前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[Groovy与Java交互处理日期时间]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
...联系我们,我们将第一时间进行核实并删除相应内容。 Hawk搜索引擎平台0.6.9测试版(提供下载) Hawk 搜索引擎平台是面向中小型网站,可以定制的垂直搜索引擎平台。本搜索引擎平台目标是方便用户搭建站内搜索、某个领域的垂直搜索、以及检索个人文档以及自己关注的网站信息的桌面搜索等应用领域。它改造自Lucene,Hadoop和Nutch系统,是纯Java的搜索平台软件,可以运行于Windows及Linux等平台,具备基本的抓取、索引和检索功能,本搜索引擎将免费提供,欢迎大家测试和使用,谢谢! Hawk 搜索引擎平台特点简介 对网页进行深度抓取和分析,自定义抓取规则,实现站内搜索。 可以索引各种常用类型文档,实现桌面文档检索。 单台PC服务器能索引上千万文档,可以用于中小型检索服务。 可以自定义网页展示模板,或XML接口,轻松与各种系统整合。 自动分析网页文本,提取新词,如人名,地名等。 支持检索词自动推荐以及繁简转换功能。 © 2008 Javen-Studio http://javenstudio.org/ 咖啡小屋 转载于:https://www.cnblogs.com/javenstudio/archive/2008/07/20/1247045.html 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_30763455/article/details/98564794。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-14 08:48:19
95
转载
AngularJS
...加载一次页面,后续的交互和内容更新均通过异步数据交换实现,无需重新加载整个页面。在AngularJS框架中,组件化开发能够有效地组织和管理这些动态更新的内容模块,使得构建复杂的单页面应用程序变得更加容易。 组件化开发 , 组件化开发是软件工程中的一种设计模式,特别是在前端开发领域广泛应用。它将大型的应用程序拆分成一系列独立、可复用的小型代码单元——组件。每个组件包含自身的视图模板、逻辑控制器及可能的数据输入输出接口,在AngularJS中可以通过定义自定义指令来创建这样的组件。组件化开发有助于提高代码复用性、降低耦合度、简化维护工作,并促进团队协作。 生命周期钩子(Lifecycle Hooks) , 在AngularJS以及其他现代前端框架中,生命周期钩子是一系列预定义的方法,它们会在组件从创建到销毁的过程中特定的时间点自动调用。例如,在AngularJS中,$onInit、$onChanges、$doCheck、$onDestroy等就是常见的生命周期钩子函数。开发者可以通过实现这些钩子方法,精确控制组件在不同生命周期阶段的行为,如初始化数据、处理属性变化、执行清理操作等。
2023-01-15 10:15:11
389
月下独酌-t
Docker
...ker 与其他部分;交互交互时,比如;包含虚拟环境;任何地方与网络之间的通信,或虚拟环境;任何地方与 Docker Hub 之间的通信。这意味着 Docker 在一定时间内无法完成所需的使用;超时,因此出现了操作超时问题;解决。 为了解决这个问题,我们可以采取以下方法;增加: 1. 增加时间限制;避免:通过修改 Docker 的设置文件;修改,可以增加 Docker 的时间限制;避免来避免使用;超时已超时的错误。比如;包含,在/etc/docker/daemon.json文件中添加以下内容: { "live-restore": true, "storage-driver": "overlay2", "iptables": false, "max-concurrent-downloads": 10, "max-concurrent-uploads": 10, "registry-mirrors": [ "http://dockerhub.azk8s.cn", "http://hub-mirror.c.163.com" ], "debug": false, "experimental": true, "log-driver": "json-file", "log-level": "warn", "metrics-addr": "0.0.0.0:9323", "default-shm-size": "8G" } 其中,max-concurrent-downloads和max-concurrent-uploads可以根据现实情况;相应进行校准;解决方法。 2. 改进;网络环境网络环境:在虚拟环境;任何地方与网络之间的通信方面,可以改进;网络环境网络环境来避免操作超时问题;解决。比如;包含,可以增加带宽资源;更改或者更改虚拟环境;任何地方所在的网络位置。 总而言之;需要,解决 Docker 使用;超时已超时的问题需要综合考虑多个要素;进行,并根据现实情况;相应进行相应的校准;解决方法。通过这些方法;增加,我们可以更好地利用 Docker 的虚拟环境;任何地方化发布;多个,增强;系统系统的稳定性和可用性。
2023-10-26 09:32:48
557
电脑达人
Kotlin
触摸事件处理器 , 在Android系统中,触摸事件处理器是一种处理用户触摸屏幕操作的机制。当用户与设备屏幕进行交互时(如点击、滑动等),系统会产生一系列触摸事件,这些事件会被传递给相关的视图组件,并由视图绑定的触摸事件处理器进行处理。在本文的上下文中,触摸事件处理器是指开发者为视图设置的onClickListener、onTouchListener等监听器,用于响应特定的触摸事件。 事件分发机制 , Android系统的事件分发机制是其UI框架中一个核心概念,主要指代系统如何将触摸事件从顶级视图开始,按照视图层级结构自上而下或自下而上地传递和处理的过程。具体来说,当触摸事件发生时,系统首先会调用ViewGroup(父视图)的onInterceptTouchEvent()方法来判断是否拦截事件,如果不拦截,则继续向下传递至子视图的onTouchEvent()方法进行处理。如果某个视图消耗了事件(返回true),则该事件不会向上继续传递。 MotionEvent , MotionEvent是Android SDK中的一个类,它封装了用户对屏幕进行触摸操作时产生的所有运动信息,包括触摸点的位置、动作类型(如按下、移动、抬起等)、时间戳等。在解决父子视图点击事件冲突问题时,通过重写onTouchEvent()方法并接收MotionEvent参数,可以精确获取并分析用户的触摸行为,从而实现对事件的恰当处理。例如,在文章示例代码中,通过检查MotionEvent对象的getX()和getY()方法获取触摸点坐标,以判断点击是否发生在子视图区域内。
