前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[AngularJS 组件化架构设计 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
...Calamares 设计灵活,能够方便地定制安装过程,提供简单直观的用户界面,使得 Lubuntu 20.04 的安装体验更为流畅快捷。 Openbox , Openbox 是一个轻量级、高度可配置的窗口管理器,在 Lubuntu 20.04 LTS 中与 LXQt 桌面环境默认集成使用。Openbox 提供了较低的系统资源占用以及自定义窗口行为的能力,有助于实现 Lubuntu 系统的整体轻量化目标。 KDE , KDE(K Desktop Environment)是一个全面的自由及开放源代码桌面环境,包含了一系列应用程序和工具。尽管 Lubuntu 主要采用 LXQt,但新版本中的许多预装应用来自 KDE 生态圈,如 Ark、Bluedevil、Discover 等,这反映了 Lubuntu 20.04 在软件选择上对 KDE 技术栈的采纳和兼容。
2023-05-17 18:52:15
318
转载
Go Gin
...,这也得益于Gin的设计理念:尽可能简化开发流程,让程序员专注于业务逻辑而不是框架细节。 --- 三、实时处理的核心 WebSocket支持 既然我们要讨论实时处理,那么就不得不提WebSocket。WebSocket就像是一个永不掉线的“聊天热线”,能让浏览器和服务器一直保持着畅通的联系。跟传统的请求-响应模式不一样,它可以让双方随时自由地“唠嗑”,想发啥就发啥,特别适合那些需要实时互动的应用,比如聊天室里你一言我一语,或者股票行情那种分分钟都在变化的东西,用它简直太合适了! Gin内置了对WebSocket的支持,我们可以直接通过中间件来实现这一功能。下面是一个完整的WebSocket示例: go package main import ( "log" "net/http" "github.com/gin-gonic/gin" "github.com/gorilla/websocket" ) var upgrader = websocket.Upgrader{ ReadBufferSize: 1024, WriteBufferSize: 1024, CheckOrigin: func(r http.Request) bool { return true // 允许跨域 }, } func handleWebSocket(c gin.Context) { ws, err := upgrader.Upgrade(c.Writer, c.Request, nil) if err != nil { log.Println("Failed to upgrade:", err) return } defer ws.Close() for { messageType, msg, err := ws.ReadMessage() if err != nil { log.Println("Error reading message:", err) break } log.Printf("Received: %s\n", string(msg)) err = ws.WriteMessage(messageType, msg) if err != nil { log.Println("Error writing message:", err) break } } } func main() { r := gin.Default() r.GET("/ws", handleWebSocket) r.Run(":8080") } 在这段代码中,我们利用gorilla/websocket包实现了WebSocket升级,并在handleWebSocket函数中处理了消息的读取与发送。你可以试着在浏览器里输入这个地址:ws://localhost:8080/ws,然后用JavaScript发个消息试试,看能不能马上收到服务器的回应。 深入探讨 说实话,刚开始写这部分代码的时候,我还担心WebSocket的兼容性问题。后来发现,只要正确设置了CheckOrigin方法,大多数现代浏览器都能正常工作。这让我更加坚定了对Gin的信心——它虽然简单,但足够强大! --- 四、进阶技巧 并发与性能优化 在实际项目中,我们可能会遇到高并发的情况。为了保证系统的稳定性,我们需要合理地管理线程池和内存分配。Gin提供了一些工具可以帮助我们做到这一点。 例如,我们可以使用sync.Pool来复用对象,减少垃圾回收的压力。下面是一个示例: go package main import ( "sync" "time" "github.com/gin-gonic/gin" ) var pool sync.Pool func init() { pool = &sync.Pool{ New: func() interface{} { return make([]byte, 1024) }, } } func handler(c gin.Context) { data := pool.Get().([]byte) defer pool.Put(data) copy(data, []byte("Hello World!")) time.Sleep(100 time.Millisecond) // 模拟耗时操作 c.String(http.StatusOK, string(data)) } func main() { r := gin.Default() r.GET("/", handler) r.Run(":8080") } 在这个例子中,我们定义了一个sync.Pool来存储临时数据。每次处理请求时,从池中获取缓冲区,处理完毕后再放回池中。这样可以避免频繁的内存分配和释放,从而提升性能。 反思与总结 其实,刚开始学习这段代码的时候,我对sync.Pool的理解还停留在表面。直到后来真正用它解决了性能瓶颈,我才意识到它的价值所在。这也让我明白,优秀的框架只是起点,关键还是要结合实际需求去探索和实践。 --- 五、未来展望 Gin与实时处理的无限可能 Gin的强大之处不仅仅在于它的易用性和灵活性,更在于它为开发者提供了广阔的想象空间。无论是构建大型分布式系统,还是打造小型实验项目,Gin都能胜任。 如果你也想尝试用Gin构建实时处理系统,不妨从一个小目标开始——比如做一个简单的在线聊天室。相信我,当你第一次看到用户实时交流的画面时,那种成就感绝对会让你欲罢不能! 最后的话 写这篇文章的过程,其实也是我自己重新审视Gin的过程。其实这个东西吧,说白了挺简单的,但让我学到了一个本事——用最利索的办法搞定事情。希望能这篇文章也能点醒你,让你在今后的开发路上,慢慢琢磨出属于自己的那套玩法!加油吧,程序员们!
