前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[在线报销流程自动化解决方案 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
RabbitMQ
...盘空间不足的问题及其解决方案后,我们进一步了解到存储管理对于维持消息队列服务稳定性和高效性的重要性。近期,在实际应用领域中,针对云原生环境下的Kubernetes集群中部署的RabbitMQ实例,有开发者提出了一种基于Kubernetes本地持久卷(Local Persistent Volumes)自动扩展磁盘空间的创新实践。 具体来说,通过结合Prometheus监控系统和Kubernetes资源控制器,当检测到RabbitMQ所在Pod的磁盘使用率接近预设阈值时,会触发自动扩容机制,动态分配新的存储资源给RabbitMQ Pod。这一方案不仅有效解决了因磁盘空间不足引发的服务中断问题,还提升了运维效率,确保了分布式系统的高可用性。 另外,考虑到数据安全与合规要求,一些企业也开始重视对RabbitMQ消息队列中的敏感信息进行定期清理与备份。例如,结合开源工具如rabbitmq-consistent-hash-exchange和rabbitmq-message-deduplication,可以实现数据的有效去重和过期清理;同时,采用阿里云等提供的云存储服务进行定时增量备份,既保证了数据的安全存档,也减轻了本地磁盘的压力。 此外,随着微服务架构的普及,RabbitMQ作为核心的消息中间件组件,其性能优化与运维管理越来越受到业界关注。近期一篇发表在InfoQ的技术文章《深入剖析RabbitMQ性能调优策略》中,作者详细解读了如何从内存、网络、磁盘I/O等多个维度优化RabbitMQ,从而提升整体系统性能,降低故障发生概率。 综上所述,面对RabbitMQ服务器磁盘空间不足等现实问题,无论是采取自动化运维手段进行资源扩展,还是引入更先进的数据管理和备份策略,都是我们在构建和维护高可靠、高性能分布式系统过程中不可或缺的一环。持续跟进最新的技术发展与最佳实践,将有助于我们在实际工作中更好地应对挑战,保障业务的平稳运行。
2024-03-17 10:39:10
171
繁华落尽-t
MemCache
...实例,深入探讨并给出解决方案。 1. MemCache在分布式环境中的部署策略 首先,我们需要理解MemCache在分布式环境下的工作原理。MemCache这东西吧,本身并不具备跨节点数据一致性的功能,也就是说,每个节点都是个自给自足的小缓存个体,它们之间没有那种自动化同步数据的机制。所以,当我们在实际动手部署的时候,得想办法让这些工作量分散开,就像大家分担家务一样。这里我们可以用个很巧妙的方法,就叫“一致性哈希”,这个算法就像一个超级智能的分配器,能帮我们精准地判断每一份数据应该放在哪个小仓库(节点)里头,这样一来,所有的东西都能各归其位,整整齐齐。 python from pymemcache.client.hash import ConsistentHashRing nodes = [('node1', 11211), ('node2', 11211), ('node3', 11211)] ring = ConsistentHashRing(nodes) 使用一致性哈希决定key对应的节点 node, _ = ring.get_node('your_key') 2. 数据的分布式存储 上述的一致性哈希算法能够保证当新增或减少节点时,对已存在的大部分键值对的映射关系影响较小,从而实现数据的均衡分布。此外,咱们得牢牢记住一个大原则:如果有那么些关系紧密的数据兄弟,最好让它们挤在同一台MemCache服务器上,这样可以有效避免因为跨节点访问而产生的网络开销,懂我意思吧? 3. 同步更新问题及其解决思路 MemCache本身不具备数据同步功能,因此在分布式环境下进行数据更新时,需要通过应用层逻辑来保障一致性。常见的一种做法是“先更新数据库,再清除相关缓存”。 python 假设我们有一个更新用户信息的方法 def update_user_info(user_id, new_info): 先更新数据库 db.update_user(user_id, new_info) 清除MemCache中相关的缓存数据 memcached_client.delete(f'user_{user_id}') 另一种策略是引入消息队列,例如使用Redis Pub/Sub或者RabbitMQ等中间件,当数据库发生变更时,发布一条消息通知所有MemCache节点删除对应的缓存项。 4. MemCache节点的维护与监控 为了保证MemCache集群的稳定运行,我们需要定期对各个节点进行健康检查和性能监控,及时发现并处理可能出现的内存溢出、节点失效等问题。可以通过编写运维脚本定期检查,或者接入诸如Prometheus+Grafana这样的监控工具进行可视化管理。 bash 示例:简单的shell脚本检查MemCache节点状态 for node in $(cat memcache_nodes.txt); do echo "Checking ${node}..." telnet $node 11211 <<< stats | grep -q 'STAT bytes 0' if [ $? -eq 0 ]; then echo "${node} is down or not responding." else echo "${node} is up and running." fi done 总的来说,要在分布式环境中有效管理和维护多个MemCache节点,并实现数据的分布式存储与同步更新,不仅需要合理设计数据分布策略,还需要在应用层面对数据一致性进行把控,同时配合完善的节点监控和运维体系,才能确保整个缓存系统的高效稳定运行。在整个探险历程中,咱们得时刻动脑筋、动手尝试、灵活应变、优化咱的计划,这绝对是一个挑战多多、趣味盎然的过程,让人乐在其中。
2023-11-14 17:08:32
70
凌波微步
Apache Atlas
...公司利用机器学习算法自动检测数据异常,一旦发现问题便立即发出警报,从而避免了因数据质量问题导致的决策失误。 这些案例表明,Apache Atlas等开源数据治理工具正在帮助企业应对复杂的数据挑战,提升整体数据管理水平。未来,随着技术进步和市场需求的变化,预计会有更多创新性的数据治理解决方案涌现,进一步推动企业数字化转型进程。
2024-11-10 15:39:45
120
烟雨江南
Mongo