2023-01-16 08:15:07
373
桃李春风一杯酒_t
Hadoop
...是医疗影像分析,都对处理能力提出了极高的要求。你知道吗,这时候Hadoop就像个超级能干的小伙伴,它那分布式的大脑和海量的存储空间,简直就是处理那些数据海洋的救星,让我们的工作变得又快又顺溜,轻松应对那些看似没完没了的数据挑战。让我们一起深入了解一下如何利用Hadoop来处理大量图像数据。 二、Hadoop简介 Hadoop,源自Apache项目,是一个用于处理大规模数据集的并行计算框架。它由两个核心组件——Hadoop Distributed File System (HDFS) 和 MapReduce 构成。HDFS就像个超级能吃的硬盘大胃王,不管数据量多大,都能嗖嗖嗖地读写,而且就算有点小闪失,它也能自我修复,超级可靠。而MapReduce这家伙,就是那种能把大任务拆成一小块一小块的,然后召集一堆电脑小分队,一块儿并肩作战,最后把所有答案汇总起来的聪明工头。 三、Hadoop与图像数据处理 1. 数据采集与存储 首先,我们需要将大量的图像数据上传到HDFS。你可以轻松地用一个酷酷的命令,就像在玩电脑游戏一样,输入"hadoop fs -put",就能把东西上传到Hadoop里头,操作简单得跟复制粘贴似的!例如: shell hadoop fs -put /local/images/ /user/hadoop/images/ 这里,/local/images/是本地文件夹,/user/hadoop/images/是HDFS中的目标目录。 2. 图像预处理 在处理图像数据前,可能需要进行一些预处理,如压缩、格式转换等。Hadoop的Pig或Hive可以方便地编写SQL-like查询来操作这些数据,如下所示: sql A = LOAD '/user/hadoop/images' USING PigStorage(':'); B = FILTER A BY size(A) > 1000; // 过滤出大于1MB的图像 STORE B INTO '/user/hadoop/preprocessed'; 3. 特征提取与分析 使用Hadoop的MapReduce,我们可以并行计算每个图像的特征,如颜色直方图、纹理特征等。以下是一个简单的MapReduce任务示例: java public class ImageFeatureMapper extends Mapper { @Override protected void map(LongWritable key, Text value, Context context) { // 图像处理逻辑,生成特征值 int[] feature = processImage(value.toString()); context.write(new Text(featureToString(feature)), new IntWritable(1)); } } public class ImageFeatureReducer extends Reducer { @Override protected void reduce(Text key, Iterable values, Context context) { int sum = 0; for (IntWritable val : values) { sum += val.get(); } context.write(key, new IntWritable(sum)); } } 4. 结果聚合与可视化 最后,我们将所有图像的特征值汇总,进行统计分析,甚至可以进一步使用Hadoop的Mahout库进行聚类或分类。例如,计算平均颜色直方图: java final ReduceTask reducer = job.getReducer(); reducer.setNumReduceTasks(1); 然后,用Matplotlib这样的可视化库,将结果呈现出来,便于理解和解读。 四、总结与展望 Hadoop凭借其出色的性能和易用性,为我们处理大量图像数据提供了有力支持。你知道吗,随着深度学习这家伙越来越火,Hadoop这老伙计可能得找个新拍档,比如Spark,才能一起搞定那些高难度的图片数据分析任务,毕竟单打独斗有点力不从心了。不过呢,Hadoop这家伙绝对是咱们面对海量数据时的首选英雄,特别是在刚开始那会儿,简直就是数据难题的救星,让咱们在信息的汪洋大海里也能轻松应对,游得畅快。
2024-04-03 10:56:59
439
时光倒流
Ruby
...比较了不同编程语言在处理大数据和高并发场景下的性能表现,其中涉及到Ruby与其他语言如Java、Go等的对比分析,以及对Ruby内部机制进行深度优化的实际案例。这对于希望在大型项目中运用Ruby并追求卓越性能的开发者具有极高的参考价值。 此外,GitHub上的一些热门开源项目,例如通过利用Ractor(Ruby并发模型)提升并发性能的实践项目,也为Ruby程序员提供了丰富的实战经验和优化思路。随着技术的发展,性能优化不再是单纯依赖语言特性的选择,更需要结合最新的工具和技术,紧跟社区步伐,才能确保所构建的Ruby代码库在负载下表现出色。
2023-08-03 12:22:26
92
月影清风-t
Apache Lucene
...的全文搜索引擎库,由Java编写,提供索引和搜索功能。在本文中,Lucene是用于处理文本数据并实现快速检索的核心工具,它支持多种查询类型(如布尔查询、短语查询、通配符查询等),并设计了并发索引写入策略以提高大规模数据处理性能。 ConcurrentMergeScheduler , ConcurrentMergeScheduler是Lucene中的一个类,作为索引合并策略实现,允许在后台并发执行多个索引合并任务。在构建索引过程中,当新的文档被添加到索引时,会产生许多小的段文件。ConcurrentMergeScheduler能有效地调度这些段的合并工作,减少主线程阻塞时间,从而提升系统并发写入索引的性能。 IndexWriter.addDocuments方法 , IndexWriter.addDocuments是Lucene API中的一个重要方法,用于批量向索引中添加一组文档。该方法接受一个包含多个Document对象的集合或数组,并一次性将所有文档原子性地加入到索引中。通过这种方式,可以显著降低因频繁写入操作导致的数据一致性问题和锁冲突,从而提高系统的并发写入效率。在实际应用中,特别是在处理大量文档入库场景时,addDocuments方法的使用至关重要。
