前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[上传并部署 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Tomcat
...持Java应用程序的部署和执行。 ThreadLocal , Java中的线程局部变量,是一个线程安全的存储机制,为每个线程分配一个独立的副本,确保数据在多线程环境下的隔离。在处理每个请求时,ThreadLocal可以用来存储与当前线程相关的临时数据,如用户会话信息。 内存泄漏 , 程序中动态分配的内存资源没有被正确释放,随着时间的推移,这些内存逐渐积累,占用越来越多的系统资源,导致系统性能下降甚至崩溃的现象。在本文中,主要指由于ThreadLocal实例未在使用后清理,导致的长期存在的内存占用问题。 VisualVM , 一款由Oracle公司开发的Java性能分析工具,用于监视和分析Java应用程序的内存使用情况,包括线程活动、CPU使用率、垃圾回收等,有助于检测和诊断内存泄漏等问题。 JConsole , Java VisualVM的一部分,也是一个内存监视工具,它允许开发者实时监控Java应用程序的内存使用状况,包括堆内存、非堆内存、线程状态等,是诊断内存泄漏的常用工具之一。
2024-04-06 11:12:26
243
柳暗花明又一村_
DorisDB
...bernetes环境部署,并提供了与各类消息队列、数据管道服务的深度集成方案,使得数据实时更新与增量更新更加便捷高效。近日,有行业专家撰文深入解读了DorisDB如何利用其独特的MPP架构与列式存储优化实时写入性能,降低延迟,从而更好地满足金融风控、物联网监测等场景下对实时数据处理的严苛要求。 此外,对比同类数据库产品如ClickHouse、Druid等,关于实时数据更新及增量更新策略的优劣分析也成为业界热议话题。研究人员不仅从技术原理层面剖析了各自的特点,还结合实际业务场景给出了选择与优化建议,为大数据从业者提供了更全面的决策参考。对于希望深入了解并运用DorisDB进行实时数据分析的读者来说,这些前沿资讯和技术解析无疑具有很高的学习价值和实践指导意义。
2023-11-20 21:12:15
403
彩虹之上-t
Golang
...开源平台,用于自动化部署、扩展和管理容器化的应用程序。其核心架构中广泛使用了接口来定义组件之间的交互方式,确保系统的高度解耦和可扩展性。 最近,Google宣布推出一个新的开源项目——GKE On-Prem,这是一个基于Kubernetes的私有云解决方案,旨在为企业客户提供更灵活的选择。该项目进一步强调了接口的重要性,通过定义统一的API接口,使得用户能够在不同的环境中无缝迁移应用。这不仅提升了用户体验,也促进了技术生态系统的繁荣。 此外,Go语言社区也在不断探索接口的新应用场景。例如,一家名为HashiCorp的企业,开发了一套基础设施自动化工具,如Terraform和Nomad,这些工具同样依赖于接口来实现组件间的高效协作。通过这种方式,HashiCorp不仅提高了软件的可维护性,还增强了跨平台的一致性体验。 这些案例充分说明了Go语言接口在现代软件开发中的关键作用。随着技术的不断发展,接口将继续扮演着连接不同系统和服务的重要角色,推动技术创新和应用落地。对于想要深入了解Go语言接口及其应用的开发者来说,关注这些前沿技术和实践案例无疑将大有裨益。
2025-01-22 16:29:32
61
梦幻星空
HBase
...netes进行容器化部署,以实现更精细的资源管理和动态伸缩,从而减少CPU压力。 同时,Apache社区对HBase的持续改进也值得关注,例如HBase 2.0引入了列族压缩和自动Compaction优化,进一步提升了性能。此外,HBase与Apache Flink、Spark等实时计算框架的集成,使得HBase在处理流数据时更加高效。 总之,HBase的发展不仅反映了大数据技术的变迁,也预示着未来数据处理的可能方向。企业应紧跟技术发展,适时调整策略,以确保在处理海量数据的同时,保持系统的稳定和高效。
2024-04-05 11:02:24
433
月下独酌
Flink
...决方案。有一次,我在部署一个实时数据分析任务时,遇到了网络分区的问题。那时候,我们正忙着执行任务,突然间就卡住了。一查日志,发现原来是网络出了问题,分成了几个小块儿,导致任务没法继续进行。 我第一时间想到的是启用检查点和保存点。我调整了一下配置文件,打开了检查点功能,并设定了一个合适的间隔时间。然后,我又创建了一个保存点,以便在需要时可以快速恢复任务。 经过这些调整后,任务果然变得更加稳定了。虽然网络分区的问题依然存在,但至少我们现在有了应对措施。这也让我深刻体会到,Flink的检查点和保存点是多么的重要。 结语 好了,今天的分享就到这里。虽然网络分区会带来一些麻烦,但只要我们手握合适的工具和技术,就能很好地搞定它。希望大家在使用Flink的过程中也能遇到并解决类似的问题。如果你有任何疑问或建议,欢迎随时交流讨论。让我们一起享受编程的乐趣吧!
