前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[MySQL新建数据库教程]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Mongo
...非常强大的NoSQL数据库系统,它提供了许多高效的数据处理方式,如高效的查询、聚合等。不过呢,如果你刚刚接触MongoDB这个小家伙,可能会对如何在它里面批量地插数据、更新信息这些操作犯迷糊。这篇文章将详细介绍如何在MongoDB中实现这些操作。 二、批量插入操作 在MongoDB中,我们可以使用insertMany()方法来实现批量插入操作。让我们来看一个简单的例子: javascript // 假设我们要插入一批用户数据 const users = [ { name: 'John', age: 25 }, { name: 'Jane', age: 30 }, { name: 'Doe', age: 35 } ]; // 使用insertMany()方法进行批量插入 db.users.insertMany(users); 在这个例子中,我们首先定义了一个包含多个用户对象的数组,然后使用insertMany()方法一次性将所有用户插入到users集合中。 三、批量更新操作 在MongoDB中,我们可以使用updateMany()方法来实现批量更新操作。同样,我们来看一个例子: javascript // 假设我们要更新一批用户的年龄 db.users.updateMany( { age: {$lt: 30} }, // 找出年龄小于30岁的用户 { $set: { age: 30 } } // 将他们的年龄设置为30岁 ); 在这个例子中,我们首先使用updateMany()方法找出所有年龄小于30岁的用户,然后使用$set操作符将他们的年龄设置为30岁。 四、深入讨论 批量插入和更新操作不仅可以提高我们的开发效率,还可以减少网络传输的数量,从而提高性能。但是,我们也需要注意一些问题。 首先,如果我们要插入的数据量非常大,可能会导致内存溢出。这时候,我们可以琢磨一下分批添加数据的方法,或者尝试用类似insertDocuments()这种流式API来操作。 其次,如果我们误用了updateMany()方法,可能会更新到不应该更新的数据。为了避免这种情况,我们需要确保我们的条件匹配正确的数据。 总的来说,批量插入和更新操作是MongoDB中非常重要的一部分,熟练掌握它们可以帮助我们更有效地处理大量的数据。
2023-09-16 14:14:15
146
心灵驿站-t
Python
...并的基础上,我们发现数据处理与分析的实际应用场景日益丰富且时效性强。近期,全球范围内的科研机构、企业和政府部门都在积极利用数据分析工具解决各类实际问题,如经济预测、公共卫生管理以及市场趋势分析等。 例如,据《Nature》杂志报道,研究人员利用pandas等Python库对全球新冠病毒感染数据进行了深度整合与分析,通过合并来自不同地区和时间序列的数据表格,揭示了疫情传播规律及影响因素。这一案例充分展示了pandas在大数据处理中的高效性与实用性。 另外,Python pandas库也在金融领域大放异彩。华尔街日报近期一篇文章指出,投资银行和基金公司正广泛运用pandas进行多维度、大规模的金融数据整理与合并,辅助决策者制定精准的投资策略。其中涉及的不仅仅是简单的表格拼接,还包括复杂的数据清洗、索引操作以及基于时间序列的滚动合并等功能。 不仅如此,对于希望进一步提升数据分析技能的用户,可参考官方文档或权威教程,如Wes McKinney所著的《Python for Data Analysis》,该书详尽阐述了pandas库的各种功能,并配有大量实战案例,可以帮助读者从基础操作到高级技巧全面掌握pandas在数据处理中的应用。 综上所述,在现实世界中,pandas库已成为数据分析师不可或缺的利器,它在各行各业的实际应用中发挥着关键作用,不断推动着数据分析技术的发展与创新。通过持续关注并学习pandas的新特性及最佳实践,将有助于我们在日新月异的数据时代保持竞争力。
2023-09-19 20:02:05
43
数据库专家
.net
...比如参数填得不对劲、数据库连接突然掉链子啦等等。我们需要对这些异常进行适当的处理,以保证Web服务的稳定运行。 6. 结论 .NET为我们提供了一套强大的异常处理机制,可以帮助我们在开发过程中有效地处理各种异常。甭管是系统自带的未托管异常,还是咱们自定义的托管异常,无论是那些基本常见的小错误,还是独具匠心的自定义异常,我们都能手到擒来,用try-catch大法或者其他招数,妥妥地把它们给有效处理喽! 7. 问答环节 你是否在.NET开发中遇到过异常处理的问题?你是如何解决这些问题的呢?欢迎留言分享你的经验和建议。
2023-03-10 23:09:25
493
夜色朦胧-t
Flink
...助我们高效地处理海量数据。在用Flink干活儿的时候,咱们免不了会碰到各种幺蛾子,其中最多人吐槽的就是状态存储这茬儿。好嘞,那咱们今天就唠唠嗑,说说这怎么挑个合适的State Backend吧! 二、什么是State Backend? 在Flink中,我们经常需要保存一些中间结果或者上下文信息,这就是所谓的状态。而这些状态的存储方式就被称为State Backend。Flink提供了多种不同的State Backend,包括RocksDB、FsState等。 三、选择State Backend的原则 当我们面临选择State Backend的问题时,我们需要遵循以下几个原则: 3.1 稳定性 这是最重要的一个原则。咱们得挑一个超级稳定的State Backend,这样咱的应用才能稳如磐石,不会因为State Backend抽风而突然罢工。 3.2 性能 性能也是一个重要的考虑因素。我们得挑一个超级给力的State Backend,这样一来,咱们的应用运行起来就能溜得飞起,效率杠杠的。 3.3 可扩展性 随着我们的应用规模的扩大,我们需要选择一个可扩展性强的State Backend,这样可以满足我们未来的需求。 四、RocksDB State Backend RocksDB是一种高性能的键值对数据库,它是Google开源的一个项目。Flink提供了一个基于RocksDB的State Backend。 java ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment(); env.setStateBackend(new RocksDBStateBackend("/tmp/flink-rocksdb")); 五、FsState State Backend FsState是Flink提供的一个基于文件系统的State Backend。 java ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment(); env.setStateBackend(new FsStateBackend("/tmp/flink-fsstate")); 六、总结 选择合适的State Backend是一项非常重要的任务。咱们应该根据自身的实际需求和所处的环境条件,来挑个最适合的State Backend,就像选衣服要根据身材和天气一样,得找准那个最合拍的“款”。同时呢,咱们也得留意这么个事儿,就是各种State Backend各有各的好和不足。要想做出最合适的决定,就得先把这些家伙的脾性摸个透彻明白才行。 以上就是我对于如何选择合适的State Backend的一些理解和看法,希望能够对你有所帮助。如果你有任何问题或者想法,欢迎留言讨论。 七、尾声 Flink是一个强大且灵活的流处理框架,但是它的复杂性也给我们带来了一些挑战。我们需要不断地学习和探索,才能更好地利用它。在挑State Backend的时候,咱们得根据自身的实际情况和需求,像个精明的买家那样,选出最对胃口、最适合的那个选项。
2023-07-04 20:53:04
509
海阔天空-t
.net
...的一部分,用于提供对数据库的操作。它支持多种不同的数据库系统,包括Oracle。不过话说回来,Oracle自有一套错误模型和异常类型,这些家伙在.NET的地盘上,可能会有点“水土不服”,表现得不尽相同。为了搞定这个问题,我们可以自己动手设计一个基础类,把所有Oracle数据库可能会抛出的异常都一股脑儿装进这个基础类里。这样一来,当我们处理这些异常时,就只需要关注这个基础类,而无需对每个具体的异常类型都费心啦。 二、创建自定义基类 首先,我们需要创建一个新的类,作为所有Oracle异常的基类。以下是一个简单的例子: csharp public abstract class OracleExceptionBase : Exception { public string ErrorNumber { get; set; } protected OracleExceptionBase(string message) : base(message) { } } 在这个基类中,我们添加了一个新的属性ErrorNumber,用来存储Oracle的错误编号。这是因为Oracle的错误编号可以帮助我们更好地理解错误的原因。 三、处理Oracle异常 接下来,我们需要修改我们的代码,使其能够正确地处理Oracle异常。首先,咱们得瞧一瞧这个蹦出来的异常是不是咱们自定义的那个基类OracleExceptionBase的“后代”。如果是,那么我们就需要获取并显示该异常的ErrorNumber属性。 以下是一个例子: csharp try { // 连接Oracle数据库 using (var connection = new OracleConnection(connectionString)) { // 打开连接 connection.Open(); // 创建命令对象 var command = new OracleCommand("SELECT FROM Employees", connection); // 执行查询 var reader = command.ExecuteReader(); } } catch (OracleException ex) { if (ex is OracleExceptionBase oracleEx) { Console.WriteLine($"Oracle Error Number: {oracleEx.ErrorNumber}"); throw; } else { Console.WriteLine($"Other type of exception: {ex.Message}"); throw; } } 在这个例子中,如果捕获到的是OracleExceptionBase类型的异常,那么我们就打印出它的ErrorNumber属性,并重新抛出该异常。否则,我们就打印出其他类型的异常消息,并重新抛出该异常。 四、结论 总的来说,通过创建一个自定义的基类,我们可以统一处理所有的Oracle异常,使我们的代码更加简洁和易于维护。同时,我们也能够更好地理解和解决这些问题,提高我们的编程效率。 最后,我想说,编程不仅仅是解决问题的技术,更是一种艺术。写代码时,如果我们追求那种优雅简洁、一目了然的风格,就能让敲代码这件事变得超有乐趣,而且还能给我们的工作注入满满的意义感,让编程变得快乐而有价值。
2023-09-18 09:51:01
464
心灵驿站-t
JSON
在数据加工与分析范围;领域,由于数据格式比较繁琐,格式变换就变为了一个非常关键的工作。现在,对于普通的数据格式变换,比如json格式转csv文件,已经有了非常成熟的应对策略。 最初,我们需要理解json与csv文件这两种格式的基本解释。json是一种简洁型的信息传输格式,它以文字为基础进行人机沟通。而csv是指CSV格式格式的一种简易的文件格式,它将数据看作表格的形式进行存储。 采用Python编程语言完成json格式转csv文件的方式非常简易。我们可以采用Python中的pandas库,pandas是一种数据加工库,该库可以简化数据清理和分析的方式,支持多种文件格式的读取和转换,包括json和csv。下面是一个采用pandas库将json格式转csv文件的示例代码: import pandas as pd def json_to_csv(input_file, output_file): data = pd.read_json(input_file) data.to_csv(output_file, index=False) input_file = 'input.json' output_file = 'output.csv' json_to_csv(input_file, output_file) 总体来说,上述代码需要传递两个参数,分别是input_file和output_file,分别表示输入的json文件路径和输出的csv文件路径。最初,我们调用pandas库的read_json()函数读取json文件。读取完成之后,我们调用to_csv()函数将转换后的数据保存到指定的csv文件路径。 在这个过程中,我们采用了index=False参数。在转换过程中,有时候需要保留DataFrame对象的索引值,并将其添加为一列。在这个示例代码中,我们采用index=False参数,表示在输出的csv文件中不会保留索引值的相关信息。 总的来说,我们可以发现,采用Python中的pandas库,将json格式变换为csv文件是一项非常简易而且常用的工作。无论是在数据加工还是数据分析的过程中,这种格式变换都可能变为一项非常普通的技能。