...据处理提供了更高效的解决方案。此外,对于异步编程模型,Node.js 14.x及以上版本对async/await的支持更为成熟和完善,结合MongoDB驱动程序的Promise化API,使得开发者能够以更简洁、直观的方式编写异步数据库操作代码。 另外,在实际生产环境中,如何有效利用MongoDB的异步优势进行大规模并发数据处理并确保数据一致性是一大挑战。分布式事务ACID(Atomicity, Consistency, Isolation, Durability)特性的引入以及MongoDB Stitch服务(现已整合进Atlas Serverless)为解决这一问题提供了新的思路。通过集成流式传输框架如Change Streams,开发人员可以构建实时响应的数据处理系统,并保持高可用性和扩展性。 同时,随着云原生架构的普及,MongoDB Atlas作为全球分布式的托管型数据库服务,以其内置的自动分片、备份恢复、监控告警等功能,助力企业无缝迁移至云端,实现弹性伸缩与按需付费,进一步优化资源利用率和降低成本。 综上所述,持续跟踪MongoDB的最新动态和技术演进,结合具体业务场景合理运用其异步特性,有助于提升应用程序性能,应对日益增长的数据处理需求。推荐读者关注MongoDB官方博客、文档更新及行业技术论坛,深入探讨更多关于数据库异步操作的实战经验和最佳实践案例。
2024-03-10 10:44:19
167
林中小径_
ZooKeeper
...我们提供了一个理想的解决方案。 5.1 配置中心的实现 假设我们有一个配置文件,其中包含了一些关键的配置信息,例如数据库连接字符串、日志级别等。我们可以把配置信息存到ZooKeeper里,然后用监听器让各个节点实时更新,这样就省心多了。 java import org.apache.zookeeper.WatchedEvent; import org.apache.zookeeper.Watcher; import org.apache.zookeeper.ZooKeeper; public class ConfigCenter implements Watcher { private ZooKeeper zookeeper; private String configPath; public ConfigCenter(ZooKeeper zookeeper, String configPath) { this.zookeeper = zookeeper; this.configPath = configPath; } public void start() throws Exception { // 监听配置节点 zookeeper.exists(configPath, this); } @Override public void process(WatchedEvent event) { if (event.getType() == Event.EventType.NodeDataChanged) { try { byte[] data = zookeeper.getData(configPath, this, null); String config = new String(data, "UTF-8"); System.out.println("New configuration: " + config); } catch (Exception e) { e.printStackTrace(); } } } } 这段代码展示了如何创建一个配置中心,通过监听配置节点的变化来实时更新配置信息。这种机制不仅提高了系统的灵活性,也大大简化了配置管理的工作量。 6. 总结与展望 通过上面两个具体的案例,我们看到了ZooKeeper在实际项目中的广泛应用。无论是分布式锁还是配置中心,ZooKeeper都能为我们提供稳定可靠的支持。当然,ZooKeeper还有许多其他强大的功能等待我们去发掘。希望大家在今后的工作中也能多多尝试使用ZooKeeper,相信它一定能给我们的开发带来意想不到的帮助! --- 希望这篇文章能让你对ZooKeeper有更深刻的理解,并激发你进一步探索的兴趣。如果你有任何问题或者想了解更多细节,请随时留言交流!
2025-02-11 15:58:01
40
心灵驿站
PostgreSQL
...stgreSQL集群方案来应对大数据量和高并发挑战。例如,知名云服务商Amazon RDS已经支持基于PostgreSQL的读 replicas 和多可用区部署,利用其内建的复制机制提供高可用性和灾难恢复解决方案。 另外,社区对于PostgreSQL集群管理工具的开发也日益活跃,如Patroni、 Crunchy Data's Postgres Operator等项目,它们通过自动化集群配置与运维,简化了PostgreSQL在Kubernetes等容器化环境中的集群部署与扩展过程,为现代化云原生架构下构建健壮的数据库服务提供了有力支持。 因此,建议读者可以关注PostgreSQL官方发布的最新版本特性解读,研究相关的企业实践案例,同时跟进Patroni、Postgres Operator等开源项目的最新进展,以便更好地将PostgreSQL集群架构的优势应用到自身的业务场景中,实现高效、稳定且可扩展的数据存储与管理解决方案。
2023-04-03 12:12:59
250
追梦人_
Hive
...向。 融合方案 为解决上述问题,社区开始探索Apache Hive与Apache Flink的融合方案。一种常见的思路是在Hive之上构建一个Flink的前端接口,使得用户可以在不改变现有Hive查询习惯的前提下,直接使用Flink的实时处理能力。这一方案通过引入一个适配层,使得Hive的离线数据集能够无缝地与Flink的实时数据流进行交互。此外,通过设计有效的数据同步机制,确保实时数据与历史数据的一致性和完整性,从而实现数据仓库与实时处理的统一。 实际应用与展望 在实际应用中,这种融合方案已经在金融风控、在线广告优化、物联网数据处理等多个领域展现出巨大的潜力。例如,在金融风控场景中,通过整合Hive的历史交易数据与Flink的实时交易流,金融机构能够实时监测异常交易行为,有效提升风险预警的准确性和及时性。同时,这一融合也为未来的智能决策支持系统奠定了基础,能够基于历史数据洞察和实时数据反馈,为企业提供更加精准的决策依据。 结论与展望 Apache Hive与Apache Flink的融合,不仅拓展了大数据处理的边界,还为应对日益增长的数据实时处理需求提供了新的解决方案。未来,随着技术的不断进步与优化,这一融合方案有望在更多领域发挥关键作用,推动大数据处理技术向更加高效、智能的方向发展。通过结合Hive的强大数据仓库功能与Flink的实时处理能力,企业将能够更加灵活地应对复杂多变的数据环境,实现数据驱动的业务创新与增长。
2024-09-13 15:49:02
35
秋水共长天一色
Hive