2023-09-12 12:43:19
441
夜色朦胧-t
Python
...IP池、设置随机等待时间、模拟登录以及处理JavaScript渲染等方法。 此外,Python爬虫生态也在持续演进,Scrapy框架、Selenium工具等为复杂网页结构的爬取提供了强大的支持。而新兴的无头浏览器技术Headless Chrome,使得爬虫能够更好地适应现代Web应用的动态加载特性,有效提升了数据抓取的准确性和效率。 综上所述,Python爬虫技术的学习与实践不仅需紧跟时下热点,更要关注法律法规约束和技术革新带来的影响,从而确保在合法合规、尊重隐私的前提下,发挥数据的最大价值。
2023-04-21 09:18:01
96
星河万里-t
转载文章
...联系我们,我们将第一时间进行核实并删除相应内容。 1.barcode4j介绍 barcode4j是一款开源的条形码生成库,该库由Java语言编写。能够生成很多种编码的条形码,比如:code-39,code-128等等; 2 .在官方网站上下载http://barcode4j.sourceforge.net/相应的文件 3、 解压barcode4j-2.0alpha2-bin.zip这个包,在build目录下有barcode4j.jar,在lib目录下有avalon-framework-4.2.0.jar, 将barcode4j.jar和avalon-framework-4.2.0.jar添加到项目的lib中,刷新工程,然后在项目配置中将这两个jar包添加到classpath里面去。 4.在web项目中添加barcode4j.jar和avalon-framework-4.2.0.jar文件。(同3) 5.配置web.xml文件 <servlet> <servlet-name>BarcodeServlet</servlet-name> <servlet-class>com.yourname.BarcodeServlet</servlet-class> </servlet> <servlet-mapping> <servlet-name>BarcodeServlet</servlet-name> <url-pattern>/barcode</url-pattern> </servlet-mapping> 6.在页面使用<img>标签显示条形码图片<img src="<%=request.getContextPath() %>/barcode?msg=12345678"/> 注:参数说明(BarcodeServlet源代码中可以查看参数): msg:条形码文字; fmt:图片格式,默认svg,可以设置fmt = jpeg/png;type = code128/code39; hrp:条形码文字位置:hrp = top,默认为bottom hrsize:条形码文字大小 以mm为单位 <img src="<%=request.getContextPath() %>/barcode?msg=12345678&fmt=jpeg&hrp=top"/> 本篇文章为转载内容。原文链接:https://blog.csdn.net/kinmet2010/article/details/6921438。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-31 23:00:52
93
转载
JQuery
...Query这个强大的JavaScript库。它为我们提供了许多便利的功能,如DOM操作、Ajax请求等等。今天我要向大家分享一种非常有趣且实用的JQuery插件——鼠标点动画。 一、什么是鼠标点动画? 鼠标点动画,顾名思义,就是在用户点击某个元素时,通过动画效果使得元素呈现出某种特定的状态或者样式。这种动画效果能够极大地提升用户体验,使得网页更加生动有趣。 二、JQuery鼠标点动画的实现原理 要实现鼠标点动画,我们需要借助JQuery的animate函数。这个函数可厉害了,它能够通过调整元素的各种属性,比如挪动它们的位置、放大缩小尺寸,或者变个颜色啥的,轻松实现让画面动起来的动画效果。当用户点到某个东东的时候,我们完全可以在那个东东上挂一个click事件的“小闹钟”,然后在这个“小闹钟”响起的时候,让我们的animate函数登场。这样一来,只要用户轻轻一点,就能看到精彩的鼠标点动画效果啦! 下面是一个简单的鼠标点动画的例子: css $("myButton").on("click", function(){ $(this).animate({ backgroundColor: "red", fontSize: "2em" }, 1000); }); 在这个例子中,我们首先获取了id为"myButton"的元素,并给它添加了一个click事件处理函数。嘿,你知道吗,在这个函数里头,我们捣鼓了一下,给它调用了个叫做animate的玩意儿。这样一来,元素的背景颜色就像变魔术一样瞬间转为了火红,字体大小也立马放大到了两倍em。而且,为了让这个变化过程更带感,我们还特意给它设置了1秒钟的动画持续时间,是不是很酷炫啊? 三、鼠标点动画的应用场景 鼠标点动画在很多地方都有应用,下面我举几个例子: 1. 按钮切换功能 当我们点击一个按钮时,我们可以使用鼠标点动画来展示按钮的切换效果。比如,咱们可以让这个按钮,在被点按时玩个“捉迷藏”的游戏,先悄悄地溜一会儿,过会儿再神不知鬼不觉地蹦出来。 2. 图片缩放功能 当我们点击一个图片时,我们可以使用鼠标点动画来放大图片。这样可以让用户更清楚地看到图片的细节。 3. 动画游戏 我们还可以使用鼠标点动画来制作一些有趣的动画游戏,例如打砖块游戏、泡泡龙游戏等等。 四、鼠标点动画的优点 使用鼠标点动画有很多优点,下面我列举几点: 1. 提升用户体验 鼠标点动画可以为用户提供更好的交互体验,使网页更加生动有趣。 2. 增强视觉冲击力 鼠标点动画可以为网页增加一些视觉冲击力,使网页更具吸引力。 3. 简化代码 相比手动编写CSS动画,使用JQuery的animate函数可以使代码更加简洁明了。 总的来说,鼠标点动画是一种非常好用且有趣的JQuery插件,可以帮助我们快速实现各种动画效果。甭管你是捣鼓网站还是鼓捣游戏,都可以试试在里头加点鼠标点击动画,这样一来,用户体验绝对能蹭蹭往上涨!希望大家在实践中能够更好地理解和掌握它!