2025-04-07 16:03:11
65
时光倒流
转载文章
...交互场景如游戏或三维设计软件,一些高级模拟技术如Robot Framework、Appium也开始受到广泛关注。这些框架不仅能模拟基本的键盘鼠标输入,还能处理更精细的触屏手势操作,并能适应各种移动设备和桌面环境,极大提高了自动化测试的覆盖率和效率。 另外,在安全性方面,研究人员正不断探索如何防止恶意软件通过模拟合法用户的键盘和鼠标操作进行攻击。例如,某些安全软件已开始采用行为分析和机器学习算法来识别并阻止非人类产生的异常输入模式,确保只有真实的用户交互才能触发敏感操作。 总之,Python win32api提供的键盘鼠标模拟功能为自动化测试与脚本编写打开了新世界的大门,而结合最新的自动化测试技术和安全防护手段,我们不仅可以更高效地实现UI自动化,还能在保障用户体验的同时,有效抵御潜在的安全威胁。未来,随着相关技术的持续发展和完善,这一领域的应用场景将更加丰富多元。
2023-06-07 19:00:58
54
转载
转载文章
...ACM国际大学生程序设计竞赛(ACM-ICPC)和谷歌代码 Jam 等全球顶级编程赛事中,频繁出现与回文串相关的题目,参赛者需灵活运用算法知识来解决实际问题。比如,有题目要求选手在最短时间内编写程序,找出将一个字符串转换为非回文串的最小操作次数,这与我们讨论的文章主题不谋而合,展现了理论与实践相结合的重要性。 同时,回文串在密码学、遗传学以及文学创作等多个领域均有应用。例如,在DNA序列分析中,回文结构往往关联着基因调控的重要区域;在密码学中,特定类型的回文串可用于构建加密算法的关键部分。深入理解并熟练掌握回文串的相关性质及处理方法,无疑有助于我们在这些领域取得更多的技术突破。 总之,从基础的编程题出发,我们可以洞察到字符串处理与算法优化在前沿科研和实际应用中的深远影响。通过持续关注和学习此类问题的最新研究成果与应用案例,我们能够不断提升自身的算法设计和问题解决能力。
2023-10-05 13:54:12
228
转载
ElasticSearch
...器资源,可以搭建上述架构,app的日志会被收集到elasticsearch中,最终你可以在kibana中查看日志,kibana里面可以很方面的做各种筛查操作。 这个流畅大概是这样的: 3.2 通用搜索场景 但是没有上图的beats、logstash、kibana,elasticsearch可以自己工作吗?完全可以的! elasticsearch也支持单机部署,数据规模不是很大的情况下,表现也是不错的。所以,你也不用担心因为自己机器资源不够而对elasticsearch望而却步。当然,单机部署的情况下,更多的适合自己玩,对于可靠性的要求就不能太苛刻了。 如果你在用宝塔,那你可以在宝塔面板,左侧“软件商店”中直接找到elasticsearch,并“没有痛苦”的安装。 本篇文章主要讨论选型,所以不涉及安装细节。 3.2.1 性能顾虑 上面提到了“表现”,其实性能只是elasticsearch的一个方面,主要你的机器资源足够(机器资源?对,包括你的机器个数,elasticsearch可以非常方便的横向扩展,以及单机的配置,cpu+内存,内存越高越好,elasticsearch比较吃内存!),它一定会给你很好的性能反应。试想,公司里的app打印线上日志的行数其实可比一般业务系统产生的订单数量要大很多很多,elasticsearch都可以常在日志的实时分析,所以如果你要做通用场景,而且机器资源不是问题,这是完全行得通的。 3.2.2 易用性和可玩性 此外,在使用elasticsearch的时候,会有很多的可玩性。这里不引经据典,呈现很多elasticsearch官方文章的列举优秀特性(当然,确实很优秀!)。 这里举几个例子: (1)中文分词:第一章提到的其它引擎几乎很难实现,elasticsearch对分词器的支持是原生的,因为elasticsearch天生就为全文索引而生,elasticsearch的汉语名字就是“弹性搜索”。这家伙可是专门搞搜索的! 有的朋友可能不了解分词器,比如你的一个字段里存储“今天我要吃冰激凌”,在分词器的加持下,es最终会存储为“今天|我|要|吃|冰激凌”,并且使用倒排索引的形式进行存储。当你搜索“冰激凌”的时候,可以很快的反馈回来。 关于elasticsearch的原理,这里不展开说明,分词器和倒排索引是elasticsearch的最基本的概念。如果有不了解的朋友,可以自行百度一下。而且这两个概念,与elasticsearch其实不挂钩,是搜索中的通用概念。 关于倒排索引,其核心表现如下图: 如果你要用mysql、mongo实现中文分词,这......其实挺麻烦的,可能在后面的版本支持中会实现的很好,但在当前的流行版本中,它们对中文分词是不够友好的。 mysql5.7之后支持外挂第三方分词器,支持中文分词。而在数据量较大的情况下,mysql的多机器部署几乎很难实现,elasticsearch可以很容易的水平扩展。 mongo支持西方语言的分词,但不支持中文、日语、汉语等东方语言,你需要在自己的逻辑代码中实现分词器。 ngram分词,你看看效果:依旧是“今天我要吃冰激凌”,ngram二元分词后即将得到结果“今天、天我、我要、要吃、吃冰、冰激、激凌”。这....,那你搜索冰激凌就搜不出来!咋办呢,当然可以使用三元分词。但是更好的解决方案还是中文分词器,但它们原生并不支持的。 (2)自定义排名场景:比如你的搜索“冰激凌”,结果中返回了有10条,这10条应该有你想对它指定的顺序。最简单的就是用默认的得分,但是如果你想人为干预这个得分怎么办? elasticsearch支持function_score功能(可以不用,这个是增强功能),es会在计算最终得分之前回调这个你指定的function_score回调函数,传入原始得分、行的原始数据,你可以在里面做计算,比如查询其它参考表、或查看是否是广告位,以得到新的score返回给用户。 function_scrore的功能不展开描述,是一个在自定义得分场景下十分有用又简单易用的功能!下面是一个使用示例,不仅如此,它是支持自定义函数的,自由度非常高。 (3)文本高亮:你用mysql或mongo也可以实现,比如用户搜索“冰激凌”,你只需要在逻辑代码中对“冰激凌”替换为“<span class='highlight-term'>冰激凌</span>”,然后前端做样式即可。但如果用户搜索了“好吃的冰激凌”咋办呢?还有就是英文大小写的场景,用户搜索"MAIN",那结果及时匹配到了“main”(小写的),这个单词是否应该高亮呢?也许这时候你会用业务代码实现toLowerCase下基于位置下标的匹配。 挺麻烦的吧,elasticsearch,自动可以返回高亮字段!并且可以自由指定高亮的html前后标签。 (4)实在太多了....这家伙天生为索引而生,而且版本还在不断地迭代。不差机器的话,用用吧! 4. 退而求其次 4.1 普通数据库 尽管elasticsearch在搜索场景下,是非常好用的利器!