前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[MySQL表监控 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
SeaTunnel
...a // 错误示例:MySQL数据源配置信息缺失 DataStreamSource mysqlSource = MysqlSource.create() .setUsername("root") .build(); 上述代码中没有提供数据库URL和密码,SeaTunnel自然无法正常初始化并连接到MySQL服务器。 - 原因二:网络问题 如果目标数据源服务器网络不可达,也会导致初始化失败。此时,无论配置多么完美,也无法完成连接。 - 原因三:资源限制 数据库连接数超出限制、权限不足等也是常见问题。比如,SeaTunnel尝试连接的用户可能没有足够的权限访问特定表或者数据库。 4. 解决策略与代码实践 - 策略一:细致检查配置信息 正确配置数据源需确保所有必要参数完整且准确。以下是一个正确的MySQL数据源配置示例: java // 正确示例:MySQL数据源配置 DataStreamSource mysqlSource = MysqlSource.create() .setUrl("jdbc:mysql://localhost:3306/mydatabase") .setUsername("root") .setPassword("password") .build(); - 策略二:排查网络环境 当怀疑因网络问题导致初始化失败时,应首先确认目标数据源服务器是否可达,同时检查防火墙设置以及网络代理等可能导致连接受阻的因素。 - 策略三:权限调整与资源优化 若是因为权限或资源限制导致初始化失败,需要联系数据源管理员,确保用于连接的用户具有适当的权限,并适当调增数据库连接池大小等资源限制。 5. 思考与探讨 在面对“数据源未初始化或初始化失败”这类问题时,我们需要发挥人类特有的耐心和洞察力,一步步抽丝剥茧,从源头开始查找问题所在。在使用像SeaTunnel这样的技术神器时,每一个环节都值得我们仔仔细细地瞅一瞅,毕竟,哪怕是一丁点的小马虎,都有可能变成阻碍我们大步向前的“小石头”。而每一次解决问题的过程,都是我们对大数据世界更深入了解和掌握的一次历练。 总结来说,SeaTunnel的强大功能背后,离不开使用者对其各种应用场景下细节问题的精准把握和妥善处理。其实啊,只要我们对每一个环节都上点心,就算是那个看着让人头疼的“数据源初始化”大难题,也能轻松破解掉。这样一来,数据就像小河一样哗哗地流淌起来,给我们的业务决策和智能应用注入满满的能量与活力。
2023-05-31 16:49:15
155
清风徐来
MemCache
...对持久化数据存储(如MySQL)的访问次数,从而极大地提高系统的整体性能。 telnet , 一种网络协议和应用程序,允许用户在本地计算机上通过命令行界面远程登录到另一台运行telnet服务器程序的计算机,并进行交互式操作。在本文语境中,telnet被用来作为调试工具连接至Memcached服务器,执行相应的命令以查看或修改缓存内容。 分布式内存对象存储 , 一种将数据分布在网络中多台机器上的内存中的存储方式。Memcached即采用了这种架构,各节点间相互独立并协同工作,共同维护一个全局可访问的缓存池。当客户端请求数据时,系统根据特定算法(如一致性哈希)定位到对应的节点获取数据,以此实现快速存取与高可用性。
2023-12-19 09:26:57
122
笑傲江湖-t
MemCache
...制定并执行一个给力的监控和维护方案,就能在第一时间火眼金睛地揪出问题,迅速把它解决掉,这样一来,系统的运行就会稳如磐石,数据也能始终保持一致性和准确性,就像咱们每天检查身体,小病早治,保证健康一样。作为开发者,咱们得不断挖掘、摸透和掌握这些技术小细节,才能在实际操作中挥洒自如,更溜地运用像Memcached这样的神器,让咱的系统性能蹭蹭上涨,用户体验也一路飙升。
2023-05-18 09:23:18
89
时光倒流
Shell