...,还贴心地送上实用的解决妙招,让你的Hive冒险路途畅通无阻,轻松愉快! 二、背景与理解 1. Hive概述 Hive是一种基于Hadoop的数据仓库工具,它允许用户以SQL的方式查询存储在HDFS上的数据。你知道的,想要用JDBC跟Hive来个友好交流,第一步得确认那个Hive服务器已经在那儿转悠了,而且JDBC的桥梁和必要的jar文件都得像好朋友一样好好准备齐全。 2. JDBC驱动的重要性 JDBC(Java Database Connectivity)是Java语言与数据库交互的接口,驱动程序则是这个接口的具体实现。就像试图跟空房子聊天一样,没对的“钥匙”(驱动),就感觉像是在大海捞针,怎么也找不到那个能接通的“门铃号码”(正确驱动)。 三、常见问题及解决方案 1. 缺失的JDBC驱动 - 检查环境变量:确保JAVA_HOME和HIVE_HOME环境变量设置正确,因为Hive JDBC驱动通常位于$HIVE_HOME/lib目录下的hive-jdbc-.jar文件。 - 手动添加驱动:如果你在IDE中运行,可能需要在项目构建路径中手动添加驱动jar。例如,在Maven项目中,可以在pom.xml文件中添加如下依赖: xml org.apache.hive hive-jdbc 版本号 - 下载并放置:如果在服务器上运行,可能需要从Apache Hive的官方网站下载对应版本的驱动并放入服务器的类路径中。 2. Hive Client jar包 - 确认包含Hive Server的jar:Hive Server通常包含了Hive Client的jar,如果单独部署,确保$HIVE_SERVER2_HOME/lib目录下存在hive-exec-.jar等Hive相关jar。 3. Hive Server配置 - Hive-site.xml:检查Hive的配置文件,确保标签内的javax.jdo.option.ConnectionURL和标签内的javax.jdo.option.ConnectionDriverName指向正确的JDBC URL和驱动。 四、代码示例与实战演练 1. 连接Hive示例(Java) java try { Class.forName("org.apache.hive.jdbc.HiveDriver"); Connection conn = DriverManager.getConnection( "jdbc:hive2://localhost:10000/default", "username", "password"); Statement stmt = conn.createStatement(); String sql = "SELECT FROM my_table"; ResultSet rs = stmt.executeQuery(sql); // 处理查询结果... } catch (Exception e) { e.printStackTrace(); } 2. 错误处理与诊断 如果上述代码执行时出现异常,可能是驱动加载失败或者URL格式错误。查看ClassNotFoundException或SQLException堆栈信息,有助于定位问题。 五、总结与经验分享 面对这类问题,耐心和细致的排查至关重要。记住,Hive的世界并非总是那么直观,尤其是当涉及到多个组件的集成时。逐步检查环境配置、依赖关系以及日志信息,往往能帮助你找到问题的根源。嘿,你知道吗,学习Hive JDBC就像解锁新玩具,开始可能有点懵,但只要你保持那股子好奇劲儿,多动手试一试,翻翻说明书,一点一点地,你就会上手得越来越溜了。关键就是那份坚持和探索的乐趣,时间会带你熟悉这个小家伙的每一个秘密。 希望这篇文章能帮你解决在使用Hive JDBC时遇到的困扰,如果你在实际操作中还有其他疑问,别忘了社区和网络资源是解决问题的好帮手。祝你在Hadoop和Hive的探索之旅中一帆风顺!
2024-04-04 10:40:57
769
百转千回
Linux
...,对于那些寻求云原生解决方案的企业,MongoDB Atlas除了原有的自动备份服务外,还新增了连续备份功能,可实现每6小时一次的增量备份,显著降低了RPO(恢复点目标),同时配合其全球分布式的存储架构,使得即使在大规模灾难场景下也能确保数据安全与业务连续性。 同时,在数据隐私和合规要求愈发严格的背景下,如何在进行备份时兼顾数据加密也成为了业界关注焦点。MongoDB支持TLS加密传输以及客户端字段级加密,以满足不同级别的数据安全保障需求。而在备份文件层面,企业可以结合开源工具如openssl等对备份数据进行加密存储,或采用云服务商提供的加密存储服务来进一步加固数据安全防线。 总而言之,随着技术的发展和实际需求的变化,MongoDB数据库备份策略应与时俱进,不断优化和完善,以适应更加复杂多变的数据保护挑战。通过深入理解并合理运用MongoDB的新特性及最佳实践,企业能够更好地保护自身的核心资产——数据,并为未来的稳健发展打下坚实基础。
2023-06-14 17:58:12
452
寂静森林_
Nacos
...os等服务的无缝集成方案,旨在为企业提供从配置存储到访问控制全方位的安全解决方案。 此外,随着零信任网络架构理念的普及,越来越多的企业开始在Nacos等配置中心上实施动态认证策略和最小权限原则。《InfoQ》的一篇深度报道详细解读了如何结合OPA(Open Policy Agent)这类策略即代码工具,实现对Nacos配置操作的精细化权限管控,有效防止数据泄露和恶意篡改。 综上所述,在实际运维工作中,不断跟进最新的安全技术动态,结合企业自身业务场景灵活运用并强化Nacos等配置中心的安全措施,是每个云原生开发者和运维团队需要持续关注和努力的方向。
2023-10-20 16:46:34
335
夜色朦胧_
MyBatis
...提醒我们,即使在高度自动化的系统中,事务管理仍然是确保数据准确性和系统稳定性的关键环节。 另一则案例发生在区块链领域,由于区块链本质上是一个分布式的数据库系统,其交易确认过程需要高度的数据一致性和事务隔离性。近期,一项研究指出,在某些区块链网络中,由于事务隔离级别设置不当,导致交易回滚和数据丢失的现象时有发生。这一发现促使开发者们重新审视和优化现有区块链平台的事务处理机制,以提高系统的可靠性和安全性。 此外,学术界也对事务隔离级别展开了深入探讨。一篇发表在《计算机科学》期刊上的论文,通过对多种隔离级别在实际应用场景中的表现进行对比分析,提出了基于业务需求动态调整事务隔离级别的新思路。该研究指出,通过智能算法和机器学习技术,可以根据实时监控的数据流量和负载情况,自动调整数据库的事务隔离级别,从而在保障数据一致性的前提下,最大限度地提高系统的并发性能。 这些案例和研究不仅验证了文章中提到的观点,还为我们提供了更多关于如何在实际项目中有效管理事务隔离级别的实用建议。在当前技术快速发展的背景下,持续关注这些领域的最新进展,对于我们更好地理解和运用MyBatis等数据库管理工具至关重要。
2024-11-12 16:08:06
33
烟雨江南
RocketMQ
...瓶颈的最新研究进展和解决方案。近期,随着Java 17的发布,ZGC(Z Garbage Collector)垃圾回收器已作为正式特性提供,其在处理大内存应用时表现出极低的停顿时间和优秀的扩展性,对于诸如RocketMQ这样的分布式消息中间件来说具有很高的实用价值。 此外,阿里巴巴集团内部对RocketMQ的优化实践也值得借鉴。他们在大规模生产环境中通过深度定制JVM参数、采用异步刷盘机制以及精细化的消息缓存管理策略等手段,有效降低了由于内存管理不当带来的问题,并显著提升了整体系统的吞吐量和响应速度。 同时,云原生时代下,Kubernetes等容器编排技术对资源限制和自动伸缩能力的提升,为解决类似JVM内存管理难题提供了新的思路。通过动态调整Pod的资源配额,可以更精确地控制RocketMQ实例的内存使用情况,防止内存溢出的同时,最大化硬件资源利用率。 综上所述,在实际运维和开发过程中,结合最新的JVM技术和云原生理念,持续优化RocketMQ的内存管理,不仅可以保障系统稳定运行,还能有力支撑业务高速发展需求。
2023-05-31 21:40:26
92