但是它比较消耗机器资源,如果你的数据规模并不大,而且想快速实现功能。你可以使用mysql或mongo来代替,完全没有问题。 技术是为了解决特定业务场景下的问题,结合当前手头的资源,适合自己的才是最好的。也许你搞了一个单机器的elasticsearch,单机器内存只有2G,它的表现并不会比mysql、mongo来的好。 当然,如果你为了使用上边提到的一些优秀的独有的特性,那elasticsearch一定还是最佳选择! 对于mysql(关系型数据库)和mongo(文档数据库)的区别这里不展开描述了,但对于搜索而言,两种都合适。有时候选型也不用很纠结,其实都是差不太多的东西,适合自己的、自己熟悉的、运维起来顺手的,就是最好的。 4.2 普通数据库实现中文分词搜索的原理 尽管mysql在5.7以后支持外挂第三方分词器,mongo在截止目前的版本中也不支持中文分词(你可能会看到一些文章中说可以指定language为chinese,但其实会报错的)。 其实当你选择普通数据库,你就不得不在逻辑代码中自己实现一套索引分词+搜索分词逻辑。 索引分词+搜索分词?为什么分开写,如果你有用过elasticsearch或solr,你会知道,在指定字段的时候,需要指定index分词器和search分词器。 下面以mongo为例做简要说明。 4.2.1 index分词器 意思是当数据“索引”截断如何分词。首先,这里必须要承认,数据之后存储了,才能被查询。在搜索中,这句话可以换成是“数据只有被索引了,才能被搜索”。 这时候请求打过来了,要索引一条数据,其中某字段是“今天我要吃冰激凌”,分词后得到“今天|我|要|吃|冰激凌”,这个就可以入库了。 如果你使用elasticsearch或solr,这个过程是自动的。如果你使用不支持外观分词器的常规数据库,这个过程你就要手动了,并把分词后的结果用空格分开(最好使用空格,因为西方语言的分词规则就是按空格拆分,以及逗号句号),存入数据库的一个待搜索的字段上。 效果如下图: 本站的其它博文中有介绍IKAnalyzer:https://www.52itw.com/java/6268.html 4.2.2 search分词器 当用户的查询请求打过来,用户输入了“好吃的冰激凌”,分词后得到“好吃|冰激凌”(“的”作为停用词stopwords,被自动忽略了,IKAnalyzer可以指定停用词表)。 于是这时候就回去上图的数据库表里面搜索“好吃 冰激凌”(与index分词器结果统一,还是用空格分隔)。 当然,对于mongo而言,你需要事先开启全文索引db.xxx.ensureIndex({content: "text"}),xxx是集合名,content是字段名,text是全文索引的标识。 mongo搜索的时候用这个语法:db.xxx.find( { $text: { $search: "好吃 冰激凌" } },{ score: { $meta: "textScore" } }).sort( { score: { $meta: "textScore" } } ) 4.2.3 索引库和存储库分开 为了减少单表的大小,为了让普通的列表查询、普通筛选可以跑的更快,你可以对原有的数据原封不动的做一张表。 然后对于搜索场景,再单独对需要被搜索的字段单独拎一张表出来! 然后二者之间做增量信号同步或定时差额同步,可能会有延迟,这个就看你能容忍多长时间(悄悄告诉你,elasticsearch也需要指定这个refresh时间,一般是1s到几秒、甚至分钟级。当然,二者的这个时间对饮的底层目的是不一样的)。 这样,搜索的时候先查询搜索库,拿到一个指针id的列表,然后拿到指针id的列表区存储里把数据一次性捞出来。当然,也是支持分页的,你查询搜索库其实也是普通的数据库查询嘛,支持分页参数的。 4.3 存储库和索引库的延伸阅读 很多有名的开源软件也是使用的存储库与索引库分离的技术方案,如apache atlas: apache atlas对于大数据领域的数据资产元数据管理、数据血缘上可谓是专家,也涉及资产搜索的特性,它的实现思路就是:从搜索库中做搜索、拿到key、再去存储库中做查询。 搜索库:上图右下角,可以看到使用的是elasticsearch、solr或lucene,多个选一个 存储库:上图左下角,可以看到使用的是Cassandra、HBase或BerkeleyDB,多个选一个 虽然apache atlas在只有搜索库或只有存储库的时候也可以很好的工作,但只针对于数据量并不大的场景。 搜索库,擅长搜索!存储库,擅长海量存储!搜索库多样化搜索,然后去存储库做点查。 当你的数据达到海量的时候,es+hbase也是一种很好的解决方案,不在这里展开说明了。
2024-01-27 17:49:04
537
admin-tim
Apache Solr
...业名词二 , 微服务架构。 解释 , 一种软件架构风格,将单一应用程序构建为一组小的服务,每个服务运行在其自己的进程中,并通过轻量级机制如HTTP API进行通信。微服务架构允许独立部署、扩展和更新各个服务,提高了系统的灵活性和可维护性。在文中提到的依赖外部服务场景下,微服务可以作为一个组成部分,与Apache Solr协同工作,共同提供所需功能,而外部服务的优化则直接影响到整体应用的性能。 行业名词三 , 云计算。 解释 , 一种通过互联网提供计算资源(如服务器、存储、数据库、网络等)的模式,用户无需直接管理和维护底层硬件设施。云计算提供了一种按需付费的方式,可以根据应用的需求灵活地分配和释放资源。文中提到的公有云平台如AWS、Azure和Google Cloud,为开发者提供了丰富的API接口,方便集成外部服务,如数据存储、计算能力和机器学习模型,从而优化网络连接和提高应用性能。云计算的弹性扩展特性也能够应对突发的流量或服务需求,确保系统的稳定运行。
2024-09-21 16:30:17
39
风轻云淡
转载文章
...也引入了自定义描述符设计模式,以提供更为灵活且安全的数据访问控制。 另一方面,Python 3.9引入了新的__set_name__方法,该方法适用于描述符对象,以便在描述符被绑定到类属性时通知其宿主类和名称,为描述符提供了更多的上下文信息,增强了其在复杂场景下的适用性和可读性。 同时,随着Python异步编程的发展,一些库也开始尝试将描述符应用于异步环境,比如通过实现异步描述符来控制异步属性的获取和设置,确保在处理并发请求时能够遵循正确的执行顺序,从而提高程序性能和稳定性。 综上所述,描述符作为Python面向对象编程的核心技术之一,其应用正不断拓展深化,并随着Python语言的演进保持着极高的时效性和实用性。对于开发者而言,掌握并合理运用描述符机制不仅能提升代码质量,还能有效应对各种复杂的业务场景需求。
2023-05-07 19:03:49
94
转载
转载文章
