前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[Elasticsearch 邻近关键字搜...]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Java
...// 使用final关键字创建局部变量副本 executor.schedule(() -> System.out.println(copyOfI), 1, TimeUnit.SECONDS); } executor.shutdown(); } } 在这段Java代码中,我们通过ScheduledExecutorService来实现定时任务,为了能在匿名内部类(Lambda表达式)中正确访问到循环变量i的值,我们创建了一个final局部变量copyOfI作为i的副本。其实,这就是闭包的一个生活化应用场景:想象一下,尽管executor.schedule这招数是在循环跑完之后才正式启动,但是Lambda表达式却像个小机灵鬼,能牢牢地记住每一次循环时copyOfI的不同数值。这就揭示了闭包的核心秘密——它能够持续掌握并访问外部环境变量的能力,就像你的朋友记得你所有的喜好一样自然而又神奇。 3. 结论与思考 综上所述,无论是JavaScript中的setTimeout还是Java中的ScheduledExecutorService结合Lambda表达式的使用,都涉及到了闭包的应用。虽然它们在语法和具体实现上各有各的不同,但当你看到它们如何处理函数和它所在外部环境的关系时,你会发现一个共通的、像超级英雄般的核心概念——闭包。这个概念就像是,即使函数已经完成了它的任务并准备“下班”,但它依然能牢牢地记住并掌握那些原本属于外部环境的变量,就像拥有了一种神奇的力量。 因此,即使在Java中,我们在模拟setTimeout行为时所采用的策略,本质上也是闭包的一种体现,只不过这种闭包机制并非像JavaScript那样显式且直观,而是通过Java特有的方式(如Lambda表达式、内部类对局部变量的捕获)予以实现。
2023-05-05 15:35:33
280
灵动之光_
转载文章
...义软件,实时监测产线关键环节的质量问题,并通过AI算法进行缺陷检测,大大提高了生产效率和产品质量。 同时,随着5G技术的广泛应用,未来网络摄像机将在低延迟、高带宽的无线环境下展现出更大的潜力。目前,全球范围内已有多家企业开始研发基于5G技术的智能网络摄像机解决方案,旨在打造全连接、云化的监控与分析平台,为智慧城市、智慧交通等领域提供更多可能。 综上所述,无论是从软件开发层面优化IP配置与参数调整,还是探索摄像机在不同应用场景下的整合与创新,网络摄像机的实用价值和发展空间正不断被拓宽。持续关注这一领域的技术进步与实践案例,将有助于我们更好地适应并引领这个万物互联的时代潮流。
2023-09-02 09:33:05
582
转载
转载文章
...的支持以及对大规模图算法库的扩充。通过阅读这篇文章,您可以掌握Spark GraphX的最新进展,并将其应用于实际项目以提高分析效率。 2. 《基于分布式图计算的社交网络影响力研究及实践》:结合当下社交媒体的大数据背景,这篇深度解读文章探讨了如何运用Spark GraphX等工具进行社交网络影响力的量化分析与预测。作者通过对真实案例的剖析,展示了图计算技术如何揭示用户行为模式、发现关键节点以及优化信息传播策略。 3. 《融合GNN与GraphX的新型图神经网络架构探索》:近年来,图神经网络(GNN)成为深度学习在图数据处理中的热门方向。一篇最新的科研论文提出了一种将GraphX与GNN相结合的创新架构,利用GraphX高效处理大规模图数据的优势,为GNN提供训练前的数据预处理和模型训练后的评估支持。读者可以通过研读这篇论文,了解图计算与深度学习前沿交叉领域的最新成果。 4. 《工业界应用实例:使用Spark GraphX构建企业级知识图谱》:本文介绍了某知名企业在构建企业内部知识图谱时,如何采用Spark GraphX作为核心技术框架,解决复杂的企业数据关系挖掘与可视化问题。通过实际案例,让读者深入了解Spark GraphX在现实业务场景中的落地应用价值。 以上延伸阅读内容既涵盖了Spark GraphX技术本身的最新发展动态,也包含了其在社交网络分析、图神经网络融合以及企业级知识图谱构建等领域的深度应用和创新实践,有助于您紧跟图计算技术潮流,拓宽专业视野。
2023-07-30 14:45:06
181
转载
Apache Solr
...别准确率和召回率,为搜索引擎、知识图谱构建等领域提供了有力支持。 此外,百度也发布了基于PaddlePaddle框架研发的智能分词工具包,不仅能够实现精准的中文分词,还集成了命名实体识别、情感分析等多功能于一体,以应对复杂多变的中文语境问题。这些最新的技术成果均表明,在处理中文分词挑战时,业界正逐步从传统的规则匹配与统计方法转向深度学习与人工智能驱动的解决方案。 与此同时,对于多音字和新词的处理,学术界也在持续研究和突破。例如,有研究团队利用大规模语料库训练上下文感知的多音字选择模型,结合动态更新的新词发现算法,有效提升了中文文本检索系统的实用性与智能化程度。这些研究成果与实践案例,无疑为使用Apache Lucene和Solr进行中文分词处理提供了更为广阔的应用视野与创新思路。
2024-01-28 10:36:33
392
彩虹之上-t
Golang
