc_ctl/pgxc_ctl.conf stop all/bin/bashInstalling pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Installing pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Reading configuration using /home/postgres/pgxc_ctl/pgxc_ctl_bash --home /home/postgres/pgxc_ctl --configuration /home/postgres/pgxc_ctl/pgxc_ctl.conf/home/postgres/pgxc_ctl/pgxc_ctl.conf: line 189: $coordExtraConfig: ambiguous redirectFinished reading configuration. PGXC_CTL START Current directory: /home/postgres/pgxc_ctlStopping all the coordinator masters.Stopping coordinator master coord1.Stopping coordinator master coord2.pg_ctl: directory "/home/postgres/pgxc/nodes/coord/coord1" does not existDone.Stopping all the datanode masters.Stopping datanode master datanode1.Stopping datanode master datanode2.pg_ctl: PID file "/home/postgres/pgxc/nodes/datanode/datanode1/postmaster.pid" does not existIs server running?Done.Stop GTM masterwaiting for server to shut down.... doneserver stopped[postgres@gtm ~]$ pgxc_ctl/bin/bashInstalling pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Installing pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Reading configuration using /home/postgres/pgxc_ctl/pgxc_ctl_bash --home /home/postgres/pgxc_ctl --configuration /home/postgres/pgxc_ctl/pgxc_ctl.conf/home/postgres/pgxc_ctl/pgxc_ctl.conf: line 189: $coordExtraConfig: ambiguous redirectFinished reading configuration. PGXC_CTL START Current directory: /home/postgres/pgxc_ctlPGXC monitor allNot running: gtm masterRunning: coordinator master coord1Not running: coordinator master coord2Running: datanode master datanode1Not running: datanode master datanode2PGXC stop coordinator master coord1Stopping coordinator master coord1.pg_ctl: directory "/home/postgres/pgxc/nodes/coord/coord1" does not existDone.PGXC stop datanode master datanode1Stopping datanode master datanode1.pg_ctl: PID file "/home/postgres/pgxc/nodes/datanode/datanode1/postmaster.pid" does not existIs server running?Done.PGXC monitor allNot running: gtm masterRunning: coordinator master coord1Not running: coordinator master coord2Running: datanode master datanode1Not running: datanode master datanode2PGXC monitor allNot running: gtm masterNot running: coordinator master coord1Not running: coordinator master coord2Not running: datanode master datanode1Not running: datanode master datanode2PGXC exit[postgres@gtm ~]$ pgxc_ctl -c /home/postgres/pgxc_ctl/pgxc_ctl.conf init all/bin/bashInstalling pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Installing pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Reading configuration using /home/postgres/pgxc_ctl/pgxc_ctl_bash --home /home/postgres/pgxc_ctl --configuration /home/postgres/pgxc_ctl/pgxc_ctl.conf/home/postgres/pgxc_ctl/pgxc_ctl.conf: line 189: $coordExtraConfig: ambiguous redirectFinished reading configuration. PGXC_CTL START Current directory: /home/postgres/pgxc_ctlInitialize GTM masterERROR: target directory (/home/postgres/pgxc/nodes/gtm) exists and not empty. Skip GTM initilializationDone.Start GTM masterserver startingInitialize all the coordinator masters.Initialize coordinator master coord1.Initialize coordinator master coord2.The files belonging to this database system will be owned by user "postgres".This user must also own the server process.The database cluster will be initialized with locale "en_US.UTF-8".The default database encoding has accordingly been set to "UTF8".The default text search configuration will be set to "english".Data page checksums are disabled.fixing permissions on existing directory /home/postgres/pgxc/nodes/coord/coord1 ... okcreating subdirectories ... okselecting default max_connections ... 100selecting default shared_buffers ... 128MBselecting dynamic shared memory implementation ... posixcreating configuration files ... okrunning bootstrap script ... okperforming post-bootstrap initialization ... creating cluster information ... oksyncing data to disk ... okfreezing database template0 ... okfreezing database template1 ... okfreezing database postgres ... okWARNING: enabling "trust" authentication for local connectionsYou can change this by editing pg_hba.conf or using the option -A, or--auth-local and --auth-host, the next time you run initdb.Success.The files belonging to this database system will be owned by user "postgres".This user must also own the server process.The database cluster will be initialized with locale "en_US.UTF-8".The default database encoding has accordingly been set to "UTF8".The default text search configuration will be set to "english".Data page checksums are disabled.fixing permissions on existing directory /home/postgres/pgxc/nodes/coord/coord2 ... okcreating subdirectories ... okselecting default max_connections ... 100selecting default shared_buffers ... 128MBselecting dynamic shared memory implementation ... posixcreating configuration files ... okrunning bootstrap script ... okperforming post-bootstrap initialization ... creating cluster information ... oksyncing data to disk ... okfreezing database template0 ... okfreezing database template1 ... okfreezing database postgres ... okWARNING: enabling "trust" authentication for local connectionsYou can change this by editing pg_hba.conf or using the option -A, or--auth-local and --auth-host, the next time you run initdb.Success.Done.Starting coordinator master.Starting coordinator master coord1Starting coordinator master coord22019-05-30 21:13:03.998 EDT [25137] LOG: listening on IPv4 address "0.0.0.0", port 54322019-05-30 21:13:03.998 EDT [25137] LOG: listening on IPv6 address "::", port 54322019-05-30 21:13:04.000 EDT [25137] LOG: listening on Unix socket "/tmp/.s.PGSQL.5432"2019-05-30 21:13:04.038 EDT [25138] LOG: database system was shut down at 2019-05-30 21:13:00 EDT2019-05-30 21:13:04.042 EDT [25137] LOG: database system is ready to accept connections2019-05-30 21:13:04.049 EDT [25145] LOG: cluster monitor started2019-05-30 21:13:04.020 EDT [2730] LOG: listening on IPv4 address "0.0.0.0", port 54322019-05-30 21:13:04.020 EDT [2730] LOG: listening on IPv6 address "::", port 54322019-05-30 21:13:04.021 EDT [2730] LOG: listening on Unix socket "/tmp/.s.PGSQL.5432"2019-05-30 21:13:04.057 EDT [2731] LOG: database system was shut down at 2019-05-30 21:13:00 EDT2019-05-30 21:13:04.061 EDT [2730] LOG: database system is ready to accept connections2019-05-30 21:13:04.062 EDT [2738] LOG: cluster monitor startedDone.Initialize all the datanode masters.Initialize the datanode master datanode1.Initialize the datanode master datanode2.The files belonging to this database system will be owned by user "postgres".This user must also own the server process.The database cluster will be initialized with locale "en_US.UTF-8".The default database encoding has accordingly been set to "UTF8".The default text search configuration will be set to "english".Data page checksums are disabled.fixing permissions on existing directory /home/postgres/pgxc/nodes/datanode/datanode1 ... okcreating subdirectories ... okselecting default max_connections ... 100selecting default shared_buffers ... 128MBselecting dynamic shared memory implementation ... posixcreating configuration files ... okrunning bootstrap script ... okperforming post-bootstrap initialization ... creating cluster information ... oksyncing data to disk ... okfreezing database template0 ... okfreezing database template1 ... okfreezing database postgres ... okWARNING: enabling "trust" authentication for local connectionsYou can change this by editing pg_hba.conf or using the option -A, or--auth-local and --auth-host, the next time you run initdb.Success.The files belonging to this database system will be owned by user "postgres".This user must also own the server process.The database cluster will be initialized with locale "en_US.UTF-8".The default database encoding has accordingly been set to "UTF8".The default text search configuration will be set to "english".Data page checksums are disabled.fixing permissions on existing directory /home/postgres/pgxc/nodes/datanode/datanode2 ... okcreating subdirectories ... okselecting default max_connections ... 100selecting default shared_buffers ... 128MBselecting dynamic shared memory implementation ... posixcreating configuration files ... okrunning bootstrap script ... okperforming post-bootstrap initialization ... creating cluster information ... oksyncing data to disk ... okfreezing database template0 ... okfreezing database template1 ... okfreezing database postgres ... okWARNING: enabling "trust" authentication for local connectionsYou can change this by editing pg_hba.conf or using the option -A, or--auth-local and --auth-host, the next time you run initdb.Success.Done.Starting all the datanode masters.Starting datanode master datanode1.Starting datanode master datanode2.2019-05-30 21:13:12.077 EDT [25392] LOG: listening on IPv4 address "0.0.0.0", port 154322019-05-30 21:13:12.077 EDT [25392] LOG: listening on IPv6 address "::", port 154322019-05-30 21:13:12.079 EDT [25392] LOG: listening on Unix socket "/tmp/.s.PGSQL.15432"2019-05-30 21:13:12.114 EDT [25392] LOG: redirecting log output to logging collector process2019-05-30 21:13:12.114 EDT [25392] HINT: Future log output will appear in directory "pg_log".2019-05-30 21:13:12.079 EDT [2985] LOG: listening on IPv4 address "0.0.0.0", port 154322019-05-30 21:13:12.079 EDT [2985] LOG: listening on IPv6 address "::", port 154322019-05-30 21:13:12.081 EDT [2985] LOG: listening on Unix socket "/tmp/.s.PGSQL.15432"2019-05-30 21:13:12.117 EDT [2985] LOG: redirecting log output to logging collector process2019-05-30 21:13:12.117 EDT [2985] HINT: Future log output will appear in directory "pg_log".Done.psql: FATAL: no pg_hba.conf entry for host "192.168.20.132", user "postgres", database "postgres"psql: FATAL: no pg_hba.conf entry for host "192.168.20.132", user "postgres", database "postgres"Done.psql: FATAL: no pg_hba.conf entry for host "192.168.20.132", user "postgres", database "postgres"psql: FATAL: no pg_hba.conf entry for host "192.168.20.132", user "postgres", database "postgres"Done. 启动 pgxc_ctl -c /home/postgres/pgxc_ctl/pgxc_ctl.conf start all 关闭 pgxc_ctl -c /home/postgres/pgxc_ctl/pgxc_ctl.conf stop all 查看集群状态 [postgres@gtm ~]$ pgxc_ctl monitor all/bin/bashInstalling pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Installing pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Reading configuration using /home/postgres/pgxc_ctl/pgxc_ctl_bash --home /home/postgres/pgxc_ctl --configuration /home/postgres/pgxc_ctl/pgxc_ctl.conf/home/postgres/pgxc_ctl/pgxc_ctl.conf: line 189: $coordExtraConfig: ambiguous redirectFinished reading configuration. PGXC_CTL START Current directory: /home/postgres/pgxc_ctlRunning: gtm masterRunning: coordinator master coord1Running: coordinator master coord2Running: datanode master datanode1Running: datanode master datanode2 配置集群信息 分别在数据节点、协调器节点上分别执行以下命令: 注:本节点只执行修改操作即可(alert node),其他节点执行创建命令(create node)。因为本节点已经包含本节点的信息。 create node coord1 with (type=coordinator,host=xl1, port=5432);create node coord2 with (type=coordinator,host=xl2, port=5432);alter node coord1 with (type=coordinator,host=xl1, port=5432);alter node coord2 with (type=coordinator,host=xl2, port=5432);create node datanode1 with (type=datanode, host=xl1,port=15432,primary=true,PREFERRED);create node datanode2 with (type=datanode, host=xl2,port=15432);alter node datanode1 with (type=datanode, host=xl1,port=15432,primary=true,PREFERRED);alter node datanode2 with (type=datanode, host=xl2,port=15432);select pgxc_pool_reload(); 分别登陆数据节点、协调器节点验证 postgres= select from pgxc_node;node_name | node_type | node_port | node_host | nodeis_primary | nodeis_preferred | node_id-----------+-----------+-----------+-----------+----------------+------------------+-------------coord1 | C | 5432 | xl1 | f | f | 1885696643coord2 | C | 5432 | xl2 | f | f | -1197102633datanode2 | D | 15432 | xl2 | f | f | -905831925datanode1 | D | 15432 | xl1 | t | f | 888802358(4 rows) 测试 插入数据 在数据节点1,执行相关操作。 