...程强调的模块化、解耦设计原则不谋而合。当我们面对繁复的代码逻辑和资源管理时,借鉴《金刚经》的理念,可以让我们更加关注事物的本质和联系,从而做出更为简洁高效的设计。 近期,微软.NET 5框架发布了一系列针对数据库访问性能提升的新特性。例如,引入了新的数据访问库“EF Core”,它提供了一种更为高级的ORM(对象关系映射)解决方案,使得开发者能够以声明式方式操作数据库,同时利用延迟加载等技术优化查询性能。此外,.NET 5还增强了对于异步编程的支持,通过async/await关键字,使得数据库操作在高并发场景下能够更好地释放系统资源,提高应用的响应速度和吞吐量。 另一方面,科学与技术伦理的话题也日益受到关注。如同爱因斯坦所言,科学与宗教并非对立,而是相辅相成。在当今AI技术、大数据等前沿领域,科学家们不仅需要严谨的实证精神,也需要从人文关怀角度出发,审视科技发展对社会、道德乃至人类心灵可能带来的影响。比如,在处理用户隐私数据时,遵循GDPR等法规的同时,也要体现出对个体尊严和自由意志的尊重,这正体现了科学与宗教信仰共同作用于现代社会的一面。 因此,对于软件开发者而言,不仅要掌握先进的编程技术和工具,理解并运用如《金刚经》般深邃的哲学理念来指导实践;同时紧跟时代步伐,关注行业动态和技术伦理问题,才能使自己的作品更具前瞻性和社会责任感。
2023-03-18 20:09:36
89
转载
Tornado
...Tornado的异步架构高度契合。 总之,在追求技术创新的同时,开发者必须时刻牢记数据安全与合规性的重要性。无论是采用新型加密技术,还是优化现有架构,都需要综合考虑业务需求和技术可行性,确保每一步都走在合法合规的道路上。未来,随着量子计算的发展,传统加密算法或将面临新的挑战,因此提前布局相关研究显得尤为必要。
2025-04-09 15:38:23
43
追梦人
转载文章
...中台,而是一名合格的架构师(附各大厂中台建设PPT) 企业IT技术架构规划方案 论数字化转型——转什么,如何转? 华为干部与人才发展手册(附PPT) 企业10大管理流程图,数字化转型从业者必备! 【中台实践】华为大数据中台架构分享.pdf 华为的数字化转型方法论 华为如何实施数字化转型(附PPT) 超详细280页Docker实战文档!开放下载 华为大数据解决方案(PPT) 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_45727359/article/details/119745674。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-28 17:16:54
62
转载
ElasticSearch
...体系,可以帮助企业在设计和实施安全措施时遵循统一规范。通过不断学习最新的安全趋势和技术动态,企业能够更好地保护自己的资产免受威胁。总之,面对日益复杂的网络环境,唯有保持警惕并积极行动,才能真正实现Elasticsearch乃至整个IT基础设施的安全稳定运行。
2025-05-12 15:42:52
98
星辰大海
Nacos
...,随着云计算和微服务架构的普及,越来越多的企业选择使用像Nacos这样的开源工具作为配置中心,以提升系统的灵活性和可维护性。然而,除了Nacos之外,还有其他一些优秀的配置管理工具值得关注。例如,Spring Cloud Config,它同样支持动态刷新配置,能够与Spring生态系统无缝集成。对于那些已经采用Spring生态的企业来说,Spring Cloud Config无疑是一个不错的选择。此外,Consul Config也是值得考虑的选项之一,它不仅具备配置管理功能,还提供了服务发现和服务网格的能力,特别适合分布式系统环境下的应用。 同时,随着技术的发展,安全问题日益受到重视。在使用Nacos或其他配置管理工具时,数据传输的安全性至关重要。建议开发者们在部署过程中启用SSL/TLS加密,确保敏感信息在网络中传输时不会被窃取或篡改。另外,定期更新工具版本,修复已知漏洞,也是保障系统安全的重要措施。 在全球范围内,开源社区对这些技术的支持力度也在不断加大。比如GitHub上的Nacos项目,其活跃度非常高,每周都有大量的贡献者提交代码改进和修复问题。这种持续的技术迭代为企业提供了强大的技术支持,使得企业在面对复杂多变的技术挑战时能够更加从容应对。 总之,在选择合适的配置管理工具时,企业需要综合考量自身的业务需求和技术栈特点,同时也要密切关注最新的技术趋势和安全动态,以确保系统的稳定性和安全性。
2025-04-06 15:56:57
67
清风徐来
.net
...供了更为简洁的API设计。相比传统的Dagger或Hilt,GetIt更适合小型项目或快速原型开发,其轻量化的特点使得开发者能够迅速上手并提升生产力。 与此同时,国内的一些技术社区也开始关注这一领域的发展趋势。例如,InfoQ最近发表了一篇深度解读文章,分析了国内企业在采用DI模式时面临的挑战,特别是如何平衡灵活性与稳定性之间的关系。文章指出,尽管DI能够显著改善代码结构,但在实际落地过程中仍需谨慎权衡,尤其是在高并发场景下,不恰当的配置可能导致资源浪费甚至系统崩溃。 综上所述,无论是国际巨头还是本土企业,都在积极拥抱依赖注入技术,并探索适合自身需求的最佳实践。对于开发者而言,持续关注行业动态和技术演进,及时调整学习方向,无疑是保持竞争力的关键所在。
2025-05-07 15:53:50
41
夜色朦胧
Beego
...,随着云计算和微服务架构的普及,越来越多的开发者开始关注配置管理的最佳实践。在这一背景下,Beego 框架的配置文件解析问题虽然看似基础,却依然具有重要意义。实际上,类似的问题不仅限于 Beego,而是广泛存在于各种框架和工具中。例如,Spring Boot 社区最近也发布了一篇博客,探讨了如何优化配置文件的加载机制,以应对大规模分布式系统的挑战。这表明,随着技术的发展,配置管理正变得越来越复杂,同时也更加关键。 从现实案例来看,某知名电商企业在一次系统升级过程中,由于配置文件格式错误导致服务中断长达数小时。事后调查发现,问题的根本原因并非技术难度,而是团队缺乏对配置管理的重视。这一事件引发了行业内对于配置文件规范化管理的反思。一些专家指出,现代开发团队应当建立完善的 CI/CD 流程,将配置文件的检查纳入自动化测试环节,从而最大限度地减少人为失误。 此外,近年来 DevOps 思维的兴起也为配置管理带来了新的视角。传统的配置管理往往被视为运维人员的职责,但在 DevOps 文化中,开发与运维之间的界限逐渐模糊。这意味着开发者也需要具备一定的配置管理知识,以便更好地支持持续交付流程。例如,GitHub Actions 等工具集成了丰富的配置模板,帮助开发者快速搭建自动化工作流。这种趋势不仅提升了效率,还促进了跨部门协作。 回到 Beego 框架本身,其核心开发者也在积极迭代版本,引入更多智能化特性。例如,新版 Beego 支持基于环境变量的动态配置加载,允许用户在不同环境中灵活切换设置。这一改进既体现了技术的进步,也反映了社区对用户体验的关注。未来,随着 Go 语言生态的不断完善,配置管理工具可能会进一步集成到语言标准库中,形成更加统一的解决方案。 综上所述,无论是从技术趋势还是实际应用的角度看,配置文件管理始终是软件工程中的重要一环。希望本文能够激发读者对这一领域的兴趣,并鼓励大家在日常工作中投入更多精力去优化配置流程。毕竟,正如一句古话所言:“千里之堤,溃于蚁穴”,细微之处往往决定成败。