2024-12-30 15:34:27
46
飞鸟与鱼
Struts2
...发现错误,修正后重新部署应用。 2. 排查插件 移除或调整冲突的插件,或者尝试更新插件版本,看是否解决了问题。 3. 调试自定义拦截器 如果你使用了自定义拦截器,确保它们正确地加入了默认拦截器链,或者在需要的地方添加适当的before或after属性。 六、结论 虽然Struts2的拦截器顺序问题可能会让人头疼,但只要我们理解了其工作原理并掌握了正确的配置方法,就能有效地解决这类问题。你知道吗,生活中的小麻烦其实都是给我们升级打怪的机会!每解决一个棘手的事儿,我们就悄悄变得更棒了,成长就这么不知不觉地发生着。祝你在Struts2的世界里游刃有余!
2024-04-28 11:00:36
127
时光倒流
ClickHouse
...业客户可以在云端便捷部署ClickHouse集群,实现PB级数据的实时查询与分析,为业务决策提供强有力的数据支撑。 此外,社区对于ClickHouse的开发与优化也在持续深入。2021年,ClickHouse团队发布了重大版本更新,引入了更多高级特性,如更优的分布式处理机制、增强的SQL功能以及对时序数据更好的支持等,使得ClickHouse在物联网、金融风控、在线广告等领域中的实时数据流处理表现更为出色。 综上所述,无论从实践应用案例还是技术发展趋势来看,ClickHouse都是现代大数据架构中不可或缺的一环,其在实时数据流处理方面的优势将持续为企业数字化转型和智能决策赋能。
2024-01-17 10:20:32
537
秋水共长天一色-t
Etcd
...管理系统,用于自动化部署、扩展和管理容器化应用。Etcd 在 Kubernetes 中扮演关键角色,作为其持久化存储层,存储集群的元数据和配置信息,支持服务发现、调度决策等功能,确保在大规模分布式环境中应用的高可用性和可伸缩性。
2023-05-20 11:27:36
521
追梦人-t
Kubernetes
...现问题。 - 在应用部署前,先在测试环境中验证PV的挂载。 六、结语 解决“MountVolumeSetUp failed”错误并不是一次性的任务,而是一个持续的过程,需要我们对Kubernetes有深入的理解和实践经验。通过以上步骤和实例,相信你已经在处理这类问题上更加得心应手了。记住,遇到问题不要慌张,一步步分析,代码调试,总能找到答案。Happy Kubernetesing!
2024-05-03 11:29:06
128
红尘漫步
转载文章
...提升开源软件从开发到部署整个生命周期的安全性。 至于包管理方面,虽然RPM和Yum仍然是Red Hat系列Linux发行版的核心组件,但Debian和Ubuntu家族的APT以及Arch Linux的Pacman等包管理系统也在不断演进,以适应现代软件生态快速迭代的需求。同时,像Flatpak和Snap这样的跨Linux发行版的通用包格式也正在改变软件分发格局。 总之,Linux世界日新月异,无论是系统架构、核心服务还是外围工具都在不断创新和完善。对于Linux的学习者而言,跟踪最新发展动态,结合经典理论知识,方能与时俱进地提升自己的运维能力和技术水平。
2023-02-08 09:55:12
292
转载
Go Iris
...下,应用设计、开发、部署和运维都紧密围绕云环境的特点进行优化,包括但不限于容器化(如Docker)、微服务架构、持续集成/持续部署(CI/CD)、声明式API管理(如Kubernetes)以及服务网格技术(如Istio)。虽然文章中未深入探讨云原生与Go Iris错误处理的具体结合,但提及了服务网格技术如何支持全局错误处理和故障注入功能,展示了云原生技术对现代分布式系统错误管理的重要影响。
2023-12-19 13:33:19
411
素颜如水-t
Flink