...l脚本运行状态的实时监控和智能纠错策略。 另外,开源社区围绕Shell脚本错误处理也涌现了不少新项目,如ShellCheck——一个静态分析工具,可以帮助开发者检测Shell脚本中的常见错误和潜在问题,提升脚本质量;还有Bash Strict Mode(set -euo pipefail)的应用推广,这是一种严格的Shell执行模式,强制要求脚本作者显式处理所有可能的失败点,从而大大增强了脚本的健壮性。 总的来说,随着技术的发展和实践经验的积累,Shell脚本错误处理已不再局限于基础的退出状态检查,而是逐渐演变为一种涉及操作系统内核、云原生架构及现代开发实践的综合考量。持续关注这些领域的最新动态,将有助于我们编写出适应复杂环境变化、具备高度稳定性和自愈能力的Shell脚本。
2024-03-02 10:38:18
84
半夏微凉
Struts2
...款名为“天穹”的异常监控系统,该系统能够实时监测应用程序的运行状态,及时发现并处理异常情况,大大提升了系统的稳定性和可靠性。与此同时,华为公司在其最新发布的鸿蒙操作系统中,也加强了对多语言环境的支持,确保应用能够在不同语言环境下正常运行,为用户提供更好的体验。 这些案例表明,无论是国际法规的要求,还是企业自身发展的需要,异常处理和国际化支持已经成为现代软件开发不可或缺的一部分。开发者们应不断学习最新的技术和理念,以适应快速变化的技术环境。
2025-01-24 16:12:41
124
海阔天空
Greenplum
...QL数据库,它结合了MySQL和Google Spanner的优点,能够在大规模分布式环境中实现水平扩展和强一致性的事务处理。TiDB同样具备强大的备份和恢复机制,支持多种备份策略,满足不同规模和需求的企业。 对于正在评估或已经部署Greenplum的企业来说,了解这些新兴的技术趋势非常重要。通过对比不同的解决方案,企业可以选择最适合自身业务需求的数据库架构,从而在保障数据安全的同时,也能享受到云计算带来的诸多好处。无论是迁移到云数据库还是采用新的开源数据库技术,都应该仔细考量数据迁移的成本、风险以及长期维护的便利性。
2025-02-25 16:32:08
100
星辰大海
Golang
...验证、日志记录、性能监控等功能,从而增强应用程序的可扩展性和模块化。 路由参数 , 在Web应用程序中,路由参数是指URL路径中的占位符部分,用于捕获动态值。例如,在Gin框架中,“/users/:username”中的:username就是一个路由参数,当用户访问类似“/users/john”的URL时,路由会自动解析并将“john”作为变量值提供给处理该路由的函数使用,以便开发者可以根据该动态值执行相应的业务逻辑。 静态资源 , 静态资源是指Web应用程序中不需要服务器端动态处理的文件,如HTML、CSS、JavaScript、图片、字体等。这些文件在构建应用后内容不会改变,可以直接由Web服务器读取并发送给客户端浏览器。在Golang的Web应用中,通过配置静态文件目录来托管这些资源,使得客户端可以直接访问,从而减轻服务器的计算压力,提高网站加载速度。
2023-01-10 18:53:06
507
繁华落尽
Kubernetes
...良好的运维习惯,定期监控和维护集群,预防可能出现的问题。 五、结语 虽然 Kubernetes 提供了强大的自动化管理功能,但在实际应用过程中,我们仍然需要具备一定的运维技能和经验,才能更好地应对各种问题。所以呢,咱们得不断充电学习,积累宝贵经验,让自己的技术水平蹭蹭往上涨。这样一来,我们就能更好地为打造出那个既高效又稳定的云原生环境出一份力,让它更牛更稳当。
2023-04-13 21:58:20
207
夜色朦胧-t
Flink
...现了流量洪峰下的实时监控与智能决策。 此外,对于寻求深入理解批流融合计算范式的读者,可以阅读《Designing Data-Intensive Applications》一书中关于流式处理和批处理的相关章节,作者Martin Kleppmann从理论层面剖析了两种模式的异同,并探讨了如何结合实际业务需求选择合适的处理模型。通过这些延伸阅读和实战案例研究,读者不仅能了解到Flink批流一体处理的实际价值,还能把握住大数据处理技术的发展趋势,为构建高效、灵活的数据处理系统提供有力支持。
2023-04-07 13:59:38
504
梦幻星空
Mongo