通过协调器端口登录PG [postgres@xl1 ~]$ psql -p 5432psql (PGXL 10r1.1, based on PG 10.6 (Postgres-XL 10r1.1))Type "help" for help.postgres= create database lei;CREATE DATABASEpostgres= \c lei;You are now connected to database "lei" as user "postgres".lei= create table test1(id int,name text);CREATE TABLElei= insert into test1(id,name) select generate_series(1,8),'测试';INSERT 0 8lei= select from test1;id | name----+------1 | 测试2 | 测试5 | 测试6 | 测试8 | 测试3 | 测试4 | 测试7 | 测试(8 rows) 注:默认创建的表为分布式表,也就是每个数据节点值存储表的部分数据。关于表类型具体说明,下面有说明。 通过15432端口登录数据节点,查看数据 有5条数据 [postgres@xl1 ~]$ psql -p 15432psql (PGXL 10r1.1, based on PG 10.6 (Postgres-XL 10r1.1))Type "help" for help.postgres= \c lei;You are now connected to database "lei" as user "postgres".lei= select from test1;id | name----+------1 | 测试2 | 测试5 | 测试6 | 测试8 | 测试(5 rows) 登录到节点2,查看数据 有3条数据 [postgres@xl2 ~]$ psql -p15432psql (PGXL 10r1.1, based on PG 10.6 (Postgres-XL 10r1.1))Type "help" for help.postgres= \c lei;You are now connected to database "lei" as user "postgres".lei= select from test1;id | name----+------3 | 测试4 | 测试7 | 测试(3 rows) 两个节点的数据加起来整个8条,没有问题。 至此Postgre-XL集群搭建完成。 创建数据库、表时可能会出现以下错误: ERROR: Failed to get pooled connections 是因为pg_hba.conf配置不对,所有节点加上host all all 192.168.20.0/0 trust并重启集群即可。 ERROR: No Datanode defined in cluster 首先确认是否创建了数据节点,也就是create node相关的命令。如果创建了则执行select pgxc_pool_reload();使其生效即可。 集群管理与应用 表类型说明 REPLICATION表:各个datanode节点中,表的数据完全相同,也就是说,插入数据时,会分别在每个datanode节点插入相同数据。读数据时,只需要读任意一个datanode节点上的数据。 建表语法: CREATE TABLE repltab (col1 int, col2 int) DISTRIBUTE BY REPLICATION; DISTRIBUTE :会将插入的数据,按照拆分规则,分配到不同的datanode节点中存储,也就是sharding技术。每个datanode节点只保存了部分数据,通过coordinate节点可以查询完整的数据视图。 CREATE TABLE disttab(col1 int, col2 int, col3 text) DISTRIBUTE BY HASH(col1); 模拟数据插入 任意登录一个coordinate节点进行建表操作 [postgres@gtm ~]$ psql -h xl1 -p 5432 -U postgrespostgres= INSERT INTO disttab SELECT generate_series(1,100), generate_series(101, 200), 'foo';INSERT 0 100postgres= INSERT INTO repltab SELECT generate_series(1,100), generate_series(101, 200);INSERT 0 100 查看数据分布结果: DISTRIBUTE表分布结果 postgres= SELECT xc_node_id, count() FROM disttab GROUP BY xc_node_id;xc_node_id | count ------------+-------1148549230 | 42-927910690 | 58(2 rows) REPLICATION表分布结果 postgres= SELECT count() FROM repltab;count -------100(1 row) 查看另一个datanode2中repltab表结果 [postgres@datanode2 pgxl9.5]$ psql -p 15432psql (PGXL 10r1.1, based on PG 10.6 (Postgres-XL 10r1.1))Type "help" for help.postgres= SELECT count() FROM repltab;count -------100(1 row) 结论:REPLICATION表中,datanode1,datanode2中表是全部数据,一模一样。而DISTRIBUTE表,数据散落近乎平均分配到了datanode1,datanode2节点中。 新增数据节点与数据重分布 在线新增节点、并重新分布数据。 新增datanode节点 在gtm集群管理节点上执行pgxc_ctl命令 [postgres@gtm ~]$ pgxc_ctl/bin/bashInstalling pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Installing pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Reading configuration using /home/postgres/pgxc_ctl/pgxc_ctl_bash --home /home/postgres/pgxc_ctl --configuration /home/postgres/pgxc_ctl/pgxc_ctl.confFinished reading configuration. PGXC_CTL START Current directory: /home/postgres/pgxc_ctlPGXC 在服务器xl3上,新增一个master角色的datanode节点,名称是datanode3 端口号暂定5430,pool master暂定6669 ,指定好数据目录位置,从两个节点升级到3个节点,之后要写3个none none应该是datanodeSpecificExtraConfig或者datanodeSpecificExtraPgHba配置PGXC add datanode master datanode3 xl3 15432 6671 /home/postgres/pgxc/nodes/datanode/datanode3 none none none 等待新增完成后,查询集群节点状态: postgres= select from pgxc_node;node_name | node_type | node_port | node_host | nodeis_primary | nodeis_preferred | node_id-----------+-----------+-----------+-----------+----------------+------------------+-------------datanode1 | D | 15432 | xl1 | t | f | 888802358datanode2 | D | 15432 | xl2 | f | f | -905831925datanode3 | D | 15432 | xl3 | f | f | -705831925coord1 | C | 5432 | xl1 | f | f | 1885696643coord2 | C | 5432 | xl2 | f | f | -1197102633(4 rows) 节点新增完毕 数据重新分布 由于新增节点后无法自动完成数据重新分布,需要手动操作。 DISTRIBUTE表分布在了node1,node2节点上,如下: postgres= SELECT xc_node_id, count() FROM disttab GROUP BY xc_node_id;xc_node_id | count ------------+-------1148549230 | 42-927910690 | 58(2 rows) 新增一个节点后,将sharding表数据重新分配到三个节点上,将repl表复制到新节点 重分布sharding表postgres= ALTER TABLE disttab ADD NODE (datanode3);ALTER TABLE 复制数据到新节点postgres= ALTER TABLE repltab ADD NODE (datanode3);ALTER TABLE 查看新的数据分布: postgres= SELECT xc_node_id, count() FROM disttab GROUP BY xc_node_id;xc_node_id | count ------------+--------700122826 | 36-927910690 | 321148549230 | 32(3 rows) 登录datanode3(新增的时候,放在了xl3服务器上,端口15432)节点查看数据: [postgres@gtm ~]$ psql -h xl3 -p 15432 -U postgrespsql (PGXL 10r1.1, based on PG 10.6 (Postgres-XL 10r1.1))Type "help" for help.postgres= select count() from repltab;count -------100(1 row) 很明显,通过 ALTER TABLE tt ADD NODE (dn)命令,可以将DISTRIBUTE表数据重新分布到新节点,重分布过程中会中断所有事务。可以将REPLICATION表数据复制到新节点。 从datanode节点中回收数据 postgres= ALTER TABLE disttab DELETE NODE (datanode3);ALTER TABLEpostgres= ALTER TABLE repltab DELETE NODE (datanode3);ALTER TABLE 删除数据节点 Postgresql-XL并没有检查将被删除的datanode节点是否有replicated/distributed表的数据,为了数据安全,在删除之前需要检查下被删除节点上的数据,有数据的话,要回收掉分配到其他节点,然后才能安全删除。删除数据节点分为四步骤: 1.查询要删除节点dn3的oid postgres= SELECT oid, FROM pgxc_node;oid | node_name | node_type | node_port | node_host | nodeis_primary | nodeis_preferred | node_id -------+-----------+-----------+-----------+-----------+----------------+------------------+-------------11819 | coord1 | C | 5432 | datanode1 | f | f | 188569664316384 | coord2 | C | 5432 | datanode2 | f | f | -119710263316385 | node1 | D | 5433 | datanode1 | f | t | 114854923016386 | node2 | D | 5433 | datanode2 | f | f | -92791069016397 | dn3 | D | 5430 | datanode1 | f | f | -700122826(5 rows) 2.查询dn3对应的oid中是否有数据 testdb= SELECT FROM pgxc_class WHERE nodeoids::integer[] @> ARRAY[16397];pcrelid | pclocatortype | pcattnum | pchashalgorithm | pchashbuckets | nodeoids ---------+---------------+----------+-----------------+---------------+-------------------16388 | H | 1 | 1 | 4096 | 16397 16385 1638616394 | R | 0 | 0 | 0 | 16397 16385 16386(2 rows) 3.有数据的先回收数据 postgres= ALTER TABLE disttab DELETE NODE (dn3);ALTER TABLEpostgres= ALTER TABLE repltab DELETE NODE (dn3);ALTER TABLEpostgres= SELECT FROM pgxc_class WHERE nodeoids::integer[] @> ARRAY[16397];pcrelid | pclocatortype | pcattnum | pchashalgorithm | pchashbuckets | nodeoids ---------+---------------+----------+-----------------+---------------+----------(0 rows) 4.安全删除dn3 PGXC$ remove datanode master dn3 clean 故障节点FAILOVER 1.查看当前集群状态 [postgres@gtm ~]$ psql -h xl1 -p 5432psql (PGXL 10r1.1, based on PG 10.6 (Postgres-XL 10r1.1))Type "help" for help.postgres= SELECT oid, FROM pgxc_node;oid | node_name | node_type | node_port | node_host | nodeis_primary | nodeis_preferred | node_id-------+-----------+-----------+-----------+-----------+----------------+------------------+-------------11739 | coord1 | C | 5432 | xl1 | f | f | 188569664316384 | coord2 | C | 5432 | xl2 | f | f | -119710263316387 | datanode2 | D | 15432 | xl2 | f | f | -90583192516388 | datanode1 | D | 15432 | xl1 | t | t | 888802358(4 rows) 2.模拟datanode1节点故障 直接关闭即可 PGXC stop -m immediate datanode master datanode1Stopping datanode master datanode1.Done. 3.测试查询 只要查询涉及到datanode1上的数据,那么该查询就会报错 postgres= SELECT xc_node_id, count() FROM disttab GROUP BY xc_node_id;WARNING: failed to receive file descriptors for connectionsERROR: Failed to get pooled connectionsHINT: This may happen because one or more nodes are currently unreachable, either because of node or network failure.Its also possible that the target node may have hit the connection limit or the pooler is configured with low connections.Please check if all nodes are running fine and also review max_connections and max_pool_size configuration parameterspostgres= SELECT xc_node_id, FROM disttab WHERE col1 = 3;xc_node_id | col1 | col2 | col3------------+------+------+-------905831925 | 3 | 103 | foo(1 row) 测试发现,查询范围如果涉及到故障的node1节点,会报错,而查询的数据范围不在node1上的话,仍然可以查询。 4.手动切换 要想切换,必须要提前配置slave节点。 PGXC$ failover datanode node1 切换完成后,查询集群 postgres= SELECT oid, FROM pgxc_node;oid | node_name | node_type | node_port | node_host | nodeis_primary | nodeis_preferred | node_id -------+-----------+-----------+-----------+-----------+----------------+------------------+-------------11819 | coord1 | C | 5432 | datanode1 | f | f | 188569664316384 | coord2 | C | 5432 | datanode2 | f | f | -119710263316386 | node2 | D | 15432 | datanode2 | f | f | -92791069016385 | node1 | D | 15433 | datanode2 | f | t | 1148549230(4 rows) 发现datanode1节点的ip和端口都已经替换为配置的slave了。 本篇文章为转载内容。原文链接:https://blog.csdn.net/qianglei6077/article/details/94379331。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-30 11:09:03
94
转载
转载文章
...制器 Pod控制器是管理pod的中间层,使用Pod控制器之后,只需要告诉Pod控制器,想要多少个什么样的Pod就可以了,它会创建出满足条件的Pod并确保每一个Pod资源处于用户期望的目标状态。如果Pod资源在运行中出现故障,它会基于指定策略重新编排Pod。 控制器的种类 在kubernetes有很多种类型的pod控制器,每种都有自己的使用场景 ReplicationController:比较原始的pod控制器,已经被废弃,由ReplicaSet替代 ReplicaSet:保证副本数量一直维持在期望值,并支持pod数量扩缩容,镜像版本升级 Deployment:通过控制ReplicaSet来控制Pod,并支持滚动升级、回退版本 Horizontal Pod Autoscaler:可以根据集群负载自动水平调整Pod的数量,实现削峰填谷 DaemonSet:在集群中的指定Node上运行且仅运行一个副本,一般用于守护进程类的任务 Job:它创建出来的pod只要完成任务就立即退出,不需要重启或重建,用于执行一次性任务 Cronjob:它创建的Pod负责周期性任务控制,不需要持续后台运行,可以理解为是定时任务; StatefulSet:管理有状态应用 1、ReplicaSet 简称为RS,主要的作用是保证一定数量的pod能够正常运行,它会持续监听这些pod的运行状态,提供了以下功能 自愈能力: 重启 :当某节点中的pod运行过程中出现问题导致无法启动时,k8s会不断重启,直到可用状态为止 故障转移:当正在运行中pod所在的节点发生故障或者宕机时,k8s会选择集群中另一个可用节点,将pod运行到可用节点上; pod数量的扩缩容:pod副本的扩容和缩容 镜像升降级:支持镜像版本的升级和降级; 配置模板 rs的所有配置如下 apiVersion: apps/v1 版本号kind: ReplicaSet 类型 metadata: 元数据name: rs名称 namespace: 所属命名空间 labels: 标签controller: rsspec: 详情描述replicas: 3 副本数量selector: 选择器,通过它指定该控制器管理哪些podmatchLabels: Labels匹配规则app: nginx-podmatchExpressions: Expressions匹配规则,key就是label的key,values的值是个数组,意思是标签值必须是此数组中的其中一个才能匹配上;- {key: app, operator: In, values: [nginx-pod]}template: 模板,当副本数量不足时,会根据下面的模板创建pod副本metadata:labels: 这里的标签必须和上面的matchLabels一致,将他们关联起来app: nginx-podspec:containers:- name: nginximage: nginx:1.17.1ports:- containerPort: 80 1、创建一个ReplicaSet 新建一个文件 rs.yaml,内容如下 apiVersion: apps/v1kind: ReplicaSet pod控制器metadata: 元数据name: pc-replicaset 名字namespace: dev 名称空间spec:replicas: 3 副本数selector: 选择器,通过它指定该控制器管理哪些podmatchLabels: Labels匹配规则app: nginx-podtemplate: 模板,当副本数量不足时,会根据下面的模板创建pod副本metadata:labels:app: nginx-podspec:containers:- name: nginximage: nginx:1.17.1 运行 kubectl create -f rs.yaml 获取replicaset kubectl get replicaset -n dev 2、扩缩容 刚刚我们已经用第一种方式创建了一个replicaSet,现在就基于原来的rs进行扩容,原来的副本数量是3个,现在我们将其扩到6个,做法也很简单,运行编辑命令 第一种方式: scale 使用scale命令实现扩缩容,后面--replicas=n直接指定目标数量即可kubectl scale rs pc-replicaset --replicas=2 -n dev 第二种方式:使用edit命令编辑rs 这种方式相当于使用vi编辑修改yaml配置的内容,进去后将replicas的值改为1,保存后自动生效kubectl edit rs pc-replicaset -n dev 3、镜像版本变更 第一种方式:scale kubectl scale rs pc-replicaset nginx=nginx:1.71.2 -n dev 第二种方式:edit 这种方式相当于使用vi编辑修改yaml配置的内容,进去后将nginx的值改为nginx:1.71.2,保存后自动生效kubectl edit rs pc-replicaset -n dev 4、删除rs 第一种方式kubectl delete -f rs.yaml 第二种方式 ,如果想要只删rs,但不删除pod,可在删除时加上--cascade=false参数(不推荐)kubectl delete rs pc-replicaset -n dev --cascade=false 2、Deployment k8s v1.2版本后加入Deployment;这种控制器不直接控制pod,而是通过管理ReplicaSet来间接管理pod;也就是Deployment管理ReplicaSet,ReplicaSet管理pod;所以 Deployment 比 ReplicaSet 功能更加强大 当我们创建了一个Deployment之后,也会自动创建一个ReplicaSet 功能 支持ReplicaSet 的所有功能 支持发布的停止、继续 支持版本的滚动更新和回退功能 配置模板 新建文件 apiVersion: apps/v1 版本号kind: Deployment 类型 metadata: 元数据name: rs名称 namespace: 所属命名空间 labels: 标签controller: deployspec: 详情描述replicas: 3 副本数量revisionHistoryLimit: 3 保留历史版本的数量,默认10,内部通过保留rs来实现paused: false 暂停部署,默认是falseprogressDeadlineSeconds: 600 部署超时时间(s),默认是600strategy: 策略type: RollingUpdate 滚动更新策略rollingUpdate: 滚动更新maxSurge: 30% 