...ang并发编程的一些关键注意事项,并通过丰富的代码示例,带大家理解并解决在实际应用中可能遇到的常见问题。 1. Goroutine 轻量级线程的灵魂 Goroutine是Golang并发编程的核心概念,它是一种用户态的轻量级线程,由Go运行时管理而非操作系统内核,创建和销毁的成本极低。 go func main() { // 创建一个goroutine go func() { fmt.Println("Hello from a goroutine!") }() // 主goroutine继续执行 fmt.Println("Hello from the main goroutine!") } 上述代码展示了如何启动一个新的goroutine,可以看到,创建goroutine就像调用一个函数一样简单。在处理并发的情况时,大伙儿可得留心了,这Goroutine的执行顺序啊,可不是板上钉钉的事儿。为啥呢?因为它们是同步进行、各干各活的,所以谁先谁后,那真说不准,全看“缘分”啦! 2. Channel 同步通信的关键 Goroutine之间的通信主要依赖于Channel,它是Golang并发安全的数据传输通道,能有效地解决竞态条件和数据同步问题。 go // 创建一个int类型的channel ch := make(chan int) go func() { ch <- 42 // 向channel中发送数据 }() value := <-ch // 从channel中接收数据 fmt.Println("Received value:", value) 这段代码展示了如何通过channel进行goroutine间的数据传递。在实际操作时,咱们得小心翼翼地对待channel的读写动作,就像是捧着个易碎品,一不留神就可能惹出死锁或者数据溢出这些麻烦事。 3. 注意事项 Goroutine泄漏 由于Goroutine的创建成本低廉,如果不加以控制,可能会导致大量未被回收的“僵尸”Goroutine,从而引发资源泄露。 go for { go neverEndingTask() } // 这将创建无限多的goroutine,造成资源泄漏 为了避免这种情况,我们需要确保每个Goroutine都有明确的退出机制或者生命周期,例如通过channel通知其完成任务后退出。 4. 常见问题 竞态条件与互斥锁 在并发编程中,竞态条件是一个常见的问题。Golang提供了sync.Mutex等工具来保证在同一时间只有一个goroutine访问共享资源。 go var counter int var mutex sync.Mutex func incrementCounter() { mutex.Lock() defer mutex.Unlock() counter++ } // 在多个goroutine中同时调用incrementCounter() 在这个例子中,mutex确保了counter的原子性增一操作,防止因并发修改而产生的竞态条件问题。 总结来说,Golang并发编程既强大又优雅,但同时也需要我们对并发原理有深刻理解,遵循一定的规范和注意事项,才能充分利用其优势,避免潜在的问题。希望这篇东西能实实在在帮到你,让你更好地掌握Golang的并发技巧,让你的代码跑得更溜、更稳当,就像是一辆上了赛道的F1赛车,既快又稳。在实际敲代码的过程中,不断动手尝试、开动脑筋琢磨、勇往直前地探索,你绝对能亲身体验到Golang并发编程那让人乐此不疲的魅力所在。
2023-05-22 19:43:47
650
诗和远方
Oracle
...为保障企业正常运营的关键因素之一。其中,数据库备份和恢复策略的制定和管理尤为重要。接下来,咱要从几个关键点入手,手把手教你咋在Oracle数据库里头规划并打理好备份和恢复这套流程,保证让你明明白白、清清楚楚。 一、备份和恢复策略的重要性 首先,我们需要明确备份和恢复策略的重要性。在日常使用数据库的时候,你可能遇到各种意想不到的情况,比如说硬件突然闹脾气出故障啦,人为操作不小心马失前蹄犯了错误啦,甚至有时候老天爷不赏脸来场自然灾害啥的,这些都有可能让咱们辛辛苦苦存的数据一下子消失得无影无踪。这样一来,企业的正常运作可就要受到不小的影响了,你说是不是?所以呢,咱们得养成定期给数据库做备份的好习惯,而且得有一套既科学又合理的备份和恢复方案。这样,一旦哪天出了岔子,咱们就能迅速、有效地把数据恢复过来,不至于让损失进一步扩大。 二、备份和恢复策略的制定 接下来,我们来详细介绍一下如何在Oracle数据库中制定备份和恢复策略。一般来说,备份和恢复策略主要包括以下内容: 1. 备份频率 根据数据库的重要性、数据更新频率等因素,确定备份的频率。对于重要且频繁更新的数据库,建议每天至少进行一次备份。 2. 备份方式 备份方式主要有全备份、增量备份和差异备份等。全备份是对数据库进行全面的备份,增量备份是对上次备份后的新增数据进行备份,差异备份是对上次全备份后至本次备份之间的变化数据进行备份。选择合适的备份方式可以有效减少备份时间和存储空间。 3. 存储备份 存储备份的方式主要有磁盘存储、网络存储和云存储等。选择合适的存储方式可以保证备份的可靠性和安全性。 4. 恢复测试 为了确保备份的有效性,需要定期进行恢复测试,检查备份数据是否完整,恢复操作是否正确。 三、备份和恢复策略的执行 有了备份和恢复策略之后,我们需要如何执行呢?下面我们就来看看具体的操作步骤: 1. 使用RMAN工具进行备份和恢复 RMAN是Oracle自带的备份恢复工具,可以方便地进行全备份、增量备份和差异备份,支持本地备份和远程备份等多种备份方式。 例如,我们可以使用以下命令进行全备份: csharp rman target / catalog ; backup database; 2. 手动进行备份和恢复 除了使用RMAN工具外,我们还可以手动进行备份和恢复。具体的步骤如下: a. 进行全备份:使用以下命令进行全备份: go expdp owner/ directory= dumpfile=; b. 进行增量备份:使用以下命令进行增量备份: csharp impdp owner/ directory= dumpfile=; c. 进行恢复:使用以下命令进行恢复: bash spool recovery.log rman target / catalog ; recover datafile ; spool off; 四、备份和恢复策略的优化 最后,我们再来讨论一下如何优化备份和恢复策略。备份和恢复策略的优化主要涉及到以下几点: 1. 减少备份时间 可以通过增加并行度、使用更高效的压缩算法等方式减少备份时间。 2. 提高备份效率 可以通过合理设置备份策略、选择合适的存储设备等方式提高备份效率。 3. 提升数据安全性 可以通过加密备份数据、设置备份权限等方式提升数据安全性。 总结来说,备份和恢复策略的制定和管理是一项复杂而又重要的工作,我们需要充分考虑备份的频率、方式、存储和恢复等多个方面的因素,才能够制定出科学合理的备份和恢复策略,从而确保数据库的安全性和稳定性。同时呢,我们也要持续地改进和调整我们的备份与恢复方案,好让它能紧跟业务需求和技术环境的不断变化步伐。