...统的关系型数据库(如MySQL)在数据存储模型和查询方式上有所不同。NoSQL数据库设计灵活,可以支持大规模水平扩展,尤其适合处理海量的、半结构化或非结构化的数据,MongoDB就是其中的一种代表产品。在文章语境中,MongoDB作为NoSQL数据库的实例,以其独特的文档型数据模型和强大的查询操作符受到大数据时代的广泛关注。 文档型数据库 , 文档型数据库是NoSQL数据库的一种类型,其基本的数据单元是文档,通常采用JSON、BSON等格式表示。在MongoDB中,每个文档可以包含多个键值对,并且每个文档可以有不同的结构,即字段的数量、内容和数据类型可以各异。这种灵活性使得文档型数据库非常适合于处理复杂、动态变化的数据结构场景,在本文中,MongoDB的查询操作符就是在文档层级进行操作以实现高效检索。 MongoDB的aggregate框架 , MongoDB的aggregate框架是一个用于处理聚合管道的API,允许用户执行复杂的聚合操作,如分组、筛选、投影和计算统计指标等。通过一系列的聚合阶段(stage),用户可以将原始数据转换并汇总为有意义的信息。例如,在文中提到的案例中,使用$group和$avg操作符配合aggregate方法来计算所有用户的平均年龄,展示了MongoDB在处理数据统计分析任务时的强大功能。
2023-10-04 12:30:27
127
冬日暖阳
c#
...化扩展机制,根据实时监控指标(如CPU使用率、请求响应时间等)动态调整系统规模。例如,当检测到特定服务负载过高时,可以触发工厂生成更多实例来分担压力。同时,当负载降低时,工厂可以销毁多余的实例,避免资源浪费。 持续交付与微服务集成 在微服务架构中,每个服务都是独立部署和管理的单元。抽象工厂模式可以简化微服务的创建、配置和初始化过程,通过统一的接口为每个服务提供所需的环境和资源。这不仅提高了部署效率,还减少了人为错误,确保了服务的稳定性和一致性。 结论 随着云计算技术的普及和微服务架构的兴起,设计模式在软件开发中的角色正在发生转变。通过结合抽象工厂模式与云原生设计原则,开发人员可以构建出更加灵活、高效和现代化的软件系统。这一创新不仅能够应对日益增长的技术挑战,还能促进业务的快速迭代和创新,最终实现更高水平的软件工程实践。 通过整合抽象工厂模式与云原生设计模式,软件工程师能够在不断变化的科技环境中保持竞争力,满足用户对高性能、高可用性和低延迟的需求。这种融合不仅提升了开发效率,还为未来的技术发展奠定了坚实的基础。
2024-09-22 16:22:32
84
断桥残雪
Superset
...值,特别是在实时业务监控、异常检测以及关键数据洞察分享等方面。 近日,Apache Superset社区发布了新版本更新,其中强化了与多种电子邮件服务提供商的集成能力,包括但不限于Office 365、Gmail和企业内部部署的SMTP服务器,使得用户能够更加灵活、安全地进行邮件通知设置。此外,新版本还优化了邮件模板定制功能,支持图表内嵌、自定义样式和动态内容,让数据分析师能够创建更具专业性和交互性的邮件报告。 对于进一步提升工作效率,建议探索更多与Superset配合使用的自动化工作流工具,例如Airflow和Zapier等,它们可以将Superset的数据分析结果无缝集成到企业的自动化流程中,实现从数据分析到决策执行的快速流转。同时,随着DevOps和DataOps理念的普及,掌握如何在持续集成/持续交付(CI/CD)环境中配置和管理Superset的邮件通知系统,也成为现代数据工程师必备技能之一。 总之,借助强大的数据分析工具如Superset,并结合高效的邮件通知机制,企业和团队能更好地利用数据驱动决策,及时响应市场变化,从而在瞬息万变的商业环境中保持竞争力。
2023-10-01 21:22:27
61
蝶舞花间-t
ActiveMQ
...进一步增强了磁盘空间监控及自动清理功能。 与此同时,云原生消息队列如阿里云的RocketMQ和AWS的Amazon MQ等服务,在处理类似IO错误场景时,提供了更为丰富的企业级解决方案。例如,通过集成Kubernetes的健康检查机制,可以实现对消息队列服务实例的实时状态监控和故障自愈;结合云存储服务动态扩展特性,能够有效预防并应对因磁盘空间不足导致的消息丢失风险。 此外,随着微服务架构和Serverless理念的普及,无服务器消息服务(如AWS Simple Queue Service, SQS)因其高度弹性和无需关心底层基础设施的特点,成为了开发者关注的新焦点。这些服务在设计之初就充分考虑到了各类IO异常场景,并通过底层平台的强大支撑能力,为开发者屏蔽了许多复杂的问题,从而让开发人员能更专注于业务逻辑的构建与优化。 综上所述,无论是开源项目ActiveMQ还是新兴的云原生消息服务,都在不断演进以适应日益复杂的IT环境,力求在面对IO错误等挑战时提供更加完善、高效的解决方案。对于技术人员来说,紧跟行业趋势,了解并掌握各类消息队列产品的最新特性和最佳实践,将有助于提升系统的稳定性和整体运维效率。