最大额外可以存在的副本数,可以为百分比,也可以为整数maxUnavailable: 30% 最大不可用状态的 Pod 的最大值,可以为百分比,也可以为整数selector: 选择器,通过它指定该控制器管理哪些podmatchLabels: Labels匹配规则app: nginx-podmatchExpressions: Expressions匹配规则- {key: app, operator: In, values: [nginx-pod]}template: 模板,当副本数量不足时,会根据下面的模板创建pod副本metadata:labels:app: nginx-podspec:containers:- name: nginximage: nginx:1.17.1ports:- containerPort: 80 1、创建和删除Deployment 创建pc-deployment.yaml,内容如下: apiVersion: apps/v1kind: Deployment metadata:name: pc-deploymentnamespace: devspec: replicas: 3selector:matchLabels:app: nginx-podtemplate:metadata:labels:app: nginx-podspec:containers:- name: nginximage: nginx:1.17.1 创建和查看 创建deployment,--record=true 表示记录整个deployment更新过程[root@k8s-master01 ~] kubectl create -f pc-deployment.yaml --record=truedeployment.apps/pc-deployment created 查看deployment READY 可用的/总数 UP-TO-DATE 最新版本的pod的数量 AVAILABLE 当前可用的pod的数量[root@k8s-master01 ~] kubectl get deploy pc-deployment -n devNAME READY UP-TO-DATE AVAILABLE AGEpc-deployment 3/3 3 3 15s 查看rs 发现rs的名称是在原来deployment的名字后面添加了一个10位数的随机串[root@k8s-master01 ~] kubectl get rs -n devNAME DESIRED CURRENT READY AGEpc-deployment-6696798b78 3 3 3 23s 查看pod[root@k8s-master01 ~] kubectl get pods -n devNAME READY STATUS RESTARTS AGEpc-deployment-6696798b78-d2c8n 1/1 Running 0 107spc-deployment-6696798b78-smpvp 1/1 Running 0 107spc-deployment-6696798b78-wvjd8 1/1 Running 0 107s 删除deployment 删除deployment,其下的rs和pod也将被删除kubectl delete -f pc-deployment.yaml 2、扩缩容 deployment的扩缩容和 ReplicaSet 的扩缩容一样,只需要将rs或者replicaSet改为deployment即可,具体请参考上面的 ReplicaSet 扩缩容 3、镜像更新 刚刚在创建时加上了--record=true参数,所以在一旦进行了镜像更新,就会新建出一个pod出来,将老的old-pod上的容器全删除,然后在新的new-pod上在新建对应数量的容器,此时old-pod是不会删除的,因为这个old-pod是要进行回退的; 镜像更新策略有2种 滚动更新(RollingUpdate):(默认值),杀死一部分,就启动一部分,在更新过程中,存在两个版本Pod 重建更新(Recreate):在创建出新的Pod之前会先杀掉所有已存在的Pod strategy:指定新的Pod替换旧的Pod的策略, 支持两个属性:type:指定策略类型,支持两种策略Recreate:在创建出新的Pod之前会先杀掉所有已存在的PodRollingUpdate:滚动更新,就是杀死一部分,就启动一部分,在更新过程中,存在两个版本PodrollingUpdate:当type为RollingUpdate时生效,用于为RollingUpdate设置参数,支持两个属性:maxUnavailable:用来指定在升级过程中不可用Pod的最大数量,默认为25%。maxSurge: 用来指定在升级过程中可以超过期望的Pod的最大数量,默认为25%。 重建更新 编辑pc-deployment.yaml,在spec节点下添加更新策略 spec:strategy: 策略type: Recreate 重建更新 创建deploy进行验证 变更镜像[root@k8s-master01 ~] kubectl set image deployment pc-deployment nginx=nginx:1.17.2 -n devdeployment.apps/pc-deployment image updated 观察升级过程[root@k8s-master01 ~] kubectl get pods -n dev -wNAME READY STATUS RESTARTS AGEpc-deployment-5d89bdfbf9-65qcw 1/1 Running 0 31spc-deployment-5d89bdfbf9-w5nzv 1/1 Running 0 31spc-deployment-5d89bdfbf9-xpt7w 1/1 Running 0 31spc-deployment-5d89bdfbf9-xpt7w 1/1 Terminating 0 41spc-deployment-5d89bdfbf9-65qcw 1/1 Terminating 0 41spc-deployment-5d89bdfbf9-w5nzv 1/1 Terminating 0 41spc-deployment-675d469f8b-grn8z 0/1 Pending 0 0spc-deployment-675d469f8b-hbl4v 0/1 Pending 0 0spc-deployment-675d469f8b-67nz2 0/1 Pending 0 0spc-deployment-675d469f8b-grn8z 0/1 ContainerCreating 0 0spc-deployment-675d469f8b-hbl4v 0/1 ContainerCreating 0 0spc-deployment-675d469f8b-67nz2 0/1 ContainerCreating 0 0spc-deployment-675d469f8b-grn8z 1/1 Running 0 1spc-deployment-675d469f8b-67nz2 1/1 Running 0 1spc-deployment-675d469f8b-hbl4v 1/1 Running 0 2s 滚动更新 编辑pc-deployment.yaml,在spec节点下添加更新策略 spec:strategy: 策略type: RollingUpdate 滚动更新策略rollingUpdate:maxSurge: 25% maxUnavailable: 25% 创建deploy进行验证 变更镜像[root@k8s-master01 ~] kubectl set image deployment pc-deployment nginx=nginx:1.17.3 -n dev deployment.apps/pc-deployment image updated 观察升级过程[root@k8s-master01 ~] kubectl get pods -n dev -wNAME READY STATUS RESTARTS AGEpc-deployment-c848d767-8rbzt 1/1 Running 0 31mpc-deployment-c848d767-h4p68 1/1 Running 0 31mpc-deployment-c848d767-hlmz4 1/1 Running 0 31mpc-deployment-c848d767-rrqcn 1/1 Running 0 31mpc-deployment-966bf7f44-226rx 0/1 Pending 0 0spc-deployment-966bf7f44-226rx 0/1 ContainerCreating 0 0spc-deployment-966bf7f44-226rx 1/1 Running 0 1spc-deployment-c848d767-h4p68 0/1 Terminating 0 34mpc-deployment-966bf7f44-cnd44 0/1 Pending 0 0spc-deployment-966bf7f44-cnd44 0/1 ContainerCreating 0 0spc-deployment-966bf7f44-cnd44 1/1 Running 0 2spc-deployment-c848d767-hlmz4 0/1 Terminating 0 34mpc-deployment-966bf7f44-px48p 0/1 Pending 0 0spc-deployment-966bf7f44-px48p 0/1 ContainerCreating 0 0spc-deployment-966bf7f44-px48p 1/1 Running 0 0spc-deployment-c848d767-8rbzt 0/1 Terminating 0 34mpc-deployment-966bf7f44-dkmqp 0/1 Pending 0 0spc-deployment-966bf7f44-dkmqp 0/1 ContainerCreating 0 0spc-deployment-966bf7f44-dkmqp 1/1 Running 0 2spc-deployment-c848d767-rrqcn 0/1 Terminating 0 34m 至此,新版本的pod创建完毕,就版本的pod销毁完毕 中间过程是滚动进行的,也就是边销毁边创建 4、版本回退 更新 刚刚在创建时加上了--record=true参数,所以在一旦进行了镜像更新,就会新建出一个pod出来,将老的old-pod上的容器全删除,然后在新的new-pod上在新建对应数量的容器,此时old-pod是不会删除的,因为这个old-pod是要进行回退的; 回退 在回退时会将new-pod上的容器全部删除,在将old-pod上恢复原来的容器; 回退命令 kubectl rollout: 版本升级相关功能,支持下面的选项: status 显示当前升级状态 history 显示 升级历史记录 pause 暂停版本升级过程 resume 继续已经暂停的版本升级过程 restart 重启版本升级过程 undo 回滚到上一级版本(可以使用–to-revision回滚到指定版本) 用法 查看当前升级版本的状态kubectl rollout status deploy pc-deployment -n dev 查看升级历史记录kubectl rollout history deploy pc-deployment -n dev 版本回滚 这里直接使用--to-revision=1回滚到了1版本, 如果省略这个选项,就是回退到上个版本kubectl rollout undo deployment pc-deployment --to-revision=1 -n dev 金丝雀发布 Deployment控制器支持控制更新过程中的控制,如“暂停(pause)”或“继续(resume)”更新操作。 比如有一批新的Pod资源创建完成后立即暂停更新过程,此时,仅存在一部分新版本的应用,主体部分还是旧的版本。然后,再筛选一小部分的用户请求路由到新版本的Pod应用,继续观察能否稳定地按期望的方式运行。确定没问题之后再继续完成余下的Pod资源滚动更新,否则立即回滚更新操作。这就是所谓的金丝雀发布。 金丝雀发布不是自动完成的,需要人为手动去操作,才能达到金丝雀发布的标准; 更新deployment的版本,并配置暂停deploymentkubectl set image deploy pc-deployment nginx=nginx:1.17.4 -n dev && kubectl rollout pause deployment pc-deployment -n dev 观察更新状态kubectl rollout status deploy pc-deployment -n dev 监控更新的过程kubectl get rs -n dev -o wide 确保更新的pod没问题了,继续更新kubectl rollout resume deploy pc-deployment -n dev 如果有问题,就回退到上个版本回退到上个版本kubectl rollout undo deployment pc-deployment -n dev Horizontal Pod Autoscaler 简称HPA,使用deployment可以手动调整pod的数量来实现扩容和缩容;但是这显然不符合k8s的自动化的定位,k8s期望可以通过检测pod的使用情况,实现pod数量自动调整,于是就有了HPA控制器; HPA可以获取每个Pod利用率,然后和HPA中定义的指标进行对比,同时计算出需要伸缩的具体值,最后实现Pod的数量的调整。比如说我指定了一个规则:当我的cpu利用率达到90%或者内存使用率到达80%的时候,就需要进行调整pod的副本数量,每次添加n个pod副本; 其实HPA与之前的Deployment一样,也属于一种Kubernetes资源对象,它通过追踪分析ReplicaSet控制器的所有目标Pod的负载变化情况,来确定是否需要针对性地调整目标Pod的副本数,也就是HPA管理Deployment,Deployment管理ReplicaSet,ReplicaSet管理pod,这是HPA的实现原理。 1、安装metrics-server metrics-server可以用来收集集群中的资源使用情况 安装git[root@k8s-master01 ~] yum install git -y 获取metrics-server, 注意使用的版本[root@k8s-master01 ~] git clone -b v0.3.6 https://github.com/kubernetes-incubator/metrics-server 修改deployment, 注意修改的是镜像和初始化参数[root@k8s-master01 ~] cd /root/metrics-server/deploy/1.8+/[root@k8s-master01 1.8+] vim metrics-server-deployment.yaml按图中添加下面选项hostNetwork: trueimage: registry.cn-hangzhou.aliyuncs.com/google_containers/metrics-server-amd64:v0.3.6args:- --kubelet-insecure-tls- --kubelet-preferred-address-types=InternalIP,Hostname,InternalDNS,ExternalDNS,ExternalIP 2、安装metrics-server [root@k8s-master01 1.8+] kubectl apply -f ./ 3、查看pod运行情况 [root@k8s-master01 1.8+] kubectl get pod -n kube-systemmetrics-server-6b976979db-2xwbj 1/1 Running 0 90s 4、使用kubectl top node 查看资源使用情况 [root@k8s-master01 1.8+] kubectl top nodeNAME CPU(cores) CPU% MEMORY(bytes) MEMORY%k8s-master01 289m 14% 1582Mi 54% k8s-node01 81m 4% 1195Mi 40% k8s-node02 72m 3% 1211Mi 41% [root@k8s-master01 1.8+] kubectl top pod -n kube-systemNAME CPU(cores) MEMORY(bytes)coredns-6955765f44-7ptsb 3m 9Micoredns-6955765f44-vcwr5 3m 8Mietcd-master 14m 145Mi... 至此,metrics-server安装完成 5、 准备deployment和servie 创建pc-hpa-pod.yaml文件,内容如下: apiVersion: apps/v1kind: Deploymentmetadata:name: nginxnamespace: devspec:strategy: 策略type: RollingUpdate 滚动更新策略replicas: 1selector:matchLabels:app: nginx-podtemplate:metadata:labels:app: nginx-podspec:containers:- name: nginximage: nginx:1.17.1resources: 资源配额limits: 限制资源(上限)cpu: "1" CPU限制,单位是core数requests: 请求资源(下限)cpu: "100m" CPU限制,单位是core数 创建deployment [root@k8s-master01 1.8+] kubectl run nginx --image=nginx:1.17.1 --requests=cpu=100m -n dev 6、创建service [root@k8s-master01 1.8+] kubectl expose deployment nginx --type=NodePort --port=80 -n dev 7、查看 [root@k8s-master01 1.8+] kubectl get deployment,pod,svc -n devNAME READY UP-TO-DATE AVAILABLE AGEdeployment.apps/nginx 1/1 1 1 47sNAME READY STATUS RESTARTS AGEpod/nginx-7df9756ccc-bh8dr 1/1 Running 0 47sNAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGEservice/nginx NodePort 10.101.18.29 <none> 80:31830/TCP 35s 8、 部署HPA 创建pc-hpa.yaml文件,内容如下: apiVersion: autoscaling/v1kind: HorizontalPodAutoscalermetadata:name: pc-hpanamespace: devspec:minReplicas: 1 最小pod数量maxReplicas: 10 最大pod数量 ,pod数量会在1~10之间自动伸缩targetCPUUtilizationPercentage: 3 CPU使用率指标,如果cpu使用率达到3%就会进行扩容;为了测试方便,将这个数值调小一些scaleTargetRef: 指定要控制的nginx信息apiVersion: /v1kind: Deploymentname: nginx 创建hpa [root@k8s-master01 1.8+] kubectl create -f pc-hpa.yamlhorizontalpodautoscaler.autoscaling/pc-hpa created 查看hpa [root@k8s-master01 1.8+] kubectl get hpa -n devNAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGEpc-hpa Deployment/nginx 0%/3% 1 10 1 62s 9、 测试 使用压测工具对service地址192.168.5.4:31830进行压测,然后通过控制台查看hpa和pod的变化 hpa变化 [root@k8s-master01 ~] kubectl get hpa -n dev -wNAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGEpc-hpa Deployment/nginx 0%/3% 1 10 1 4m11spc-hpa Deployment/nginx 0%/3% 1 10 1 5m19spc-hpa Deployment/nginx 22%/3% 1 10 1 6m50spc-hpa Deployment/nginx 22%/3% 1 10 4 7m5spc-hpa Deployment/nginx 22%/3% 1 10 8 7m21spc-hpa Deployment/nginx 6%/3% 1 10 8 7m51spc-hpa Deployment/nginx 0%/3% 1 10 8 9m6spc-hpa Deployment/nginx 0%/3% 1 10 8 13mpc-hpa Deployment/nginx 0%/3% 1 10 1 14m deployment变化 [root@k8s-master01 ~] kubectl get deployment -n dev -wNAME READY UP-TO-DATE AVAILABLE AGEnginx 1/1 1 1 11mnginx 1/4 1 1 13mnginx 1/4 1 1 13mnginx 1/4 1 1 13mnginx 1/4 4 1 13mnginx 1/8 4 1 14mnginx 1/8 4 1 14mnginx 1/8 4 1 14mnginx 1/8 8 1 14mnginx 2/8 8 2 14mnginx 3/8 8 3 14mnginx 4/8 8 4 14mnginx 5/8 8 5 14mnginx 6/8 8 6 14mnginx 7/8 8 7 14mnginx 8/8 8 8 15mnginx 8/1 8 8 20mnginx 8/1 8 8 20mnginx 1/1 1 1 20m pod变化 [root@k8s-master01 ~] kubectl get pods -n dev -wNAME READY STATUS RESTARTS AGEnginx-7df9756ccc-bh8dr 1/1 Running 0 11mnginx-7df9756ccc-cpgrv 0/1 Pending 0 0snginx-7df9756ccc-8zhwk 0/1 Pending 0 0snginx-7df9756ccc-rr9bn 0/1 Pending 0 0snginx-7df9756ccc-cpgrv 0/1 ContainerCreating 0 0snginx-7df9756ccc-8zhwk 0/1 ContainerCreating 0 0snginx-7df9756ccc-rr9bn 0/1 ContainerCreating 0 0snginx-7df9756ccc-m9gsj 0/1 Pending 0 0snginx-7df9756ccc-g56qb 0/1 Pending 0 0snginx-7df9756ccc-sl9c6 0/1 Pending 0 0snginx-7df9756ccc-fgst7 0/1 Pending 0 0snginx-7df9756ccc-g56qb 0/1 ContainerCreating 0 0snginx-7df9756ccc-m9gsj 0/1 ContainerCreating 0 0snginx-7df9756ccc-sl9c6 0/1 ContainerCreating 0 0snginx-7df9756ccc-fgst7 0/1 ContainerCreating 0 0snginx-7df9756ccc-8zhwk 1/1 Running 0 19snginx-7df9756ccc-rr9bn 1/1 Running 0 30snginx-7df9756ccc-m9gsj 1/1 Running 0 21snginx-7df9756ccc-cpgrv 1/1 Running 0 47snginx-7df9756ccc-sl9c6 1/1 Running 0 33snginx-7df9756ccc-g56qb 1/1 Running 0 48snginx-7df9756ccc-fgst7 1/1 Running 0 66snginx-7df9756ccc-fgst7 1/1 Terminating 0 6m50snginx-7df9756ccc-8zhwk 1/1 Terminating 0 7m5snginx-7df9756ccc-cpgrv 1/1 Terminating 0 7m5snginx-7df9756ccc-g56qb 1/1 Terminating 0 6m50snginx-7df9756ccc-rr9bn 1/1 Terminating 0 7m5snginx-7df9756ccc-m9gsj 1/1 Terminating 0 6m50snginx-7df9756ccc-sl9c6 1/1 Terminating 0 6m50s DaemonSet 简称DS,ds可以保证在集群中的每一台节点(或指定节点)上都运行一个副本,一般适用于日志收集、节点监控等场景;也就是说,如果一个Pod提供的功能是节点级别的(每个节点都需要且只需要一个),那么这类Pod就适合使用DaemonSet类型的控制器创建。 