2023-05-03 11:21:50
112
诗和远方-t
Flink
...方法会根据我们传入的关键字,将数据分成不同的组。例如,如果我们有一个订单流,我们可以根据订单号来分区: java DataStream orders = env.addSource(...); DataStream keyedOrders = orders.keyBy("orderId"); 在这个例子中,Flink会根据订单号来对订单进行分区,这样当我们需要查找特定订单的时候,就可以直接从对应的分区中获取,不需要遍历整个流。 五、如何通过重新分区优化数据分布 最后,我们来谈谈如何通过重新分区优化数据分布。在咱们日常的实际操作里,有时候会遇到这样的情况:新的需求冒出来,这时候就可能需要对原来已经存在的数据进行一番“大挪移”,也就是重新分区啦。比如,想象一下咱们最初是按照用户的ID给数据分门别类的,但现在呢,我们想要换个方式,改成按照时间来划分这部分数据。这个时候,我们就需要使用Flink的rebalance()方法来进行重新分区: java DataStream orders = env.addSource(...); DataStream keyedOrders = orders.keyBy("userId"); // 假设我们发现用户活动的时间特性更符合时间分区,于是决定重新分区 keyedOrders.rebalance() .keyBy("time") .print(); 在这个例子中,我们先按照用户的ID进行了分区,然后使用rebalance()方法进行重新分区,最后按照时间进行分区。这样做的好处是可以更好地利用集群的资源,提高我们的处理效率。 六、总结 总的来说,Flink通过提供强大的数据分布优化能力,可以帮助我们在处理大数据时提高处理效率。此外,通过给集群来个重新分区这招,我们就能更巧妙地榨干集群的资源潜力,从而让我们的处理效率蹭蹭往上涨。大家伙儿在用Flink的时候,千万要记得把这些工具物尽其用啊,这样一来,咱们的工作效率就能蹭蹭地往上涨了!
2023-08-15 23:30:55
422
素颜如水-t
Mahout
...种牛气冲天的机器学习算法,真心给力!然而,随着数据量的增加,内存和磁盘I/O的需求也变得越来越大。这篇文章将深入探讨如何通过Mahout来优化内存和磁盘I/O的需求。 二、优化内存使用 在处理大数据时,内存的使用是非常关键的。因为如果数据全部加载到内存中,可能会导致内存不足的问题。那么,我们应该如何优化内存使用呢? 首先,我们可以使用流式处理的方式。这种方式就像是我们吃饭时,不用一口吃成个胖子,而是每次只夹一小口菜,慢慢品尝,而不是把满桌的菜一次性全塞进嘴里。换句话说,它让我们不需要一次性把所有数据都一股脑儿地塞进内存里,而是分批、逐步地读取和处理数据。这对于处理大型数据集非常有用。例如,我们可以使用Mahout的StreamingVectorSpaceModel类来实现这种处理方式: java model = new StreamingVectorSpaceModel(new ItemSimilarityIterable(model, (int) numFeatures)); 此外,我们还可以通过降低向量化模型的精度来减少内存使用。例如,我们可以使用更简单的向量化方法,如TF-IDF,而不是更复杂的词嵌入方法,如Word2Vec: java model = new TFIDFModel(numFeatures); 三、优化磁盘I/O 除了内存使用外,磁盘I/O也是我们需要考虑的一个重要因素。因为如果我们频繁地进行磁盘读写操作,将会极大地影响我们的性能。 一种常用的优化磁盘I/O的方法是使用数据缓存。这样子的话,我们可以先把常用的那些数据先放到内存里头“热身”,等需要的时候,就能直接从内存里拽出来用,省得再去磁盘那个“仓库”翻箱倒柜找一遍了。例如,我们可以使用MapReduce框架中的CacheManager来实现这种功能: java Configuration conf = new Configuration(); conf.set("mapreduce.task.io.sort.mb", "128"); conf.setBoolean("mapred.job.tracker.completeuserjobs.retry", false); conf.set("mapred.job.tracker.history.completed.location", "/home/user/hadoop/logs/mapred/jobhistory/done"); FileSystem fs = FileSystem.get(conf); Path cacheDir = new Path("/cache"); fs.mkdirs(cacheDir); conf.set("mapred.cache.files", cacheDir.toString()); 四、结论 总的来说,通过合理地使用流式处理和降低向量化模型的精度,我们可以有效地优化内存使用。同时,通过使用数据缓存,我们可以有效地优化磁盘I/O。这些都是我们在处理大数据时需要注意的问题。当然啦,这只是个入门级别的小建议,具体的优化方案咱们还得瞅瞅实际情况再灵活制定哈。希望这篇文章能对你有所帮助,让你更好地利用Mahout处理大数据!