2023-07-31 19:06:58
614
月影清风-t
ElasticSearch
...以轻松地创建一个可以处理大量数据的搜索引擎。首先,咱们得把数据搬进Elasticsearch这个大家伙里头。这一步操作,你有俩种接地气的方式可选:一是通过API接口来传输,二是借助一些现成的工具完成导入任务。然后,我们可以使用Elasticsearch提供的API来进行查询和检索操作。最后,我们可以通过前端界面展示查询结果。 下面,我们将通过一个具体的例子来演示如何使用Elasticsearch进行数据查询。 java // 创建一个新的索引 IndexRequest indexRequest = new IndexRequest("my_index"); indexRequest.source(jsonMapper.writeValueAsString(product), XContentType.JSON); client.index(indexRequest); // 查询索引中的数据 GetResponse response = client.get(new GetRequest("my_index", "product_id")); Map source = response.getSource(); 以上代码展示了如何向Elasticsearch中添加一条数据,并且查询索引中的数据。你瞧,Elasticsearch这玩意儿真心好用,压根没那么多复杂的步骤,就那么几个基础操作,轻轻松松就能搞定。 3. ListItem.Expandable ListItem.Expandable是Android Studio中的一种控件,它可以用来显示一个可以展开和收起的内容区域。用上这个小玩意儿,咱们就能轻轻松松展示大量信息,而且还不用担心占满屏幕空间的问题! 下面,我们将通过一个具体的例子来演示如何使用ListItem.Expandable。 xml android:id="@+id/listView" android:layout_width="match_parent" android:layout_height="match_parent"> android:id="@+id/myExpandableLayout" android:layout_width="wrap_content" android:layout_height="wrap_content" android:background="FFFFFF" /> 以上代码展示了如何在ListView中使用MyExpandableLayout。通过这种方式,我们可以轻松地显示一个可以展开和收起的内容区域。 4. 总结 本文介绍了如何利用Elasticsearch的强大功能,以及如何使用ListItem.Expandable来显示一个可以扩展的列表。读完这篇文章,咱们就能掌握如何用Elasticsearch这个利器来对付海量数据,同时还能学到怎么运用ListItem.Expandable这个小窍门,让用户体验噌噌往上涨。 总的来说,Elasticsearch是一款非常强大的工具,它可以帮助我们高效地处理大量数据。而ListItem.Expandable则是一个非常实用的控件,它可以帮助我们优化用户体验。这两款产品都是非常值得推荐的。
2023-10-25 21:34:42
531
红尘漫步-t
Flink
一、引言 在大数据处理的世界中,Apache Flink是一个非常重要的工具。它支持实时和批处理计算,并且具有强大的容错和状态管理功能。本文将深入探讨Flink的状态管理和容错机制。 二、Flink的状态管理 1. 什么是Flink的状态 Flink中的状态是分布在所有TaskManager上的变量,它们用于存储中间结果。状态可以分为可变状态和不可变状态两种类型。可变状态可以被修改,而不可变状态则不能。 2. 如何定义状态 在Flink API中,我们可以使用DataStream API或者Table API来定义状态。比如说,如果我们想在写一个Stream程序的时候,有一个能被所有地方都看到的全局变量,我们可以在开启源代码编辑时,创建一个所谓的“StateObject”对象,就像是搭建舞台前先准备好道具一样。 java env.setStateBackend(new MemoryStateBackend()); DataStream stream = env.addSource(new RichParallelSourceFunction() { private transient ValueState state; @Override public void open(Configuration parameters) throws Exception { super.open(parameters); state = getRuntimeContext().getState(TypedKey.of("my-state", Types.STRING)); } @Override public void run(SourceContext ctx) throws Exception { for (int i = 0; i < 10; i++) { String value = "value" + i; state.update(value); ctx.collect(value); } } }); 在这个例子中,我们在open方法中创建了一个名为"my-state"的ValueState对象。然后,在run这个方法里头,咱们就不断地给这个状态“刷新”最新的信息,同时把这些新鲜出炉的数值一股脑儿地塞进输出流里去。 三、Flink的容错机制 1. checkpointing checkpointing是Flink的一种容错机制,它可以确保在任务失败后可以从上一次检查点恢复。Flink会在预定义的时间间隔内自动进行checkpoint,也可以通过设置maxConcurrentCheckpoints参数手动控制并发的checkpoint数量。 java env.enableCheckpointing(500); // 每500ms做一次checkpoint 2. savepoint savepoint是另一种Flink的容错机制,它不仅可以保存任务的状态,还可以保存数据的完整图。跟checkpoint不一样的地方在于,savepoint有个大优点:它不会打扰到当前任务的运行。而且你知道吗?恢复savepoint就像按下了快进键,比从checkpoint那里恢复起来速度嗖嗖的,可快多了! java env.getSavepointDirectory(); 四、结论 总的来说,Flink的状态管理和容错机制都是非常强大和灵活的。它们使得Flink能够应对各种复杂的实时和批处理场景。如果你想真正摸透Flink的运行机制,还有它在实际场景中的应用门道,我真心实意地建议你,不妨花点时间钻研一下它的官方文档和教程,保准收获满满!