DaemonSet控制器的特点: 每当向集群中添加一个节点时,指定的 Pod 副本也将添加到该节点上 当节点从集群中移除时,Pod 也就被垃圾回收了 配置模板 apiVersion: apps/v1 版本号kind: DaemonSet 类型 metadata: 元数据name: rs名称 namespace: 所属命名空间 labels: 标签controller: daemonsetspec: 详情描述revisionHistoryLimit: 3 保留历史版本updateStrategy: 更新策略type: RollingUpdate 滚动更新策略rollingUpdate: 滚动更新maxUnavailable: 1 最大不可用状态的 Pod 的最大值,可以为百分比,也可以为整数selector: 选择器,通过它指定该控制器管理哪些podmatchLabels: Labels匹配规则app: nginx-podmatchExpressions: Expressions匹配规则- {key: app, operator: In, values: [nginx-pod]}template: 模板,当副本数量不足时,会根据下面的模板创建pod副本metadata:labels:app: nginx-podspec:containers:- name: nginximage: nginx:1.17.1ports:- containerPort: 80 1、创建ds 创建pc-daemonset.yaml,内容如下: apiVersion: apps/v1kind: DaemonSet metadata:name: pc-daemonsetnamespace: devspec: selector:matchLabels:app: nginx-podtemplate:metadata:labels:app: nginx-podspec:containers:- name: nginximage: nginx:1.17.1 运行 创建daemonset[root@k8s-master01 ~] kubectl create -f pc-daemonset.yamldaemonset.apps/pc-daemonset created 查看daemonset[root@k8s-master01 ~] kubectl get ds -n dev -o wideNAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE AGE CONTAINERS IMAGES pc-daemonset 2 2 2 2 2 24s nginx nginx:1.17.1 查看pod,发现在每个Node上都运行一个pod[root@k8s-master01 ~] kubectl get pods -n dev -o wideNAME READY STATUS RESTARTS AGE IP NODE pc-daemonset-9bck8 1/1 Running 0 37s 10.244.1.43 node1 pc-daemonset-k224w 1/1 Running 0 37s 10.244.2.74 node2 2、删除daemonset [root@k8s-master01 ~] kubectl delete -f pc-daemonset.yamldaemonset.apps "pc-daemonset" deleted Job 主要用于负责批量处理一次性(每个任务仅运行一次就结束)任务。当然,你也可以运行多次,配置好即可,Job特点如下: 当Job创建的pod执行成功结束时,Job将记录成功结束的pod数量 当成功结束的pod达到指定的数量时,Job将完成执行 配置模板 apiVersion: batch/v1 版本号kind: Job 类型 metadata: 元数据name: rs名称 namespace: 所属命名空间 labels: 标签controller: jobspec: 详情描述completions: 1 指定job需要成功运行Pods的次数。默认值: 1parallelism: 1 指定job在任一时刻应该并发运行Pods的数量。默认值: 1activeDeadlineSeconds: 30 指定job可运行的时间期限,超过时间还未结束,系统将会尝试进行终止。backoffLimit: 6 指定job失败后进行重试的次数。默认是6manualSelector: true 是否可以使用selector选择器选择pod,默认是falseselector: 选择器,通过它指定该控制器管理哪些podmatchLabels: Labels匹配规则app: counter-podmatchExpressions: Expressions匹配规则- {key: app, operator: In, values: [counter-pod]}template: 模板,当副本数量不足时,会根据下面的模板创建pod副本metadata:labels:app: counter-podspec:restartPolicy: Never 重启策略只能设置为Never或者OnFailurecontainers:- name: counterimage: busybox:1.30command: ["bin/sh","-c","for i in 9 8 7 6 5 4 3 2 1; do echo $i;sleep 2;done"] 关于重启策略设置的说明:(这里只能设置为Never或者OnFailure) 如果指定为OnFailure,则job会在pod出现故障时重启容器,而不是创建pod,failed次数不变 如果指定为Never,则job会在pod出现故障时创建新的pod,并且故障pod不会消失,也不会重启,failed次数加1 如果指定为Always的话,就意味着一直重启,意味着job任务会重复去执行了,当然不对,所以不能设置为Always 1、创建一个job 创建pc-job.yaml,内容如下: apiVersion: batch/v1kind: Job metadata:name: pc-jobnamespace: devspec:manualSelector: trueselector:matchLabels:app: counter-podtemplate:metadata:labels:app: counter-podspec:restartPolicy: Nevercontainers:- name: counterimage: busybox:1.30command: ["bin/sh","-c","for i in 9 8 7 6 5 4 3 2 1; do echo $i;sleep 3;done"] 创建 创建job[root@k8s-master01 ~] kubectl create -f pc-job.yamljob.batch/pc-job created 查看job[root@k8s-master01 ~] kubectl get job -n dev -o wide -wNAME COMPLETIONS DURATION AGE CONTAINERS IMAGES SELECTORpc-job 0/1 21s 21s counter busybox:1.30 app=counter-podpc-job 1/1 31s 79s counter busybox:1.30 app=counter-pod 通过观察pod状态可以看到,pod在运行完毕任务后,就会变成Completed状态[root@k8s-master01 ~] kubectl get pods -n dev -wNAME READY STATUS RESTARTS AGEpc-job-rxg96 1/1 Running 0 29spc-job-rxg96 0/1 Completed 0 33s 接下来,调整下pod运行的总数量和并行数量 即:在spec下设置下面两个选项 completions: 6 指定job需要成功运行Pods的次数为6 parallelism: 3 指定job并发运行Pods的数量为3 然后重新运行job,观察效果,此时会发现,job会每次运行3个pod,总共执行了6个pod[root@k8s-master01 ~] kubectl get pods -n dev -wNAME READY STATUS RESTARTS AGEpc-job-684ft 1/1 Running 0 5spc-job-jhj49 1/1 Running 0 5spc-job-pfcvh 1/1 Running 0 5spc-job-684ft 0/1 Completed 0 11spc-job-v7rhr 0/1 Pending 0 0spc-job-v7rhr 0/1 Pending 0 0spc-job-v7rhr 0/1 ContainerCreating 0 0spc-job-jhj49 0/1 Completed 0 11spc-job-fhwf7 0/1 Pending 0 0spc-job-fhwf7 0/1 Pending 0 0spc-job-pfcvh 0/1 Completed 0 11spc-job-5vg2j 0/1 Pending 0 0spc-job-fhwf7 0/1 ContainerCreating 0 0spc-job-5vg2j 0/1 Pending 0 0spc-job-5vg2j 0/1 ContainerCreating 0 0spc-job-fhwf7 1/1 Running 0 2spc-job-v7rhr 1/1 Running 0 2spc-job-5vg2j 1/1 Running 0 3spc-job-fhwf7 0/1 Completed 0 12spc-job-v7rhr 0/1 Completed 0 12spc-job-5vg2j 0/1 Completed 0 12s 2、删除 删除jobkubectl delete -f pc-job.yaml CronJob 简称为CJ,CronJob控制器以 Job控制器资源为其管控对象,并借助它管理pod资源对象,Job控制器定义的作业任务在其控制器资源创建之后便会立即执行,但CronJob可以以类似于Linux操作系统的周期性任务作业计划的方式控制其运行时间点及重复运行的方式。也就是说,CronJob可以在特定的时间点(反复的)去运行job任务。可以理解为定时任务 配置模板 apiVersion: batch/v1beta1 版本号kind: CronJob 类型 metadata: 元数据name: rs名称 namespace: 所属命名空间 labels: 标签controller: cronjobspec: 详情描述schedule: cron格式的作业调度运行时间点,用于控制任务在什么时间执行concurrencyPolicy: 并发执行策略,用于定义前一次作业运行尚未完成时是否以及如何运行后一次的作业failedJobHistoryLimit: 为失败的任务执行保留的历史记录数,默认为1successfulJobHistoryLimit: 为成功的任务执行保留的历史记录数,默认为3startingDeadlineSeconds: 启动作业错误的超时时长jobTemplate: job控制器模板,用于为cronjob控制器生成job对象;下面其实就是job的定义metadata:spec:completions: 1parallelism: 1activeDeadlineSeconds: 30backoffLimit: 6manualSelector: trueselector:matchLabels:app: counter-podmatchExpressions: 规则- {key: app, operator: In, values: [counter-pod]}template:metadata:labels:app: counter-podspec:restartPolicy: Never containers:- name: counterimage: busybox:1.30command: ["bin/sh","-c","for i in 9 8 7 6 5 4 3 2 1; do echo $i;sleep 20;done"] cron表达式写法 需要重点解释的几个选项:schedule: cron表达式,用于指定任务的执行时间/1 <分钟> <小时> <日> <月份> <星期>分钟 值从 0 到 59.小时 值从 0 到 23.日 值从 1 到 31.月 值从 1 到 12.星期 值从 0 到 6, 0 代表星期日多个时间可以用逗号隔开; 范围可以用连字符给出;可以作为通配符; /表示每... 例如1 // 每个小时的第一分钟执行/1 // 每分钟都执行concurrencyPolicy:Allow: 允许Jobs并发运行(默认)Forbid: 禁止并发运行,如果上一次运行尚未完成,则跳过下一次运行Replace: 替换,取消当前正在运行的作业并用新作业替换它 1、创建cronJob 创建pc-cronjob.yaml,内容如下: apiVersion: batch/v1beta1kind: CronJobmetadata:name: pc-cronjobnamespace: devlabels:controller: cronjobspec:schedule: "/1 " 每分钟执行一次jobTemplate:metadata:spec:template:spec:restartPolicy: Nevercontainers:- name: counterimage: busybox:1.30command: ["bin/sh","-c","for i in 9 8 7 6 5 4 3 2 1; do echo $i;sleep 3;done"] 运行 创建cronjob[root@k8s-master01 ~] kubectl create -f pc-cronjob.yamlcronjob.batch/pc-cronjob created 查看cronjob[root@k8s-master01 ~] kubectl get cronjobs -n devNAME SCHEDULE SUSPEND ACTIVE LAST SCHEDULE AGEpc-cronjob /1 False 0 <none> 6s 查看job[root@k8s-master01 ~] kubectl get jobs -n devNAME COMPLETIONS DURATION AGEpc-cronjob-1592587800 1/1 28s 3m26spc-cronjob-1592587860 1/1 28s 2m26spc-cronjob-1592587920 1/1 28s 86s 查看pod[root@k8s-master01 ~] kubectl get pods -n devpc-cronjob-1592587800-x4tsm 0/1 Completed 0 2m24spc-cronjob-1592587860-r5gv4 0/1 Completed 0 84spc-cronjob-1592587920-9dxxq 1/1 Running 0 24s 2、删除cronjob kubectl delete -f pc-cronjob.yaml pod调度 什么是调度 默认情况下,一个pod在哪个node节点上运行,是通过scheduler组件采用相应的算法计算出来的,这个过程是不受人工控制的; 调度规则 但是在实际使用中,我们想控制某些pod定向到达某个节点上,应该怎么做呢?其实k8s提供了四类调度规则 调度方式 描述 自动调度 通过scheduler组件采用相应的算法计算得出运行在哪个节点上 定向调度 运行到指定的node节点上,通过NodeName、NodeSelector实现 亲和性调度 跟谁关系好就调度到哪个节点上 1、nodeAffinity :节点亲和性,调度到关系好的节点上 2、podAffinity:pod亲和性,调度到关系好的pod所在的节点上 3、PodAntAffinity:pod反清河行,调度到关系差的那个pod所在的节点上 污点(容忍)调度 污点是站在node的角度上的,比如果nodeA有一个污点,大家都别来,此时nodeA会拒绝master调度过来的pod 定向调度 指的是利用在pod上声明nodeName或nodeSelector的方式将pod调度到指定的pod节点上,因为这种定向调度是强制性的,所以如果node节点不存在的话,也会向上面进行调度,只不过pod会运行失败; 1、定向调度-> nodeName nodeName 是将pod强制调度到指定名称的node节点上,这种方式跳过了scheduler的调度逻辑,直接将pod调度到指定名称的节点上,配置文件内容如下 apiVersion: v1 版本号kind: Pod 资源类型metadata: name: pod-namenamespace: devspec: containers: - image: nginx:1.17.1name: nginx-containernodeName: node1 调度到node1节点上 2、定向调度 -> NodeSelector NodeSelector是将pod调度到添加了指定label标签的node节点上,它是通过k8s的label-selector机制实现的,也就是说,在创建pod之前,会由scheduler用matchNodeSelecto调度策略进行label标签的匹配,找出目标node,然后在将pod调度到目标node; 要实验NodeSelector,首先得给node节点加上label标签 kubectl label nodes node1 nodetag=node1 配置文件内容如下 apiVersion: v1 版本号kind: Pod 资源类型metadata: name: pod-namenamespace: devspec: containers: - image: nginx:1.17.1name: nginx-containernodeSelector: nodetag: node1 调度到具有nodetag=node1标签的节点上 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_27184497/article/details/121765387。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-29 09:08:28
422
转载
转载文章
...制器平台,它允许网络管理员通过集中式的可编程接口管理和控制整个网络基础设施。在本文中,ODL被用于与OpenStack集成,提供对网络服务如neutron组件的北向API支持,使得云环境中的网络功能能够实现自动化配置和管理。 Neutron Northbound API , Neutron是OpenStack项目中的网络服务组件,其Northbound API是一种高级接口,旨在为上层应用或管理系统提供与底层网络资源交互的能力。在文中,ODL通过集成并使用Neutron的Northbound API,可以获取到关于网络配置、虚拟网络设备状态等信息,并基于这些信息进行网络策略的实施和变更。 Open vSwitch Database (OVSDB) , OVSDB是Open vSwitch项目的一部分,是一个数据库管理系统,专门设计用于存储和管理网络相关的配置数据,比如虚拟交换机设置、端口信息以及流表规则等。在文章所描述的场景中,通过使用ovs-vsctl工具操作OVSDB,可以实现对Open vSwitch实例的配置和监控,确保其与OpenStack neutron组件协同工作,以满足云环境中灵活、动态的网络需求。例如,通过ovs-vsctl命令设定Open_vSwitch的相关参数,可以配置本地IP地址,或者查看、修改内部网桥上的流表条目。
2023-06-08 17:13:19
294
转载
转载文章
...某位人士”创建的微小组件,该组件“自2003年来一直都处于吃力不讨好的状态”。 Randall Monroe 的XKCD漫画展示了目前开源面临的困境:过度依赖少数项目维护志愿者。 (开源项目由志愿者自发来维护,)这本来会是一件很有趣的事情,只是去年十二月在Log4j中发现的安全漏洞也确实存在着上述情况。 然而这个基于Java的日志记录工具已经在企业记录中无处不在。例如根据软件公司Sonatype的一份报告显示,在过去的三个月里,Log4j的下载量就已经超过3000万次。 Log4j是Sonatype公司旗下的Black Duck Open Hub所研发的研究工具。Log4j有着440,000行代码,由近200名开发人员贡献了将近24,000行代码。其实与其他开源项目相比,这是一个庞大的开发团队。但是如果关注数据的话,就会发现超过70%的工作是仅仅靠五个人来完成的。 Log4j的主页上展示了十几位项目团队的成员。而大多项目的开发人员要比其原本需要的少得多----这是高度依赖开发人员团队所呈现出来的问题。 “如今几乎没有人愿意为现有的开源项目作出贡献”,来自DNS网络公司NS1的杰出工程师Jeremy Strech说,“因为通常来说,这没有直接的物质回报,也很少提供荣誉----大多数用户甚至不知道他们所用的软件是谁维护的。” 他说,开源贡献者们最常见的动机就是添加他们自己想要的功能。“一旦实现了这一点,他们几乎都不会留下来。” 与此同时,随着项目的逐渐火爆,对于维护方面的核心团队来说,他们的负担也在不断增加。 “更多的用户意味有着更多的功能需求和错误报告----但不是更多的维护人员”,Stretch说。“曾经令人愉快的爱好很快就会变成一项乏味的项目,所以很多维护人员选择干脆完全放弃他们的项目,这也是可以理解的。” Part1公地悲剧 开源软件的生态系统,就是“公地悲剧”的一个完美例子。 这个悲剧就是---当一种资源,无论是一个超限的公园还是一个开源项目,所有人都在使用而没有人贡献之时,最终都会因为过度使用和投入不足而崩溃坍塌。 这种方式可以在短期内为你节省资金,但随着时间的推移,它可能会变成项目里致命的缺陷。 拿Linux来说,这个开源操作系统在全球前100万台服务器中运行率在96%以上,且这些服务器90%的云基础设施也都在Linux上。更不用说世界上85%的智能手机都运行着Linux,即Android操作系统。 这些常见开源项目的列表还在逐渐增加着。 所以没有开源,今天的大部分技术基础设施的建设也将会戛然而止。 “这是一个很现实的问题”,Data.org的执行董事Danil Mikhailov说,该组织是由万事达包容性发展中心和洛克菲勒基金会支持,旨在促进使用数据科学来应对当今社会所面临的巨大挑战的非营利性组织。 虽然几乎所有组织都在使用着开源软件,但只有少数组织为这些项目作出了贡献。The New Stack、Linux Foundation Research 和 TODO Group 在 9 月发布的一项调查中,42% 的参与者表示,他们至少有时会为开源项目做出贡献。 而同一项研究表明,只有36%的组织会培训他们的工程师为开源作出贡献。 个体公司应该支持贡献这些他们使用最多且对他们成功至关重要的项目,Mikhailov认为:“如果你使用开源,你就应该为他做出属于你自己的贡献。” Part2OSPO的好处:更少的技术负债,更好的招聘效果 参与开源社区----特别是在内部开源计划办公室(OSPO)的指导下----不仅可以保证对组织成功至关重要项目的健康发展,还可以提高项目安全性,同时可以允许工程师在项目发展规划中起到更大的作用。 例如,如果一家公司使用了开源工具,并对其进行了一些调整使其变得更好。但如果这项改进没有反馈到开源社区,那么开源项目的正式版本就会一开始与该公司所使用的版本有所不同。 “当原始数据来源发生变化且你所使用的是不同的版本时,你的技术负债将越来越多。而这些差异是以天为单位迅速增长的。”VMware 开源营销和战略总监 Suzanne Ambiel 表示,“所以你很快就会变成一个开源项目里独一无二变体的‘自豪’用户和维护人员。” “如果技术负债越来越多,那么公司的管理成本则会非常昂贵”。 实际上对于开源活动的支持也变成了一种招聘途径。“这真是一块吸引人才的磁铁,”Ambiel说,“这也是新员工所寻求的“。 她还提到,一些工程经理可能会对贡献开源而减损核心产品的开发的精力而感到担忧。她补充到,他们的理由有可能是这样的:“我只有有限的才华与时间,且我需要这些只做我认为可以处理且看到投资回报的事情。” 但她说,这是一种鼠目寸光的态度。支持开源社区并且作出贡献的员工,可以从中培养技能与增长才干。 云安全供应商 Sysdig 的首席技术官兼创始人 Loris Degionni 也赞同这一观点:“找到为开源做出贡献的员工无疑就找到一座金矿,”他说。 他认为,这些参与开源的员工更具备公司想拥有的竞争力并将一些功能融入至社区所支持的标准中。且在人才争夺战中,拥抱开源的公司也更受到开发人员的青睐。 “最后,开源项目是由你可能无法聘请的技术专家社区推动的”,他说,“当员工积极参与并于这些专家合作时,他们将能更好地深入这些顶级的实践,并将这些收获带回到你的组织之中。” “当原始数据来源发生变化且你所使用的是不同的版本时,你的技术负债将越来越多...所以你很快就会变成一个开源项目里独一无二变体的”自豪“用户和维护人员。”— Suzanne Ambiel,VMware 开源营销和战略总监 “但是这一切终究不会白费--开发人员不应该把空闲时间用在磨练他们的技能上,因为你的公司很快就会在他们的努力中看到好处。” Degionni认为,OSPO(开源计划办公室)可以帮助公司实现这些目标,以及帮助确定贡献的优先级并确保合作的进行。除此之外,他们也可以对公司内部开发应用程序方面的治理提供相关帮助。 “开源团队的成员也可以成为开源技术的伟大内部传播者,并充当组织与更广泛社区之间的桥梁。”他补充道。 在 The New Stack、Linux Foundation Research 和 TODO Group 的 9 月调查中,近 53% 的拥有 OSPO的组织表示,由于拥有了OSPO,他们看到了更多创新,而近 43% 的组织表示,他们在外部开源项目的参与度上有所增加。 Part3更多OSPO的好处:商业优势 网络安全公司 ThreatX 的首席创新官 Tom Hickman 表示,为开源社区做出贡献,不仅有助于社区,还有助于为社区做出贡献的公司。 “围绕一个项目而发展的开发人员社区,有助于代码库的形成,并吸引更多的开发人员参与”,他说,“这可以变成一个良性循环。” 此外,根据哈佛商学院的研究,为开源项目作出贡献的公司从使用开源的项目中获得的生产价值,是不参与开源项目公司的两倍。 Cloud Native Computing Foundation 的首席技术官 Chris Aniszczyk 说,世界上许多巨头公司都为开源作出了贡献。他还提到,开源贡献者的指数是作为公司是否有所作为的参考。 科技巨头占据了这份榜单的主导地位:谷歌、微软、红帽、英特尔、IBM、亚马逊、Facebook、VMware、GitHub 和 SAP 依次是排名前 10 的贡献者。但Aniszczyk 表示,但也有很多终端用户公司进入前 100 名,包括 Uber、BBC、Orange、Netflix 和 Square。 “我们一直知道,在上游项目中工作不仅仅是关正确与否----它是开源软件开发的最佳方法,也是向客户提供开源福利的最佳方式”他说,“很高兴看到IT领导者们也认识到了这一点。” 为了和这些公司一起作出贡献,公司也需要有自己的开源策略,而拥有一个开源计划办公室则可以为其提供帮助。 “在使用开源软件方面,OPSO为公司提供了一个至关重要的能力中心”他说。 这与公司拥有安全运营中心的方式类似,他说。 “围绕一个项目而发展的开发人员社区,有助于代码库的形成,并吸引更多的开发人员参与,这可以变成一个良性循环。” ——Tom Hickman,ThreatX 首席创新官 “如果你对安全团队进行相应投资,你通常是不会期望你的软件是安全的,也无法及时应对安全事件。”他说。 “同样的逻辑也适用于 OSPO,这就是为什么你会看到许多领先的公司,例如Apple、Meta、Twitter、Goldman Sachs、Bloomberg 和 Google 都拥有 OSPO。他们走在了趋势的前面。” 而对组织内的开源活动的支持态度亦可成为软件供应商们的差异化原因与营销的机会。 根据Red Hat 2月分发布的一项调查,82%的IT领导者更倾向于选择为开源社区作出贡献的软件供应商。 受访者表示,当供应商支持开源社区时,就表示着他们更熟悉开源的流程并且在客户遇到技术难题时会更加有效。 但收益的不仅仅是软件供应商们。 根据 The New Stack、Linux Foundation Research 和 TODO Group 9 月份的调查,57% 拥有 OSPO 的组织将使用它们来进一步发展战略关系和建立合作伙伴关系。 十年前,Mark Hinkle 在 Citrix 工作时创办了一个开源计划办公室。他指出了在内部拥有一个 OSPO将如何使公司受益。 “对于我们来说,最大的工作是让不熟悉开源的员工学会并参与其中,成为优秀的社区成员”,他说,“我们还就如何确保我们的IP不会在没有正确理解的情况下进入项目的情况提供了指导,并确保我们没有与我们企业软件许可相冲突的开源项目合作。” 他说,OSPO还帮助Citrix确定了公司参与开源项目和Linux基金会等贸易组织的战略机会。 如今,他是云原生开源集成平台 TriggerMesh 的首席执行官兼联合创始人。 他说,参与开源系统对公司来说有着重大的经济效益。 “我们参与Knative是为了分享我们基础底层平台的开发,但作为业务的一部分,我们也拥有相关的增值服务。”他说,“通过共享该平台的研发,这为我们提供了更多的资源来改进我们自己的差异化技术。” Part4如何入门开源 在 The New Stack、Linux Foundation Research 和 TODO Group 的 9 月份调查中,有 63% 的公司表示,拥有OSPO 对其工程或产品团队的成功至关重要,高于上一年度该项研究数据的 54%。 其中77% 的人表示他们的开源程序对他们的软件实践产生了积极影响,例如提高了代码质量。 但公司也不可能总是为他们使用的每一个开源项目而花费精力。 “首先,节流一下”,VMware 的 Ambiel 建议道。 公司应该关注投入使用中最有意义的项目。而这也是OSPO可以帮助确定优先事项并确保技术与战略一致性的领域。 之后,开发人员应该自己去了解一下。项目通常提供相关在线文档,一般包含贡献着指南、治理文档和未解决问题列表。 “对于那些你较感兴趣的项目中,你可以介绍一下自己----打个招呼”,她说。“然后转到Slack频道或者分发列表,询问他们需要帮助的地方。也许他们不需要帮助,一切完好;又或者他们也有可能使用新人来审查核验代码。” Ambiel 说,开源计划办公室不仅可以帮助制定为开源社区做出贡献的商业案例,还可以帮助公司以安全、可靠和健全的方式来做这件事。 “如果我为一家公司工作,并想为开源做出贡献,我不想意外披露、泄露或破坏任何专利,”她说。“而OSPO可以帮助您做出明智的选择。” 她说,OSPO还可以在开源方面提供领导力和指导理念的支持。“它可以提供引领、指导、辅导和最佳实践的作用。” Aqua Security的开发人员倡导者Anaïs Urlichs则认为,支持开源的承诺必须从高层开始。 她说,“公司在多数时候往往不重视对开源的投资,所以员工自然而然不被鼓励对此作出贡献。” 在这些情况下,员工对于开源的热情也会在空闲时间里对开源的建设而消散殆尽,这对于开源的发展来说是不可持续的。 “如果公司对开源项目依赖度高,那么将开源贡献纳入工程师的日程安排是很重要的,”她说。“一些公司定义了员工可以为开源建设的时间百分比,将其作为他们正常工作日的一部分。” The New Stack 是 Insight Partners 的全资子公司,Insight Partners 是本文提到的以下公司的投资者:Sysdig、Aqua Security。 中英对照版 How an OSPO Can Help Your Engineers Give Back to Open Source OSPO (开源项目办公室)是如何使工程师回馈开源的 When it comes to open source software, there’s a big and growing problem: most organizations are takers, not givers. 谈到开源软件,有一个较大且日益严重的问题:大多数组织都是索取者,而不是给予者。 There’s a classic XKCD comic that shows a giant structure representing modern digital infrastructure, dependent on a tiny component created by “some random person in Nebraska” who has been “thanklessly maintaining since 2003.” 经典漫画XKCD展示了一个代表现代数字基础设施的巨大结构,它依赖于“内布拉斯加州的某位人士”创建的微小组件,该组件“自2003年来一直都处于吃力不讨好的状态”。 Randall Monroe’s XKCD comic illustrates the open source dilemma: overreliance on a small number of volunteer project maintainers. Randall Monroe 的XKCD漫画展示了目前开源面临的窘境:过度依赖少数项目维护志愿者的志愿服务。 This would have been funny, except that this is exactly what happened when security vulnerabilities were discovered in Log4j last December. (开源项目由志愿者自发来维护,)这听起来像是一件很滑稽的事情,但事实上去年十二月在Log4j中发现的安全漏洞也确实存在着上述情况。 The Java-based logging tool is ubiquitous in enterprise publications. In the last three months, for example, Log4j has been downloaded more than 30 million times, according to a report by the enterprise software company Sonatype. 然而这个基于Java的日志记录工具已经在企业内部刊物中无处不在。例如根据软件公司Sonatype的一份报告显示,在过去的三个月里,Log4j的下载量就已经超过3000万次。 The tool has 440,000 lines of code, according to Synopsys‘ Black Duck Open Hub research tool, with nearly 24,000 contributions by nearly 200 developers. That’s a large dev team compared to other open source projects. But looking closer at the numbers, more than 70% of commits were by just five people. 根据Synopsys(新思)公司旗下的Black Duck Open Hub 研究工具显示。Log4j有着440,000行代码,由近200名开发人员贡献了将近24,000行代码。其实与其他开源项目相比,这是一个庞大的开发团队。但是如果关注数据的话,就会发现超过70%的提交是仅仅靠五个人来完成的。 Log4j’s home page lists about a dozen members on its project team. Most projects have far fewer developers working on them — and that presents a problem for the organizations that depend on them. Log4j的主页上展示了十几位项目团队的成员。而大多项目的开发人员要比其原本需要的少得多----这是高度依赖开发人员团队所呈现出来的问题。 “There is little incentive for anyone today to contribute to an existing open source project,” said Jeremy Stretch, distinguished engineer at NS1, a DNS network company. “There’s usually no direct compensation, and few accolades are offered — most users don’t even know who maintains the software that they use.” “如今的人没有什么动力去为现有的开源项目做贡献”,来自DNS网络公司NS1的杰出工程师Jeremy Strech说,“因为通常来说,这没有直接的物质回报,也很少提供荣誉----大多数用户甚至不知道他们所用的软件是谁维护的。” The most common motivation among open source contributors is to add a feature that they themselves want to see, he said. “Once this has been achieved, the contributor rarely sticks around.” 他说,开源贡献者们最常见的动机就是添加他们自己想要的功能。“一旦实现了这一点,他们几乎都不会留下来。” Meanwhile, as a project becomes more popular, the burden on the core team of maintainers keeps increasing. 与此同时,随着项目的逐渐流行,对于维护方面的核心团队来说,他们的负担也在不断增加。 “More users means more feature requests and more bug reports — but not more maintainers,” Stretch said. “What was once an enjoyable hobby can quickly become a tedious chore, and many maintainers understandably opt to simply abandon their projects altogether.” “更多的用户意味有着更多的功能需求和错误报告----但不是更多的维护人员”,Stretch说。“曾经令人愉快的爱好很快就会变成一项乏味的项目,所以很多维护人员选择干脆完全放弃他们的项目,这也是可以理解的。” Part1The Tragedy of the Commons The open source software ecosystem is a perfect example of the “tragedy of the commons.” 开源软件的生态系统,就是“公地悲剧”的一个完美例子。 And the tragedy is — when everyone uses, but no one contributes, that resource — whether it’s an overrun park or an open source project — eventually collapses from overuse and underinvestment. Everyone loves using free stuff, but everyone expects someone else to take care of it. 这个悲剧就是---当一种资源,无论是一个超限的公园还是一个开源项目,所有人都在使用而没有人贡献之时,最终都会因为过度使用和投入不足而崩溃坍塌。 This approach can save you money in the short term, but it can become a fatal flaw over time. Especially since open source software is everywhere, running everything. 这种方式可以在短期内为你节省资金,但随着时间的推移,它可能会变成项目里致命的缺陷。 Linux, for example, the open source operating system, runs on 96% of the world’s top 1 million servers, and 90% of all cloud infrastructure is on Linux. Not to mention that 85% of all smartphones in the world run Linux, in the form of the Android OS. 拿Linux来说,这个开源操作系统在全球前100万台服务器中运行率在96%以上,且这些服务器90%的云基础设施也都在Linux上。更不用说世界上85%的智能手机都运行着Linux,即Android操作系统。 Then there’s Java, Apache, WordPress, Cassandra, Hadoop, MySQL, PHP, ElasticSearch, Kubernetes — the list of ubiquitous open source projects goes on and on. 还有Java, Apache, WordPress, Cassandra, Hadoop, MySQL, PHP, ElasticSearch, Kubernetes--这些常见开源项目的列表还在逐渐增加着。 Without open source, much of today’s technical infrastructure would immediately grind to a halt. 如果没有开源,今天的大部分技术基础设施的建设也将会戛然而止。 “It is a real problem,” said Danil Mikhailov, executive director at Data.org, a nonprofit backed by the Mastercard Center for Inclusive Growth and The Rockefeller Foundation that promotes the use of data science to tackle society’s greatest challenges. “这是一个很现实的问题”,Data.org的执行董事Danil Mikhailov说,该组织是由万事达包容性发展中心和洛克菲勒基金会支持,旨在促进使用数据科学来应对当今社会所面临的巨大挑战的非营利性组织。 While nearly all organizations use open source software, only a minority contribute to those projects. Forty-two percent of participants in a survey released in September by The New Stack, Linux Foundation Research, and the TODO Group said tthey contribute at least sometimes to open source projects. 虽然几乎所有组织都在使用着开源软件,但只有少数组织为这些项目作出了贡献。The New Stack、Linux Foundation Research 和 TODO Group 在 9 月发布的一项调查中,42% 的参与者表示,他们至少有时会为开源项目做出贡献。 The same study showed that only 36% of organizations train their engineers to contribute to open source. 而同一项研究表明,只有36%的组织会培训他们的工程师为开源作出贡献。 Individual companies should support projects that they use the most and are critical to their success, Mikhailov said: “If you use, you contribute.” 个体公司应该支持贡献这些他们使用最多且对他们成功至关重要的项目,Mikhailov认为:“如果你使用开源,你就应该为他做出属于你自己的贡献。” Part2OSPO Benefits:Less Tech Debt,Better Recruiting Participating in open source communities — especially when guided by an in-house open source program office (OSPO) — can help ensure the health of projects critical to your organization’s success, improve those projects’ security, and allow your engineers to have more impact in the projects’ development road map. 参与开源社区——特别是在内部开源项目办公室(OSPO)的指导下——不仅可以保证对组织成功至关重要项目的健康发展,还可以提高项目安全性,同时可以允许工程师在项目发展规划中起到更大的影响。 Say, for example, a company uses an open source tool and modifies it a little to make it better. If that improvement isn’t contributed back to the community, then the official version of the open source project will start to diverge from what the company is using 例如,如果一家公司使用了开源工具,并对其进行了一些调整使其变得更好。但如果这项改进没有反馈到开源社区,那么开源项目的正式版本就会一开始与该公司所使用的版本有所不同。 “You start to grow technical debt because when the original source changes and you’ve got a different version. Those differences grow rapidly, compounding daily. It doesn’t take long for you to be the proud user and maintainer of a one-of-a-kind open source project variant,” said Suzanne Ambiel, director, open source marketing and strategy at VMware. “当原始代码来源发生变化且你所使用的是不同的版本时,你的技术负债将越来越多。而这些差异是以天为单位迅速增长的。”VMware 开源营销和战略总监 Suzanne Ambiel 表示,“所以你很快就会变成一个开源项目里独一无二变体的‘自豪’用户和维护人员。” “The technical debt gets bigger and bigger and it gets very expensive for a company to manage.” “如果技术负债越来越多,那么公司的管理成本则会非常昂贵”。 Support for open source activity can also be a recruiting tool. “It’s really a talent magnet,” said Ambiel. “It’s one of the things that new hires look for.” 实际上对于开源活动的支持也变成了一种招聘途径。“这真是一块吸引人才的磁铁,”Ambiel说,“这也是新员工所寻求的“。 Some engineering managers might worry that open source contributions will detract from core product development, she said. Their rationale, she added, might run along the lines of, “I only have so much talent, and so many hours, and I need them to only work on things where I can measure and see the return on investment.” 她还提到,一些工程经理可能会对贡献开源而减损核心产品的开发的精力而感到担忧。她补充到,他们的理由有可能是这样的:“我只有有限的才华与时间,且我需要这些只做我认为可以度量且看到投资回报的事情。” But that attitude, she said, is shortsighted. Supporting employees who contribute to open source communities can build skills and develop talent, she said. 但她说,这是一种鼠目寸光的态度。支持开源社区并且作出贡献的员工,可以从中培养技能与增长才华。 Loris Degionni, chief technology officer and founder at Sysdig, a cloud security vendor, echoed this notion: “Finding employees who contribute to open source is a gold mine,” said. 云安全供应商 Sysdig 的首席技术官兼创始人 Loris Degionni 也赞同这一观点:“找出为开源做出贡献的员工无疑就找到一座金矿,”他说。 These employees are more capable of delivering features a company wants to use and merge them into community-supported standards, he said. And in a war for talent, companies that embrace open source are more attractive to developers. 他认为,这些参与开源的员工更具备公司想拥有的竞争力并将一些功能融入至社区所支持的标准中。且在人才争夺战中,拥抱开源的公司也更受到开发人员的青睐。 “Lastly, open source is driven by a community of technical experts you may not be able to hire,” he said. “When employees actively contribute and collaborate with these experts, they’ll be better informed of best practices and bring them back to your organization. “最后,开源项目是由你可能无法聘请的技术专家社区推动的”,他说,“当员工积极参与并于这些专家合作时,他们将能更好地深入这些最佳实践,并将这些收获带回到你的组织之中。” “You start to grow technical debt because when the original source changes and you’ve got a different version … It doesn’t take long for you to be the proud user and maintainer of a one-of-a-kind open source project variant.” —Suzanne Ambiel, director, open source marketing and strategy, VMware “当原始数据来源发生变化且你所使用的是不同的版本时,你的技术负债将越来越多...所以你很快就会变成一个开源项目里独一无二变体的”自豪“用户和维护人员。” — Suzanne Ambiel,VMware 开源营销和战略总监 “All of this should be rewarded — developers shouldn’t have to spend their free time honing their skills, as your company will quickly see benefits from their efforts.” “但是这一切终究不会白费--开发人员不应该把业余时间用在磨练他们的技能上,因为你的公司很快就会在他们的努力中看到好处。” An OSPO, Degionni suggested, can help achieve these goals, as well as help prioritize contributions and ensure collaboration. In addition, they can help provide governance that mirrors what companies would have for internally developed applications. Degionni认为,OSPO(开源计划办公室)可以帮助公司实现这些目标,以及帮助确定贡献的优先级并确保合作的进行。除此之外,他们也可以对公司内部开发应用程序方面的治理提供相关帮助。 “Members of the open source team are also in a position to be great internal evangelists for open source technologies, and act as bridges between the organization and the broader community,” he added. “开源团队的成员也可以成为开源技术的伟大内部布道师,并充当组织与更广泛社区之间的桥梁。”