2025-04-13 15:33:12
24
桃李春风一杯酒
Apache Lucene
...ene在现代搜索引擎架构中的角色与挑战 随着大数据时代的到来,数据量的激增对信息检索系统提出了更高的要求。Apache Lucene,作为一款开源的全文检索库,长期以来在文本检索领域扮演着核心角色。本文旨在深入探讨Apache Lucene在现代搜索引擎架构中的地位、面临的挑战及未来的发展趋势。 当前应用与优势 Apache Lucene因其高效、可扩展性和灵活性,被广泛应用于各类搜索引擎和大数据处理系统中。它不仅支持多种语言的分词和索引构建,还能提供强大的查询解析和匹配算法,使得在大规模数据集上的实时搜索成为可能。此外,Lucene的社区活跃度高,持续更新与优化,使其在处理复杂查询、支持多语言和适应不同应用场景方面具有显著优势。 面临的挑战 尽管Apache Lucene表现突出,但随着技术的快速发展和用户需求的多样化,它也面临着一些挑战。首先,随着数据规模的不断扩大,如何在保持高性能的同时降低资源消耗成为关键。其次,面对实时性要求越来越高的应用场景,如何实现快速响应和低延迟成为了亟待解决的问题。再者,随着AI和机器学习技术的融合,如何将这些先进算法集成到Lucene中,提升检索精度和智能化水平,也是未来研究的重点。 未来发展展望 展望未来,Apache Lucene有望在以下几个方向上实现突破: 1. 性能优化与资源管理:通过算法优化和硬件加速技术,进一步提高处理速度和资源利用率,满足大流量、高并发场景的需求。 2. 集成AI与机器学习:引入深度学习、自然语言处理等AI技术,增强检索系统的智能性和个性化推荐能力。 3. 跨语言与多模态搜索:随着全球化的进程加快,支持更多语言的处理和多模态(文本、图像、语音等)搜索将成为重要发展方向。 4. 隐私保护与安全:在数据安全和个人隐私日益受到重视的背景下,开发基于差分隐私、同态加密等技术的检索系统,保障用户数据的安全性。 结语 Apache Lucene作为一款成熟且仍在不断演进的全文检索库,在现代搜索引擎架构中发挥着不可或缺的作用。面对未来的挑战,它不仅需要持续优化现有功能,还需不断创新,以适应不断变化的市场需求和技术发展趋势。通过融合前沿技术,Apache Lucene有望在未来的信息检索领域中继续引领创新,为用户提供更高效、更智能、更安全的搜索体验。 --- 这篇“延伸阅读”旨在讨论Apache Lucene在当前及未来可能面临的技术挑战与发展方向,强调其在现代搜索引擎架构中的核心地位,并提出可能的解决方案和展望。通过深入分析当前应用优势、面临的挑战及未来发展趋势,为读者提供了一个全面而前瞻性的视角。
2024-07-25 00:52:37
392
青山绿水
Hadoop
...adoop框架的核心组件之一,用于存储大规模数据集。它将一个大文件分割成多个小块,并将这些小块分散存储在不同服务器上,确保即使部分服务器发生故障,数据也不会丢失,同时支持并行处理数据。 网络延迟 , 指数据在网络中传输所需的时间间隔,通常以毫秒为单位衡量。在HDFS环境中,若数据节点分布于地理位置相距较远的数据中心,则数据传输过程中会出现较大的网络延迟,进而导致读取速度下降。文章提到可以通过检查代码执行时间和优化副本策略来诊断是否存在网络延迟问题。 数据本地性 , 指的是数据被请求时,其所在的存储节点与发起请求的客户端之间的距离关系。理想状态下,数据应尽可能存储在靠近客户端的位置,以减少跨节点的数据传输开销。文章中提到可以通过调整副本策略来改善数据本地性,例如设置dfs.replication参数,使文件副本更集中于特定节点,从而提高读取效率。
2025-05-04 16:24:39
103
月影清风
转载文章
... 初始化, 这是所有设计基于 Libnids 的程序最开始调用的函数 . 它的主要内容包括打开网络接口 , 打开文件 , 编译过滤规则 , 判断网络链路层类型, 进行必要的初始化工作 / int nids_init (void); / 返回值 : 无 参 数 : 回调函数名字 功 能 : 注册一个能够检测所有 IP 数据包的回调函数, 包括 IP 碎片 .e.g nids_register_ip_frag(ip_frag_function); void ip_frag_function(struct ip a_packet,int len) a_packet 表示接收的IP 数据包 len 表示接收的数据包长度 此回调函数可以检测所有的IP 数据包 , 包括 IP 碎片 / void nids_register_ip_frag (void ()); // / 返回值 : 无 参 数 : 回调函数名字 功 能 : 注册一个回调函数 , 此回调函数可以接收正常的IP 数据包 .e.g nids_register_ip_frag(ip_frag_function); void ip_frag_function(struct ip a_packet) a_packet 表示接收的IP 数据包 此回调函数可以接收正常的IP 数据包 , 并在此函数中对捕获数到的 IP数据包进行分析 . / void nids_register_ip (void ()); // / 返回值 : 无 参 数 : 回调函数 功 能 : 注册一个 TCP 连接的回调函数. 回调函数的类型定义如下 : void tcp_callback(struct tcp_stream ns,void param) ns 表示一个TCP 连接的所有信息 , param 表示要传递的参数信息 , 可以指向一个 TCP连接的私有数据 此回调函数接收的TCP 数据存放在 half_stream 的缓存中 , 应该马上取出来 ,一旦此回调函数返回 , 此数据缓存中存储的数据就不存在 了 .half_stream 成员 offset描述了被丢弃的数据字节数 . 如果不想马上取出来 , 而是等到存储一定数量的数据之后再取出来, 那么可 以使用函数nids_discard(struct tcp_stream ns, int num_bytes)来处理 . 这样回调函数返回时 ,Libnids 将丢弃缓存数据之前 的 num_bytes 字节的数据 .如果不调用 nids_discard()函数 , 那么缓存数据的字节应该为 count_new 字节 . 