2023-06-05 11:35:34
462
初心未变-t
Apache Solr
...,就好比一群人在同一时间冲进超市抢购商品,如果操作不当,就可能会引发一些混乱,这个异常就是类似的情况啦。 二、为什么会抛出ConcurrentUpdateRequestHandlerNotAvailableCheckedException? 这个异常的出现主要是由于Solr服务器的配置问题或者硬件资源不足引起的。比如,假如你的Solr服务器设置了并发更新的最大阀值,一旦超出了这个限制,它就会蹦出一个异常来提醒你。再比如,如果硬件资源(如内存)不足,也可能会导致这个异常的出现。 三、如何解决ConcurrentUpdateRequestHandlerNotAvailableCheckedException? 解决这个问题主要可以从以下几个方面入手: 1. 调整Solr服务器的配置 可以通过调整Solr服务器的配置来解决这个问题。具体来说,可以增加并发更新的最大限制,或者增加硬件资源,如内存。以下是一个简单的示例: java solrClient = new ConcurrentUpdateSolrClient(solrServerUrl); solrClient.setConnectionTimeout(30 1000); solrClient.setDefaultMaxConnectionsPerHost(200); 在这个示例中,我们创建了一个新的Solr客户端,并设置了最大连接数为200。 2. 使用合适的索引策略 选择合适的索引策略也可以帮助解决问题。例如,可以选择分片策略,这样就可以将索引分布在多台机器上,从而提高并发能力。 3. 异步处理更新请求 如果更新请求的数量非常多,而且大部分请求都不需要立即返回结果,那么可以选择异步处理这些请求。这样可以大大提高系统的并发能力。 四、总结 总的来说,ConcurrentUpdateRequestHandlerNotAvailableCheckedException是一个比较常见的Solr异常,主要出现在并发更新请求的时候。处理这个问题,咱们有好几种招儿可以用。比如说,可以动动手调整一下Solr服务器的配置,让它更对症下药;再者,采用更合适的索引策略也能派上大用场,就像给你的数据找了个精准的目录一样;还有啊,把那些更新请求采取异步处理的方式,这样一来,不仅能让系统更加流畅高效,还能避免卡壳的情况出现。希望这篇文章能对你有所帮助。
2023-07-15 23:18:25
469
飞鸟与鱼-t
转载文章
...能后,我们进一步关注JavaScript与办公软件集成的前沿动态。近日,Microsoft Office团队宣布加大对JavaScript API的支持力度,开发者现在能够更加灵活地创建和修改Office文档,包括Word、Excel和PowerPoint等。例如,通过使用Office JavaScript API,不仅可以实现从网页内容到Word格式的转换,还能实现实时协作编辑、智能模板填充等功能。 与此同时,随着Web技术的发展和跨平台需求的增长,开源社区对类似HtmlExportToWord.js这样的工具关注度日益提高。许多开发者正致力于构建更高效、兼容性更强的解决方案,以满足不同场景下从Web页面直接生成高质量文档的需求。这些方案不仅限于Word,还涵盖了PDF、Excel等多种格式,极大地拓宽了Web内容离线应用的可能性。 此外,对于那些需要精确控制样式及布局的企业级应用而言,诸如Puppeteer、Headless Chrome等无头浏览器技术也在文档生成领域发挥了关键作用。它们能确保在渲染和导出过程中准确还原Web页面样式,并提供更为细致的定制化选项,使得从HTML向Word或PDF等格式的转换更为精准且可控。 总结来说,在Web开发中,JavaScript在文档处理方面的应用越来越广泛,无论是通过官方API还是第三方库,都为开发者提供了更多便捷高效的手段来实现HTML内容与传统办公文档间的无缝对接。未来,随着Web生态系统的不断进化,我们可以预见JavaScript将在文档处理领域扮演更加重要的角色,帮助企业用户和开发者解决各类复杂场景下的文档转换与管理工作。
2023-11-27 14:07:31
73
转载
Apache Solr
...lr服务。 例如,在Java中,我们可以使用如下代码创建一个带有自签名证书的SSL套接字工厂: java KeyStore ks = KeyStore.getInstance("JKS"); ks.load(new FileInputStream("/path/to/keystore"), "password".toCharArray()); TrustManagerFactory tmf = TrustManagerFactory.getInstance(TrustManagerFactory.getDefaultAlgorithm()); tmf.init(ks); X509ExtendedTrustManager xtm = (X509ExtendedTrustManager) tmf.getTrustManagers()[0]; X509Certificate cert = (X509Certificate) ks.getCertificateChain(ks.aliases().nextElement())[0]; xtm.checkClientTrusted(new X509Certificate[]{cert}, "SSL"); SSLContext sslContext = SSLContext.getInstance("TLS"); sslContext.init(null, new TrustManager[]{xtm}, null); SSLSocketFactory ssf = sslContext.getSocketFactory(); 然后,我们可以在连接Solr服务器时使用这个套接字工厂: java HttpURLConnection conn = (HttpURLConnection) new URL(solrUrl).openConnection(); conn.setSSLSocketFactory(ssf); 5. 尝试其他Solr服务器 如果你无法确定问题出在哪里,你可以尝试在另一台机器上启动一个Solr服务器,看看是否还能出现同样的问题。这可以帮助你排除网络或者硬件故障的可能性。 总结:以上就是解决SolrServerException的一些常见方法。当你遇到这种错误的时候,就得像个侦探一样,把所有可能捣乱的因素都给排查一遍,然后根据实际情况,灵活地采取最适合的解决办法。希望这篇文章能对你有所帮助。
2023-03-23 18:45:13
462
凌波微步-t
Groovy