他补充道。 In the September survey from The New Stack, Linux Foundation Research and the TODO Group, nearly 53% of organizations with OSPOs said they saw more innovation as a result of having an OSPO, while almost 43% said they saw increased participation in external open source projects. 在 The New Stack、Linux Foundation Research 和 TODO Group 的 9 月调查中,近 53% 的拥有 OSPO的组织表示,由于拥有了OSPO,他们看到了更多创新,而近 43% 的组织表示,他们在外部开源项目的参与度上有所增加。 Part3More OSPO Benefits:A Business Edge Contributing to open source communities doesn’t just help the communities, but the companies that contribute to them, said Tom Hickman, chief innovation officer at ThreatX, a cybersecurity firm. 网络安全公司 ThreatX 的首席创新官 Tom Hickman 表示,为开源社区做出贡献,不仅有助于社区,还有助于为社区做出贡献的公司。 “Growing the community of developers around a project helps the code base, and attracts more developers,” he said. “It can become a virtuous circle.” “围绕一个项目而发展的开发人员社区,有助于代码库的形成,并吸引更多的开发人员参与”,他说,“这可以变成一个良性循环。” Also, companies that contribute to open source projects get twice the productive value from their use of open source than companies that don’t, according to research by Harvard Business School. 此外,根据哈佛商学院的研究,为开源项目作出贡献的公司从使用开源的项目中获得的生产价值,是不参与开源项目公司的两倍。 Many of the biggest companies in the world are contributing to open source, said Chris Aniszczyk, chief technology officer at Cloud Native Computing Foundation. He pointed to the Open Source Contributor Index as a reference for exactly just how much companies are doing. Cloud Native Computing Foundation 的首席技术官 Chris Aniszczyk 说,世界上许多巨头公司都为开源作出了贡献。他还提到,开源贡献者的指数是作为公司是否有所作为的参考。 The tech giants dominate the list: Google, Microsoft, Red Hat, Intel, IBM, Amazon, Facebook, VMware, GitHub and SAP are the top 10 contributors, in that order. But there are also a lot of end users on the top 100 list, said Aniszczyk, including Uber, the BBC, Orange, Netflix, and Square. 科技巨头占据了这份榜单的主导地位:谷歌、微软、红帽、英特尔、IBM、亚马逊、Facebook、VMware、GitHub 和 SAP 依次是排名前 10 的贡献者。但Aniszczyk 表示,但也有很多终端用户公司进入前 100 名,包括 Uber、BBC、Orange、Netflix 和 Square。 “We’ve always known working in upstream projects is not just the right thing to do —it’s the best approach to open source software development and the best way to deliver open source benefits to our customers,” he said. “It’s great to see that IT leaders recognize this as well.” “我们一直知道,在上游项目中工作不仅仅是关正确与否----它是开源软件开发的最佳方法,也是向客户提供开源福利的最佳方式“他说,“很高兴看到IT领导者们也认识到了这一点。” To contribute alongside these giants, companies need to have their own open source strategies, and having an open source program office can help. 为了和这些公司一起作出贡献,公司也需要有自己的开源策略,而拥有一个开源项目办公室则可以为其提供帮助。 “OSPOs provide a critical center of competency in a company when it comes to utilizing open source software,” he said. “在使用开源软件方面,OPSO为公司提供了一个至关重要的能力中心”他说。 It’s similar to the way that companies have security operations centers, he said. 这与公司拥有安全运营中心的方式类似,他说。 “Growing the community of developers around a project helps the code base, and attracts more developers. It can become a virtuous circle.” —Tom Hickman, chief innovation officer, ThreatX “围绕一个项目而发展的开发人员社区,有助于代码库的形成,并吸引更多的开发人员参与,这可以变成一个良性循环。” ——Tom Hickman,ThreatX 首席创新官 “If you don’t make the investment in a security team, you generally don’t expect your software to be secure or be able to respond to security incidents in a timely fashion,” he said. “如果你没有对安全团队进行相应投资,你通常是不会期望你的软件是安全的,也无法及时响应安全事件。”他说。 “The same logic applies to OSPOs and is why you see many leading companies out there such as Apple, Meta, Twitter, Goldman Sachs, Bloomberg, and Google all have OSPOs. They are ahead of the curve.” “同样的逻辑也适用于 OSPO,这就是为什么你会看到许多领先的公司,例如 Apple、Meta、Twitter、Goldman Sachs、Bloomberg 和 Google 都拥有 OSPO。他们走在了趋势的前面。” Support for open source activity within your organization can become a differentiator and marketing opportunity for software vendors. 而对组织内的开源活动的支持态度亦可成为软件供应商们的差异化原因与营销的机会。 According to a Red Hat survey released in February, 82% of IT leaders are more likely to select a vendor who contributes to the open source community. 根据Red Hat2月分发布的一项调查,82%的IT领导者更倾向于选择为开源社区作出贡献的软件供应商。 Respondents said that when vendors support open source communities they are more familiar with open source processes and are more effective if customers have technical challenges. 受访者表示,当供应商支持开源社区时,就表示着他们更熟悉开源的流程并且在客户遇到技术难题时会更加有效。 But it’s not just software vendors who benefit. 但收益的不仅仅是软件供应商们。 According to September’s survey by The New Stack, Linux Foundation Research, and the TODO Group, 57% of organizations with OSPOs use them to further strategic relationships and build partnerships. 根据 The New Stack、Linux Foundation Research 和 TODO Group 9 月份的调查,57% 拥有 OSPO 的组织将使用它们来进一步发展战略关系和建立合作伙伴关系。 Mark Hinkle started an open source program office back when he worked at Citrix a decade ago. He pointed out how having an OSPO in-house benefited the company. 十年前,Mark Hinkle 在 Citrix 工作时创办了一个开源计划办公室。他指出了在内部拥有一个 OSPO将如何使公司受益。 “For us the biggest job was to educate our employees who weren’t familiar with open source to get involved and be good community members,” he said. “We also provided guidance on how to make sure our IP didn’t enter projects without proper understanding and we made sure we didn’t incorporate open source that conflicted with our enterprise software licensing.” “对于我们来说,最大的工作是让不熟悉开源的员工学会并参与其中,成为优秀的社区成员”,他说,“我们还就如何确保我们的IP不会在没有正确理解的情况下进入项目的情况提供了指导,并确保我们没有与我们企业软件许可相冲突的开源项目合作。” The OSPO also helped Citrix identify strategic opportunities for the company to participate in open source projects and trade organizations like The Linux Foundation, he said. 他说,OSPO还帮助Citrix确定了公司参与开源项目和Linux基金会等贸易组织的战略机会。 Today, he’s the CEO and co-founder of TriggerMesh, a cloud native, open source integration platform. 如今,他是云原生开源集成平台 TriggerMesh 的首席执行官兼联合创始人。 There are some significant economic benefits to participating in the open source ecosystem, he said. 他说,参与开源系统对公司来说有着重大的经济效益。 “We participate in Knative to share the development of our underlying platform but we develop value-added services as part of our business,” he said. “By sharing the R and D for the platform, it gives us more resources to develop our own differentiated technology.” “我们参与Knative是为了分享我们基础底层平台的开发,但作为业务的一部分,我们也拥有相关的增值服务。”他说,“通过共享该平台的研发,这为我们提供了更多的资源来改进我们自己的差异化技术。” Part4How to Get Started in Open Source Sixty-three percent of companies in the September survey from The New Stack, Linux Foundation Research and the TODO Group said that having an OSPO was very or extremely critical to the success of their engineering or product teams, up from 54% in the previous annual study. 在 The New Stack、Linux Foundation Research 和 TODO Group 的 9 月份调查中,有 63% 的公司表示,拥有OSPO 对其工程或产品团队的成功至关重要,高于上一年度该项研究数据的 54%。 In particular, 77% said that their open source program had a positive impact on their software practices, such as improved code quality. 其中77% 的人表示他们的开源程序对他们的软件实践产生了积极影响,例如提高了代码质量。 But companies can’t always contribute to every single open source project that they use. 但公司也不可能总是为他们使用的每一个开源项目而花费精力。 “First, thin the herd a little bit,” advised VMware’s Ambiel. “首先,节流一下”,VMware 的 Ambiel 建议道。 Companies should look at the projects that make the most sense for their use cases. This is an area where an OSPO can help set priorities and ensure technical and strategic alignment. 公司应该关注投入使用中最有意义的项目。而这也是OSPO可以帮助确定优先事项并确保技术与战略一致性的领域。 Then, developers should go and check out the projects themselves. Projects typically offer online documentation, often with contributor guides, governance documents, and lists of open issues. 之后,开发人员应该自己去了解一下。项目通常提供相关在线文档,一般包含贡献着指南、治理文档和未解决问题列表。 “For the projects that rise to the top of your strategic list, introduce yourself — say hello,” she said. “Go to the Slack channel or the distribution list and ask where they need help. Maybe they don’t need help and everything is good. Or maybe they can use a new person to review code.” “对于那些上升到你的战略清单顶端的项目,你可以介绍一下自己----打个招呼”,她说。“然后转到Slack频道或者分发列表,询问他们需要帮助的地方。也许他们不需要帮助,一切完好;又或者他们也有可能使用新人来审查核验代码。” An open source program office can not only help make a business case for contributing to the open source community, Ambiel said, but can help companies do it in a way that’s safe, secure and sound. Ambiel 说,开源项目办公室不仅可以帮助制定为开源社区做出贡献的商业案例,还可以帮助公司以安全、可靠和健全的方式来做这件事。 “If I work for a company and want to contribute to open source, I don’t want to accidentally disclose, divulge or undermine any patents,” she said. “An OSPO helps you make smart choices.” “如果我为一家公司工作,并想为开源做出贡献,我不想意外披露、泄露或破坏任何专利,”她说。“而OSPO可以帮助您做出明智的选择。” An OSPO can also help provide leadership and the guiding philosophy about supporting open source, she said. “It can provide guidance, mentorship, coaching and best practices.” 她说,OSPO还可以在开源方面提供领导力和指导理念的支持。“它可以提供引领、指导、辅导和最佳实践的作用。” Commitment to support open source has to start at the top, said Anaïs Urlichs, developer advocate at Aqua Security. Aqua Security的开发人员倡导者Anaïs Urlichs则认为,支持开源的承诺必须从高层开始。 “Too often,” she said, “companies do not value investment into open source, so employees are not encouraged to contribute to it.” 她说,“公司在多数时候往往不重视对开源的投资,所以员工自然而然不被鼓励对此作出贡献。” In those cases, employees with a passion for open source end up contributing during their free time, which is not sustainable. 在这些情况下,员工对于开源的热情也会在空闲时间里对开源的建设而消散殆尽,这对于开源的发展来说是不可持续的。 “If companies rely on open source projects, it is important to make open source contributions part of an engineer’s work schedule,” she said. “Some companies define a time percentage that employees can contribute to open source as part of their normal workday.” “如果公司对开源项目依赖度高,那么将开源贡献纳入工程师的日程安排是很重要的,”她说。“一些公司定义了员工可以为开源建设的时间百分比,将其作为他们正常工作日的一部分。” The New Stack is a wholly owned subsidiary of Insight Partners, an investor in the following companies mentioned in this article: Sysdig, Aqua Security. The New Stack 是 Insight Partners 的全资子公司,Insight Partners 是本文提到的以下公司的投资者:Sysdig、Aqua Security。 相关阅读 | Related Reading 《开源合规指南(企业篇)》正式发布,为推动我国开源合规建设提供参考 “目标->用户->指标”——企业开源运营之道|瞰道@谭中意 开源之夏邀请函——仅限高校学子开启 开源社简介 开源社成立于 2014 年,是由志愿贡献于开源事业的个人成员,依 “贡献、共识、共治” 原则所组成,始终维持厂商中立、公益、非营利的特点,是最早以 “开源治理、国际接轨、社区发展、开源项目” 为使命的开源社区联合体。开源社积极与支持开源的社区、企业以及政府相关单位紧密合作,以 “立足中国、贡献全球” 为愿景,旨在共创健康可持续发展的开源生态,推动中国开源社区成为全球开源体系的积极参与及贡献者。 2017 年,开源社转型为完全由个人成员组成,参照 ASF 等国际顶级开源基金会的治理模式运作。近八年来,链接了数万名开源人,集聚了上千名社区成员及志愿者、海内外数百位讲师,合作了近百家赞助、媒体、社区伙伴。 本篇文章为转载内容。原文链接:https://blog.csdn.net/kaiyuanshe/article/details/124976824。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-05-03 09:19:23
273
转载
转载文章