2023-12-07 23:59:50
480
诗和远方-t
RocketMQ
...调用进行控制、路由、监控以及安全保护等功能,而不需修改服务代码。在解决RocketMQ消费者连接数限制问题时,可以通过服务网格技术实现在更底层对客户端连接数的有效管理和治理。
2023-10-04 08:19:39
132
心灵驿站-t
SpringBoot
...,假设我们现在用的是MySQL 5.6版本的数据库,但咱们的应用程序却偷偷依赖了MySQL 5.7里的一些新功能。这样的话,就极有可能会闹点儿小矛盾,出点问题。 三、解决方案 那么,当我们在部署到某些数据库版本时出现问题时,我们应该如何解决呢? 首先,我们需要检查我们的应用程序是否与目标数据库版本兼容。这可以通过查看应用程序的配置文件或者依赖关系来完成。比如,我们可以翻翻pom.xml这个配置文件,瞅瞅里面的依赖项是不是对某个特定的数据库版本提供了支持。 其次,如果我们的应用程序确实需要使用某些只在新版本数据库中提供的功能,那么我们需要更新我们的数据库。这可以通过使用数据库迁移工具来完成。例如,我们可以使用Flyway或者Liquibase这样的工具,将旧版本的数据库升级到新版本。 最后,如果我们不能更新数据库,那么我们可以考虑修改我们的应用程序代码,使其能够在旧版本数据库上运行。这可能意味着咱们得采取一些特别的手段,比如说,别去碰那些新潮的数据库功能,或者亲自动手编写额外的代码,来仿造这些特性的工作方式。就像是玩乐高积木一样,有时候我们不能用最新的配件,反而需要自己动手拼接出相似的部件来满足需求。 四、代码示例 接下来,我将以一个简单的示例来演示如何在SpringBoot应用程序中使用数据库迁移工具。假设我们有一个名为User的实体类,我们想要将其保存到数据库中。 java @Entity @Table(name = "users") public class User { @Id @GeneratedValue(strategy = GenerationType.AUTO) private Long id; @Column(nullable = false) private String name; // getters and setters } 然后,我们需要创建一个SpringBoot应用程序,并添加Spring Data JPA和HSQLDB依赖。 xml org.springframework.boot spring-boot-starter-data-jpa org.hsqldb hsqldb runtime 接着,我们需要创建一个application.properties文件,配置数据库连接信息。 properties spring.datasource.url=jdbc:hsqldb:mem:testdb spring.datasource.driverClassName=org.hsqldb.jdbcDriver spring.datasource.username=sa spring.datasource.password= spring.jpa.hibernate.ddl-auto=create 然后,我们需要创建一个UserRepository接口,定义CRUD操作方法。 java public interface UserRepository extends JpaRepository { } 最后,我们可以在控制器中调用UserRepository的方法,将用户保存到数据库中。 