半夏微凉
Nginx
...不少公司在探索类似的解决方案。阿里巴巴旗下的云服务平台阿里云最近推出了一款名为“云缓存”的新产品,专门针对大规模分布式系统设计。这款产品借鉴了开源项目如Varnish和Nginx的经验,并在此基础上增加了智能化调度算法,使得缓存命中率提高了约30%。此外,华为云也在积极布局边缘计算领域,推出了基于Kubernetes的边缘节点服务,允许用户轻松部署和管理分布在不同地理位置的应用程序实例。 从技术角度来看,这类创新背后离不开近年来机器学习的进步。例如,通过引入深度强化学习模型,系统可以自动调整缓存策略,确保在高并发场景下依然保持稳定的响应时间。这不仅解决了传统缓存面临的冷启动问题,还有效缓解了热点资源争夺带来的性能瓶颈。 当然,这一切并非没有挑战。隐私保护法规日益严格,企业在采用新的缓存技术时必须确保符合GDPR等相关法律法规的要求。特别是在处理跨境数据传输时,如何平衡效率与合规成为了一个亟待解决的问题。 总之,无论是国际巨头还是本土企业,都在努力寻找适合自身业务发展的最佳实践。未来几年内,随着5G网络普及以及物联网设备数量激增,缓存技术将迎来更多发展机遇。而像Nginx这样的经典工具,无疑将继续扮演重要角色,在这场数字化转型浪潮中发挥不可替代的作用。
2025-04-18 16:26:46
98
春暖花开
SeaTunnel
...具备更强的问题定位和解决能力。近期,Apache Flink社区发布的1.14版本中,就特别强调了对资源管理、任务监控以及错误诊断功能的优化,以帮助用户更有效地应对突发异常状况。 与此同时,InfoQ的一篇深度报道《大数据处理中的故障排查艺术》中提到,调试分布式系统如SeaTunnel这样的工具时,除了基础的代码逻辑调整与资源监控,理解并运用“因果追溯”和“混沌工程”等高级调试手段也至关重要。文章指出,在实际项目中进行压力测试和故障注入实验,可以帮助提前发现潜在问题,并锻炼团队在面对未知异常时的快速响应能力。 另外,阿里巴巴集团在其DataWorks平台的数据开发实践分享中,详细介绍了他们如何通过整合各类数据处理组件(包括但不限于SeaTunnel),构建健壮的数据处理流水线,其中就包括一套完善的异常预警与自愈机制设计。这为我们在处理类似SeaTunnel未知异常时提供了宝贵的参考经验,即结合实时监控、自动化运维及完善日志体系来构建全方位的问题解决方案。通过这些前沿资讯和技术解读,我们得以进一步提升在大数据处理过程中对于未知异常的探索与解决之道。
2023-09-12 21:14:29
255
海阔天空
转载文章
...求,可能在后台的调用流程会历经多个服务,每个服务的可靠性是整个调用流程的前提 客户端调用服务端流程: 本文不再过多的讲解RPC调用流程,直接讲解客户端调用超时中断的代码实现。 原理也不复杂,利用ReentrantLock的Condition进行等待阻塞,等待相应的超时时间后,发现依然没有收到服务端的响应结果后,判断为超时! 代码实现: 首先定义一个netty客户端,用于请求服务端,获取返回结果 public class InvokerClient {private static Channel channel;public void init() throws Exception {Bootstrap bootstrap = new Bootstrap();bootstrap.group(new NioEventLoopGroup()).channel(NioSocketChannel.class).option(ChannelOption.SO_KEEPALIVE, true).handler(new ChannelInitializer<SocketChannel>() {@Overrideprotected void initChannel(SocketChannel socketChannel) throws Exception {// 处理来自服务端的返回结果socketChannel.pipeline().addLast(new ReceiveHandle());} });ChannelFuture cf = bootstrap.connect("127.0.0.1", 3344).sync();channel = cf.channel();}//请求服务端public Object call(Request request) {//此类是保证调用超时中断的核心类RequestTask requestTask = new RequestTask();//将请求放入请求工厂,使用请求唯一标识seq,用于辨识服务端返回的对应的响应结果RequestFactory.put(request.getSeq(), requestTask);channel.writeAndFlush("hello");//此步是返回response,超时即中断return requestTask.getResponse(request.getTimeOut());} } 其中Request是请求参数,里面有timeout超时时间,以及向服务端请求的参数 public class Request {private static final UUID uuid = UUID.randomUUID();private String seq = uuid.toString();private Object object;private long timeOut;public Object getObject() {return object;}public Request setObject(Object object) {this.object = object;return this;}public String getSeq() {return seq;}public long getTimeOut() {return timeOut;}public Request setTimeOut(long timeOut) {this.timeOut = timeOut;return this;} } 核心的RequestTask类,用于接受服务端的返回结果,超时中断 public class RequestTask {private boolean isDone = Boolean.FALSE;private ReentrantLock lock = new ReentrantLock();private Condition condition = lock.newCondition();Object response;//客户端请求服务端后,立即调用此方法获取返回结果,timeout为超时时间public Object getResponse(long timeOut) {if (!isDone) {try {lock.lock();//此步等待timeout时间,阻塞,时间达到后,自动执行,此步是超时中断的关键步骤if (condition.await(timeOut, TimeUnit.MILLISECONDS)) {if (!isDone) {return new TimeoutException();}return response;} } catch (InterruptedException e) {e.printStackTrace();} finally {lock.unlock();} }return response;}public RequestTask setResponse(Object response) {lock.lock();try{//此步是客户端收到服务端的响应结果后,写入responsethis.response = response;//并唤起上面方法的阻塞状态,此时阻塞结束,结果正常返回condition.signal();isDone = true;}finally{lock.unlock();}return this;}public boolean isDone() {return isDone;}public RequestTask setDone(boolean done) {isDone = done;return this;} } ReceiveHandle客户端接收到服务端的响应结果处理handle public class ReceiveHandle extends SimpleChannelInboundHandler {protected void channelRead0(ChannelHandlerContext channelHandlerContext, Object o) throws Exception {Response response = (Response) o;//通过seq从请求工厂找到请求的RequestTaskRequestTask requestTask = RequestFactory.get(response.getSeq());//将响应结果写入RequestTaskrequestTask.setResponse(response);} } RequestFactory请求工厂 public class RequestFactory {private static final Map<String, RequestTask> map = new ConcurrentHashMap<String, RequestTask>();public static void put(String uuid, RequestTask requestTask) {map.put(uuid, requestTask);}public static RequestTask get(String uuid) {return map.get(uuid);} } 注: 本人利用业余时间手写了一套轻量级的rpc框架,里面有用到 https://github.com/zhangta0/bigxiang 本篇文章为转载内容。原文链接:https://blog.csdn.net/CSDNzhangtao5/article/details/103075755。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-10-05 16:28:16
84
转载
SpringBoot
...任务会在配置的间隔内自动运行。 三、单节点到多节点的挑战与解决方案 当我们需要将此服务扩展到多节点时,面临的主要问题是任务的同步和一致性。为了实现这一点,我们可以考虑以下几种策略: 1. 使用消息队列 使用如RabbitMQ、Kafka等消息队列,将定时任务的执行请求封装成消息发送到队列。在每个节点上,创建一个消费者来订阅并处理这些消息。 java import org.springframework.amqp.core.Queue; import org.springframework.amqp.rabbit.annotation.RabbitListener; @RabbitListener(queues = "task-queue") public void processTask(String taskData) { // 解析任务数据并执行 executeTask(); } 2. 分布式锁 如果任务执行过程中有互斥操作,可以使用分布式锁如Redis的SETNX命令来保证只有一个节点执行任务。任务完成后释放锁,其他节点检查是否获取到锁再决定是否执行。 3. Zookeeper协调 使用Zookeeper或其他协调服务来管理任务执行状态,确保任务只在一个节点上执行,其他节点等待。 4. ConsistentHashing 如果任务负载均衡且没有互斥操作,可以考虑使用一致性哈希算法将任务分配给不同的节点,这样当增加或减少节点时,任务分布会自动调整。 四、代码示例 使用Consul作为服务发现 为了实现多节点的部署,我们还可以利用Consul这样的服务发现工具。首先,配置Spring Boot应用连接Consul,并在启动时注册自身服务。然后,使用Consul的健康检查来确保任务节点是活跃的。 java import com.ecwid.consul.v1.ConsulClient; import com.ecwid.consul.v1.agent.model.ServiceRegisterRequest; @Configuration public class ConsulConfig { private final ConsulClient consulClient; public ConsulConfig(ConsulClient consulClient) { this.consulClient = consulClient; } @PostConstruct public void registerWithConsul() { ServiceRegisterRequest request = new ServiceRegisterRequest() .withId("my-task-service") .withService("task-service") .withAddress("localhost") .withPort(port) .withTags(Collections.singletonList("scheduled-task")); consulClient.agent().service().register(request); } @PreDestroy public void deregisterFromConsul() { consulClient.agent().service().deregister("my-task-service"); } } 五、总结与未来展望 将SpringBoot的定时任务服务从单节点迁移到多节点并非易事,但通过合理选择合适的技术栈(如消息队列、分布式锁或服务发现),我们可以确保任务的可靠执行和扩展性。当然,这需要根据实际业务场景和需求来定制解决方案。干活儿的时候,咱们得眼观六路,耳听八方,随时盯着,不断测验,这样才能保证咱这多站点的大工程既稳如老狗,又跑得飞快,对吧? 记住,无论你选择哪种路径,理解其背后的原理和潜在问题总是有益的。随着科技日新月异,各种酷炫的工具和编程神器层出不穷,身为现代开发者,你得像海绵吸水一样不断学习,随时准备好迎接那些惊喜的变化,这可是咱们吃饭的家伙!