标题:如何使用Groovy中的映射(Map)? 一、引言 随着计算机科学的发展,编程语言也在不断演进,其中Groovy是一种面向对象的动态编程语言,它结合了Python和Java的优点,并引入了一些新的特性,如元编程、函数式编程等。在Groovy的世界里,映射(Map)可是个大明星,这家伙就像咱们平时查字典那样方便,或者你也可以把它想象成一个超级实用的“小仓库”,专门用来存放各种各样的键值对。这玩意儿可重要啦,没有它,很多操作就玩不转喽!这篇文会手把手教你玩转Groovy里的映射,从创建一个映射开始,到如何给它塞入元素、取出里面的东东、把不需要的元素丢掉,再到怎么像逛街一样遍历整个映射,通通都会详细介绍! 二、创建映射 在Groovy中,我们可以使用两种方式来创建映射: 1. 使用{}语法创建空映射 javascript def map = [:] 2. 使用字面量创建带有初始元素的映射 javascript def map = [name: 'Tom', age: 20, gender: 'Male'] 三、添加元素 我们可以通过键值对的形式向映射中添加元素,例如: javascript map.name = 'Jerry' map.age = 25 map.gender = 'Female' 或者更简洁的方式: javascript map.put('age', 30) 四、访问元素 我们可以通过键来获取映射中的值,例如: javascript println map['name'] // 输出:'Jerry' println map.age // 输出:30 五、删除元素 我们可以通过键来删除映射中的元素,例如: javascript map.remove('name') println map.size() // 输出:2 六、遍历映射 Groovy提供了多种方法来遍历映射,下面是一些常用的方法: 1. keySet(): 返回一个包含所有键的迭代器。 2. values(): 返回一个包含所有值的迭代器。 3. entrySet(): 返回一个包含所有键值对的迭代器。 例如: javascript for (String key in map.keySet()) { println "Key: $key, Value: ${map[key]}" } 七、结论 总的来说,Groovy中的映射是一个非常强大的数据结构,它为我们提供了一种方便的方式来组织和管理数据。无论是新建一个映射、塞入点儿东西、瞅瞅某个元素、删掉不需要的项,还是把整个映射溜达一圈儿,咱们都能用几句简单的话轻松搞定。而且你知道吗,Groovy这家伙可厉害了,它支持许多超级实用的高级操作。比如说,你可以轻松地合并两个映射,复制映射啥的,这样一来,我们在使用映射时就能玩出更多花样,更加灵活自如,就像在厨房里随意搭配食材一样方便。所以呢,真家伙,把Groovy里的映射搞得滚瓜烂熟绝对超有帮助的!这样一来,咱们就能嗖嗖地提升编程速度,写出更顺溜、效率更高的代码来,可不就是美滋滋嘛!
2023-06-22 19:47:27
692
青山绿水-t
Hadoop
一、引言 在大数据处理领域中,Hadoop是一个非常重要的工具。这个东西提供了一种超赞的分布式计算模式,能够帮我们轻轻松松地应对和处理那些海量数据,让管理起来不再头疼。不过呢,就像其他那些软件兄弟一样,Hadoop这家伙有时候也会闹点小情绪,其中一个常见的问题就是数据写入会重复发生。 在本文中,我们将深入探讨什么是数据写入重复,为什么会在Hadoop中发生,并提供几种解决这个问题的方法。这将包括详细的代码示例和解释。 二、什么是数据写入重复? 数据写入重复是指在一个数据库或其他存储系统中,同一个数据项被多次写入的情况。这可能会导致许多问题,例如: 1. 数据一致性问题 如果一个数据项被多次写入,那么它的最终状态可能并不明确。 2. 空间浪费 重复的数据会占用额外的空间,尤其是在大数据环境中,这可能会成为一个严重的问题。 3. 性能影响 当数据库或其他存储系统尝试处理大量重复的数据时,其性能可能会受到影响。 三、为什么会在Hadoop中发生数据写入重复? 在Hadoop中,数据写入重复通常发生在MapReduce任务中。这是因为MapReduce是个超级厉害的并行处理工具,它能够同时派出多个“小分队”去处理不同的数据块,就像是大家一起动手,各自负责一块儿,效率贼高。有时候,这些家伙可能会干出同样的活儿,然后把结果一股脑地塞进同一个文件里。 此外,数据写入重复也可能是由于其他原因引起的,例如错误的数据输入、网络故障等。 四、如何避免和解决数据写入重复? 以下是一些可以用来避免和解决数据写入重复的方法: 1. 使用ID生成器 当写入数据时,可以使用一个唯一的ID来标识每个数据项。这样就可以确保每个数据项只被写入一次。 python import uuid 生成唯一ID id = str(uuid.uuid4()) 2. 使用事务 在某些情况下,可以使用数据库事务来确保数据的一致性。这可以通过设置数据库的隔离级别来实现。 sql START TRANSACTION; INSERT INTO table_name (column1, column2) VALUES ('value1', 'value2'); COMMIT; 3. 使用MapReduce的输出去重特性 Hadoop提供了MapReduce的输出去重特性,可以在Map阶段就去除重复的数据,然后再进行Reduce操作。 java public static class MyMapper extends Mapper { private final static IntWritable one = new IntWritable(1); private Text word = new Text(); public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String[] words = value.toString().split(" "); for (String word : words) { word = word.toLowerCase(); if (!word.isEmpty()) { context.write(new Text(word), one); } } } } 以上就是关于Hadoop中的数据写入重复的一些介绍和解决方案。希望对你有所帮助。
2023-05-18 08:48:57
507
秋水共长天一色-t
Apache Lucene
...此外,针对大规模数据处理需求,一篇发表于ACM Transactions on Information Systems的研究论文《Large-scale Indexing and Query Processing in Distributed Search Engines: A Study on Apache Lucene》从理论层面深度剖析了Lucene索引架构的设计原理,并通过实验验证了不同索引段合并策略对系统响应时间和资源利用率的影响。研究者们提出了一种混合型合并策略的设想,旨在平衡查询性能与资源消耗,为未来Lucene及其他搜索引擎的优化设计提供了新的思路。 同时,在开源社区中,Apache Solr作为基于Lucene构建的全文搜索平台,也不断引入并改进了索引段合并的相关特性。Solr 8.0版本中引入的“Pluggable Index Sort”功能,使得用户可以根据特定排序需求定制索引结构,从而影响段合并过程,间接优化搜索效率。这方面的实践与探索,无疑丰富了我们对Lucene索引段合并策略应用的理解,也为广大开发者提供了更多实用且高效的解决方案。