... 一、概述: B/S应用系统的报表打印一直以来都是一个难题,以前常规的思路是通过在浏览器中安装ActiveX插件以获得直接驱动打印机的能力。 但是,随着浏览器的发展,越来越多的浏览器厂商禁止安装ActiveX,以避免因ActiveX组件导致的各种安全问题。 为解决B/S打印中的痛点,我工作室开发了本报表服务器,完美地解决了在浏览器端不用ActiveX而获得与C/S系统一样的打印能力。 本报表系统不需要在浏览器安装任何插件,只需通过JavaScript即可实现报表精确打印以及打印过程免人工介入。 ------------- 二、特点: 1、高兼容:不需要在浏览器端和服务端安装任何插件,在浏览器插件被各大浏览器纷纷禁用的今天,无插件设计兼容绝大多数浏览器; 2、免安装:软件即拷即用,不安装,不污染操作系统,让操作系统历久弥新; 3、可视化:可视化的模板设计器,通过拖拽即可完成模板设计; 4、高精度:实现精确到毫米的打印精度,对于一些格式复杂,要求精确打印的场合,可以很容易达到毫米级精度; 5、易套打:可视化的模板设计器,在模板中加入一个票据格式的底图,可以很方便地实现套打,对于实现发票、快递面单、支票等打印毫无压力; 6、功能强:从简单报表、主从报表到嵌套报表甚至交叉报表,均能轻松应对。还有一维二维条形码,甚至,还有逆天的脚本功能,只有想不到,没有做不到; 7、自动化: 打印过程中全部自动化,无需象生成PDF、Word、Excel那样还需要人工再点打印; 8、易部署:打印模板既可以部署在客户端(与 cfprint.exe 程序放在同一目录下),也支持部署在服务端随报表数据一起传到客户端; 9、目标活:支持在数据文件中或模板中指定要输出的打印机,发票用针打、报表用激光打、小票用小票机,专机专打; 三、使用前提条件: 1、IE6以上版本、Chrome(谷歌浏览器)4.0以上版本、Firefox 4.0以上版本、Opera 11以上版本、Safari 5.0.2以上版本、iOS 4.2以上版本 或使用Chrome内核、Firefox内核的浏览器均可直接使用本打印系统; 2、在进行打印前,需要先设计好打印模板(模板设计器请见第五节); 3、打印数据必须Json的格式发送给打印服务器,并且数据必须满足指定的格式(见下文); 四、数据格式说明: 下面以一个跨境电商快递面单数据为例解释一下数据各项的含义; { "template": "waybill.fr3", /打印模板文件名。除了指定模板文件以外,还支持把模板嵌入到数据文件中,以实现在服务器端灵活使用打印模板,格式如下:/ /"template": "base64:QTBBRTNEQTE3MkFFQjIzNEFERD<后面省略>" / "ver": 4, /数据模板文件版本/ "Copies": 3, /打印份数,支持指定打印份数/ "Duplex": 1, /是否双面打印,0:默认,不双面,1:垂直,2:水平,3:单面打印(simplex)/ "Printer": "priPrinter", /指定打印机,本系统支持在数据文件中指定打印机,也支持在打印模板中指定打印机/ "PageNumbers": "", /要打印的页码范围,同打印机的打印设置里的格式相同,例如:"1,2,3"表示打印前3页, “2-5”:表示打印第2到5页,“1,2,4-8”表示打印第1、2、4到8页/ "Preview": 1, /是否预览,跟主界面上选择“预览”效果相同,取值为0:不预览,1:预览/ "Tables":[ /数据表数组/ { "Name": "Table1", /表名/ "Cols": [ /字段定义/ { "type": "str", /字段类型,可选值:String,Str,Integer,Int,Smallint,Float,Long, Blob,/ /对于图片、PDF等使用Blob类型,并把值进行Base64编码,并加前缀:/ / "base64/pdf:" 字段值是PDF; "base64/jpg:" 字段值是jpg; "base64/png:" 字段值是png; "base64/gif:" 字段值是gif; / "size": 255, /字段长度/ "name": "HAWB", /字段名称,必须与打印模板中的打印项名称相同/ "required": false /字段是否必填/ }, { "type": "int", "size": 0, "name": "NO", "required": false }, { "type": "float", "size": 0, "name": "报关公司面单号", "required": false }, { "type": "integer", "size": 0, "name": "公司内部单号", "required": false }, { "type": "str", "size": 255, "name": "发件人", "required": false }, { "type": "str", "size": 255, "name": "发件人地址", "required": false }, { "type": "str", "size": 255, "name": "发件人电话", "required": false }, { "type": "str", "size": 255, "name": "发货国家", "required": false }, { "type": "str", "size": 255, "name": "收件人", "required": false }, { "type": "str", "size": 255, "name": "收件人地址", "required": false }, { "type": "str", "size": 255, "name": "收件人电话", "required": false }, { "type": "str", "size": 255, "name": "收货人证件号码", "required": false }, { "type": "str", "size": 255, "name": "收货省份", "required": false }, { "type": "float", "size": 0, "name": "总计费重量", "required": false }, { "type": "int", "size": 0, "name": "总件数", "required": false }, { "type": "float", "size": 0, "name": "申报总价(CNY)", "required": false }, { "type": "float", "size": 0, "name": "申报总价(JPY)", "required": false }, { "type": "int", "size": 0, "name": "件数1", "required": false }, { "type": "str", "size": 255, "name": "品名1", "required": false }, { "type": "float", "size": 0, "name": "单价1(JPY)", "required": false }, { "type": "str", "size": 255, "name": "单位1", "required": false }, { "type": "float", "size": 0, "name": "申报总价1(CNY)", "required": false }, { "type": "float", "size": 0, "name": "申报总价1(JPY)", "required": false }, { "type": "int", "size": 0, "name": "件数2", "required": false }, { "type": "str", "size": 255, "name": "品名2", "required": false }, { "type": "float", "size": 0, "name": "单价2(JPY)", "required": false }, { "type": "str", "size": 255, "name": "单位2", "required": false }, { "type": "float", "size": 0, "name": "申报总价2(CNY)", "required": false }, { "type": "float", "size": 0, "name": "申报总价2(JPY)", "required": false }, { "type": "AutoInc", "size": 0, "name": "ID", "required": false }, { "type": "blob", "size": 0, "name": "附件", "required": false } ], "Data": [ /数据行定义,每一行含义见上面的字段定义/ { "HAWB": "860014010055", "NO": 1, "报关公司面单号": 200303900791, "公司内部单号": 730293, "发件人": "NAKAGAWA SUMIRE 2", "发件人地址": " 991-199-113,Kameido,Koto-ku,Tokyo", "发件人电话": "03-3999-3999", "发货国家": "日本", "收件人": "张三丰", "收件人地址": "上海市闵行区虹梅南路1660弄蔷薇八村99号9999室", "收件人电话": "182-1234-8888", "收货人证件号码": null, "收货省份": null, "总计费重量": 3.2, "总件数": 13, "申报总价(CNY)": null, "申报总价(JPY)": null, "件数1": 10, "品名1": "纸尿片", "单价1(JPY)": null, "单位1": null, "申报总价1(CNY)": null, "申报总价1(JPY)": null, "件数2": null, "品名2": null, "单价2(JPY)": null, "单位2": null, "申报总价2(CNY)": null, "申报总价2(JPY)": null, "ID": 1, "附件": "base64/pdf:JVBERi0xLjQKJcDIzNINCjEgMCBvYmoKPDwKL1RpdGxlICh3YXliaWxsLmZyMykKL0F1dGhvciAoc2hlbmcpCi9DcmVhdG9yIChwZGZGYWN0b3J5IFBybyB3d3cucGRmZmFjdG9yeS5jb20pCi9Qcm9kdWNlciAocGRmRmFjdG9yeSBQcm8gNS4zNSBcKFdpbmRvd3MgNyBVbHRpbWF0ZSB4ODYgQ2hpbmVzZSBcKFNpbXBsaWZpZWRcKVwpKQovQ3JlYXRpb25EYXRlIChEOjIwMTcwMjI3MTIyODM2KzA4JzAwJykKPj4KZW5kb2JqCjUgMCBvYmoKPDwKL0ZpbHRlci9GbGF0ZURlY29kZQovTGVuZ3RoIDQwNAo+PnN0cmVhbQ0KSImVVMlOw0AMvecrTLkUoZqxZ80VhR44gTQSH4CKEKJIhQO/j2cS0skGrRo1cWy/97xkDvAIByC4B4We4Rso5EvZZLLxaAx87uAVnuCjIg5o5bULqBn2FVmk3nzvTNKYjTZ2aPWhX1XivY3VzZauCWqsHcSXqhCyIVDykxspSbQOa4a4F7dwxGdYw8UVxDcB4D79mBMIgymyNgqV0brNfMiJKj832w6llHHEcZQAZthXlznvLlZSRBve/kuQIfROkqTy2MwKZcFxKbg5UxnVSUhOnJEyniVxiiZSaKSLGEB4ORznOem/FIC1d1S37SfmpDMB2K587WywphzAMq+WNNcTC9CQmAtaGhJKpgtLc5O6Qwhlj5YlWAFaVnBC6TYDjksftvyvNW43WG6yDkmQFy25sjV0sx76XdKa3NOlGYf20vq1GfqNyRsi/mbWr11HNbdok+DfiaxXs2CcGp3c5XchApUn5aF/2ExfWYtKThw5KMx/3/dJeK5GlnVnf9YKjao/hSgkxWTySZMbUyzFD6PnEr4KZW5kc3RyZWFtCmVuZG9iago0IDAgb2JqCjw8Ci9UeXBlL1BhZ2UKL1BhcmVudCAzIDAgUgovTWVkaWFCb3hbMCAwIDE0MiAyODNdCi9SZXNvdXJjZXMKPDwKL1Byb2NTZXRbL1BERi9UZXh0XQovRm9udAo8PAovRjErMSA2IDAgUgovRjIgNyAwIFIKPj4KPj4KL0NvbnRlbnRzIDUgMCBSCj4+CmVuZG9iago2IDAgb2JqCjw8Ci9UeXBlL0ZvbnQKL1N1YnR5cGUvVHJ1ZVR5cGUKL0Jhc2VGb250IC9BSEpTV1orTlNpbVN1bgovTmFtZS9GMSsxCi9Ub1VuaWNvZGUgOCAwIFIKL0ZpcnN0Q2hhciAzMgovTGFzdENoYXIgMzUKL1dpZHRocyBbMTAwMCAxMDAwIDEwMDAgMTAwMF0KL0ZvbnREZXNjcmlwdG9yIDkgMCBSCj4+CmVuZG9iago5IDAgb2JqCjw8Ci9UeXBlL0ZvbnREZXNjcmlwdG9yCi9Gb250TmFtZSAvQUhKU1daK05TaW1TdW4KL0ZsYWdzIDcKL0ZvbnRCQm94Wy04IC0xNDUgMTAwMCA4NTldCi9TdGVtViA1MDAKL0l0YWxpY0FuZ2xlIDAKL0NhcEhlaWdodCA4NTkKL0FzY2VudCA4NTkKL0Rlc2NlbnQgLTE0MQovRm9udEZpbGUyIDEwIDAgUgo+PgplbmRvYmoKOCAwIG9iago8PAovRmlsdGVyL0ZsYXRlRGVjb2RlCi9MZW5ndGggMjQ2Cj4+c3RyZWFtDQpIiW1QwUrEMBS85yve0cVDtnGtK5SA7Fqs4CpGELxlk9caMGlI00P/3qRbVhQPecxj3gyTobtm3zgTgb6EXgmM0BqnAw79GBTCETvjoGCgjYrLNk9lpSc0icU0RLSNa3tSVYS+JnKIYYILevfwKN4/Lg/CWDG6FdDnoDEY1/3HidH7L7ToIqwJ56CxTfZP0h+kRfhz/8O+TR6BzXuxBOs1Dl4qDNJ1CBVb8zSuOKDTvzmyOSmOrfqUgZwut/X+lidcJFyWrM6YZXy9vck4GVWb+7rkJPktyuyc6oBzXDWGkH4ydzbHzAGNw3Otvvc5T37kGxjtexEKZW5kc3RyZWFtCmVuZG9iagoxMCAwIG9iago8PAovRmlsdGVyL0ZsYXRlRGVjb2RlCi9MZW5ndGggMTI3OAovTGVuZ3RoMSAyNjc2Cj4+c3RyZWFtDQpIie1WXWwUVRQ+997ZmZ2d353dmdku3R+26+7SrSUtdBdWWlpaCP4UkEIKUaObsm3R3XapxVCfeJAXjcbwYDSYIG8kRm3ExAqJERMeTAgPhjdrNDExijHxJ8QXw3ju7tAEjEEfjd7Jvff7zjn33nPu7wABABVOAoPhqUa1KYjMQclVAGJNPbeYljawnxB/DUA/nm7ONB46d/o7AOEttNFm6kvTy9dfOIZ8GfXnZ2vVI6F6igJIh1BfmkUBkm+Qv4o8O9tYPCEA9CL/AHmsPj9VpR1kDjmOB3qjeqJJPt0+iXwVeXqu2qi9d+7FN5H/jj6ca84/u+j9CBqAzMdPNxdqzcDqXmwrf4L8fcwEeDw8IiAi3DNRJgTubfVvTt7/6T+d4G2g0MQseLe8r5CLEIQQng8dTLAgCg7EIA6dkOSSv9Sjxd8YK4nfZ7jpOvGj3g04CJtgC1zG/oahDIPQD9tg1fsSJmEcFEi18mnUPI8e1mEe0vjFcUTuA88GwHKh5+H9h3aOrVu//vD9fEMLoHg/w024hhZd0A27ALaTJNFJTtpUdrtEieNekhelfKmcy5cdt1Tuykj5csvGTdJS2RbtTC9rGQxwFbaTTlEnJITEoSXDKsrhuBMQlQ45XaQbo7EOmrXMwGhQGaKWQTUxKqeHSo7dszVnh2KCEXFlTZELUli+ShVVk2NJ08kmo45NI53BbJglE67FbD3ZySo0pJtK52shi1EqBFTBsJkbNDR5gsmKFuSx6d4P8CvGxnDuHagAlO1NA3mXexh1pYEuWypt5qJWrHarSBIMSOql7YhdnUiOy8M6ODltHpBNmRiTBtEnz3xk2LXNWuSANWpb9IG+lBq5j/YojigK4dSDmnImmeyXQ5q0xQxqstjRpyYSVcPOaJENAcICgkqNmNltsfWjmhBSbG2coY+q9z38gt4GIAEZ9DVJxFzeXwbHRa9yt5cB/WmtxDE9HBaVxy+azpCWKoxE2GBq4ygZ6U6o6zRlq56IK9fkqJMO95nOSDEbEJhqZYoaixSLw4xV8vkK7mTZ+xbX/3PI4t6C8ua8K9lrs4GTVGqv6QD6kB8iOHGiQUqDhDPKmYT2Ufcsickp1RrsVq3dxCQ9uITjRdVgiibYQSGwg8QNFrTjITsYEbUgeSWXVKR+1aqo1iOG1NfH5EpnlLq96xRRMc+nwk/nsWlmS1oXM4oszVqx1jsUkN7t+e3R608a226C0n6YPnx9x0leX7k0thtP5Bco5W+dinG1Ezdb9VYhS8C71aLkrit97V1DBe9Vx6xiln3xHFzBZ/CA35dI6tC31vNG2ICgOnjJtzXgot8/AQluj0URSz4WEOk+FhHbPmbg4ilnQAQZJTqe9DamiEd8jPsZ9vpYRPyEjxn+AzzDcVDAtiK84WPe9qyPBZS/42Pe9oKPGeTg8p6Jo42J43P7azPH69UFn/lV88j0rurU4vzCUnrfwnwl7YthD0zAUWhgeRynaD/UYAZRHaqwcJfuTtaEIzCN10wVpmARL6kFWMJrah/W83hA03da15Yfe2nvxJ29+7J/1KvfpjXP7Xf8Bv+n+dNegJE4CRMTb9YC7mIdClgbfq0SDQcoEM3nOvJYW35hV2EfWSHeqZchsdyPF+zyycThFSLunMWia2yFCBwJHAVaaOdTiDila5RyyjilnDJOYU0LnBJOgVPSNUaK7QTwBzD6P0QKZW5kc3RyZWFtCmVuZG9iago3IDAgb2JqCjw8Ci9UeXBlL0ZvbnQKL1N1YnR5cGUvVHJ1ZVR5cGUKL0Jhc2VGb250IC9BcmlhbE1UCi9OYW1lL0YyCi9GaXJzdENoYXIgMzIKL0xhc3RDaGFyIDI1NQovV2lkdGhzIFsyNzggMjc4IDM1NSA1NTYgNTU2IDg4OSA2NjcgMTkxIDMzMyAzMzMgMzg5IDU4NCAyNzggMzMzIDI3OCAyNzgKNTU2IDU1NiA1NTYgNTU2IDU1NiA1NTYgNTU2IDU1NiA1NTYgNTU2IDI3OCAyNzggNTg0IDU4NCA1ODQgNTU2CjEwMTUgNjY3IDY2NyA3MjIgNzIyIDY2NyA2MTEgNzc4IDcyMiAyNzggNTAwIDY2NyA1NTYgODMzIDcyMiA3NzgKNjY3IDc3OCA3MjIgNjY3IDYxMSA3MjIgNjY3IDk0NCA2NjcgNjY3IDYxMSAyNzggMjc4IDI3OCA0NjkgNTU2CjMzMyA1NTYgNTU2IDUwMCA1NTYgNTU2IDI3OCA1NTYgNTU2IDIyMiAyMjIgNTAwIDIyMiA4MzMgNTU2IDU1Ngo1NTYgNTU2IDMzMyA1MDAgMjc4IDU1NiA1MDAgNzIyIDUwMCA1MDAgNTAwIDMzNCAyNjAgMzM0IDU4NCAyNzgKNTU2IDI3OCAyNzggMjc4IDI3OCAyNzggMjc4IDI3OCAyNzggMjc4IDI3OCAyNzggMjc4IDI3OCAyNzggMjc4CjI3OCAyNzggMjc4IDI3OCA5MjMgMjc4IDI3OCAyNzggMjc4IDI3OCAyNzggMjc4IDI3OCAyNzggMjc4IDI3OAoyNzggMjc4IDI3OCAyNzggMjc4IDI3OCAyNzggMjc4IDI3OCAyNzggMjc4IDI3OCAyNzggMjc4IDI3OCAyNzgKMjc4IDI3OCAyNzggMjc4IDI3OCAyNzggMjc4IDI3OCAyNzggMjc4IDI3OCAyNzggMjc4IDI3OCAyNzggMjc4CjI3OCA1NTYgNTU2IDMzMyA1NTYgNTU2IDU1NiA1NTYgMjc4IDY2NyAyNzggMjc4IDI3OCAyNzggMjc4IDY2NwoyNzggNjY3IDI3OCAyNzggMjc4IDI3OCAyNzggNjY3IDI3OCA2NjcgMjc4IDY2NyAyNzggNjY3IDI3OCAyNzgKMjc4IDY2NyAyNzggNjY3IDU1MiAyNzggMjc4IDI3OCAyNzggNTU2IDI3OCA1NTYgMjc4IDI3OCAyNzggNjY3CjI3OCA2NjcgMjc4IDI3OCAyNzggNjY3IDI3OCA2NjcgMjc4IDY2NyAyNzggNjY3IDI3OCA2NjcgMjc4IDI3OF0KL0VuY29kaW5nL1dpbkFuc2lFbmNvZGluZwovRm9udERlc2NyaXB0b3IgMTEgMCBSCj4+CmVuZG9iagoxMSAwIG9iago8PAovVHlwZS9Gb250RGVzY3JpcHRvcgovRm9udE5hbWUgL0FyaWFsTVQKL0ZsYWdzIDMyCi9Gb250QkJveFstNjY1IC0zMjUgMjAwMCAxMDA2XQovU3RlbVYgOTUKL0l0YWxpY0FuZ2xlIDAKL0NhcEhlaWdodCA5MDUKL0FzY2VudCA5MDUKL0Rlc2NlbnQgLTIxMgo+PgplbmRvYmoKMyAwIG9iago8PAovVHlwZS9QYWdlcwovQ291bnQgMQovS2lkc1s0IDAgUl0KPj4KZW5kb2JqCjIgMCBvYmoKPDwKL1R5cGUvQ2F0YWxvZwovUGFnZXMgMyAwIFIKL1BhZ2VMYXlvdXQvU2luZ2xlUGFnZQovVmlld2VyUHJlZmVyZW5jZXMgMTIgMCBSCj4+CmVuZG9iagoxMiAwIG9iago8PAovVHlwZS9WaWV3ZXJQcmVmZXJlbmNlcwo+PgplbmRvYmoKeHJlZgowIDEzCjAwMDAwMDAwMDAgNjU1MzUgZg0KMDAwMDAwMDAxNiAwMDAwMCBuDQowMDAwMDA0MjEzIDAwMDAwIG4NCjAwMDAwMDQxNTggMDAwMDAgbg0KMDAwMDAwMDcxNiAwMDAwMCBuDQowMDAwMDAwMjQxIDAwMDAwIG4NCjAwMDAwMDA4NzIgMDAwMDAgbg0KMDAwMDAwMjkyNyAwMDAwMCBuDQowMDAwMDAxMjQ1IDAwMDAwIG4NCjAwMDAwMDEwNTUgMDAwMDAgbg0KMDAwMDAwMTU2MiAwMDAwMCBuDQowMDAwMDAzOTg5IDAwMDAwIG4NCjAwMDAwMDQzMTAgMDAwMDAgbg0KdHJhaWxlcgo8PAovU2l6ZSAxMwovSW5mbyAxIDAgUgovUm9vdCAyIDAgUgovSURbPDVBMkU0QzkzOTdENEU0RDE3NkIwOTBDRUU3OTMxMzRGPjw1QTJFNEM5Mzk3RDRFNEQxNzZCMDkwQ0VFNzkzMTM0Rj5dCj4+CnN0YXJ0eHJlZgo0MzU2CiUlRU9GCg==", }, { "HAWB": "860014010035", "NO": 2, "报关公司面单号": 200303900789, "公司内部单号": 730291, "发件人": "NAKAGAWA SUMIRE", "发件人地址": " 991-199-113,Kameido,Koto-ku,Tokyo", "发件人电话": "03-3999-3999", "发货国家": "日本", "收件人": "张无忌", "收件人地址": "上海市闵行区虹梅南路1660弄蔷薇八村88号8888室", "收件人电话": "182-1234-8888", "收货人证件号码": null, "收货省份": null, "总计费重量": 3.2, "总件数": 13, "申报总价(CNY)": null, "申报总价(JPY)": null, "件数1": 10, "品名1": "纸尿片", "单价1(JPY)": null, "单位1": null, "申报总价1(CNY)": null, "申报总价1(JPY)": null, "件数2": null, "品名2": null, "单价2(JPY)": null, "单位2": null, "申报总价2(CNY)": null, "申报总价2(JPY)": null, "ID": 