2024-06-03 15:47:34
47
梦幻星空_
Go-Spring
...提供了丰富的功能,如自动路由、健康检查、日志记录等,旨在简化微服务架构的开发和部署。Hey,小伙伴们!GoSpring 这家伙可真聪明,它能理解咱们编程时的各种小秘密,比如环境变量和配置文件这种事儿。这东西就像咱们做饭时的调料,根据不同的场合加点盐,加点酱油,让味道刚刚好。GoSpring 就是这么干的,它让开发者们能轻松地调整应用的行为,不管是在家做饭(开发本地环境)还是去朋友家吃饭(部署到远程服务器),都能得心应手,满足各种口味的需求。是不是觉得它更像一个贴心的朋友,而不是冷冰冰的机器人呢? 二、环境变量的运用 环境变量是操作系统提供的变量,可以在运行时修改程序的行为。在GoSpring中,通过os包的Env变量,可以方便地读取和设置环境变量。例如: go package main import ( "fmt" "os" ) func main() { // 读取环境变量 environment := os.Getenv("ENVIRONMENT") fmt.Printf("当前环境为:%s\n", environment) // 设置环境变量 os.Setenv("ENVIRONMENT", "production") environment = os.Getenv("ENVIRONMENT") fmt.Printf("设置后的环境为:%s\n", environment) } 这段代码展示了如何读取和设置环境变量。哎呀,你知道吗?在咱们的实际操作里,这些变量就像魔法师的魔法棒一样,能帮我们区分出开发、测试、生产这些不同的工作环境。就像是在厨房里,你有专门的调料盒来放做菜时需要用到的不同调料,这样就能确保每道菜的味道都刚刚好。咱们这些变量也是这么个道理,它们帮助我们确保在不同环境下程序运行得既稳定又高效! 三、配置文件的集成 配置文件是存储应用配置信息的一种常见方式。GoSpring通过内置的配置解析器,支持读取JSON、YAML或XML格式的配置文件。下面是一个简单的JSON配置文件示例: json { "app": { "name": "MyApp", "version": "1.0.0", "environment": "development" }, "database": { "host": "localhost", "port": 5432, "username": "myuser", "password": "mypassword", "dbname": "mydb" } } 在Go代码中,我们可以使用yaml或json包来解析这个配置文件: go package main import ( "encoding/json" "fmt" "io/ioutil" "log" "github.com/spf13/viper" ) func main() { viper.SetConfigFile("config.json") // 设置配置文件路径 if err := viper.ReadInConfig(); err != nil { // 读取配置文件 log.Fatalf("Error reading config file: %v", err) } // 获取配置数据 appName := viper.GetString("app.name") appVersion := viper.GetString("app.version") dbHost := viper.GetString("database.host") fmt.Printf("应用名称:%s, 版本:%s, 数据库主机:%s\n", appName, appVersion, dbHost) } 通过这种方式,我们可以在不修改代码的情况下,通过更改配置文件来改变应用的行为,极大地提高了应用的可维护性和灵活性。 四、整合环境变量与配置文件 在实际项目中,通常会结合使用环境变量和配置文件来实现更复杂的配置管理。例如,可以通过环境变量来控制配置文件的加载路径,或者根据环境变量的值来选择使用特定的配置文件: go package main import ( "os" "path/filepath" "testing" "github.com/spf13/viper" ) func main() { // 设置环境变量 os.Setenv("CONFIG_PATH", "path/to/your/config") // 读取配置文件 viper.SetConfigType("yaml") // 根据你的配置文件类型进行设置 viper.AddConfigPath(os.Getenv("CONFIG_PATH")) // 添加配置文件搜索路径 err := viper.ReadInConfig() if err != nil { log.Fatalf("Error reading config file: %v", err) } // 获取配置数据 // ... } 通过这种方式,我们可以根据不同环境(如开发、测试、生产)使用不同的配置文件,同时利用环境变量动态调整配置路径,实现了高度灵活的配置管理。 结语 GoSpring框架通过支持环境变量和配置文件的集成,为开发者提供了强大的工具来管理应用配置。哎呀,这种灵活劲儿啊,可真是帮了大忙!它就像个魔法师,能让你的开发工作变得轻松愉快,效率嗖嗖的往上窜。而且,别看它这么灵巧,稳定性却是一点儿也不含糊。不管是在哪个环境里施展它的魔法,都能保持一贯的好状态,稳如泰山。这就像是你的小伙伴,无论走到哪儿,都能给你带来安全感和惊喜,你说赞不赞?哎呀,兄弟,你懂的,现在咱们的应用就像个大家庭,人多了,事儿也杂了,对吧?这时候,怎么管好这个家庭,让每个人都各司其职,不乱套,就显得特别重要了。这就得靠咱们合理的配置管理策略来搞定。比如说,得有个清晰的分工,谁负责啥,一目了然;还得有规矩,比如更新软件得按流程来,不能随随便便;还得有监控,随时看看家里人都在干啥,有问题能及时发现。这样,咱们的应用才能健健康康地成长,不出岔子。所以,合理的配置管理策略,简直就是咱们应用界的定海神针啊!嘿,兄弟!这篇文章就是想给你开开小灶,让你能轻松掌握 GoSpring 在配置管理这块儿的厉害之处。别担心,我不会用一堆冰冷的术语把你吓跑,咱俩就像老朋友聊天一样,把这玩意儿讲得跟吃饭喝水一样简单。跟着我,你就能发现 GoSpring 配置管理有多牛逼,怎么用都顺手,让你的工作效率嗖嗖地往上涨!咱们一起探索,一起享受技术带来的乐趣吧!