2023-04-03 17:43:18
87
雪域高原-t
Apache Atlas
...案,实现对数据资产的搜索、分类、理解和治理。特别是在大数据这个大环境里,它就像个超级侦探一样,能时刻盯着HBase这类数据仓库的表结构动态,一旦表结构有什么风吹草动、发生变化,它都能第一时间通知相关的应用程序,让它们及时同步更新,保持在“信息潮流”的最前沿。 2. HBase表结构变更的实时响应挑战 在HBase中,表结构的变更包括但不限于添加或删除列族、修改列属性等操作。不过,要是这些改动没及时同步到Atlas的话,就很可能让那些依赖这些元数据的应用程序闹罢工,或者获取的数据视图出现偏差,不准确。因此,实现Atlas对HBase表结构变更的实时响应机制是一项重要的技术挑战。 3. Apache Atlas的实时响应机制 3.1 实现原理 Apache Atlas借助HBase的监听器机制(Coprocessor)来实现实时监控表结构变更。Coprocessor,你可以把它想象成是HBase RegionServer上的一位超级助手,这可是用户自己定义的插件。它的工作就是在数据读写操作进行时,像一位尽职尽责的“小管家”,在数据被读取或写入前后的关键时刻,灵活介入处理各种事务,让整个过程更加顺畅、高效。 java public class HBaseAtlasHook implements RegionObserver, WALObserver { //... @Override public void postModifyTable(ObserverContext ctx, TableName tableName, TableDescriptor oldDescriptor, TableDescriptor currentDescriptor) throws IOException { // 在表结构变更后触发,将变更信息发送给Atlas publishSchemaChangeEvent(tableName, oldDescriptor, currentDescriptor); } //... } 上述代码片段展示了一个简化的Atlas Coprocessor实现,当HBase表结构发生变化时,postModifyTable方法会被调用,然后通过publishSchemaChangeEvent方法将变更信息发布给Atlas。 3.2 变更通知与同步 收到变更通知的Atlas会根据接收到的信息更新其内部的元数据存储,并通过事件发布系统向订阅了元数据变更服务的客户端发送通知。这样,所有依赖于Atlas元数据的服务或应用程序都能实时感知到HBase表结构的变化。 3.3 应用场景举例 假设我们有一个基于Atlas元数据查询HBase表的应用,当HBase新增一个列族时,通过Atlas的实时响应机制,该应用无需重启或人工干预,即可立即感知到新的列族并开始进行相应的数据查询操作。 4. 结论与思考 Apache Atlas通过巧妙地利用HBase的Coprocessor机制,成功构建了一套对HBase表结构变更的实时响应体系。这种设计可不简单,它就像给元数据做了一次全面“体检”和“精准调校”,让它们变得更整齐划一、更精确无误。同时呢,也像是给整个大数据生态系统打了一剂强心针,让它既健壮得像头牛,又灵活得像只猫,可以说是从内到外都焕然一新了。随着未来大数据应用场景越来越广泛,我们热切期盼Apache Atlas能够在多元数据管理的各个细微之处持续发力、精益求精,这样一来,它就能够更好地服务于各种对数据依赖度极高的业务场景啦。 --- 请注意,由于篇幅限制和AI生成能力,这里并没有给出完整的Apache Atlas与HBase集成以及Coprocessor实现的详细代码,真实的开发实践中需要参考官方文档和社区的最佳实践来编写具体代码。在实际工作中,咱们的情感化交流和主观洞察也得实实在在地渗透到团队合作、问题追踪解决以及方案升级优化的各个环节。这样一来,技术才能更好地围着业务需求转,真正做到服务于实战场景。
2023-03-06 09:18:36
443
草原牧歌
Hive
... 2.1 表达式或关键字拼写错误 我们在编写Hive SQL时,有时可能因一时疏忽造成关键字或函数名拼写错误,导致查询失败。例如: sql -- 错误示例 SELECT emplyee_name FROM employees; -- 'emplyee_name'应为'employee_name' -- 正确示例 SELECT employee_name FROM employees; 2.2 结构性错误 Hive SQL的语句结构有严格的规定,如不遵循则会出现错误。比如分组、排序、JOIN等操作的位置和顺序都有讲究。下面是一个GROUP BY语句放置位置不当的例子: sql -- 错误示例 SELECT COUNT() total, department FROM employees WHERE salary > 50000 GROUP BY department; -- 正确示例 SELECT department, COUNT() as total FROM employees WHERE salary > 50000 GROUP BY department; 2.3 数据类型不匹配 在Hive中,进行运算或者比较操作时,如果涉及的数据类型不一致,也会引发错误。如下所示: sql -- 错误示例 SELECT name, salary days AS total_salary FROM employees; -- 若days字段是字符串类型,则会导致类型不匹配错误 -- 解决方案(假设days应为整数) CAST(days AS INT) AS days_casted, salary days_casted AS total_salary FROM employees; 3. 探究与思考 如何避免和调试SQL语法错误? - 养成良好的编程习惯:细心检查关键字、函数名及字段名的拼写,确保符合Hive SQL的标准规范。 - 理解SQL语法规则:深入学习Hive SQL的语法规则,尤其关注那些容易混淆的操作符、关键字和语句结构。 - 善用IDE提示与验证:利用诸如Hue、Hive CLI或IntelliJ IDEA等集成开发环境,它们通常具备自动补全和语法高亮功能,能在很大程度上减少人为错误。 - 实时反馈与调试:当SQL执行失败时,Hive会返回详细的错误信息,这些信息是我们定位问题的关键线索。学会阅读并理解这些错误信息,有助于快速找到问题所在并进行修复。 - 测试与验证:对于复杂的查询语句,先尝试在小规模数据集上运行并验证结果,逐步完善后再应用到大规模数据中。 4. 总结 在Hive查询过程中遭遇SQL语法错误,虽让人头疼,但只要我们深入了解Hive SQL的工作原理,掌握常见的错误类型,并通过实践不断提升自己的排查能力,就能从容应对这些问题。记住了啊,每一个搞砸的时候,其实都是个难得的学习机会,它能让我们更接地气地领悟到Hive这家伙究竟有多强大,还有它那一套严谨得不行的规则体系。只有经历过“跌倒”,才能更好地“奔跑”在大数据的广阔天地之中!