2, "附件":"base64/gif:R0lGODlhrgCuAPcAAAAAAAEBAQICAgMDAwQEBAUFBQYGBgcHBwgICAkJCQoKCgsLCwwMDA0NDQ4ODg8PDxAQEBERERISEhMTExQUFBUVFRYWFhcXFxgYGBkZGRoaGhsbGxwcHB0dHR4eHh8fHyAgICEhISIiIiMjIyQkJCUlJSYmJicnJygoKCkpKSoqKisrKywsLC0tLS4uLi8vLzAwMDExMTIyMjMzMzQ0NDU1NTY2Njc3Nzg4ODk5OTo6Ojs7Ozw8PD09PT4+Pj8/P0BAQEFBQUJCQkNDQ0REREVFRUZGRkdHR0hISElJSUpKSktLS0xMTE1NTU5OTk9PT1BQUFFRUVJSUlNTU1RUVFVVVVZWVldXV1hYWFlZWVpaWltbW1xcXF1dXV5eXl9fX2BgYGFhYWJiYmNjY2RkZGVlZWZmZmdnZ2hoaGlpaWpqamtra2xsbG1tbW5ubm9vb3BwcHFxcXJycnNzc3R0dHV1dXZ2dnd3d3h4eHl5eXp6ent7e3x8fH19fX5+fn9/f4CAgIGBgYKCgoODg4SEhIWFhYaGhoeHh4iIiImJiYqKiouLi4yMjI2NjY6Ojo+Pj5CQkJGRkZKSkpOTk5SUlJWVlZaWlpeXl5iYmJmZmZqampubm5ycnJ2dnZ6enp+fn6CgoKGhoaKioqOjo6SkpKWlpaampqenp6ioqKmpqaqqqqurq6ysrK2tra6urq+vr7CwsLGxsbKysrOzs7S0tLW1tba2tre3t7i4uLm5ubq6uru7u7y8vL29vb6+vr+/v8DAwMHBwcLCwsPDw8TExMXFxcbGxsfHx8jIyMnJycrKysvLy8zMzM3Nzc7Ozs/Pz9DQ0NHR0dLS0tPT09TU1NXV1dbW1tfX19jY2NnZ2dra2tvb29zc3N3d3d7e3t/f3+Dg4OHh4eLi4uPj4+Tk5OXl5ebm5ufn5+jo6Onp6erq6uvr6+zs7O3t7e7u7u/v7/Dw8PHx8fLy8vPz8/T09PX19fb29vf39/j4+Pn5+fr6+vv7+/z8/P39/f7+/v///ywAAAAArgCuAAAI/wD/CRxIsKDBgwgTKlzIsKHDhxAjSpxIsaLFixgzatzIsaPHjyBDihxJsqTJkyhTqlzJsqXLlzBjypxJs6bNmzhzhgTAs6fOnzJ7CuUJtOjKoUgBGF1a0mdBoUyjgiR60KnUqxqpVtWKtStFrgatev2ZtOxCsWHBjqVZtm3StEoVql37si1DswLRbo1LdyPUh0gr2r07t+9EvHKHIiQQOLFehI8NR3SbUHFBxm4bP+XbsLBkh3/z6rU8MLNpzhIjfz47Wmxo0adjH/a8unJhqK//xd6t2jbq2qx/E3xbOjNm2rpzg0YOvDgAAsG5UnYunCPz5rA7o0Y8XHn06t2xa/8H79jzbsjE94onPPs279eD1a/3ndr9+6HQp8Od79ivWe/FJRffZuTN1xtg6QlY4D/HURXZgQYypxl1rUkIIFwLindgg65deCF1k2WI3YHTWWhifSI2R5tpDXE4YXbsOccfeuAp5mJ5LAY4HlEQjmgeWqQR5CJ3Ou4Y5IwyLlZdbkhBtxORSCp4XZKwpYjRgFFKGWJ4KbXlZJYwSqXYhxoeyVKPClZppWEvqpQgjVqRuVqbXXIGIXxysmkmSjw1mNx4GK6J1Z58vnVioIIyRWihgZm4JJqD5imST40CuleiSy3aHaTLUfhnZQLCKZuYeTrVp3+e/hjqpe9lqqloavr/p1SjNZqJ331G4bcQY1JyiuOYXyJK4HY/StoSnZul6euvlH63aVo76kSphGnCmpWhBZLWGoJTujlttrNahaZqxC2orVrdVsuWqcjxiBu5+m3qoLmhMbnmsiPVG+dv7kKp5mmrfhrdsFxyu6508woXrr9g3dejd2Pem+6kyjVZVa8VKtxmZnB2PDG+HgGIbL/n4sqsviu6GyKm1sHrIcaxUvjmychW+/HEH/VWc8I7z8zti4jdzLKsztJXM4HoQQQx0FaC3DK4JB4tb8O+Fqux0jjnrPOdDxLLF5YZVdx01lp33a7L/WIosKz8jj10R0SiDbWcZPt2tcE1Tbj0lN3W/93xVj/fJDa7xgqcI9u2Lef0k/b5/N3hYXuYodTepky5qPJdS+iH3+Z9XeGAJx45yRrr5WfAMS0+m1wZna7u1AOqDjfoF7l3pb1zIZy732VfbpHtFbk+NbSK4+T7720jbza6IsreFO+WWoui5UBOfipZzhOm8vT04nko9tlrn67F4n+7aPgkHa/8z+NTdiOIB/MWlPr/Zuz4UQ7rWuf9J/ef+mAOoxjYjNSTYAVnJkIxIOxM1h7jsEp+XqEbaTiEsfxxTCFDipdXjqM43THPgq8algbpAqkjBQl6KMqS0LzGMxTibUZVwx3p0JeYSA3wWQLhlfhEuDB/oSoqENyP9P8cY0AKyox+2gHi3h4jLuuVzn433FKujmaruPBtd4PbF+1CB5QoVilZa6uhQd5XQR2FUIzgi5nd7GTFoZ2nVe1JI/zWOK+8BA9y9fNif3KSsTDmUUtfodwIF2g6F5ZtjBesYA8F47bzBdGP82vbaW6UNkZiTTUZBBgkYdJHUaGsbpyK2tcCaJPqLWhIMusUlVRZu0QikGopMuEZtbgy9j3xjPvb18okGTU1EnCJm0Ni+vSYuQV6soSaBGR2OrRFAfpwj0hjIENcZMABcqeAniNmMYs0qg7K7VEkGwhmStlEspmShVYZhi27Jzpxdi6blzEnV4zItnHVSljk5GIK//X/NGOpCp8HQ5oltVk8ZNLIk/DEYSBdycg2vlCg0GrmVGDZykHWEnWsUWBpLrXKl4yzYMr7i+poGb05yktI1/ufQkPqtYZ6qjyIeg5Iw8RJ/l0UopcUIn0eeLa39VOiOsVp8YRKVMwpyac/DRkWJaa2v3XwoPxhYuFg2bjpbbNM6LwiOjkayKBGlY3PLBI/CeZSk361h3qk6O5u5ySgRlA/smRmuBj3OhXGDY/vcqYhu+Iza+aVcXt96/J2uMnRIVUyCeQqTAtb0cPOqZOLDewXwcQ+s35SNBq9Iw2BY8FeYZSllG3oBWf42QZKNkofjahlRorL0FYUZk6zqWtvR7iwwNLRsbPlISFBJ9vc7lKqFo0pbl3rRTwKd7iUte1+gmk+316Eno1lkVt929pL/me6ucVuAzPr3IeepLrdvSptzxNezbI0f+V9rWhJmd71aQ657dUnbeP7vKfRd5hQHep9KZZf7e13mCwM3H/1qr7NDpiHUz3tgU+KM2wumL9JPOmDBTgws05YqbWS64UBnFUJb5jAb9Luhx8HXPiOWLGBOvF3S2ZgFdNMxC7+bYtjTOMa2/jGOM6xjnfM4x772MYBAQA7" } ] }, { "Name": "Table2", "Cols": [ { "type": "int", "size": 0, "name": "NO", "required": false }, { "type": "float", "size": 0, "name": "订单编号", "required": false }, { "type": "integer", "size": 0, "name": "下单日期", "required": false }, { "type": "str", "size": 255, "name": "下单平台", "required": false } ], "Data": [ { "NO": 1, "订单编号": 200303900791, "下单日期": "2017-01-20", "下单平台": "天猫" }, { "NO": 2, "订单编号": 200303900792, "下单日期": "2017-01-20", "下单平台": "京东" } ] } ] } 五、调用示例: <!-- ★★★ 模式1 ★★★ --> <!DOCTYPE html> <head> <meta charset="utf-8" /> <title>康虎云报表系统测试</title> </head> <body> <div style="width: 100%;text-align:center;"> <h2>康虎云报表系统</h2> <h3>打印测试(模式1)</h3> <div> <input type="button" id="btnPrint" value="打印" onClick="doSend(_reportData);" /> </div> </div> <div id="output"></div> </body> <script type="text/javascript"> //定义数据脚本 var _reportData = '{"template":"waybill.fr3","Cols":[{"type":"str","size":255,"name":"HAWB","required":false},<这里省略1000字> ]}'; //在浏览器控制台输出调试信息 console.log("reportData = " + _reportData); </script> <script language="javascript" type="text/javascript" src="cfprint.min.js"></script> <script language="javascript" type="text/javascript" src="cfprint_ext.js"></script> <script language="javascript" type="text/javascript"> /下面四个参数必须放在myreport.js脚本后面,以覆盖myreport.js中的默认值/ var _delay_send = 1000; //发送打印服务器前延时时长,-1则表示不自动打印 var _delay_close = 1000; //打印完成后关闭窗口的延时时长, -1则表示不关闭 var cfprint_addr = "127.0.0.1"; //打印服务器监听地址 var cfprint_port = 54321; //打印服务器监听端口 </script> </html> <!-- ★★★ 模式2 ★★★ --> <?php //如果有php运行环境,只需把该文件扩展名改成 .php,然后上传到web目录即可在真实服务器上测试 header("Access-Control-Allow-Origin: "); ?> <!DOCTYPE html> <head> <meta charset="utf-8" /> <title>康虎云报表系统测试</title> <style type="text/css"> output {font-size: 12px; background-color:F0FFF0;} </style> </head> <body> <div style="width: 100%;text-align:center;"> <h2>康虎云报表系统(Ver 1.3.0)</h2> <h3>打印测试(模式2)</h3> <div style="line-height: 1.5;"> <div style="width: 70%; text-align: left;"> <b>一、首先按下列步骤设置:</b><br/> 1、运行打印服务器;<br/> 2、按“停止”按钮停止服务;<br/> 3、打开“设置”区;<br/> 4、在“常用参数-->服务模式”中,选择“模式2”;<br/> 5、按“启动”按钮启动服务。 </div> <div style="width: 70%; text-align: left;"> <b>二、按本页的“打印”按钮开始打印。</b><br/> </div><br/> <input type="button" id="btnPrint" value="打印" /><br/><br/> <div style="width: 70%; text-align: left; font-size: 12px;"> 由于JavaScript在不同域名下访问会出现由来已久的跨域问题,所以正式部署到服务器使用时,要解决跨域问题。<br/> 对于IE8以上版本浏览器,只需增加一个reponse头:Access-Control-Allow-Origin即可,而对于php、jsp、asp/aspx等动态语言而言,增加一个response头是非常简单的事,例如:<br/> <b>在php:</b><br/><span style="color: red;"> <?php <br/> header("Access-Control-Allow-Origin: ");<br/> ?><br/> </span> <b>在jsp:</b><br/><span style="color: red;"> <% <br/> response.setHeader("Access-Control-Allow-Origin", ""); <br/> %><br/> </span> <b>在asp.net中:</b><br/><span style="color: red;"> Response.AppendHeader("Access-Control-Allow-Origin", ""); </span>,<br/>其他语言里,大家请自行搜索“ajax跨域”。而对于IE8以下的浏览器,大家可以自行搜索“IE6+Ajax+跨域”寻找解决办法吧,也可以联系我们帮助。 </div> </div> </div> <div id="output"></div> </body> <!-- 引入模式2所需的javascript支持库 --> <script type="text/javascript" src="cfprint_mode2.min.js" charset="UTF-8"></script> <!-- 构造报表数据 --> <script type="text/javascript"> var _reportData = '{"template":"waybill.fr3","ver":3, "Tables":[ {"Name":"Table1", "Cols":[{"type":"str","size":255,"name":"HAWB","required":false},{"type":"int","size":0,"name":"NO","required":false},{"type":"float","size":0,"name":"报关公司面单号","required":false},{"type":"integer","size":0,"name":"公司内部单号","required":false},{"type":"str","size":255,"name":"发件人","required":false},{"type":"str","size":255,"name":"发件人地址","required":false},{"type":"str","size":255,"name":"发件人电话","required":false},{"type":"str","size":255,"name":"发货国家","required":false},{"type":"str","size":255,"name":"收件人","required":false},{"type":"str","size":255,"name":"收件人地址","required":false},{"type":"str","size":255,"name":"收件人电话","required":false},{"type":"str","size":255,"name":"收货人证件号码","required":false},{"type":"str","size":255,"name":"收货省份","required":false},{"type":"float","size":0,"name":"总计费重量","required":false},{"type":"int","size":0,"name":"总件数","required":false},{"type":"float","size":0,"name":"申报总价(CNY)","required":false},{"type":"float","size":0,"name":"申报总价(JPY)","required":false},{"type":"int","size":0,"name":"件数1","required":false},{"type":"str","size":255,"name":"品名1","required":false},{"type":"float","size":0,"name":"单价1(JPY)","required":false},{"type":"str","size":255,"name":"单位1","required":false},{"type":"float","size":0,"name":"申报总价1(CNY)","required":false},{"type":"float","size":0,"name":"申报总价1(JPY)","required":false},{"type":"int","size":0,"name":"件数2","required":false},{"type":"str","size":255,"name":"品名2","required":false},{"type":"float","size":0,"name":"单价2(JPY)","required":false},{"type":"str","size":255,"name":"单位2","required":false},{"type":"float","size":0,"name":"申报总价2(CNY)","required":false},{"type":"float","size":0,"name":"申报总价2(JPY)","required":false},{"type":"int","size":0,"name":"件数3","required":false},{"type":"str","size":255,"name":"品名3","required":false},{"type":"float","size":0,"name":"单价3(JPY)","required":false},{"type":"str","size":255,"name":"单位3","required":false},{"type":"float","size":0,"name":"申报总价3(CNY)","required":false},{"type":"float","size":0,"name":"申报总价3(JPY)","required":false},{"type":"int","size":0,"name":"件数4","required":false},{"type":"str","size":255,"name":"品名4","required":false},{"type":"float","size":0,"name":"单价4(JPY)","required":false},{"type":"str","size":255,"name":"单位4","required":false},{"type":"float","size":0,"name":"申报总价4(CNY)","required":false},{"type":"float","size":0,"name":"申报总价4(JPY)","required":false},{"type":"int","size":0,"name":"件数5","required":false},{"type":"str","size":255,"name":"品名5","required":false},{"type":"float","size":0,"name":"单价5(JPY)","required":false},{"type":"str","size":255,"name":"单位5","required":false},{"type":"float","size":0,"name":"申报总价5(CNY)","required":false},{"type":"float","size":0,"name":"申报总价5(JPY)","required":false},{"type":"str","size":255,"name":"参考号","required":false},{"type":"AutoInc","size":0,"name":"ID","required":false}],"Data":[{"公司内部单号":730293,"发货国家":"日本","单价1(JPY)":null,"申报总价2(JPY)":null,"单价4(JPY)":null,"申报总价2(CNY)":null,"申报总价5(JPY)":null,"报关公司面单号":200303900791,"申报总价5(CNY)":null,"收货人证件号码":null,"申报总价1(JPY)":null,"单价3(JPY)":null,"申报总价1(CNY)":null,"申报总价4(JPY)":null,"申报总价4(CNY)":null,"收件人电话":"182-1758-9999","收件人地址":"上海市闵行区虹梅南路1660弄蔷薇八村139号502室","HAWB":"860014010055","发件人电话":"03-3684-9999","发件人地址":" 1-1-13,Kameido,Koto-ku,Tokyo","NO":3,"ID":3,"单价2(JPY)":null,"申报总价3(JPY)":null,"单价5(JPY)":null,"申报总价3(CNY)":null,"收货省份":null,"申报总价(JPY)":null,"申报总价(CNY)":null,"总计费重量":3.20,"收件人":"张三丰2","总件数":13,"品名5":null,"品名4":null,"品名3":null,"品名2":null,"品名1":"纸尿片","参考号":null,"发件人":"NAKAGAWA SUMIRE 2","单位5":null,"单位4":null,"单位3":null,"单位2":null,"单位1":null,"件数5":null,"件数4":null,"件数3":3,"件数2":null,"件数1":10},{"公司内部单号":730291,"发货国家":"日本","单价1(JPY)":null,"申报总价2(JPY)":null,"单价4(JPY)":null,"申报总价2(CNY)":null,"申报总价5(JPY)":null,"报关公司面单号":200303900789,"申报总价5(CNY)":null,"收货人证件号码":null,"申报总价1(JPY)":null,"单价3(JPY)":null,"申报总价1(CNY)":null,"申报总价4(JPY)":null,"申报总价4(CNY)":null,"收件人电话":"182-1758-9999","收件人地址":"上海市闵行区虹梅南路1660弄蔷薇八村139号502室","HAWB":"860014010035","发件人电话":"03-3684-9999","发件人地址":" 1-1-13,Kameido,Koto-ku,Tokyo","NO":1,"ID":1,"单价2(JPY)":null,"申报总价3(JPY)":null,"单价5(JPY)":null,"申报总价3(CNY)":null,"收货省份":null,"申报总价(JPY)":null,"申报总价(CNY)":null,"总计费重量":3.20,"收件人":"张三丰","总件数":13,"品名5":null,"品名4":null,"品名3":null,"品名2":null,"品名1":"纸尿片","参考号":null,"发件人":"NAKAGAWA SUMIRE","单位5":null,"单位4":null,"单位3":null,"单位2":null,"单位1":null,"件数5":null,"件数4":null,"件数3":3,"件数2":null,"件数1":10},{"公司内部单号":730292,"发货国家":"日本","单价1(JPY)":null,"申报总价2(JPY)":null,"单价4(JPY)":null,"申报总价2(CNY)":null,"申报总价5(JPY)":null,"报关公司面单号":200303900790,"申报总价5(CNY)":null,"收货人证件号码":null,"申报总价1(JPY)":null,"单价3(JPY)":null,"申报总价1(CNY)":null,"申报总价4(JPY)":null,"申报总价4(CNY)":null,"收件人电话":"182-1758-9999","收件人地址":"上海市闵行区虹梅南路1660弄蔷薇八村139号502室","HAWB":"860014010045","发件人电话":"03-3684-9999","发件人地址":" 1-1-13,Kameido,Koto-ku,Tokyo","NO":2,"ID":2,"单价2(JPY)":null,"申报总价3(JPY)":null,"单价5(JPY)":null,"申报总价3(CNY)":null,"收货省份":null,"申报总价(JPY)":null,"申报总价(CNY)":null,"总计费重量":3.20,"收件人":"张无忌","总件数":13,"品名5":null,"品名4":null,"品名3":null,"品名2":null,"品名1":"纸尿片","参考号":null,"发件人":"NAKAGAWA SUMIRE 1","单位5":null,"单位4":null,"单位3":null,"单位2":null,"单位1":null,"件数5":null,"件数4":null,"件数3":3,"件数2":null,"件数1":10}]}]}'; if(window.console) console.log("reportData = " + _reportData); </script> <!-- 设置服务器参数 --> <script language="javascript" type="text/javascript"> var cfprint_addr = "127.0.0.1"; //打印服务器监听地址 var cfprint_port = 54321; //打印服务器监听端口 var _url = "http://"+cfprint_addr+":"+cfprint_port; </script> <!-- 编写回调函数用以处理服务器返回的数据 --> <script type="text/javascript"> / 参数: readyState: XMLHttpRequest的状态 httpStatus: 服务端返回的http状态 responseText: 服务端返回的内容 / var callbackSuccess = function(readyState, httpStatus, responseText){ if (httpStatus === 200) { //{"result": 1, "message": "打印完成"} var response = CFPrint.parseJSON(responseText); alert(response.message+", 状态码["+response.result+"]"); }else{ alert('打印失败,HTTP状态代码是:'+httpStatus); } } / 参数: message: 错误信息 / var callbackFailed = function(message){ alert('发送打印任务出错: ' + message); } </script> <!-- 调用发送打印请求功能 --> <script type="text/javascript"> (function(){ document.getElementById("btnPrint").onclick = function() { CFPrint.outputid = "output"; //指定调试信息输出div的id CFPrint.SendRequest(_url, _reportData, callbackSuccess, callbackFailed); //发送打印请求 }; })(); </script> </html> 六、模板设计器(重要!重要!!,好多朋友都找不到设计器入口) 在主界面上,双击右下角的“设计”两个字,即可打开模板设计工具箱,在工具箱有三个按钮和一个大文本框。三个按钮的作用分别是: 设计:以大文本框中的json数据为数据源,打开模板设计器窗口; 预览:以大文本框中的json数据为数据源,预览当前所用模板的打印效果; 打印:以大文本框中的json数据为数据源,向打印机输出当前所用模板生成的报表; 以后将会有详细的模板设计教程发布,如果您遇到紧急的难题,请向作者咨询。 本篇文章为转载内容。原文链接:https://blog.csdn.net/chensongmol/article/details/76087600。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-01 18:34:12
234
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
diff file1 file2
- 比较两个文件之间的差异。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"