2024-01-01 14:07:21
434
代码侠
Cassandra
...这个分布式NoSQL数据库,以其高可用性和横向扩展能力而闻名。聊天到数据存储怎么玩得溜,你猜猜看,啥子话题最火?对头,就是UNLOGGED TABLES!特别是那些一心想要速度飞快、存储空间又省着使的朋友们,这简直就是他们的心头好啊!让我们深入了解一下,何时选择使用CQL(Cassandra查询语言)的UNLOGGED TABLES选项。 二、理解UNLOGGED TABLES 1. 定义与特点 UNLOGGED TABLES是一种特殊的表类型,它牺牲了一些Cassandra的ACID(原子性、一致性、隔离性和持久性)保证,以换取更高的写入吞吐量和更低的磁盘I/O。这就意味着数据不会乖乖地记在日记本里,万一系统出个小差错,可能没法完整地复原之前的交易。不过,对于那些不太在乎数据完美无瑕的场合,这还挺合适的。 2. 适用场景 - 数据缓存:如果你需要一个快速的读写速度,而不在乎数据丢失的可能性,UNLOGGED TABLES可以作为数据缓存,例如在实时分析应用中。 - 大数据流处理:在处理海量数据流时,快速写入和较低的磁盘操作对于延迟敏感的系统至关重要。 三、CQL与UNLOGGED TABLES的创建示例 cql CREATE TABLE users ( user_id uuid PRIMARY KEY, name text, email text, unlogged ) WITH bloom_filter_fp_chance = 0.01 AND caching = {'keys': 'ALL', 'rows_per_partition': 'NONE'} AND comment = 'Fast writes, no durability'; 在这个例子中,unlogged关键字被添加到表定义中,声明这是一个UNLOGGED TABLES。嘿,你知道吗?咱们加了个小技巧,那就是把caching开关调到"不缓存行"模式,这样写入数据的时候速度能嗖嗖的快呢! 四、潜在风险与注意事项 1. 数据完整性 由于没有日志记录,如果集群崩溃,UNLOGGED TABLES的数据可能会丢失,这可能导致数据一致性问题。 2. 备份与恢复 由于缺乏日志,备份和恢复可能依赖于其他手段,如定期全量备份。 3. 监控与维护 需要更频繁地监控,确保数据的实时性和可用性。 五、实际应用案例 假设你在构建一个实时新闻聚合应用,用户点击行为需要迅速记录以便进行实时分析。你知道吗,如果你要记录用户的日常操作,可以选择用"未日志化表",这样即使偶尔漏掉点旧信息,你那实时显示的精准度也不会打折! 然而,如果应用涉及到法律合规或金融交易,那么你可能需要使用普通表格类型,以确保数据的完整性和满足法规要求。 六、总结与权衡 在Cassandra中,UNLOGGED TABLES是一个工具箱中的瑞士军刀,适用于特定场景下的性能优化。关键看你怎么定夺,就是得琢磨清楚你的业务到底啥需求,数据又有多宝贝,还有你能不能容忍点儿小误差,就这么简单。每种选择都有其代价,因此明智地评估和选择合适的表类型至关重要。 记住,数据科学家和工程师的角色不仅仅是编写代码,更是要理解业务需求,然后根据这些需求做出最佳技术决策。在Cassandra的世界里,这就是UNLOGGED TABLES发挥作用的地方。
2024-06-12 10:55:34
493
青春印记
PostgreSQL
...,它是一种特别设计的数据结构,能帮咱们像查字典一样,嗖的一下找到你需要的具体数据行。 2. 创建索引的基本语法 那么,如何在PostgreSQL中创建一个索引呢?我们可以使用CREATE INDEX语句来完成这个任务。基本语法如下: sql CREATE INDEX index_name ON table_name (column_name); 这里的index_name是我们给索引起的名字,table_name是我们要为其创建索引的数据表名,而column_name则是我们想要在其上创建索引的列名。 举个例子,假设我们有一个名为users的用户表,其中包含id、name和email三列,如果我们想要在其id列上创建一个索引,我们可以这样操作: sql CREATE INDEX idx_users_id ON users (id); 以上就是创建索引的基本语法,下面我们来看一下更复杂一点的情况。 3. 多列索引 除了单一列的索引外,PostgreSQL还支持多列索引。也就是说,我们可以在一个或者多个列上同时创建索引。创建多列索引的方法与创建单一列索引的方法类似,只是我们在ON后面的括号中需要列出所有的列名,中间用逗号隔开即可。例如,如果我们想要在users表的id和name两列上同时创建索引,我们可以这样做: sql CREATE INDEX idx_users_id_name ON users (id, name); 这种索引的好处是可以加快对多个列的联合查询的效率,因为查询引擎可以直接利用索引来定位数据,而不需要逐行比较。 4. 唯一性索引 除了普通索引外,PostgreSQL还支持唯一性索引。简单来说,唯一性索引呢,就像它的名字一样直截了当。它就像是数据库里的“独一无二标签”,在一个特定的列上,坚决不允许有重复的数据出现,保证每一条记录都是独一无二的存在。如果你试图往PostgreSQL数据库里插一条已经有重复值的记录,它会毫不客气地给你抛出一个错误消息。唯一性索引通常用于保证数据的一致性和完整性。 创建唯一性索引的方法非常简单,我们只需要在创建索引的语句后面添加UNIQUE关键字即可。例如,如果我们想要在users表的email列上创建一个唯一性索引,我们可以这样做: sql CREATE UNIQUE INDEX idx_users_email ON users (email); 以上就是在PostgreSQL中创建索引的一些基础知识,希望能对你有所帮助。如果你还有其他疑问,欢迎随时向我提问!