2023-06-02 21:22:10
608
心灵驿站
Scala
...能从中找到解决问题的关键线索。 4. 探讨与思考 在Scala开发过程中,IDE环境的重要性不言而喻。它不仅影响到日常编码效率,更直接影响到对复杂Scala特性的理解和掌握。作为一个Scala程序员,咱得积极拥抱并熟练掌握各种IDE工具,就像是找到自己的趁手兵器一样。这需要咱们不断尝试、实践,有时候可能还需要捣鼓一阵子,但最终目的是找到那个能让自己编程效率倍增,用起来最顺手的IDE神器。同时呢,也要懂得巧用咱们社区的丰富资源。当你碰到IDE环境那些头疼的问题时,得多翻翻官方文档、积极加入论坛里的讨论大军,甚至直接向社区里的大神们求救都是可以的。这样往往能让你更快地摸到问题的答案,解决问题更高效。 总的来说,选择并配置好IDE环境,就如同给你的Scala编程之旅铺平了道路,让你可以更加专注于代码逻辑和算法实现,享受编程带来的乐趣和成就感。希望这篇文章能够帮助你更好地理解和应对Scala开发过程中的IDE环境问题,助你在Scala世界里游刃有余!
2023-01-16 16:02:36
104
晚秋落叶
DorisDB
...成为了连接各个节点的关键因素。 3. 常见的网络带宽问题及解决方案 3.1 数据压缩 数据压缩是减少网络传输量的有效手段。DorisDB支持多种压缩算法,如LZ4和ZSTD。我们可以根据实际情况选择合适的压缩算法。例如,在配置文件中启用LZ4压缩: sql ALTER SYSTEM SET enable_compression = 'lz4'; 这样可以显著减少数据在网络中的传输量,从而减轻网络带宽的压力。 3.2 调整并行度 并行度是指同时执行的任务数量。如果并行度过高,会导致网络带宽竞争激烈,进而影响整体性能。相反,如果并行度过低,则会降低查询效率。我们可以通过调整parallel_fragment_exec_instance_num参数来控制并行度。例如,将其设置为2: sql ALTER SYSTEM SET parallel_fragment_exec_instance_num = 2; 这可以根据实际情况进行调整,以达到最佳的网络带宽利用效果。 3.3 使用索引 索引可以显著提高查询效率,减少需要传输的数据量。想象一下,我们有个用户信息表叫users,里面有个age栏。咱们经常得根据年龄段来捞人,就是找特定年纪的用户。为了提高查询效率,我们可以创建一个针对age列的索引: sql CREATE INDEX idx_users_age ON users (age); 这样,在执行查询时,DorisDB可以直接通过索引来定位需要的数据,而无需扫描整个表,从而减少了网络传输的数据量。 3.4 使用分区表 分区表可以将大数据集分成多个较小的部分,从而提高查询效率。想象一下,我们有个表格叫sales,里面记录了所有的销售情况,还有一个日期栏叫date。每次我们需要查某个时间段内的销售记录时,就得用上这个表格了。为了提高查询效率,我们可以创建一个基于date列的分区表: sql CREATE TABLE sales ( id INT, date DATE, amount DECIMAL(10, 2) ) PARTITION BY RANGE (date) ( PARTITION p2023 VALUES LESS THAN ('2024-01-01'), PARTITION p2024 VALUES LESS THAN ('2025-01-01') ); 这样,在执行查询时,DorisDB只需要扫描相关的分区,而无需扫描整个表,从而减少了网络传输的数据量。 4. 实践经验分享 在实际工作中,我发现以下几点可以帮助我们更好地优化DorisDB的网络带宽使用: - 监控网络流量:定期检查网络流量情况,找出瓶颈所在。可以使用工具如iftop或nethogs来监控网络流量。 - 分析查询日志:通过分析查询日志,找出频繁执行且消耗资源较多的查询,对其进行优化。 - 合理规划集群:合理规划集群的规模和节点分布,避免因节点过多而导致网络带宽竞争激烈。 - 持续学习和实践:DorisDB的技术不断更新迭代,我们需要持续学习新的技术和最佳实践,不断优化我们的系统。 5. 结语 优化DorisDB的网络带宽使用是一项系统工程,需要我们从多方面入手,综合考虑各种因素。用上面说的那些招儿,咱们能让系统跑得飞快又稳当,让用户用起来更爽!希望这篇文章能对你有所帮助,让我们一起努力,让数据流动得更顺畅!
2025-01-14 16:16:03
87
红尘漫步
.net
...快速下单,也可以灵活搜索各种渠道找到并订购心仪美食一样。下面是一个简单的客户端调用示例: csharp // 添加服务引用后自动生成的Client代理类 var client = new Service1Client(); var result = client.GetData(123); Console.WriteLine(result); // 输出 "You entered: 123" client.Close(); 这里,我们创建了一个服务客户端实例,并调用了GetData方法,实现了与服务端的交互。 5. 进阶探讨 当然,WCF的功能远不止于此,还包括安全性、事务处理、可靠会话、多线程并发控制等诸多高级特性。比如,我们可以为服务操作添加安全性验证: csharp [OperationContract] [PrincipalPermission(SecurityAction.Demand, Role = "Admin")] string SecureGetData(int value); 这段代码表明只有角色为"Admin"的用户才能访问SecureGetData方法,体现了WCF的安全性优势。 总的来说,WCF在.NET中为我们提供了便捷而强大的Web服务开发工具,无论是初级开发者还是资深工程师,都需要对其有足够的理解和熟练应用。在实践中不断探索和尝试,相信你会越来越感受到WCF的魅力所在!