...nk on YARN部署与资源管理策略:一次深度探索之旅 1. 引言 Apache Flink,作为一款开源的流处理和批处理大数据框架,以其高效、灵活的特点深受开发者喜爱。实际上,很多工程师都非常关心一个核心问题,那就是如何在拥有大量机器的集群环境下,巧妙地借助YARN(这个资源协商小能手)来把Flink任务部署得妥妥当当,同时又能把各种资源调配管理得井井有条。本文将带领大家深入探讨Flink on YARN的部署方式,并通过实例代码揭示其背后的资源配置策略。 2. Flink on YARN部署初探 2.1 部署原理 当我们选择在YARN上运行Flink时,实质上是将Flink作为一个YARN应用来部署。YARN就像个大管家,它会专门给Flink搭建一个叫做Application Master的“指挥部”。这个“AM”呢,就负责向YARN这位资源大佬申请干活所需要的“粮草物资”,然后根据Flink作业的具体需求,派遣出一队队TaskManager“小分队”去执行实际的计算任务。 bash 启动Flink作业在YARN上的Application ./bin/flink run -m yarn-cluster -yn 2 -ys 1024 -yjm 1024 -ytm 2048 /path/to/your/job.jar 上述命令中,-yn指定了TaskManager的数量,-ys和-yjm分别设置了每个容器的内存大小和Application Master的内存大小,而-ytm则定义了每个TaskManager的内存大小。 2.2 配置详解 - -m yarn-cluster 表示在YARN集群模式下运行Flink作业。 - -yn 参数用于指定TaskManager的数量,可以根据实际需求调整以适应不同的并发负载。 - -ys、-yjm 和 -ytm 则是针对YARN资源的细致调控,确保Flink作业能在合理利用集群资源的同时,避免因资源不足而导致的性能瓶颈或OOM问题。 3. 资源管理策略揭秘 3.1 动态资源分配 Flink on YARN支持动态资源分配,即在作业执行过程中,根据当前负载情况自动调整TaskManager的数量。这种策略极大地提高了资源利用率,特别是在应对实时变化的工作负载时表现突出。 3.2 Slot分配机制 在Flink内部,资源被抽象为Slots,每个TaskManager包含一定数量的Slot,用来执行并行任务。在YARN这个大环境下,我们能够灵活掌控每个TaskManager能同时处理的任务量。具体来说,就是可以根据TaskManager内存的大小,还有咱们预先设置的slots数量,来精准调整每个TaskManager的承载能力,让它恰到好处地执行多个任务并发运行。 例如,在flink-conf.yaml中设置: yaml taskmanager.numberOfTaskSlots: 4 这意味着每个TaskManager将提供4个slot,也就是说,理论上它可以同时执行4个并发任务。 3.3 自定义资源请求 对于特殊的场景,如GPU密集型或者高CPU消耗的作业,我们还可以自定义资源请求,向YARN申请特定类型的资源。不过这需要YARN环境本身支持异构资源调度。 4. 结语 关于Flink on YARN的思考与讨论 理解并掌握Flink on YARN的部署与资源管理策略,无疑能够帮助我们在面对复杂的大数据应用场景时更加游刃有余。不过同时也要留意,实际操作时咱们得充分照顾到业务本身的特性,还有集群当前的资源状况,像玩拼图一样灵活运用这些策略。不断去微调、优化资源分配的方式,确保Flink能在YARN集群里火力全开,达到最佳效能状态。在这个过程中,我们会不断地挠头琢磨、动手尝试、努力改进,这恰恰就是大数据技术最吸引人的地方——它就像一座满是挑战的山峰,但每当你攀登上去,就会发现一片片全新的风景,充满着无限的可能性和惊喜。 通过以上的阐述和示例,希望你对Flink on YARN有了更深的理解,并在未来的工作中能更好地驾驭这一强大的工具。记住,技术的魅力在于实践,不妨现在就动手试一试吧!
