前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[用户交互式Tree Table节点展开收...]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
HessianRPC
...研究不同RPC框架的设计理念、性能指标以及在实际项目中的应用案例,有助于开发者根据业务需求选择最适合的解决方案。 3. 分布式系统架构设计实践:深入探讨如何在复杂分布式环境下合理使用HessianRPC及其他RPC框架。比如,如何优化服务注册发现机制以应对服务节点动态变化;如何结合负载均衡策略提高整体系统的可用性;如何借助熔断器、降级策略来保证在异常情况下服务的稳定性等。 4. 异常处理最佳实践:除了HessianURLException之外,实际开发中还可能会遇到其他各种类型的异常。理解并掌握一套完善的异常处理机制和策略,如采用责任链模式进行异常统一处理、通过日志记录及监控预警机制快速定位问题,都是提升系统健壮性的关键手段。 总之,在分布式系统开发领域,对HessianRPC的深入理解和灵活运用是构建高性能服务的基础,而紧跟行业发展趋势,不断吸取新的技术和经验,则是保持技术竞争力的重要途径。
2023-10-16 10:44:02
532
柳暗花明又一村
Nacos
...一身的“大宝贝”!它功能强大到飞起,尤其在保证数据一致性方面表现得超级给力,所以得到了众多开发者们的热烈追捧和深深喜爱。这篇东西,咱们就来唠唠“Nacos如何确保数据一致性”这个话题,我会手把手带着你,用一些接地气的实例代码和大白话解析,深入浅出地探讨一下Nacos是如何巧妙实现并稳稳守护其数据一致性的。 2. Nacos的数据模型与存储 (1)数据模型:Nacos的核心数据模型主要包括服务、配置和服务实例。服务呢,就好比是定义了一个业务技能,而配置呢,就像是管理这个业务技能的各种使用说明书或者说是动态调整的“小秘籍”。至于服务实例嘛,那就是当这项业务技能真正施展起来,也就是运行时,实实在在干活的那个“载体”或者说“小能手”啦。 (2)数据存储:Nacos使用Raft一致性算法来保证其数据存储层的一致性,所有写操作都会经过Raft协议转化为日志条目,并在集群内达成一致后才真正落地到持久化存储中。这就意味着,无论是在何种网络环境或者机器故障情况下,Nacos都能确保其内部数据状态的一致性。 java // 假设我们向Nacos添加一个服务实例 NamingService naming = NacosFactory.createNamingService("127.0.0.1:8848"); naming.registerInstance("my-service", "192.168.0.1", 8080); 上述代码中,当我们调用registerInstance方法注册一个服务实例时,这个操作会被Nacos集群以一种强一致的方式进行处理和存储。 3. Nacos的数据更新与同步机制 (1)数据变更通知:当Nacos中的数据发生变更时,它会通过长轮询或HTTP长连接等方式实时地将变更推送给订阅了该数据的客户端。例如: java ConfigService configService = NacosFactory.createConfigService("127.0.0.1:8848"); String content = configService.getConfig("my-config", "DEFAULT_GROUP", 5000); 在这个例子中,客户端会持续监听"my-config"的变更,一旦Nacos端的配置内容发生变化,客户端会立即得到通知并获取最新值。 (2)多数据中心同步:Nacos支持多数据中心部署模式,通过跨数据中心的同步策略,可以确保不同数据中心之间的数据一致性。当你在一个数据中心对数据做了手脚之后,这些改动会悄无声息地自动跑到其他数据中心去同步更新,确保所有地方的数据都保持一致,不会出现“各自为政”的情况。 4. 面对故障场景下的数据一致性保障 面对网络分区、节点宕机等异常情况,Nacos基于Raft算法构建的高可用架构能够有效应对。即使有几个家伙罢工了,剩下的大多数兄弟们还能稳稳地保证数据的读写操作照常进行。等那些暂时掉线的节点重新归队后,系统会自动自觉地把数据同步更新一遍,确保所有地方的数据都保持一致,一个字都不会差。 5. 结语 综上所述,Nacos凭借其严谨的设计理念和坚实的底层技术支撑,不仅在日常的服务管理和配置管理中表现卓越,更在复杂多变的分布式环境中展现出强大的数据一致性保证能力。了解并熟练掌握Nacos的数据一致性保障窍门,这绝对能让咱们在搭建和优化分布式系统时,不仅心里更有底气,还能实实在在地提升效率,像是给咱们的系统加上了强大的稳定器。每一次服务成功注册到Nacos,每一条配置及时推送到你们手中,这背后都是Nacos对数据一致性那份死磕到底的坚持和实实在在的亮眼表现。就像个超级小助手,时刻确保每个环节都精准无误,为你们提供稳稳的服务保障,这份功劳,Nacos可是功不可没!让我们一起,在探索和实践Nacos的过程中,感受这份可靠的力量!