2024-09-09 15:51:14
76
彩虹之上
转载文章
在自动化工具日益普及的今天,专利文献的大规模获取与分析已成为许多科研、法律和商业领域关注的重点。近日,知识产权信息服务商智慧芽(PatSnap)推出了一项全新的全球专利检索与下载功能,用户不仅能够一站式搜索到全球1.4亿余条专利数据,还可实现批量下载专利全文,大大提升了专利研究工作的效率。 同时,学术界也在探索更先进的自然语言处理(NLP)和计算机视觉(CV)技术在专利信息抽取和自动识别验证码方面的应用。例如,有研究人员利用深度学习模型对专利网站的验证码进行智能识别,并结合自动化脚本实现高效、无误的批量下载。这一进展预示着未来可能实现完全自动化的专利全文下载解决方案。 此外,针对专利数据的合法合规使用,国家知识产权局近期发布了新版《专利信息公共服务体系建设方案》,强调将加强专利数据开放共享和安全保障,鼓励社会各界充分利用专利信息资源,推动技术创新与产业发展。 综上所述,无论是从实际应用工具的更新迭代,还是前沿科技的研究突破,都显示了专利全文批量下载领域的快速发展与创新实践。对于广大需要频繁查阅和分析专利全文的专业人士来说,关注这些动态不仅能提升工作效率,还能更好地适应知识产权保护环境的变化,从而在各自的领域中取得竞争优势。
2023-11-21 12:55:28
275
转载
转载文章
...,原生PHP模板渲染方案也逐渐回归大众视野。例如,Laravel框架中的Blade模板引擎,结合了PHP的强大功能与简洁明快的模板语言,为开发者提供了高效的开发体验。 此外,随着JIT(Just In Time)编译器的引入,PHP 8版本在执行效率上有了显著提升,这使得一些开发者重新思考是否有必要在所有项目中都采用独立模板引擎。对于小型项目或对响应速度有极高要求的应用场景,直接在PHP中编写和渲染模板可能成为更优选择。 值得一提的是,Serverless架构的兴起也影响了模板引擎的发展方向,以AWS Lambda为代表的无服务器计算平台促使开发者更加关注资源利用率和启动速度,从而催生出一系列针对轻量级环境优化的模板解决方案。 总之,模板引擎的选择不仅取决于项目的具体需求,还应考虑当下技术发展的趋势和实际应用环境的要求。在深入理解各类模板引擎特性的基础上,开发者可以更好地权衡易用性、效率和安全性,以便在实际项目中做出最佳决策。
2023-10-07 14:43:46
109
转载
Kubernetes
...世界里,单集群已经能解决很多问题了,但随着业务规模的不断扩大,你会发现单集群开始显得力不从心。 比如说,当你有多个团队需要部署不同的服务,或者你的应用需要覆盖全球范围内的用户时,单集群可能就有点捉襟见肘了。这个时候,多集群就派上用场了。它不仅能提高系统的容错能力,还能让资源分配更加灵活。 不过,多集群也不是万能药,它也有自己的挑战,比如跨集群通信、数据一致性等问题。嘿,今天咱们就来聊聊怎么把多集群环境管得漂漂亮亮的,重点就是优化和提速! --- 2. 多集群资源优化的基本思路 2.1 资源隔离与共享 首先,我们得明确一个问题:在多集群环境下,资源是完全隔离还是可以共享?答案当然是两者兼备! 假设你有两个团队,一个负责前端服务,另一个负责后端服务。你可以为每个团队分配独立的集群,这样可以避免相互干扰。不过呢,要是咱们几个一起用同一个东西,比如说数据库或者缓存啥的,那肯定得有个办法让大家都能分到这些资源呀。 这里有个小技巧:使用 Kubernetes 的命名空间(Namespace)来实现资源的逻辑隔离。比如: yaml apiVersion: v1 kind: Namespace metadata: name: frontend-team --- apiVersion: v1 kind: Namespace metadata: name: backend-team 每个团队可以在自己的命名空间内部署服务,同时通过 ServiceAccount 和 RoleBinding 来控制权限。 --- 2.2 负载均衡与调度策略 接下来,我们得考虑负载均衡的问题。你可以这么想啊,假设你有两个集群,一个在北方,一个在南方,结果所有的用户请求都一股脑地涌向北方的那个集群,把那边忙得团团转,而南方的这个呢?就只能干坐着,啥事没有。这画面是不是有点搞笑?明显不合理嘛! Kubernetes 提供了一种叫做 Federation 的机制,可以帮助你在多个集群之间实现负载均衡。嘿,你知道吗?从 Kubernetes 1.19 开始,Federation 这个功能就被官方“打入冷宫”了,说白了就是不推荐再用它了。不过别担心,现在有很多更时髦、更好用的东西可以替代它,比如 KubeFed,或者干脆直接上手 Istio 这种服务网格工具,它们的功能可比 Federation 强大多了! 举个栗子,假设你有两个集群 cluster-a 和 cluster-b,你可以通过 Istio 来配置全局路由规则: yaml apiVersion: networking.istio.io/v1alpha3 kind: DestinationRule metadata: name: global-route spec: host: myapp.example.com trafficPolicy: loadBalancer: simple: ROUND_ROBIN 这样,Istio 就会根据负载情况自动将流量分发到两个集群。 --- 3. 性能提升的关键点 3.1 数据中心间的网络优化 兄弟们,网络延迟是多集群环境中的大敌!如果你的两个集群分别位于亚洲和欧洲,那么每次跨数据中心通信都会带来额外的延迟。所以,我们必须想办法减少这种延迟。 一个常见的做法是使用边缘计算节点。简单来说,就是在靠近用户的地理位置部署一些轻量级的 Kubernetes 集群。这样一来,用户的请求就能直接在当地搞定,不用大老远跑到远程的数据中心去处理啦! 举个例子,假设你在美国东海岸和西海岸各有一个集群,你可以通过 Kubernetes 的 Ingress 控制器来实现就近访问: yaml apiVersion: networking.k8s.io/v1 kind: Ingress metadata: name: edge-ingress spec: rules: - host: us-east.example.com http: paths: - path: / pathType: Prefix backend: service: name: east-cluster-service port: number: 80 - host: us-west.example.com http: paths: - path: / pathType: Prefix backend: service: name: west-cluster-service port: number: 80 这样,用户访问 us-east.example.com 时,请求会被转发到东海岸的集群,而访问 us-west.example.com 时,则会转发到西海岸的集群。 --- 3.2 自动化运维工具的选择 最后,我们得谈谈运维自动化的问题。在多集群环境中,手动管理各个集群是非常痛苦的。所以,选择合适的自动化工具至关重要。 我个人比较推荐 KubeFed,这是一个由 Google 开发的多集群管理工具。它允许你在多个集群之间同步资源,比如 Deployment、Service 等。 举个例子,如果你想在所有集群中同步一个 Deployment,可以这样做: bash kubectl kubefedctl federate deployment my-deployment --clusters=cluster-a,cluster-b 是不是很酷?通过这种方式,你只需要维护一份配置文件,就能确保所有集群的状态一致。 --- 4. 我的思考与总结 兄弟们,写到这里,我觉得有必要停下来聊一聊我的感受。说实话,搞多集群的管理和优化这事吧,真挺费脑子的,特别是当你摊上一堆复杂得让人头大的业务场景时,那感觉就像是在迷宫里找出口,越走越晕。但只要你掌握了核心原理,并且善于利用现有的工具,其实也没那么可怕。 我觉得,Kubernetes 的多集群方案就像是一把双刃剑。它既给了我们无限的可能性,也带来了不少挑战。所以啊,在用它的过程中,咱们得脑袋清醒点,别迷迷糊糊的。别害怕去试试新鲜玩意儿,说不定就有惊喜呢!而且呀,心里得有根弦,感觉不对就赶紧调整策略,灵活一点总没错。 最后,我想说的是,技术的世界永远没有终点。就算咱们今天聊了个痛快,后面还有好多好玩的东西在等着咱们呢!所以,让我们一起继续学习吧!