2023-11-16 14:06:06
486
晚秋落叶_t
转载文章
...--------删除数据库配置 1️⃣配置etc/hosts: 192.168.230.101 ouzy 设置-添加目标-手动添加目标-在主机上安装代理- 添加-手动-输入添加主机IP,选择对应平台-下一步-设置安装基目录:/u02/agent 验证填oracle、root用户身份证明信息(默认设置密码Oracle123,方便记忆,密码另存为改为root或者Oracle)-安装部署代理-完成 查看部署日志:(tail -f 文件名)(emcc主机上) tail -f /u02/gc_inst/em/EMGC_OMS1/sysman/agentpush/2019-08-20_20-55-47-PM/applogs/192.168.230.100_deploy.log 1 安装完成后在agent上查看安装情况(oracle) /u02/agent/agent_13.3.0.0.0/bin [oracle@ouzy bin]$ ./emctl status agent [oracle@ouzy bin]$ ./emctl upload agent(手动上传) 删除目标主机: 主机-目标设置-删除目标 全选-移去 代理: 点击无法删除的代理主机-代理-目标设置-取消代理使用(先停止代理agent) 删除目标主机: 主机-目标设置-删除目标 删除主机的时候如果有数据库,会显示主机上对应的应用,可以选择性删除。 ------------------------修改度量 1.新选项打开 2. 编辑阈值 编辑后就可以看到所有的度量 本篇文章为转载内容。原文链接:https://blog.csdn.net/jnrjian/article/details/126827989。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-25 18:45:23
132
转载
Greenplum
...伙儿好啊!我是一枚对数据库领域痴迷到不行的开发者,也是你们身边的那个热爱技术的好朋友。今天,我要领着大伙儿一起迈入绿色巨人Greenplum的神秘世界,而且会掰开揉碎地给大家讲明白,这个大家伙究竟是怎么巧妙处理JSON和XML这两种数据类型的。 1. Greenplum简介 首先,让我们来了解一下什么是Greenplum。Greenplum是一款强大的分布式数据库管理系统,它采用了PostgreSQL作为核心数据库引擎,拥有优秀的扩展性和性能。如果你正在捣鼓一些需要对付海量结构化数据的活儿,那Greenplum绝对是个靠谱的好帮手! 2. JSON数据类型 随着互联网的发展,越来越多的数据以JSON格式存在,而Greenplum也充分考虑到了这种情况,提供了对JSON数据类型的原生支持。我们可以通过CREATE TABLE语句创建一个包含JSON数据的表,如下所示: sql CREATE TABLE json_data ( id INT, data JSONB ); 然后,我们可以使用INSERT INTO语句向这个表中插入JSON数据,如下所示: sql INSERT INTO json_data (id, data) VALUES (1, '{"name": "John", "age": 30}'); 此外,Greenplum还提供了一些内置函数,如jsonb_to_record、jsonb_array_elements等,可以方便地操作JSON数据。例如,我们可以使用jsonb_to_record函数将JSON对象转换为记录,如下所示: sql SELECT jsonb_to_record(data) AS name, age FROM json_data WHERE id = 1; 3. XML数据类型 除了JSON,另一种常见的数据格式就是XML。与处理JSON数据类似,我们也可以通过CREATE TABLE语句创建一个包含XML数据的表,如下所示: sql CREATE TABLE xml_data ( id INT, data XML ); 然后,我们可以使用INSERT INTO语句向这个表中插入XML数据,如下所示: sql INSERT INTO xml_data (id, data) VALUES (1, 'John30'); 同样,Greenplum也提供了一些内置函数,如xmlagg、xmlelement等,可以方便地操作XML数据。例如,我们可以使用xmlelement函数创建一个新的XML元素,如下所示: sql SELECT xmlelement(name person, xmlagg(xmlelement(name name, name), xmlelement(name age, age)) ORDER BY id) FROM xml_data; 4. 总结 总的来说,Greenplum不仅提供了对多种数据类型的原生支持,而且还有丰富的内置函数,使得我们可以轻松地操作这些数据。无论是处理JSON还是XML数据,都可以使用Greenplum进行高效的操作。所以,如果你正在捣鼓那些需要处理海量有条不紊数据的应用程序,Greenplum绝对是个可以放心依赖的好帮手! 好了,以上就是我对Greenplum如何处理JSON和XML数据类型的解析,希望对你们有所帮助。如果你有关于这个问题的任何疑问或者想法,欢迎留言讨论,我会尽我所能为你解答。最后,感谢大家阅读这篇文章,愿我们在数据库领域的探索之旅越走越远。
2023-05-14 23:43:37
530
草原牧歌-t
PostgreSQL
...PostgreSQL数据库的过程中,我们可能会遇到一些意想不到的问题,例如我们在尝试将一种数据类型转换为另一种数据类型时遇到了"InvalidColumnTypeCastError"错误。本文将详细介绍这个错误的产生原因以及如何解决这个问题。 二、错误产生的原因 "InvalidColumnTypeCastError"错误通常发生在你试图将一个非预期的数据类型转换为另一个数据类型时。比如,你正试着把一个字符串类型的字段变成整数类型,但是这个字段里头掺杂了一些非数字的符号,这时候,这种错误就蹦出来了。 三、解决方法 解决"InvalidColumnTypeCastError"错误的方法有很多,但是这里我们将重点介绍两种方法:显式检查数据类型和使用转换函数。 3.1 显式检查数据类型 在尝试进行类型转换之前,我们可以先检查要转换的数据类型是否正确。这可以通过查询来完成。例如,你可以使用以下SQL语句来检查字段'my_column'的数据类型: sql SELECT data_type FROM information_schema.columns WHERE table_name = 'my_table' AND column_name = 'my_column'; 如果返回的结果不是你期望的类型,你需要修改数据或者更改你的查询逻辑。 3.2 使用转换函数 PostgreSQL提供了很多内置的转换函数,可以用来处理这种情况。例如,如果你想将字符串类型的字段转换为整数类型,你可以使用to_integer()函数。例如: sql UPDATE my_table SET my_column = to_integer(my_column); 这将在可能的情况下将'my_column'字段转换为整数,并忽略无法转换的部分。 四、总结 "InvalidColumnTypeCastError"是一个常见的数据库错误,通常发生在你试图将一个不合适的数据类型转换为另一个数据类型时。通过亲自查看数据类型并灵活运用转换技巧,咱们完全可以成功地把这个问题扼杀在摇篮里,确保不会出岔子。 然而,需要注意的是,虽然这些方法可以帮助我们解决大部分问题,但是在某些情况下,我们可能需要修改我们的数据模型或者业务逻辑,才能彻底解决问题。这就需要我们对数据库有深入的理解和掌握。 总的来说,对于任何数据库操作,我们都应该先了解其工作原理和可能的错误情况,这样才能更好地应对各种挑战。同时,我们也应该养成良好的编程习惯,避免由于疏忽而导致的错误。