2023-07-18 11:00:57
457
红尘漫步
Nacos
...于标识具体配置信息的关键字符串,通常与配置内容、分组信息等组合以唯一确定一个配置项。例如,“gatewayserver-dev-$ server.env .yaml”就是一个DataId,表示某个特定环境下的网关服务器配置文件。 服务网格(Service Mesh) , 服务网格是一个专门处理服务间通信的基础设施层,通常由一系列轻量级网络代理组成,这些代理与应用部署在一起但对应用透明。Istio作为文中提及的服务网格解决方案,它可以利用Nacos作为配置源,实现在复杂的微服务体系中动态管理和推送配置,提高服务治理能力及整体架构灵活性。 Nacos服务器 , Nacos服务器是阿里巴巴开源的一款集成了配置管理、服务发现和动态DNS服务的产品,它是微服务架构中的核心组件之一。在本文场景下,用户需要确保Nacos服务器稳定运行并成功连接数据库,以便于存储和获取微服务所需的配置信息。 动态配置中心 , 动态配置中心是指一种可以实时更新、按需获取的集中式配置管理系统,如Nacos。在该系统中,应用无需重启即可从中心获取最新的配置信息,并能根据不同的环境、版本等因素动态调整配置策略。这对于提升微服务架构下的开发效率和运维水平具有重要意义。
2023-09-10 17:16:06
55
繁华落尽_t
Scala
...implicit关键字来定义隐式转换。以下是一个简单的例子: scala case class Person(name: String, age: Int) case class Employee(id: Int, name: String, salary: Double) object Conversion { implicit def personToEmployee(p: Person): Employee = Employee(p.age, p.name, 0) } 在这个例子中,我们定义了一个名为Conversion的对象,它包含了一个名为personToEmployee的隐式方法。这个方法的作用是将一个Person对象转换为一个Employee对象。由于我们在这儿用了“implicit”这个关键字,这意味着编译器会在幕后悄无声息地自动帮咱们调用这个方法,就像是有个小助手在你还没察觉的时候就把事情给办妥了。 五、隐式转换的实际应用 隐式转换在很多场景下都有实际的应用。例如,我们在处理数据库查询结果时,通常会得到一系列的元组。如果我们想进一步操作这些元组,就需要先将其转换为对象。这时,隐式转换就派上用场了。 scala val people = Seq(("Alice", 25), ("Bob", 30), ("Charlie", 35)) people.map { case (name, age) => Person(name, age) } 在这个例子中,我们首先定义了一个包含三个元组的序列。然后,我们使用map函数将这些元组转换为Person对象。因为Person这个对象在创建的时候,它的构造函数需要我们提供两个参数,所以呢,我们就得用上case语句这把“解包神器”,来把元组里的信息给巧妙地提取出来。这个过程中,我们就用到了隐式转换。 六、总结 通过本文,我们了解了什么是隐式转换,以及为什么要使用隐式转换。我们也实实在在地学了几个接地气的例子,这下子可是真真切切地感受到了隐式转换在编程世界里的大显身手和关键作用。在未来的学习和工作中,咱们真该好好地跟“隐式转换”这位大拿交朋友,把它摸得门儿清,用得溜溜的。 总的来说,使用隐式转换可以极大地提高API的易用性,使我们的编程工作更加轻松愉快。作为一名码农,咱可不能停下脚步,得时刻保持对新鲜技术和工具的好奇心,不断磨练自己的编程技艺,让技术水平蹭蹭往上涨。因为编程不仅仅是一门技术,更是一种艺术。
2023-12-20 23:23:54
69
凌波微步-t
转载文章
...就不贴代码了。 线程关键代码: void thread(thr_id t){pthread_mutex_lock(t->mutex); //这个lock相当重要sem_post(t->sem);pthread_cond_wait(t->self_cond, t->mutex);pthread_mutex_unlock(t->mutex);//真正开始for(int i = 0; i < 10; ++i){pthread_mutex_lock(t->mutex);std::cout<<t->id<<std::flush;pthread_cond_signal(t->next_cond);if(i < 9) //输出最后一遍的时候,不用再wait而是退出线程pthread_cond_wait(t->self_cond, t->mutex);pthread_mutex_unlock(t->mutex);} } Jinhao:现在C唤醒A的时候,能保证A是wait的状态.因为A在cond_wait的时候,B才能获得锁,当b在cond_wait的时候,C才获得锁.所以当C cond_signal A时, A必然是cond_wait的。 全部代码如下: include <iostream>include <stdlib.h>include <pthread.h>include <stdio.h>include <semaphore.h>using namespace std;struct thr_id{char id;sem_t sem;pthread_mutex_t mutex;pthread_cond_t self_cond;pthread_cond_t next_cond;};void thread(thr_id t){pthread_mutex_lock(t->mutex);sem_post(t->sem);pthread_cond_wait(t->self_cond, t->mutex);pthread_mutex_unlock(t->mutex);for(int i = 0; i < 10000; ++i){pthread_mutex_lock(t->mutex);std::cout<<t->id<<std::flush;pthread_cond_signal(t->next_cond);if(i < 9999)pthread_cond_wait(t->self_cond, t->mutex);pthread_mutex_unlock(t->mutex);} }typedef void (PRINTTHREADFUNC) (void);int main(){pthread_t th_a, th_b, th_c;sem_t sem;sem_init(&sem, 0, 0);pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;pthread_cond_t cond_a = PTHREAD_COND_INITIALIZER;pthread_cond_t cond_b = PTHREAD_COND_INITIALIZER;pthread_cond_t