2023-03-19 15:34:42
396
岁月静好-t
Dubbo
...bo是一款很赞的开源Java RPC框架,它超级给力,能支持跨语言通信。简单来说,就是它提供了一堆实用的接口和服务工具箱,让开发者们轻轻松松就能搭建起高效的分布式系统,就像搭积木一样方便快捷。在 Dubbo 中,一个服务调用链路包括以下步骤: 1. 客户端向注册中心发起服务请求。 2. 注册中心根据服务名查找对应的提供者列表,并返回给客户端。 3. 客户端从提供者列表中选择一个提供者进行调用。 4. 提供者接收到来自客户端的请求并处理,然后返回响应数据。 5. 客户端接收到响应数据后,整个服务调用链路结束。 三、服务调用链路断裂原因分析 当 Dubbo 服务调用链路发生断裂时,通常可能是以下几个原因导致的: 1. 网络中断 例如服务器故障、网络波动等。 2. 服务不可用 提供者服务未正常运行,或者服务注册到注册中心失败。 3. 调用超时 例如客户端设置的调用超时时间过短,或者提供者处理时间过长。 4. 编码错误 例如序列化/反序列化错误,或者其他逻辑错误。 四、案例分析 Dubbo 服务调用链路断裂实践 接下来,我们将通过一个具体的 Dubbo 实现示例,看看如何解决服务调用链路断裂的问题。 java // 创建 Dubbo 配置对象 Configuration config = new Configuration(); config.setApplication("application"); config.setRegistry("zookeeper://localhost:2181"); config.setProtocol("dubbo"); // 创建消费者配置 ReferenceConfig consumerConfig = new ReferenceConfig<>(); consumerConfig.setInterface(HelloService.class); consumerConfig.setVersion("1.0.0"); consumerConfig.setUrl(config.toString()); // 获取 HelloService 实例 HelloService helloService = consumerConfig.get(); // 使用实例调用服务 String response = helloService.sayHello("world"); System.out.println(response); // 输出 "Hello world" 五、故障排查与解决方案 当 Dubbo 服务调用链路发生断裂时,我们可以采取以下措施进行排查和修复: 1. 查看日志 通过查看 Dubbo 相关的日志,可以帮助我们了解服务调用链路的具体情况,如异常信息、执行顺序等。 2. 使用调试工具 例如 JVisualVM 或 Visual Studio Code,可以实时监控服务的运行状态,帮助我们找到可能存在的问题。 3. 手动复现问题 如果无法自动复现问题,可以尝试手动模拟相关环境和条件,以获取更准确的信息。 4. 优化服务配置 针对已知问题,可以调整 Dubbo 配置,如增大调用超时时间、优化服务启动方式等。 六、结论 在实际使用 Dubbo 的过程中,服务调用链路断裂是常见的问题。通过实实在在地深挖问题的根源,再结合实际场景中的典型案例动手实践一下,咱们就能更接地气、更透彻地理解 Dubbo 是怎么运作的。这样一来,碰到服务调用链路断掉的问题时,咱就能轻松应对,把它给妥妥地解决了。希望本文能够对你有所帮助,期待你的留言和分享!
2023-06-08 11:39:45
490
晚秋落叶-t
Flink
正文: 在大数据处理中,常常遇到数据丢失的情况,此时就需要使用一种方法来保护我们的数据不被永久丢失。这时Flink的Savepoint就派上用场了。本文将详细介绍Flink的Savepoint如何创建和恢复。 1. 创建Savepoint 首先,我们需要了解什么是Savepoint。Savepoint,这东西就好比是Flink在干活儿的时候,给自己拍了个快照。它会把当前正在进行的任务的所有状态,包括那些大到全局状态、小到本地状态的详细信息,还有当时正在跑的数据流图,都给妥妥地保存下来,就像是游戏存档一样,方便以后接着干。这样一来,哪怕任务突然因为某个原因挂了,我们也有办法通过Savepoint这个小救星,瞬间把一切恢复到它停止前的样子,就像啥事都没发生过一样。 接下来,我们来看一下如何创建Savepoint。在Flink的源代码中,可以通过以下方式创建Savepoint: java ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment(); env.enableCheckpointing(50); // 设置每50个元素触发一次checkpoint // 其他代码... Savepoint savepoint = env.createSavepoint("hdfs://path/to/savepoint"); 上述代码中的enableCheckpointing()方法用于设置每次触发checkpoint的时间间隔。在这段代码中,我们设置了每50个元素触发一次checkpoint。同时呢,我们也动手用了一个叫createSavepoint()的神奇小方法,生成了一个Savepoint宝贝。这个宝贝可厉害了,它肚子里装着所有我们万一需要恢复的重要状态信息。 2. 恢复Savepoint 创建好Savepoint后,我们就可以通过它来恢复任务的状态。在Flink的源代码中,可以通过以下方式恢复Savepoint: java ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment(); // 加载Savepoint Savepoint restoreSavepoint = Savepoint.load("hdfs://path/to/savepoint"); // 将恢复后的状态应用到任务中 env.setStateBackend(new RocksDBStateBackend("hdfs://path/to/state/backend")); // 设置state backend env.restore(restoreSavepoint); 上述代码中的load()方法用于加载Savepoint。在这段代码中,我们通过load()方法加载了之前创建的Savepoint。同时,我们也通过setStateBackend()方法设置了state backend的位置。最后,我们通过restore()方法将恢复后的状态应用到了任务中。 3. 注意事项 虽然Savepoint是一个非常有用的工具,但是在使用它时也有一些需要注意的地方。例如,如果任务在恢复时发生错误,那么将会导致整个应用程序崩溃。所以在应对恢复任务这个问题上,咱们得保证应用程序能够妥妥地应对这种状况,一点儿差错都不能出。 此外,Savepoint本身也会占用一定的存储空间。所以,要是你的任务碰上要处理海量数据的情况,那么很有必要隔段时间就清理一下Savepoint。 总的来说,Flink的Savepoint是一个非常有用的工具,它可以帮助我们保护数据并快速恢复任务的状态。不过,我们在使用这玩意儿的时候,也得留心一些注意事项,这样才能保证这个应用程序能够稳稳当当、靠得住地运行。