2023-08-30 08:38:59
297
草原牧歌-t
Python
...各种各样的图表来展示数据或者结果。而在众多的Python绘图库中,Matplotlib无疑是最受欢迎的一个。不过,如果我们只是想画些超级基础的、简单的点状图,那Matplotlib可能就显得有点大材小用了,让人感觉像是拿机关枪打蚊子,忒复杂了。那么,Python这个小家伙有没有什么趁手的工具能帮我们捣鼓出点绘图呢?这篇文章我要给大家伙儿推荐一款贼好用、超级赞的Python绘图神器——plotly,保管你用了就爱上它! 二、plotly的基本使用 Plotly是一个交互式的Python绘图库,可以用来创建各种各样的图表,包括散点图、折线图、柱状图等等。Plotly的优势在于它的可视化效果非常好,而且可以制作出很复杂的交互式图表。下面我们就来看一下如何使用plotly来绘制点绘图。 1. 安装plotly 首先,我们需要安装plotly。可以通过pip install plotly来安装。 sql pip install plotly 2. 导入plotly 安装好plotly后,我们就可以开始使用它了。导入plotly的方法很简单,只需要一行代码就可以了。 java import plotly.graph_objs as go 3. 创建数据 接下来,我们需要创建一些数据。这里我们将创建一个包含x坐标和y坐标的列表。 scss x = [1, 2, 3, 4, 5] y = [1, 4, 9, 16, 25] 4. 绘制点绘图 有了数据之后,我们就可以开始绘制点绘图了。绘制点绘图的代码如下所示: go trace = go.Scatter( x=x, y=y, mode='markers', marker=dict(size=12) ) data = [trace] layout = dict(title='Point Plot with plotly', xaxis=dict(title='x'), yaxis=dict(title='y')) fig = go.Figure(data=data, layout=layout) py.offline.iplot(fig, filename='scatter_hover_labels') 以上代码将会创建一个包含五个点的点绘图。在这幅点状图表里,你会发现每一个点都有一个独一无二的“身份证”,更有意思的是,只要你把鼠标轻轻挪到这个点上“搭个桥”,它就会主动告诉你这个点所代表的具体数值。 三、plotly的优点 通过上述的代码示例,相信大家都已经了解了plotly的基本使用方法。那么,plotly有哪些优点呢? 1. 可视化效果好 plotly的可视化效果非常好,无论是线条还是颜色都非常清晰明了。 2. 支持交互式操作 plotly可以制作出很多交互式的图表,用户可以通过鼠标悬停、点击等操作来获取更多的信息。 3. 功能强大 plotly的功能非常强大,不仅可以绘制基本的点绘图,还可以绘制折线图、柱状图、热力图等各种各样的图表。 四、总结 总的来说,如果你需要绘制一些非常基础的点绘图,那么plotly无疑是一个非常好的选择。它的可视化效果好,支持交互式操作,而且功能也非常强大。因此,强烈推荐大家使用plotly来绘制点绘图。当然啦,除了plotly这位大神,Python的世界里还有不少其他的可视化神器,比如说Matplotlib、seaborn这些好哥们儿,都是绘图时的得力助手。不过,每个人的需求不同,所选择的绘图工具也会有所不同。因此,希望大家可以根据自己的需求来选择最适合自己的绘图工具。
2023-07-14 11:34:15
119
落叶归根_t
Scala
...一特性。近期,随着大数据处理和函数式编程的持续升温,Scala语言在Apache Spark等开源框架中的应用愈发广泛,而case类在这种场景下的实践价值尤为凸显。 例如,在Spark的DataFrame操作中,用户可以通过定义case class与Schema进行映射,从而实现对复杂数据结构的操作更加直观、便捷。此外,对于Actor模型编程,Akka库中的Scala DSL也大量使用了case类来封装消息类型,简化并发通信逻辑,提高程序的可读性和可靠性。 同时,值得注意的是,Scala 2.13版本对case类进行了更多优化,引入了衍生方法(Derive Macros),允许编译器自动生成诸如equals、hashCode和toString等方法,进一步减轻了开发者的工作负担,强化了case类在构建不可变值对象时的优势。 因此,无论是在日常编程实践中,还是在应对大规模分布式系统挑战时,深入理解和熟练掌握Scala case类的应用,都将为开发者提供更强大的工具支持,助力其实现高效、优雅且易于维护的代码编写。鼓励读者关注相关技术社区、博客及教程,不断跟进并实践Scala及case类的最新发展动态。
2023-01-16 14:23:59
180
风轻云淡-t
Go-Spring
...说,缓存就是将常用的数据存储到内存中,下次再需要时直接从内存中获取,避免了频繁地去数据库或其他资源中读取数据,从而提升了系统的响应速度。 三、为什么使用缓存 我们都知道,数据库是最稳定也是最慢的资源之一。当我们频繁地对数据动手脚时,就像是给数据库不断增压,这样一来,整个系统的运转速度和表现力可就被拖后腿啦。其实,通过运用缓存这个小妙招,我们就能把那些经常要用到的数据提前放在内存里头,这样一来,读取数据的速度就能嗖嗖地提升上去,快得飞起! 四、Go-Spring中的缓存配置 在Go-Spring中,我们可以使用ehcache作为缓存组件。首先,我们需要在Spring配置文件中添加ehcache的相关依赖: xml net.sf.ehcache ehcache 2.6.9 然后,我们可以在Spring配置文件中定义ehcache的配置: xml 最后,我们可以通过@Autowired注解注入ehcache实例,并将其注册为一个Service: java @Service("myService") public class MyService { @Autowired private CacheManager cacheManager; public void doSomething() { // 使用缓存 Cache cache = cacheManager.getCache("myCache"); String result = (String) cache.get("key"); if (result == null) { // 如果缓存中没有这个key,就去数据库查询 result = queryFromDatabase(); // 将结果放入缓存 cache.put("key", result); } // 使用缓存的结果 ... } private String queryFromDatabase() { // 查询数据库 } } 五、缓存的生命周期管理 缓存的生命周期管理主要涉及到缓存的创建、更新和删除。在Go-Spring这套工具里,我们可以巧妙地利用ehcache自带的生命周期回调机制来达到这个目的。例如,当缓存被创建时,我们可以在afterCreate方法中添加一些初始化逻辑: java @EventListener(CacheEvent.CacheCreatedEvent.class) public void onCacheCreate(CacheCreatedEvent event) { Cache cache = event.getSource(); // 在这里添加一些初始化逻辑 } 六、结论 通过上述步骤,我们在Go-Spring中成功地配置并使用了缓存。有了缓存的帮助,我们的Web应用在处理大量请求时,可以更快地响应,提高用户体验。同时,缓存也可以减轻数据库等资源的压力,保证系统的稳定性。所以,在咱们实际做开发的时候,咱得积极地把缓存技术用起来,这样一来,就能让系统的运行速度和响应效率蹭蹭往上涨,用户体验更上一层楼。