一般情况下, 缓存中的数据 应该是count-offset 字节 / void nids_register_tcp (void ()); / 返回值 : 无 参 数 : 回调函数 功 能 : 注册一个分析 UDP 协议的回调函数, 回调函数的类型定义如下 : void udp_callback(struct tuple4 addr,char buf,int len,struct ip iph) addr 表示地址端口信息buf 表示 UDP 协议负载的数据内容 len表是 UDP 负载数据的长度 iph 表示一个IP 数据包 , 包括 IP 首部 ,UDP 首部以及UDP 负载内容 / void nids_register_udp (void ()); / 返回值 : 无 参 数 : 表示一个 TCP 连接 功 能 : 终止 TCP 连接 . 它实际上是调用 Libnet的函数进行构造数据包 , 然后发送出去 / void nids_killtcp (struct tcp_stream ); / 返回值 : 无 参 数 : 参数 1 一个 TCP 连接 参数 2 个数 功 能 : 丢弃参数 2 字节 TCP 数据 , 用于存储更多的数据 / void nids_discard (struct tcp_stream , int); / 返回值 : 无 参 数 : 无 功 能 : 运行 Libnids, 进入循环捕获数据包状态. 它实际上是调用 Libpcap 函数 pcap_loop()来循环捕获数据包 / void nids_run (void); / 返回值 : 调用成功返回文件描述符 ,失败返回 -1 参 数 : 无 功 能 : 获得文件描述符号 / int nids_getfd (void); / 返回值 : 调用成功返回个数 ,失败返回负数 参 数 : 表示捕获数据包的个数 功 能 : 调用 Libpcap 中的捕获数据包函数pcap_dispatch() / int nids_dispatch (int); / 返回值 : 调用成功返回 1,失败返回 0 参 数 : 无 功 能 : 调用 Libpcap 中的捕获数据包函数pcap_next() / int nids_next (void); extern struct nids_prm nids_params; /libnids.c定以了一个全部变量 , 其定义和初始值在 nids_params/ extern char nids_warnings[]; extern char nids_errbuf[]; extern struct pcap_pkthdr nids_last_pcap_header; struct nids_chksum_ctl { / 描述的是计算校验和 , 用于决定是否计算校验和/ u_int netaddr; / 表示地址 / u_int mask; / 表示掩码 / u_int action; / 表示动作 , 如果是NIDS_DO_CHKSUM, 表示计算校验和; 如果是 NIDS_DONT_CHKSUM, 表示不计算校验和 / u_int reserved; / 保留未用 / }; / 返回值 : 无 参 数 : 参数 1 表示 nids_chksum_ctl 列表 参数 2 表示列表中的个数 功 能 : 决定是否计算校验和 . 它是根据数据结构nids_chksum_ctl 中的action 进行决定的 , 如果所要计算的对象不在列表中 , 则必须都要计算校验和 / extern void nids_register_chksum_ctl(struct nids_chksum_ctl , int); endif / _NIDS_NIDS_H / 本篇文章为转载内容。原文链接:https://blog.csdn.net/xieqb/article/details/7681968。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-08 17:36:31
306
转载
Mahout
...,专为实时数据流处理设计。哎呀,这个玩意儿简直就是程序员们的超级神器!它能让咱这些码农兄弟们轻松搞定那些超快速、高效率的实时应用,你懂的,就是那种分秒必争、数据飞速流转的那种。想象一下,一秒钟能处理几千条数据,那感觉简直不要太爽啊!就像是在玩转数据的魔法世界,每一次点击都是对速度与精准的极致追求。这不就是我们程序员的梦想吗?在数据的海洋里自由翱翔,每一刻都在创造奇迹!Spark Streaming的精髓就像个魔术师,能把连续不断的水流(数据流)变换成小段的小溪(微批次)。这小溪再通过Spark这个强大的分布式计算平台,就像是在魔法森林里跑的水车,一边转一边把水(数据)处理得干干净净。这样一来,咱们就能在实时中捕捉到信息的脉动,做出快速反应,既高效又灵活! 4. Mahout与Spark Streaming的集成 为了将Mahout的机器学习能力与Spark Streaming的实时处理能力结合起来,我们需要创建一个流水线,使得Mahout可以在实时数据流上执行分析任务。这可以通过以下步骤实现: - 数据接入:首先,我们需要将实时数据流接入Spark Streaming。这可以通过定义一个DStream(Data Stream)对象来完成,该对象代表了数据流的抽象表示。 scala import org.apache.spark.streaming._ import org.apache.spark.streaming.dstream._ val sparkConf = new SparkConf().setAppName("RealtimeMahoutAnalysis").setMaster("local[2]") val sc = new SparkContext(sparkConf) valssc = new StreamingContext(sc, Seconds(1)) // 创建StreamingContext,时间间隔为1秒 val inputStream = TextFileStream("/path/to/your/data") // 假设数据来自文件系统 val dstream = inputStream foreachRDD { rdd => rdd.map { line => val fields = line.split(",") (fields(0), fields.slice(1, fields.length)) } } - Mahout模型训练:然后,我们可以使用Mahout中的算法对数据进行预处理和建模。例如,假设我们想要进行用户行为的聚类分析,可以使用Mahout的KMeans算法。 