2023-09-10 12:19:35
463
诗和远方
Dubbo
...序的不同部分(服务)部署在多台独立的网络服务器上,通过网络通信协议实现相互调用和协作的软件系统设计模式。在Dubbo框架中,这种架构使得服务提供者和服务消费者可以解耦,各自独立扩展与维护,从而提高系统的可伸缩性和容错性。 负载均衡策略 , 负载均衡策略是分布式系统中的重要技术手段,用于在多个可用的服务实例之间合理分配客户端请求,以优化资源使用、保证服务质量和提升系统稳定性。在Dubbo框架中,提供了多种负载均衡策略,如轮询、随机、最少连接数等,可以根据实际业务需求和环境条件选择合适的策略。 服务网格(Service Mesh) , 服务网格是一种用于处理服务间通信的基础设施层,通常由一系列轻量级网络代理组成,这些代理与应用服务部署在一起但对应用透明。在云原生环境中,服务网格组件(如Istio)能够实现服务间的流量控制、安全性、可观测性和故障恢复等功能,增强了微服务架构的管理和运维能力。在本文语境中,Dubbo 3.0版本支持与服务网格深度集成,进一步提升了其在复杂环境下的负载均衡和流量管理能力。
2023-11-08 23:28:28
474
晚秋落叶-t
HBase
...生技术的发展,容器化部署和Kubernetes编排管理逐渐成为解决分布式系统网络问题和配置错误的新思路。例如,通过Kubernetes的自愈能力和动态伸缩特性,可以实时监测并调整HBase集群中各节点的资源使用状况,从而有效避免因资源瓶颈或网络波动引发的服务中断。 在保障数据一致性方面,Apache HBase社区一直在持续改进和完善其事务机制。最新版本的HBase已经支持更强大的多版本并发控制和冲突解决策略,结合Zookeeper等协调服务,能更好地应对大规模并发写入场景下的数据一致性挑战。 因此,针对HBase服务异常中断问题,除了常规的硬件升级、网络优化和配置修复外,我们还需关注领域内的最新研究进展和技术实践,结合企业自身业务特点与发展趋势,制定出更为高效、可靠的运维策略。
2023-07-01 22:51:34
559
雪域高原-t
Gradle
...ndle,开发者只需上传一个包,Google Play会根据用户设备的具体情况自动分发最合适的APK,不仅减少了存储空间占用,还能够显著降低维护成本并提升用户体验。 此外,对于构建变体策略的深度运用,业界也有不少最佳实践案例。例如,知名开源项目Square的Retrofit就利用产品风味来区分不同的API兼容级别和功能特性,实现了灵活且高效的多版本发布流程。这些实例值得广大Android开发者借鉴学习,以更好地应对复杂多变的产品需求和市场环境。 总之,在瞬息万变的移动开发领域,紧跟Android构建工具和技术趋势,并结合实际项目场景深入理解与应用Gradle构建变体配置,是提升开发效能、实现精益化持续交付的关键所在。
2023-07-24 11:29:47
494
青山绿水
JSON
...架构允许每个服务独立部署、扩展和维护,特别适合于大型复杂的应用场景。在文章中提到,由于不同服务可能由不同团队负责,字段命名风格各异,利用JSON解析器的大小写不敏感特性可以有效解决由此引发的问题。
2025-01-13 16:02:04
19
诗和远方
转载文章
...着微服务架构和容器化部署的普及,数据库事务处理的性能与一致性问题愈发受到开发者们的重视。 例如,一篇来自InfoQ的技术文章《利用SQLAlchemy进行高效且安全的数据库操作》详细阐述了如何在实际项目中结合Flask-SQLAlchemy更好地管理数据库会话,包括事务隔离级别设置、批量插入优化以及错误回滚机制等深度内容。文中引用了真实案例分析,并给出了代码实例,帮助读者理解如何在高并发场景下保证数据库操作的高性能与数据完整性。 另外,针对Python后端开发领域,一篇名为《Python ORM框架实战:从基础到进阶》的教程则系统性地介绍了ORM(对象关系映射)技术在简化数据库操作、提升开发效率上的作用,不仅限于Flask-SQLAlchemy,还涵盖了Django ORM以及其他第三方库,为开发者提供了更多元化的解决方案。 此外,值得关注的是,随着云原生时代的到来,云服务商如AWS、阿里云等也推出了诸多关于数据库优化的服务和技术支持。例如,Amazon RDS提供的批量插入最佳实践指南,指导用户如何在云环境中有效利用资源,减少网络延迟,提高数据库写入速度,这对于正在使用Flask与MySQL构建应用的开发者来说,具有极高的参考价值。 综上所述,对于Python Flask开发者而言,在熟练掌握基本的数据提交方法后,持续关注数据库操作的最新优化技术和行业动态,将有助于打造出更稳定、高效的Web应用程序。
2023-11-19 23:52:58
114
转载
转载文章