2023-12-01 09:24:43
448
半夏微凉-t
转载文章
...学演示、在线游戏以及数据可视化等领域的产品更具吸引力和实用性。 此外,对于有志于深入学习ActionScript或多媒体编程的读者,推荐访问一些专业教育平台和社区,如W3Schools、MDN Web Docs等,它们会定期更新最新的Web开发教程和技术解读,帮助你紧跟行业趋势,掌握更多实战技能,甚至还可以参与到如“闪客帝国”这样的老牌Flash开发者社区转型后的HTML5、Canvas等新技术讨论中去,持续精进你的编程技艺。 总之,从Flash到HTML5,自定义右键菜单的设计与实现始终是增强多媒体演示交互性的重要手段之一,了解并掌握相关技术和最新动态将有助于我们更好地服务于不同场景下的用户体验优化需求。
2023-01-13 21:10:13
662
转载
SpringCloud
...法找到必要的设置,如数据库连接信息、API地址等,导致启动失败或者运行异常。 3.2 错误:配置文件中的语法错误、键值对不匹配等问题,同样会导致应用无法正常运行,甚至引发难以追踪的运行时错误。 四、如何识别和解决配置问题 4.1 使用Spring Cloud Config客户端检查 Spring Cloud Config客户端提供了命令行工具,如spring-cloud-config-client,可以帮助我们查看当前应用正在尝试使用的配置。 bash $ curl http://localhost:8888/master/configprops 4.2 日志分析 查看应用日志是发现配置错误的重要手段。SpringCloud会记录关于配置加载的详细信息,包括错误堆栈和尝试过的配置项。 4.3 使用IDEA或IntelliJ的Spring Boot插件 这些集成开发环境的插件能实时检查配置文件,帮助我们快速定位问题。 五、配置错误的修复策略 5.1 重新创建或恢复配置文件 确保配置文件存在且内容正确。如果是初次配置,参考官方文档或项目文档创建。 5.2 修正配置语法 检查配置文件的格式,确保所有键值对都是正确的,没有遗漏或多余的部分。 5.3 更新配置属性 如果配置项更改,需要更新到应用的配置服务器,然后重启应用以应用新的配置。 六、预防措施与最佳实践 6.1 版本控制 将配置文件纳入版本控制系统,确保每次代码提交都有相应的配置备份。 6.2 使用环境变量 对于敏感信息,可以考虑使用环境变量替代配置文件,提高安全性。 7. 结语 面对SpringCloud配置文件的丢失或错误,我们需要保持冷静,运用合适的工具和方法,一步步找出问题并修复。记住,无论何时,良好的配置管理都是微服务架构稳定运行的关键。希望这篇文章能帮你解决遇到的问题,让你在SpringCloud的世界里更加游刃有余。
2024-06-05 11:05:36
107
冬日暖阳
Python
...梅花图绘制以直观展示数据分布情况之后,我们可以进一步关注数据可视化领域的最新动态与应用实例。近期,随着大数据和人工智能技术的飞速发展,Python的数据可视化工具如Bokeh、Seaborn等也在不断推陈出新,提供更多维度和交互性的可视化解决方案。 例如,2023年的一项重要研究中,科研人员借助Python的Seaborn库对全球气候变化数据进行了复杂而精细的可视化分析,利用热力图、小提琴图等多种图表形式,揭示了温度变化的空间分布规律及时间序列特性,为政策制定者提供了有力的决策依据。 同时,Python社区内围绕matplotlib库也持续进行功能升级和优化。开发者们不仅在提升性能、丰富图形样式上下功夫,还致力于让初学者能更轻松地上手使用,如改进文档、增加教程案例等。最近发布的matplotlib 4.0版本就引入了一系列新的API接口和功能改进,使得生成梅花图等各类统计图表更加灵活便捷,有效助力数据分析人员深入洞察数据内在联系。 此外,结合实际应用场景,Python的数据可视化技术正被广泛应用于金融风控、医疗健康、城市规划等多个领域,充分体现了其在数据驱动决策中的关键作用。通过实时更新的数据可视化面板,企业可以即时掌握业务动态,及时调整策略,从而在激烈的市场竞争中保持优势。 总之,Python及其生态系统下的数据可视化工具正在不断发展和完善,成为现代数据分析不可或缺的一部分。无论是专业科研人员还是商业分析师,都能从中受益,将复杂的数据信息转化为直观易懂的可视化成果,更好地服务于科学研究和社会实践。
2023-12-19 17:04:38
227
代码侠
Greenplum
一、引言 在处理大量数据时,我们常常会遇到数据类型转换的问题。特别是在用像Greenplum这样的分布式数据库系统时,这个问题很可能变得贼复杂,让人挠头。这篇文章主要关注如何解决在Greenplum查询语句中出现的数据类型转换错误。 二、问题描述 当我们尝试将一个数据类型转换为另一个数据类型时,如果这个转换在逻辑上是不正确的,那么就会出现数据类型转换错误。比如,假如你正试着把一个字符串变成整数,可这个字符串里头混进了非数字的字符,那这就肯定会出错啦。 三、示例 下面是一个简单的例子,展示了在Greenplum中如何发生数据类型转换错误: sql CREATE TABLE test_table (id int, name text); INSERT INTO test_table VALUES (1, 'test'); SELECT id::text FROM test_table; -- 这将会报错 在这个例子中,我们试图将id列从整数类型转换为文本类型。不过,你看哈,这id列里头存的都是些整数,比如1啊这些。所以呢,这个转换操作就有点儿跑偏了,自然而然地,这就引发了错误啦。 四、解决方案 要解决这种问题,我们需要确保我们的数据类型转换是正确的。这可能意味着我们需要先给咱们的数据“整整容”,或者调整一下我们的查询方式,让它更贴近我们想要的结果。 例如,在上面的例子中,我们可以先将id列转换为文本类型,然后再将其插入到测试表中: sql CREATE TABLE test_table (id text, name text); INSERT INTO test_table SELECT cast(id AS text), name FROM test_table; SELECT FROM test_table; 这样就可以避免数据类型转换错误了。 五、总结 在处理数据类型转换时,我们必须非常小心,因为错误的数据类型转换会导致各种各样的问题。幸运的是,只要我们对这些小细节多上点心,及时采取一些适当的预防措施,就能轻松把这些问题扼杀在摇篮里,让它们没机会冒头。 总的来说,虽然数据类型转换可能会带来一些挑战,但只要我们了解并正确地使用它们,我们就能够充分利用Greenplum和其他数据库系统的强大功能。