scala import org.apache.mahout.cf.taste.hadoop.recommender.KNNRecommender import org.apache.mahout.cf.taste.impl.model.file.FileDataModel import org.apache.mahout.cf.taste.impl.neighborhood.ThresholdUserNeighborhood import org.apache.mahout.cf.taste.impl.recommender.GenericUserBasedRecommender import org.apache.mahout.cf.taste.impl.similarity.PearsonCorrelationSimilarity import org.apache.mahout.math.RandomAccessSparseVector import org.apache.hadoop.conf.Configuration val dataModel = new FileDataModel(new File("/path/to/your/data.csv")) val neighborhood = new ThresholdUserNeighborhood(0.5, dataModel, new Configuration()) val similarity = new PearsonCorrelationSimilarity(dataModel) val recommender = new GenericUserBasedRecommender(dataModel, neighborhood, similarity) val recommendations = dstream.map { (user, ratings) => val userVector = new RandomAccessSparseVector(ratings.size()) for ((itemId, rating) <- ratings) { userVector.setField(itemId.toInt, rating.toDouble) } val recommendation = recommender.recommend(user, userVector) (user, recommendation.map { (itemId, score) => (itemId, score) }) } - 结果输出:最后,我们可以将生成的推荐结果输出到合适的目标位置,如日志文件或数据库,以便后续分析和应用。 scala recommendations.foreachRDD { rdd => rdd.saveAsTextFile("/path/to/output") } 5. 总结与展望 通过将Mahout与Spark Streaming集成,我们能够构建一个强大的实时流数据分析平台,不仅能够实时处理大量数据,还能利用Mahout的高级机器学习功能进行深入分析。哎呀,这个融合啊,就像是给数据分析插上了翅膀,能即刻飞到你眼前,又准确得不得了!这样一来,咱们做决定的时候,心里那根弦就更紧了,因为有它在身后撑腰,决策那可是又稳又准,妥妥的!哎呀,随着科技车轮滚滚向前,咱们的Mahout和Spark Streaming这对好搭档,未来肯定会越来越默契,联手为我们做决策时,用上实时数据这个大宝贝,提供更牛逼哄哄的武器和方法!想象一下,就像你用一把锋利的剑,能更快更准地砍下胜利的果实,这俩家伙在数据战场上,就是那把超级厉害的宝剑,让你的决策快人一步,精准无比! --- 以上内容是基于实际的编程实践和理论知识的融合,旨在提供一个从概念到实现的全面指南。哎呀,当真要将这个系统或者项目实际铺展开来的时候,咱们得根据手头的实际情况,比如数据的个性、业务的流程和咱们的技术底子,来灵活地调整策略,让一切都能无缝对接,发挥出最大的效用。就像是做菜,得看食材的新鲜度,再搭配合适的调料,才能做出让人满意的美味佳肴一样。所以,别死板地照搬方案,得因地制宜,因材施教,这样才能确保我们的工作既高效又有效。
2024-09-06 16:26:39
59
月影清风
Docker
...会自动为你安装必要的组件。 一旦节点加入成功,你就可以直接在这个界面上部署应用了。比如,用Kubernetes部署一个Redis集群: bash kubectl create deployment redis --image=redis:alpine kubectl expose deployment redis --type=LoadBalancer --port=6379 虽然这条命令看起来很简单,但它背后实际上涉及到了复杂的调度逻辑和网络配置。而Rancher把这些复杂的事情封装得很好,让我们可以专注于业务本身。 --- 5. Traefik 反向代理与负载均衡的最佳拍档 最后要介绍的是Traefik,这是一个轻量级的反向代理工具,专门用来处理HTTP请求的转发和负载均衡。它最厉害的地方啊,就是能跟Docker完美地融为一体,还能根据容器上的标签,自动调整路由规则呢! 比如说,你有两个服务分别监听在8080和8081端口,现在想通过一个域名访问它们。只需要给这两个容器加上相应的标签: yaml labels: - "traefik.enable=true" - "traefik.http.routers.service1.rule=Host(service1.example.com)" - "traefik.http.services.service1.loadbalancer.server.port=8080" - "traefik.http.routers.service2.rule=Host(service2.example.com)" - "traefik.http.services.service2.loadbalancer.server.port=8081" 这样一来,当用户访问service1.example.com时,Traefik会自动将请求转发到监听8080端口的容器;而访问service2.example.com则会指向8081端口。这种方式不仅高效,还极大地减少了配置的工作量。 --- 6. 总结 找到最适合自己的工具 好了,到这里咱们已经聊了不少关于服务器管理工具的话题。从Docker到Portainer,再到Rancher和Traefik,每一种工具都有其独特的优势和适用场景。 我的建议是,先根据自己的需求确定重点。要是你只想弄个小玩意儿,图个省事儿快点搞起来,那用Docker配个Portainer就完全够用了。但要是你们团队一起干活儿,或者要做大范围的部署,那Rancher这种专业的“老司机工具”就得安排上啦! 当然啦,技术的世界永远没有绝对的答案。其实啊,很多时候你会发现,最适合你的工具不一定是最火的那个,而是那个最合你心意、用起来最顺手的。就像穿鞋一样,别人觉得好看的根本不合脚,而那双不起眼的小众款却让你走得又稳又舒服!所以啊,在用这些工具的时候,别光顾着看,得多动手试试,边用边记下自己的感受和想法,这样你才能真的搞懂它们到底有啥门道! 好了,今天的分享就到这里啦!如果你还有什么问题或者想法,欢迎随时留言交流哦~咱们下次再见啦!