2023-08-08 16:50:09
537
初心未变-t
转载文章
...联系我们,我们将第一时间进行核实并删除相应内容。 在如今的手机销售领域,实体销售虽然仍是主流但是随着电子商务的兴起,线上的手机销售开始逐步的成为消费者选择的渠道,这样不仅可以节省实体店面的相关费用还可以推广公司相关应用同时也能够更进一步的拓展自己的业务,增强行业竞争力。 2、主要内容: 智通在线手机销售系统,是迪信通公司作为其与手机厂商合作进行手机销售的一个网上虚拟商店,此系统即实现了会员注册,手机预订、销售、支付,帐单查询的一体化功能,使网上销售手机成为现实。 3、开发环境(工具) 软件环境: WindowsXP + ZendStudio数 据 库:MySQL应用技术:PHP、HTML、CSS、JavaScript工 具: ZendStudio, DW ,Photoshop, fireFox, MYSQL 4、实现功能: 本系统划分为两大模块。 其中第一部分是网站前台页面,功能为: 1.网站首页:包括用户注册登录模块,手机预订,手机查询; 2.用户注册:提供有效的用户名、密码、验证码登录系统; 3.用户登录:提供与注册一致的有效提供有效的用户名、密码、验证码登录系统; 4.基本信息管理:可以修改密码、邮箱、头像等基本信息(真实姓名不可修改); 5.购物车管理:实现商品的浏览、查询及购物车功能,客户可顺利浏览商品并放入购物车等待确认订单。 6.订单管理: A、购物车商品可通过生成订单来生成购物清单并确定地址等信息。 B、核对、提交订单,包括: a、收货人信息(收货人姓名、地址、手机号码或者固定电话,电子邮箱、邮编)可以修改; b、配送方式:选择送货人日期; c、支付方式:货到付款; d、发票信息; e、提交订单:提交订单后商品开始发货,款项在货到时当面付清; f、取消订单:在提交订单但还未发货前可取消订单。 查询订单: A、用户登陆网站后可以随时对历史订单进行查询。 8、支付模块 用户确认订单后可以进行在线支付,采用第三方支付平台。 第二部分为:后台管理模块-管理员身份 1.管理员登陆:提供有效的用户名和密码,成功登录后才能使用后台管理功能; 2.客户管理:客户的删除,查询(不可以添加,需要用户自己注册); 3.手机管理: a.手机分类 b.手机厂商分类 c.价格管理 d.优惠管理 e.手机参数管理 f.手机系统分类 g.手机的上市、下架 4.订单管理: 订单确认、订单取消、订单支付。 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_1262330535/article/details/118614819。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-08 17:24:03
353
转载
ZooKeeper
...tion 是一个在 Java 中表示线程被中断的运行时异常。当线程突然被中断时,它会毫不犹豫地抛出一个异常,这种情况常常发生在我们让线程苦苦等待某个操作完成的时刻,就像我们在等一个IO操作顺利完成那样。 三、为什么我们需要处理 InterruptedException? 在多线程编程中,我们经常需要在一个线程等待另一个线程执行某些操作,这时就可能会发生 InterruptedException。如果不处理这个异常,程序就会崩溃。因此,我们需要学会正确地捕获和处理 InterruptedException。 四、如何在 ZooKeeper 中处理 InterruptedException? 在 ZooKeeper 中,我们可以使用 zookeeper.create 方法创建节点,并设置 createMode 参数为 CreateMode.EPHEMERAL_SEQUENTIAL,这样创建的节点会自动删除,而不需要手动删除。这种方式可以避免因长时间未删除节点而导致的数据泄露问题。 下面是一个简单的示例: java try { ZooKeeper zk = new ZooKeeper("localhost:2181", 3000, new Watcher() { @Override public void process(WatchedEvent event) { System.out.println("Received watch event : " + event); } }); byte[] data = new byte[10]; String path = "/node"; try { zk.create(path, data, ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL_SEQUENTIAL); } catch (InterruptedException e) { Thread.currentThread().interrupt(); throw new RuntimeException(e); } } catch (IOException | KeeperException e) { e.printStackTrace(); } 在这个示例中,我们首先创建了一个 ZooKeeper 对象,并设置了超时时间为 3 秒钟。然后,我们创建了一个节点,并将节点的数据设置为 null。如果在创建过程中不小心遇到 InterruptedException 这个小插曲,我们会把当前线程的状态给恢复原状,然后抛出一个新的 RuntimeException,就像把一个突然冒出来的小麻烦重新打包成一个新异常扔出去一样。 五、总结 在 ZooKeeper 中,我们可以通过设置创建模式为 EPHEMERAL_SEQUENTIAL 来自动删除节点,从而避免因长时间未删除节点而导致的数据泄露问题。同时呢,咱们也得留意一下,得妥善处理那个 InterruptedException,可别小看了它,要是没整对的话,可能会让程序闹脾气直接罢工。
2023-05-26 10:23:50
114
幽谷听泉-t
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
head -n 10 file.txt
- 显示文件前10行。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"