2023-11-08 08:41:06
599
彩虹之上-t
Oracle
Oracle数据库中处理数据表重复记录的问题 在我们日常的Oracle数据库管理与开发过程中,数据完整性是一项至关重要的任务。有时候啊,因为各种乱七八糟的原因,我们的数据表可能会冒出一些重复的记录来,这就像是给咱们的数据一致性捣乱,还可能把业务逻辑也带偏了,带来不少麻烦呢。本文将深入探讨如何在Oracle数据库中检测并处理数据表中的重复记录问题,通过实例代码及探讨性话术,力求以生动、直观的方式展示解决之道。 1. 发现数据表中的重复记录 首先,我们需要确定哪些记录是重复的。这里,假设我们有一个名为Employees的数据表,其中可能存在ID和Email字段重复的情况: sql CREATE TABLE Employees ( ID INT PRIMARY KEY, Name VARCHAR2(50), Email VARCHAR2(50), JobTitle VARCHAR2(50) ); 为了找出所有Email字段重复的记录,我们可以使用GROUP BY和HAVING子句: sql SELECT Email, COUNT() FROM Employees GROUP BY Email HAVING COUNT() > 1; 这段SQL会返回所有出现次数大于1的邮箱地址,这就意味着这些邮箱存在重复记录。 2. 删除重复记录 识别出重复记录后,我们需要谨慎地删除它们,确保不破坏数据完整性。一种策略是保留每个重复组的第一条记录,并删除其他重复项。为此,我们可以创建临时表,并用ROW_NUMBER()窗口函数来标识每组重复记录的顺序: sql -- 创建临时表并标记重复记录的顺序 CREATE TABLE Temp_Employees AS SELECT ID, Name, Email, JobTitle, ROW_NUMBER() OVER(PARTITION BY Email ORDER BY ID) as RowNum FROM Employees; -- 删除临时表中RowNum大于1的重复记录 DELETE FROM Temp_Employees WHERE RowNum > 1; -- 将无重复记录的临时表数据回迁到原表 INSERT INTO Employees (ID, Name, Email, JobTitle) SELECT ID, Name, Email, JobTitle FROM Temp_Employees; -- 清理临时表 DROP TABLE Temp_Employees; 上述代码流程中,我们首先创建了一个临时表Temp_Employees,为每个Email字段相同的组分配行号(根据ID排序)。然后删除行号大于1的记录,即除每组第一条记录以外的所有重复记录。最后,我们将去重后的数据重新插入原始表并清理临时表。 3. 防止未来新增重复记录 为了避免将来再次出现此类问题,我们可以为容易重复的字段添加唯一约束。例如,对于上面例子中的Email字段: sql ALTER TABLE Employees ADD CONSTRAINT Unique_Email UNIQUE (Email); 这样,在尝试插入新的具有已存在Email值的记录时,Oracle将自动阻止该操作。 总结 处理Oracle数据库中的重复记录问题是一个需要细心和策略的过程。在这个过程中,咱们得把数据结构摸得门儿清,像老朋友一样灵活运用SQL查询和DML语句。同时呢,咱们也得提前打个“预防针”,确保以后不再犯同样的错误。在这一整个寻觅答案和解决问题的旅程中,我们不停地琢磨、动手实践、灵活变通,这恰恰就是人与科技亲密接触所带来的那种无法抗拒的魅力。希望本文中给出的实例和小窍门,能真正帮到您,让管理维护您的Oracle数据库变得轻轻松松,确保数据稳稳妥妥、整整齐齐的。
2023-02-04 13:46:08
48
百转千回
PostgreSQL
...一款强大的开源关系型数据库管理系统,支持多种存储引擎和索引类型。这篇文儿呢,主要是手把手教你咋在PostgreSQL这个数据库里头,捣鼓出一个能够秀出具体数值的索引,让你的数据查询嗖嗖快。 创建索引的基本步骤 在PostgreSQL中,我们可以使用CREATE INDEX语句来创建一个新的索引。以下是一些基本步骤: 步骤一:选择要创建索引的表 首先,我们需要选择要创建索引的表。例如,如果我们有一个名为employees的表,我们可以在其中创建索引: sql CREATE TABLE employees ( id serial primary key, name varchar(50), department varchar(50) ); 步骤二:选择要创建索引的列 接下来,我们需要选择要创建索引的列。例如,如果我们想要根据name列创建一个索引,我们可以这样做: sql CREATE INDEX idx_employees_name ON employees (name); 在这个例子中,idx_employees_name是我们给索引起的名字,ON employees (name)表示我们在employees表的name列上创建了一个新的索引。 步骤三:创建索引 最后,我们可以通过执行上述SQL语句来创建索引。要是没啥意外,PostgreSQL会亲口告诉我们一个好消息,那就是索引已经妥妥地创建成功啦! sql CREATE INDEX idx_employees_name ON employees (name); 如何查看已创建的索引? 如果你想知道哪些索引已经被创建在你的表上,你可以使用pg_indexes系统视图。这个视图可厉害了,它囊括了所有的索引信息,从索引的名字,到它所对应绑定的表,再到索引的各种类型,啥都一清二楚,明明白白。 sql SELECT FROM pg_indexes WHERE tablename = 'employees'; 这将会返回一个结果集,其中包含了employees表上的所有索引的信息。 创建可以显示值的索引 在PostgreSQL中,创建一个可以显示值的索引很简单。我们只需要在创建索引的时候指定我们想要使用的索引类型即可。目前,PostgreSQL支持多种索引类型,包括B-tree、哈希、GiST、SP-GiST和GIN等。不同的索引类型就像不同类型的工具,各有各的适用场合。所以,你得根据自己的实际需求,像挑选合适的工具一样,去选择最适合你的索引类型。别忘了,对症下药才能发挥最大效用! 以下是一个创建B-tree索引的例子: sql CREATE INDEX idx_employees_name_btree ON employees (name); 在这个例子中,idx_employees_name_btree是我们给索引起的名字,ON employees (name)表示我们在employees表的name列上创建了一个新的B-tree索引。如果你想创建不同类型的索引,那就简单啦,只需要把“btree”这个词儿换成你心水的索引类型就大功告成啦!就像是换衣服一样,根据你的需求选择不同的“款式”就行。 总结 创建一个可以显示值的索引并不难。其实,你只需要用一句“CREATE INDEX”命令,就能轻松搞定创建索引的事儿。具体来说,就是在这句命令里头,告诉系统你要在哪个表上建索引、打算对哪一列建立索引,还有你希望用哪种类型的索引,一切就OK啦!就像是在跟数据库说:“嗨,我在某某表的某某列上,想要创建一个这样那样的索引!”另外,你还可以使用pg_indexes系统视图来查看已创建的所有索引。希望这篇文章能对你有所帮助!