...其是在云环境或大规模部署场景下,确保所有组件版本的一致性和兼容性至关重要。例如,某知名电商平台在进行全站MySQL升级时,就曾遇到过由于部分后台服务使用旧版MySQL客户端而导致的服务间通信中断的问题。经过技术团队及时排查,并参照MySQL官方文档对相关服务进行客户端库升级以及密码格式调整后,成功解决了这一难题。 此外,随着《通用数据保护条例》(GDPR)等法规对数据安全性的要求日益严格,企业不仅需要关注数据库本身的升级维护,还应加强对数据库访问控制策略的合规审查。这意味着不仅要关注MySQL服务器端的升级,更要同步优化客户端连接方式和账户权限管理,如采用更安全的密码哈希算法、实施定期密码更新策略等。 深入理解MySQL的密码认证机制及其演进历程,有助于我们更好地应对类似“Client does not support authentication protocol”这样的兼容性问题,同时也有利于提升整体系统的安全性及稳定性。在今后的数据库运维实践中,应密切关注MySQL官方发布的安全公告和技术指导,持续跟进技术发展趋势,以便及时采取相应措施,保障业务系统的正常运行。
2023-11-17 19:43:27
105
转载
Kubernetes
...n。它主要用于自动化部署、扩展和管理容器化应用。在文中,Kubernetes提供了一种方式来定义和管理Pod的数量,即replicas。 Pod , 在Kubernetes中,Pod是其调度的基本单位,它是运行容器化应用的一个抽象概念,代表集群中一组相关且共享存储和网络资源的容器集合。文中提到设置replicas:3时,Kubernetes会创建并管理总共6个Pod实例。 Deployment , 在Kubernetes中,Deployment是一种资源对象,用于声明式地管理Pod副本集。通过定义一个Deployment,用户可以指定希望在集群中始终保持一定数量(如replicas:3所示)的Pod副本,并能够自动进行滚动更新、回滚以及自我修复等操作。在文章示例中,创建了一个名为my-deployment的Deployment对象,设置了需要3个副本,以确保服务始终有3个运行中的Pod和3个备用Pod。 Horizontal Pod Autoscaler (HPA) , 虽然原文未提及,但在Kubernetes中,Horizontal Pod Autoscaler是一项功能,可根据CPU使用率或自定义度量指标自动调整Pod的副本数量。在实际生产环境中,结合HPA与replicas设置,可实现根据负载动态伸缩Pod的数量,以优化资源利用率和保证服务质量。 StatefulSet , 同样未在原文出现,StatefulSet是Kubernetes中负责管理有状态应用的一种控制器对象。与Deployment不同,StatefulSet能为Pod提供稳定的持久化标识符和有序的启动/终止过程,适用于需要维护集群内部数据一致性或网络标识持久性的场景,例如数据库服务。尽管本文主要讨论的是无状态应用的副本管理,但理解StatefulSet对于全面认识Kubernetes中的副本管理至关重要。
2023-09-19 12:13:10
437
草原牧歌_t
Beego
...工具为解决依赖管理和部署环境一致性问题提供了新的思路。通过将特定版本的运行环境打包成镜像,可以在一定程度上减轻版本兼容性带来的影响。 总之,面对版本更迭带来的挑战,开发者需要紧跟社区动态,利用好开源工具和最佳实践,并积极参与社区交流,才能确保项目在技术快速演进的大潮中立于不败之地。
2023-12-07 18:40:33
412
青山绿水
HBase
...s等容器编排平台成为部署HBase的重要选择。在此环境下,HBase针对分布式环境的数据同步和故障恢复机制进行了深度优化,以适应微服务架构下对数据强一致性的严苛要求。 综上所述,无论是从技术演进还是实际应用角度,HBase在保证数据一致性方面的努力都值得我们关注与深入研究。未来,随着大数据和分布式存储领域的不断发展,我们期待HBase能在更多场景下提供更加稳定可靠的数据一致性保障方案。
2023-09-03 18:47:09
469
素颜如水-t
Maven
...云原生环境下的容器化部署实践,通过设置合理的容器内存限制,并利用Kubernetes等平台提供的资源配额管理机制,能够确保即使在复杂多变的生产环境中,Maven构建以及其他Java应用也能获得稳定且高效的内存资源配置。 同时,对于大型项目而言,持续集成与持续部署(CI/CD)流程中的Maven优化亦是关键。例如,采用多模块构建、增量编译等策略来减少一次性加载到内存的依赖数量,从而有效避免内存溢出问题。在实际操作中,不妨参考业界广泛采用的Apache Maven最佳实践文档,以确保项目的构建过程既快速又稳定。 总之,在面对Maven构建过程中内存不足这类常见问题时,开发者不仅需要掌握基础的JVM调优技术,更要紧跟技术发展趋势,结合最新的Java版本特性和云原生理念,全方位提升项目构建与运行效能。
2023-02-05 22:24:29
109
柳暗花明又一村_
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
df -h
- 显示磁盘空间使用情况(含挂载点,以人类可读格式)。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"