cond_c = PTHREAD_COND_INITIALIZER;thr_id thrids[3] = { {'a', &sem, &mutex, &cond_a, &cond_b},{'b', &sem, &mutex, &cond_b, &cond_c},{'c', &sem, &mutex, &cond_c, &cond_a} };pthread_create(&th_a, NULL, reinterpret_cast<PRINTTHREADFUNC>(thread), &thrids[0]);pthread_create(&th_b, NULL, reinterpret_cast<PRINTTHREADFUNC>(thread), &thrids[1]);pthread_create(&th_c, NULL, reinterpret_cast<PRINTTHREADFUNC>(thread), &thrids[2]);for(int i = 0; i < 3; ++i){sem_wait(&sem);}pthread_mutex_lock(&mutex);pthread_cond_signal(thrids[0].self_cond);pthread_mutex_unlock(&mutex);pthread_join(th_a, NULL);pthread_join(th_b, NULL);pthread_join(th_c, NULL);sem_destroy(&sem);pthread_cond_destroy(&cond_a);pthread_cond_destroy(&cond_b);pthread_cond_destroy(&cond_c);return 0;} 本篇文章为转载内容。原文链接:https://blog.csdn.net/enjolras/article/details/7456540。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-10-03 17:34:08
138
转载
Greenplum
...是运用这一强大工具的关键一步。甭管你是要插个一条数据,还是整批数据一股脑儿地往里塞,Greenplum都能在处理各种复杂场景时,展现出那叫一个灵活又高效的身手,真够溜的!希望这次探讨能帮助你在今后的数据处理工作中更自如地驾驭Greenplum,让数据的价值得到充分释放。下次当你面对浩瀚的数据海洋时,不妨试试在Greenplum中挥洒你的“数据魔法”,你会发现,数据的插入也能如此轻松、快捷且富有成就感!
2023-08-02 14:35:56
546
秋水共长天一色
Java
...制是实现其安全调用的关键步骤。 签名(Signature) , 在信息安全领域,签名是一种验证数据完整性和来源合法性的重要手段。在本文中,签名是指微信JS-SDK调用时,由服务器端根据特定算法和参数(包括access_token、nonceStr、timestamp以及url等)生成的一串唯一标识符。这串签名用于前端与微信服务器进行交互时的身份验证,确保数据在传输过程中未被篡改,只有正确的签名才能使微信JS-SDK的功能得以正常使用。 SHA-1 , SHA-1(Secure Hash Algorithm 1)是一种广泛使用的加密散列函数,它将任意长度的数据映射为固定长度(160位)的哈希值,也称为“数字指纹”。在文中,SHA-1作为生成微信JS-SDK签名的加密算法,通过对拼接好的字符串进行SHA-1计算,得到一个唯一的签名值,以确保数据的安全性及防止数据被恶意篡改。由于原文中提到Java代码片段使用了SHA-1算法来生成签名,因此在这个语境下,SHA-1的作用尤为关键。
2023-09-10 15:26:34
316
人生如戏_
MyBatis
...密。其实,这个问题的关键点就在于怎么在TypeHandler里头一块儿处理多个字段的加密问题,就像咱们平时做饭时,怎样一次性炒好几样菜一样。这就需要我们在自定义TypeHandler时,通过封装一系列的逻辑来实现。 四、具体步骤 下面我们将一步步地演示如何实现这个功能。 1. 创建TypeHandler 首先,我们需要创建一个新的TypeHandler,用来处理我们的加密操作。这里我们假设我们要对两个字段(field1和field2)进行加密,代码如下: java @MappedJdbcTypes(JdbcType.VARCHAR) @MappedTypes(String.class) public class EncryptTypeHandler extends BaseTypeHandler { private String key = "your secret key"; @Override public void setNonNullParameter(PreparedStatement ps, int i, String parameter, JdbcType jdbcType) throws SQLException { ps.setString(i, encrypt(parameter)); } @Override public String getNullableResult(ResultSet rs, String columnName) throws SQLException { return decrypt(rs.getString(columnName)); } private String encrypt(String str) { try { SecretKeySpec keySpec = new SecretKeySpec(key.getBytes(), "AES"); Cipher cipher = Cipher.getInstance("AES/ECB/PKCS5Padding"); cipher.init(Cipher.ENCRYPT_MODE, keySpec); byte[] encryptedBytes = cipher.doFinal(str.getBytes()); return Base64.getEncoder().encodeToString(encryptedBytes); } catch (Exception e) { throw new RuntimeException(e); } } private String decrypt(String encryptedStr) { try { SecretKeySpec keySpec = new SecretKeySpec(key.getBytes(), "AES"); Cipher cipher = Cipher.getInstance("AES/ECB/PKCS5Padding"); cipher.init(Cipher.DECRYPT_MODE, keySpec); byte[] decryptedBytes = cipher.doFinal(Base64.getDecoder().decode(encryptedStr)); return new String(decryptedBytes); } catch (Exception e) { throw new RuntimeException(e); } } } 在这个TypeHandler中,我们实现了setNonNullParameter和getNullableResult方法,分别用于设置和获取字段的值。