2023-11-30 10:13:56
262
半夏微凉_t
PostgreSQL
...动生成序列号? 随着数据库应用的普及,序列生成器越来越受到开发者的青睐。今天,我们就来深入了解一下PostgreSQL中的序列生成器——SEQUENCE。 1. 序列生成器的基本概念 首先,我们来看看什么是序列生成器。简单来说,序列生成器就是一种特殊的数据库对象,它可以为我们自动生成一组唯一的、递增的数字。咱们可以通过给定初始数字、步长大小和上限值,来灵活掌控生成的数字区间,确保这些数字一个萝卜一个坑,既不会重复,又能连贯有序地生成。就像是在数轴上画一条连续不断的线段,从起点开始,按照我们设定的步长逐个“蹦跶”,直到达到我们预设的最大值为止。 2. 创建序列生成器 在PostgreSQL中,我们可以使用CREATE SEQUENCE语句来创建一个新的序列生成器。下面是一个简单的例子: sql CREATE SEQUENCE my_sequence; 以上代码将会创建一个新的名为my_sequence的序列生成器。默认情况下,它的初始值为1,步长为1,没有最大值限制。 3. 使用序列生成器 有了序列生成器之后,我们就可以在插入数据的时候方便地获取下一个唯一的数字了。在PostgreSQL中,我们可以使用SELECT NEXTVAL函数来获取序列生成器的下一个值。下面是一个例子: sql INSERT INTO my_table (id) VALUES (NEXTVAL('my_sequence')); 以上代码将会向my_table表中插入一行数据,并将自动生成的下一个数字赋给id列。注意,我们在括号中指定了序列生成器的名字,这样PostgreSQL就知道应该从哪个序列生成器中获取下一个值了。 4. 控制序列生成器的行为 除了基本的创建和使用操作之外,我们还可以通过ALTER TABLE语句来修改序列生成器的行为。比如,我们能够随心所欲地调整它的起步数值、每次增加的大小,还有极限值,甚至还能让它暂停工作或者重新启动序列生成器,就像控制家里的电灯开关一样轻松自如。下面是一些例子: sql -- 修改序列生成器的最大值 ALTER SEQUENCE my_sequence MAXVALUE 100; -- 启用序列生成器 ALTER SEQUENCE my_sequence START WITH 1; -- 禁用序列生成器 ALTER SEQUENCE my_sequence DISABLE; 以上代码将会分别修改my_sequence的最大值为100、将它的初始值设为1以及禁用它。敲黑板,注意啦!如果咱把序列生成器给关掉了,那可就意味着没法再用NEXTVAL函数去捞新的数字了,除非咱先把它重新打开。 5. 总结 总的来说,PostgreSQL中的序列生成器是一个非常有用的工具,可以帮助我们自动生成唯一的数字序列。通过正确的配置和使用,我们可以确保我们的应用程序始终保持数据的一致性和完整性。当然啦,这只是冰山一角的应用实例,实际上序列生成器这家伙肚子里还藏着不少酷炫好玩的功能嘞,就等着我们去一一解锁发现呢!如果你想更深入地了解PostgreSQL,不妨尝试自己动手创建一些序列生成器,看看它们能为你带来哪些惊喜吧!
2023-04-25 22:21:14
79
半夏微凉-t
转载文章
...要的自平衡二叉查找树数据结构,在计算机科学领域具有广泛的应用,其高效稳定的特性对于现代软件开发和算法实现至关重要。近期,Google的V8 JavaScript引擎团队就针对哈希表和红黑树进行了深度优化,以提升Chrome浏览器的性能表现。在最新的技术博客中,他们深入探讨了如何通过调整红黑树内部节点插入与删除策略,以及引入新的内存管理机制,有效减少了查找、插入和删除操作的时间成本,显著提高了数据密集型应用的运行效率。 此外,随着数据规模的不断扩大,分布式系统对数据结构的要求也在不断提升。在Apache Cassandra等NoSQL数据库中,红黑树被用于实现元数据索引,确保即使在大规模集群环境下也能提供快速、一致的查询服务。有研究人员正在探索结合红黑树和其他新型数据结构(如B树、LSM树)的优点,设计出更加适应云存储和大数据场景下的索引结构。 再者,从学术研究层面来看,红黑树原理及变种仍然是理论计算机科学的研究热点。例如,一些学者尝试通过对红黑树性质的扩展和改良,提出更为高效的自平衡树结构,为未来可能的数据结构课程教学与工程实践提供了新的思路。 总之,红黑树作为基础且关键的数据结构,无论是在实时操作系统、文件系统、数据库索引还是各类编程语言的标准库中,都发挥着不可替代的作用。随着技术的发展和需求的变化,红黑树及其相关理论的研究与应用将继续深化,不断推动信息技术的进步。
2023-03-15 11:43:08
292
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
pgrep -f pattern
- 根据进程的完整命令行字符串查找进程ID。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"