java @RestController public class UserController { private final UserRepository userRepository; public UserController(UserRepository userRepository) { this.userRepository = userRepository; } @PostMapping("/users") public ResponseEntity createUser(@RequestBody User user) { userRepository.save(user); return ResponseEntity.ok().build(); } } 以上就是使用SpringBoot进行数据库迁移的基本步骤。这样子做,我们就能轻轻松松地管理、更新咱们的数据库,确保我们的应用程序能够像老黄牛一样稳稳当当地运行起来,一点儿都不带出岔子的。
2023-12-01 22:15:50
62
夜色朦胧_t
Tomcat
...iler。它可以实时监控Java应用的各种性能指标,包括内存占用、CPU使用率、线程状态等,对于诊断内存溢出等问题非常有帮助。如果你正在寻找这样的工具,不妨试试看吧。
2023-11-09 10:46:09
172
断桥残雪-t
Superset
...建立与各种数据库(如MySQL、PostgreSQL、Oracle等)的连接。 例如,一个基本的PostgreSQL的SQLAlchemy URI可能看起来像这样: python postgresql://username:password@host:port/database 这里的各个部分分别代表数据库用户名、密码、主机地址、端口号和数据库名。 2. Superset中的SQLAlchemy URI设置 在Superset中,我们可以在“Sources” -> “Databases”页面添加或编辑数据源时,自定义SQLAlchemy URI。下面让我们一步步揭开这个过程: 2.1 添加新的数据库连接 (1) 登录到您的Superset后台管理界面,点击左侧菜单栏的"Sources",然后选择"Databases"。 (2) 点击右上角的"+"按钮,开始创建一个新的数据库连接。 (3) 在弹出的表单中,选择适合您的数据库引擎类型,如"PostgreSQL",并在"Database Connection URL"字段中填写您的自定义SQLAlchemy URI。 2.2 示例代码 假设我们要连接到一台本地运行的PostgreSQL数据库,用户名为superset_user,密码为secure_password,端口为5432,数据库名为superset_db,则对应的SQLAlchemy URI如下: python postgresql://superset_user:secure_password@localhost:5432/superset_db 填入上述信息后,点击"Save"保存设置,Superset便会使用该URI与指定的数据库建立连接。 2.3 进阶应用 对于一些需要额外参数的数据库(比如SSL加密连接、指定编码格式等),可以在URI中进一步扩展: python postgresql://superset_user:secure_password@localhost:5432/superset_db?sslmode=require&charset=utf8 这里,sslmode=require指定了启用SSL加密连接,charset=utf8则设置了字符集。 3. 思考与探讨 在实际应用场景中,灵活运用SQLAlchemy URI的自定义能力,可以极大地增强Superset的数据源兼容性与安全性。甭管是云端飘着的RDS服务,还是公司里头自个儿搭建的各种数据库系统,只要你摸准了那个URI构造的门道,咱们就能轻轻松松把它们拽进Superset这个大舞台,然后麻溜儿地对数据进行深度分析,再活灵活现地展示出来,那感觉倍儿爽! 在面对复杂的数据库连接问题时,别忘了查阅SQLAlchemy官方文档以获取更多关于URI配置的细节和选项,同时结合Superset的强大功能,定能让您的数据驱动决策之路更加顺畅! 总的来说,掌握并熟练运用自定义SQLAlchemy URI的技巧,就像是赋予了Superset一把打开任意数据宝库的钥匙,无论数据藏于何处,都能随心所欲地进行探索挖掘。这就是Superset的魅力所在,也是我们在数据科学道路上不断求索的动力源泉!