在这些方法中,我们都调用了encrypt和decrypt方法来进行加密和解密操作。 2. 配置TypeHandler 接下来,我们需要在Mybatis的配置文件中配置这个TypeHandler。举个例子,实际上我们得在那个标签区域里头,给它添个新成员。具体操作就像这样:给这个新元素设定好它对应处理的Java类型和数据库类型,就像是给它分配了特定的任务一样。代码如下: xml 这样,我们就成功地配置了这个TypeHandler。 3. 使用TypeHandler 最后,我们可以在Mybatis的映射文件中使用这个TypeHandler来处理我们的加密字段。例如,如果我们有一个User实体类,其中有两个字段(field1和field2),我们就可以在映射文件中这样配置: xml SELECT FROM users; UPDATE users SET field1 = {field1}, field2 = {field2} WHERE id = {id}; 这样,当我们在查询或更新用户的时候,就会自动调用我们刚才配置的TypeHandler来进行加密操作。 五、总结 总的来说,通过利用Mybatis的TypeHandler功能,我们可以很方便地实现多个字段的加密。虽然这个过程可能稍微有点绕,不过只要我们把这背后的原理摸透了,就能像变戏法一样,在各种场景中轻松应对,游刃有余。 六、后续工作 未来,我们可以考虑进一步优化这个TypeHandler,让它能够支持更多的加密算法和加密模式。另外,咱们还可以琢磨一下把这个功能塞进其他的平台或者工具里头,让更多的小伙伴都能享受到它的便利之处。 这就是我对于Mybatis-plus多字段如何加密不同密码的一些理解和实践,希望能够对你有所帮助。如果你有任何问题或者建议,欢迎随时给我留言。
2023-07-21 08:07:55
149
飞鸟与鱼_t
Apache Solr
...统稳定性,也对后端的搜索引擎提出了更高的要求。 以Solr为例,许多企业都在使用Solr作为其搜索服务的核心组件。然而,在面对如此巨大的数据流量时,Solr同样面临存储空间不足的问题。因此,对于Solr管理员而言,如何有效管理和优化存储空间,避免因数据暴涨而导致系统崩溃,成为了亟待解决的难题。 在实际应用中,不少公司已经开始探索更为高效的解决方案。例如,阿里云团队提出了一种基于Solr的分布式搜索架构,通过增加分片数量和优化索引配置,有效提升了系统的处理能力。此外,他们还引入了智能预测算法,提前识别并预警潜在的数据增长风险,从而在问题发生前采取预防措施。 与此同时,行业内也在不断推动技术创新。例如,谷歌最近发布了一款名为“Colossal”的开源项目,旨在通过深度学习技术优化大规模数据处理流程。这一项目不仅适用于搜索引擎领域,还可以广泛应用于其他大数据场景,有望为Solr等传统搜索引擎带来新的突破。 综上所述,面对数据暴涨带来的挑战,Solr管理员需要持续关注行业动态和技术趋势,不断优化现有方案,才能确保系统在高负载下依然保持稳定高效。未来,随着技术的不断进步,我们有理由相信Solr将变得更加智能和强大,更好地服务于各类应用场景。
2025-01-31 16:22:58
80
红尘漫步
Gradle
...mentation关键字来声明对MyLib的依赖。这就意味着,MyLib会妥妥地被塞进项目的class路径里头,不论是编译的时候还是运行的时候,随时都能派上用场。 四、Gradle中的依赖分组 除了直接引用特定版本的依赖外,我们还可以通过依赖分组来管理依赖。依赖分组可以帮助我们将相关的依赖放在一起,使项目结构更加清晰。 例如,我们可以通过以下方式为所有Spring Boot的依赖设置一个名为'spring-boot'的依赖分组: groovy dependencies { implementation group: 'org.springframework.boot', name: 'spring-boot-starter-web' } 然后,我们就可以通过以下方式引用这个分组中的其他依赖: groovy dependencies { implementation 'org.springframework.boot:spring-boot-starter-data-jpa' } 这样,我们就不用每次都手动输入完整的依赖名称了,只需要记住依赖分组的名字即可。 五、结论 总的来说,Gradle是一个非常强大和灵活的构建工具,它为我们提供了许多方便的方式来管理和构建项目。对于每一个真心想在软件开发领域混出一片天的码农来说,掌握Gradle这个家伙可是你工具箱里不可或缺的一项大招!想要真正捣鼓出高质量的软件产品,那就必须得对Gradle有深刻的认识,并且能够像玩转积木那样灵活运用它,这样才能在开发过程中游刃有余,打造出让人心服口服的好软件。 希望大家能够通过这篇文章,对Gradle有一个更深入的理解。如果你有任何问题或者想要进一步了解Gradle,欢迎随时向我提问!
2023-04-09 23:40:00
472
百转千回_t
ZooKeeper
...eeper的作用愈发关键,它作为服务协调的核心组件,在确保数据一致性、提供高效的服务发现与管理等方面发挥着不可替代的作用。然而,实践中遇到如客户端无法获取集群状态信息等问题时,不仅需要深入理解ZooKeeper的运行机制和通信原理,还需密切关注相关领域的最新进展和技术动态。 近期,社区对于ZooKeeper的高可用性和容错性进行了更深层次的研究和优化。例如,最新的ZooKeeper 3.7版本引入了QUORUM_READHttpServletRequest处理器,以支持在读操作层面实现强一致性,这有助于减少因网络分区或其他异常情况导致的客户端状态信息获取异常问题。同时,业界也在探索采用Raft一致性算法替换原有的ZAB协议,以进一步提升ZooKeeper的性能和可运维性。 此外,随着云原生架构的发展,Kubernetes等容器编排平台上的ZooKeeper服务管理和监控也日益受到关注。通过适配Operator模式或利用Prometheus等开源监控工具,能够实时感知并处理ZooKeeper集群的状态变化,从而有效预防和解决状态信息获取异常的问题。 综上所述,在面对ZooKeeper集群状态信息获取异常这一挑战时,除了深入理解和遵循基本原理及最佳实践外,我们还应积极跟进技术前沿,结合最新的研究成果和工具,以构建更为稳定、健壮且高效的分布式系统环境。
2023-11-13 18:32:48
69
春暖花开
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
jobs
- 查看后台运行的任务列表。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"