2025-04-16 16:05:13
97
月影清风_
转载文章
... 在许多类型的程序的设计中,数据结构的选择是一个基本的设计考虑因素。许多大型系统的构造经验表明,系统实现的困难程度和系统构造的质量都严重的依赖于是否选择了最优的数据结构。 许多时候,确定了数据结构后,算法就容易得到了。有些时候事情也会反过来,我们根据特定算法来选择数据结构与之适应。不论哪种情况,选择合适的数据结构都是非常重要的。 选择了数据结构,算法也随之确定,是数据而不是算法是系统构造的关键因素。这种洞见导致了许多种软件设计方法和程序设计语言的出现,面向对象的程序设计语言就是其中之一。 也就是说,选定数据结构往往是解决问题的核心,比如我们做一道算法题,往往就要先确定数据结构,再根据这个数据结构去思考怎么解题。 如果没有数据结构的基础知识,也就没有谈算法的意义了,很多时候即使你会使用一些封装好的编程api,但你却不知道其背后的实现原理,比如hashmap,linkedlist这些Java里的集合类,实际上都是JDK封装好的基础数据结构。 如何学习数据结构 第一次接触 我第一次接触数据结构这门课还是4年前,那这时候我在准备考研,专业课考的就是数据结构与算法,作为一个非科班的小白,对这个东西可以说是一窍不通。 这个时候的我只有一点点c语言的基础,基本上可以忽略不计,所以小白同学也可以按照这个思路进行学习。 数据结构基本上是考研的必考科目,所以我一开始使用的是考研的复习书籍,《天勤数据结构》和《王道数据结构》这两个家的书都是专门为计算机考研服务的,可以直接百度,这两本书对于我这种小白来说居然都是可以看懂的,所以,用来入门也是ok的。 入门学习阶段 最早的时候我并没有直接看书,而是先打算先看视频,因为视频更好理解呀,找视频的办法就是百度,于是当时找到的最好资源就是《郝斌的数据结构》这个视频应该是很早之前录制的了,但是对于小白来说是够用的,特别基础,讲的很仔细。 从最开始的数组、线性表,再讲到栈和队列,以及后面更复杂的二叉树、图、哈希表,大概有几十个视频,那个时候正值暑假,我按照每天一个视频的进度看完了,看的时候还得时不时地实践一下,更有助于理解。 看完了这个系列的视频之后,我又转战开始啃书了,视频里讲的都是数据结构的基础,而书上除了基础之外,还有一些算法题目,比如你学完了线性表和链表之后,书上就会有相关的算法题,比如数组的元素置换,链表的逆置等等,这些在日后看来很容易的题目,当时把我难哭了。 好在大部分题目是有讲解的,看完讲解之后还能安抚一下我受伤的心灵。 记住这本书,我在考研之前翻了至少有三四遍。 强化学习阶段 完成了第一波视频+书籍的学习之后,我们应该已经对数据结构有了初步的了解了,对一些简单的数据结构算法也应该有所了解了,比如栈的入栈和出栈,队列的进队和出队,二叉树的先序遍历和后续遍历、层次遍历,图的最短路径算法,深度优先遍历等等。 有了一定的基础之后,我们需要对哪方面进行强化学习呢? 那就要看你学习数据结构的目的是什么了,比如你学习数据结构是为了能做算法题,那么接下来你应该重点去学习算法方面的知识,后续我们也将有一篇新的文章来讲怎么学习算法,敬请期待。 当然,我当时主要是复习考研,所以还是针对专业课的历年真题来复习,像我们的卷子中就考察了很多关于哈希表、最短路径算法、KMP算法、赫夫曼算法以及最短路径算法的应用。 对于考卷上的一些知识点,我觉得掌握的并不是很好,于是又买了《王道数据结构》以及一些并没有什么卵用的书回来看,再次强化了基础。 并且,由于我们的复试通常会考察一些比较经典的算法问题,所以我又花了很多时间去学习这些算法题,这些题目并非数据结构的基础算法,所以在之前的书和视频中可能找不到答案。 于是我又在网上搜到了另一个系列视频《小甲鱼的数据结构视频》里面除了讲解数据结构之外,还讲解了更多经典的算法题,比如八皇后问题,汉诺塔问题,马踏棋盘,旅行商问题等,这些问题对于新手来说真的是很头大的,使用视频学习确实效果更佳。 实践阶段 纸上得来终觉浅,绝知此事要躬行。 众所周知,算法题和数学题一样,需要多加练习,而且考研的时候必须要手写算法,于是我就经常在纸上写(抄)算法,你还别说,就算是抄,多抄几次也有助于理解。 很多基础的算法,比如层次遍历,深度优先遍历和广度优先遍历,多写几遍更有助理解,再比如稍微复杂一点的迪杰斯特拉算法,不多写几遍你可真记不住。 除了在纸上写之外,更好的办法自然是在电脑上敲了,写Java的使用Java写,写C++ 的用C++ 写,总之用自己擅长的语言实现就好,尴尬的是我当时只会c,所以就只好老老实实地用devc++写简单的c语言程序了。 至此,我们也算是学会了数据结构的基础知识了,至少知道每个数据结构的特性,会写常见的数据结构算法,甚至偶尔还能掏出一个八皇后出来。 推荐资源 书籍 《天勤数据结构》 《王道数据结构》 如果你要考研的话,这两本书可不要错过 严蔚敏《数据结构C语言版》 这本书是大学本科计算机专业常用的教科书,年代久远,可以看看,官方也有配套的教学视频 《大话数据结构》 官方教材大家都懂的,比较不接地气,这本书对于很多新手来说是更适合入门的书籍。 《数据结构与算法Java版》 如果你是学Java的,想有一本Java语言描述的数据结构书籍,可以试试这本,但是这本书显然比较复杂,不适合入门使用。 视频 《郝斌数据结构》 这个视频上文有提到过,年代比较久远,但是入门足够了。 《小甲鱼数据结构与算法》 这个视频比较新,更加全面,有很多关于经典算法的教程,作者也入驻了B站,有兴趣也可以到B站看他的视频。 总结 关于数据结构的学习,我们就讲到这里了,如果还有什么疑问也可以到我公众号里找我探讨,虽然我们提到了算法,但是这里只关注一些基础的数据结构算法,后续会有关于“怎么学算法“的文章推出,敬请期待。 本篇文章为转载内容。原文链接:https://blog.csdn.net/a724888/article/details/104586757。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-12 23:35:52
134
转载
转载文章
...大意义。 此外,游戏设计中的AI算法也是值得关注的方向。例如,运用深度学习和强化学习技术优化消除类游戏的智能提示系统,能有效提高玩家体验并延长游戏生命周期。一篇发表在“自然”杂志子刊上的论文就研究了AI在连连看等消除类游戏中的应用,展示了通过机器学习预测最佳消除路径的可能性。 总的来说,在继续深入实践HTML、CSS、JavaScript基础开发的同时,紧跟Web技术前沿进展,结合先进的编程语言、图形处理技术和AI算法,将有助于开发者打造出更为丰富、流畅且富有挑战性的消除类游戏产品,不断满足日益增长的用户体验需求。
2023-06-08 15:26:34
516
转载
转载文章
...势,从而为我们的系统设计与优化提供有力支撑。在实战中,结合具体业务场景灵活运用SQL语句及数据库管理系统,将有效提升整个系统的稳定性和效率。
2024-02-16 12:44:07
544
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
pkill process_name
- 结束与指定名称匹配的进程。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"