2024-03-19 10:43:57
52
红尘漫步
PostgreSQL
...分析与维护,结合运维监控数据进行调优,同样是确保数据库系统长期高效稳定运行的关键环节。
2023-01-07 15:13:28
430
时光倒流_
RocketMQ
...,心跳机制被用来实时监控TCP长连接的状态,当一段时间内未收到心跳包时,可以判断连接可能已经断开,并尝试重新建立连接,从而保证系统的稳定性。
2023-08-30 18:14:53
133
幽谷听泉-t
Kibana
...失效的问题,可以尝试监控网络流量以及Elasticsearch和Kibana所在服务器的系统资源(如CPU、内存和磁盘I/O)。过高的负载可能导致数据处理和传输延迟。 4. 解决策略与实践 面对这个问题,我们需要根据实际情况采取相应的措施。如果问题是出在配置上,那就好比是你的Elasticsearch滚动索引策略或者Kibana刷新频率设置有点小打小闹了,这时候咱们就得把这些参数调整一下,调到最合适的节奏。要是遇到性能瓶颈这块硬骨头,那就得从根儿上找解决方案了,比如优化咱系统的资源配置,让它们更合理地分工协作;再不然,就得考虑给咱的硬件设备升个级,换个更强力的装备,或者琢磨琢磨采用那些更高效、更溜的数据处理策略,让数据跑起来跟飞一样。 5. 总结与思考 在实际运维工作中,我们会遇到各种各样的技术难题,如同Kibana仪表板刷新频率异常一样,它们考验着我们的耐心与智慧。只有你真正钻进去,把系统的工作原理摸得门儿清,像侦探一样抽丝剥茧找出问题的根儿,再结合实际业务需求,拿出些接地气、能解决问题的方案来,才能算是把这些强大的工具玩转起来,让它们乖乖为你服务。每一次我们成功解决一个问题,就像是对知识和技术的一次磨砺和淬炼,同时也像是在大数据的世界里打怪升级,这就是推动我们在这一领域不断向前、持续进步的原动力。 以上仅为一种可能的问题解析与解决方案,实践中还可能存在其他复杂因素。因此,我们要始终保持敏锐的洞察力和求知欲,不断探寻未知,以应对更多的挑战。
2023-10-10 23:10:35
277
梦幻星空
Spark
...或算法来替代。 - 监控与调优:借助Spark UI等工具实时监控Executor内存使用情况,根据实际情况动态调整资源配置。 5. 结语 理解并掌握Spark Executor内存管理机制,以及面对OOM问题时的应对策略,是每个Spark开发者必备的能力。只有这样,我们才能真正地把这台强大的大数据处理引擎玩得溜起来,让它在我们的业务实战中火力全开,释放出最大的价值。记住了啊,每次跟OOM这个家伙过招,其实都是我们在Spark世界里探索和进步的一次大冒险,更是我们锻炼自己、提升数据处理本领的一次实战演练。
2023-07-26 16:22:30
115
灵动之光
Apache Atlas
...合规性检查、数据质量监控等一系列任务的自动化,显著提高了数据治理的效率和准确度。 其次,让我们深入探讨自动化数据治理的几个关键方面。数据发现与注册自动化是基础,通过AI技术自动识别并注册新的数据源,确保数据目录的实时性和完整性。数据血缘分析自动化则帮助追踪数据在整个组织中的流动路径,对于识别数据质量问题、追踪数据源头、优化数据使用具有重要意义。此外,自动化还体现在数据质量监控和异常检测上,通过实时分析,及时发现数据错误或异常,防止数据质量问题影响业务决策。 最后,从实践角度来看,许多领先企业已经采用了自动化数据治理方案,并取得了显著成效。例如,某大型金融机构通过引入自动化数据治理平台,不仅大大减少了数据治理所需的时间和人力投入,还提高了数据质量和合规性水平,为数据驱动的业务决策提供了坚实的基础。 综上所述,数据治理的自动化不仅是技术发展的必然趋势,也是企业应对大数据挑战、实现数字化转型的关键策略。随着AI和机器学习技术的不断进步,我们有理由相信,未来的数据治理将更加智能、高效,为企业创造更大的价值。
2024-08-27 15:39:01
70
柳暗花明又一村
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
sort file.txt
- 对文件内容排序。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"