2025-04-04 15:56:26
22
风轻云淡
Dubbo
...日志配置错误的影响及解决方法后,我们不难发现,在实际开发运维过程中,微服务架构的稳定性和可观察性与配置管理息息相关。近期,Apache Dubbo社区发布了一项重要更新,针对配置中心的功能进行了强化升级,支持更灵活、动态的配置管理方式,有效降低了因配置问题引发的故障风险。 此外,随着云原生技术的快速发展,Kubernetes等容器编排平台对Java应用环境变量的管理提供了更为精细化的解决方案。通过结合ConfigMap和Envoy sidecar代理,可以实现服务运行时环境变量的自动化注入与热更新,进一步提升Dubbo等微服务框架在复杂分布式环境下的健壮性与稳定性。 同时,日志作为系统运行状态的重要反馈途径,其标准化与集中化处理也日益受到重视。例如,业界广泛采用的ELK(Elasticsearch、Logstash、Kibana)栈为日志收集、分析与可视化提供了强大支持,结合开源项目如log4j2或Logback与Dubbo进行深度集成,不仅可以实时监控Dubbo服务内部运行状态,还能快速定位并排查各类问题,极大提升了运维效率。 综上所述,对于使用Dubbo的开发者而言,紧跟社区发展动态,掌握最新的配置管理工具与日志处理技术,将有力推动项目的高效运行与维护。同时,理解和实践DevOps理念,注重基础设施即代码(Infrastructure as Code, IaC)以及持续集成/持续部署(CI/CD)等现代软件工程方法,亦是提高服务质量和团队协作效率的关键所在。
2023-06-21 10:00:14
436
春暖花开-t
Redis
...一现象的原因,并给出解决方案。 二、问题复现 首先,我们需要准备两台Linux服务器作为开发环境,分别命名为A和B。然后,在服务器A上启动一个Spring Boot应用,并在其中加入如下代码: typescript @Autowired private StringRedisTemplate stringRedisTemplate; public void lock(String key) { String result = stringRedisTemplate.execute((ConnectionFactory connectionFactory, RedisCallback action) -> { Jedis jedis = new Jedis(connectionFactory.getConnection()); try { return jedis.setnx(key, "1"); } catch (Exception e) { log.error("lock failed", e); } finally { if (jedis != null) { jedis.close(); } } return null; }); if (result == null || !result.equals("1")) { throw new RuntimeException("Failed to acquire lock"); } } 接着,在服务器B上也启动同样的应用,并在其中执行上述lock方法。这时候我们注意到一个情况,这“lock”方法时灵时不灵的,有时候它会突然尥蹶子,抛出异常告诉我们锁没拿到;但有时候又乖巧得很,顺利就把锁给拿下了。这是怎么回事呢? 三、问题分析 经过一番研究,我们发现了问题所在。原来,当两个Java进程同时执行setnx命令时,Redis并没有按照我们的预期进行操作。咱们都知道,这个setnx命令啊,它就像个贴心的小管家。如果发现某个key还没在数据库里安家落户,嘿,它立马就动手,给创建一个新的键值对出来。这个键嘛,就是你传给它的第一个小宝贝;而这个值呢,就是紧跟在后面的那个小家伙。不过,要是这key已经存在了,那它可就不干活啦,悠哉悠哉地返回个0给你,表示这次没执行任何操作。不过在实际情况里头,如果两个进程同时发出了“setnx”命令,Redis可能不会马上做出判断,而是会选择先把这两个请求放在一起,排个队,等会儿再逐一处理。想象一下,如果有两个请求一起蹦跶过来,如果其中一个请求抢先被处理了,那么另一个请求很可能就被晾在一边,这样一来,就可能引发一些预料之外的问题啦。 四、解决方案 针对上述问题,我们可以采取以下几种解决方案: 1. 使用Redis Cluster Redis Cluster是一种专门用于处理高并发情况的分布式数据库,它可以通过将数据分散在多个节点上来提高读写效率,同时也能够避免单点故障。通过将Redis部署在Redis Cluster上,我们可以有效防止多线程竞争同一资源的情况发生。 2. 提升Java进程的优先级 我们可以在Java进程中设置更高的优先级,以便让Java进程优先获得CPU资源。这样,即使有两个Java程序小哥同时按下“setnx”这个按钮,也可能会因为CPU这个大忙人只能服务一个请求,导致其中一个程序小哥暂时抢不到锁,只能干等着。 3. 使用Redis的其他命令 除了setnx命令外,Redis还提供了其他的命令来实现分布式锁的功能,例如blpop、brpoplpush等。这些命令有个亮点,就是能把锁的状态存到Redis这个数据库里头,这样一来,就巧妙地化解了多个线程同时抢夺同一块资源的矛盾啦。 五、总结 总的来说,Redis的setnx命令是一个非常有用的工具,可以帮助我们解决分布式系统中的许多问题。不过呢,在实际使用的时候,咱们也得留心一些小细节,这样才能避免那些突如其来的状况,让一切顺顺利利的。比如在同时处理多个任务的情况下,我们得留意把控好向Redis发送请求的个数,别一股脑儿地把太多的请求挤到Redis那里去,让它应接不暇。另外,咱们也得学会对症下药,挑选适合的解决方案来解决具体的问题。比如,为了提升读写速度,我们可以考虑使个巧劲儿,用上Redis Cluster;再比如,为了避免多个线程争抢同一块资源引发的“战争”,我们可以派出其他命令来巧妙化解这类矛盾。最后,我们也应该不断地学习和探索,以便更好地利用Redis这个强大的工具。
2023-05-29 08:16:28
271
草原牧歌_t
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
Ctrl + R
- 在Bash shell中进行反向搜索历史命令。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"