2023-12-09 16:03:48
116
晚秋落叶
转载文章
...16。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 1、下载第三方扩展库 filterbuilder.jar htmllexer.jar htmlparser.jar jsoup-1.9.2.jar junit.jar sax2.jar thumbelina.jar 2、执行以下方法 package com.zgs.look;import java.io.BufferedReader;import java.io.File;import java.io.FileInputStream;import java.io.InputStreamReader;import java.util.HashMap;import java.util.Map;import java.util.regex.Matcher;import java.util.regex.Pattern;import org.htmlparser.Node;import org.htmlparser.NodeFilter;import org.htmlparser.Parser;import org.htmlparser.filters.NodeClassFilter;import org.htmlparser.filters.OrFilter;import org.htmlparser.tags.LinkTag;import org.htmlparser.tags.TableTag;import org.htmlparser.util.NodeList;import org.jsoup.Jsoup;import org.jsoup.nodes.Document;import org.jsoup.nodes.Element;import org.jsoup.select.Elements;public class HtmlLook {private static String ENCODE = "UTF-8";public static void main(String[] args) {String szContent = openFile( "d:/index.html");try {Document doc = Jsoup.parse(szContent);Elements elList=doc.getElementsByAttributeValue("id","vulDataTable");szContent=elList.outerHtml();Parser parser = Parser.createParser(szContent, ENCODE);NodeFilter[] filters = new NodeFilter[2];filters[0] = new NodeClassFilter(TableTag.class); filters[1] = new NodeClassFilter(LinkTag.class);NodeFilter filter =new OrFilter (filters);NodeList list = parser.extractAllNodesThatMatch(filter);String ldName="";String ldJianjie="";for (int i = 0; i < list.size(); i++) { Node node = list.elementAt(i); if(node instanceof LinkTag){String nodeHtml=node.toHtml();if(nodeHtml.contains("onclick")&&nodeHtml.contains("vul-")){if(!"".equals(ldName)&&!"".equals(ldJianjie)){//提交数据System.out.println("---commit---漏洞名称-------"+ldName);System.out.println("---commit---漏洞简介-------"+ldJianjie);ldName="";ldJianjie="";}String level="";if(nodeHtml.contains("vul-vh")){level="高危漏洞";}else if(nodeHtml.contains("vul-vm")){level="中危漏洞";}else if(nodeHtml.contains("vul-vl")){level="低危漏洞";}ldName=getLinkTagContent(nodeHtml)+"-----"+level+"------";// System.out.println("---漏洞名称-----"+getLinkTagContent(nodeHtml)+"-----"+level+"------");} }else{ldJianjie=getTableTagContent(node.toHtml());} } } catch (Exception e) {e.printStackTrace();} }/ 提取文件里面的文本信息 @param szFileName @return/public static String openFile(String szFileName) {try {BufferedReader bis = new BufferedReader(new InputStreamReader(new FileInputStream(new File(szFileName)), ENCODE));String szContent = "";String szTemp;while ((szTemp = bis.readLine()) != null) {szContent += szTemp + "\n";}bis.close();return szContent;} catch (Exception e) {return "";} }/ 提取标签<a>a</a>内的内容 return a;/public static String getLinkTagContent(String link){String content="";Pattern pattern = Pattern.compile("<a[^>]>(.?)</a>");Matcher matcher = pattern.matcher(link);if(matcher.find()){content=matcher.group(1);}return content;}/ 解析Table标签内的东西 @param table/public static String getTableTagContent(String table){Map<String,String> conMap=new HashMap<String,String>();String content="";Document doc = Jsoup.parse(table);Elements elList=doc.getElementsByAttributeValue("class","cmn_table plumb");Element el=elList.first();Elements trLists = el.select("tr");for (int i = 0; i < trLists.size(); i++) {Elements tds = trLists.get(i).select("td");String key="";String val="";for (int j = 0; j < tds.size(); j++) {String text = tds.get(j).text();if(j==0){key=text; }else{val=text; } }conMap.put(key, val);content+="|"+key+"-"+val;// System.out.println(key+"-"+val);}return content;} } 本篇文章为转载内容。原文链接:https://blog.csdn.net/zhaoguoshuai91/article/details/51802116。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-19 10:42:16
298
转载
Kubernetes
...Kubernetes用户提供了更智能的管理工具和服务,如AutoML,帮助用户更高效地构建和部署机器学习模型。此外,AWS的Amazon Elastic Container Service (ECS)也通过集成AI功能,增强了其在自动化部署和运维方面的能力。 随着AI技术的不断进步和成熟,Kubernetes与AI的结合将带来更多的可能性。未来,我们或许可以看到更加智能、自动化的云平台,能够自主地进行资源管理、故障检测、服务优化等,为用户提供更加高效、稳定的云计算体验。 结语 Kubernetes与AI的融合是云计算领域的一大创新,它不仅提高了云平台的智能化水平,也为开发者提供了更多创新的空间。随着技术的持续发展,这一领域的潜力还有待进一步挖掘,未来值得期待。
2024-09-05 16:21:55
61
昨夜星辰昨夜风
ElasticSearch
...网站,每天都有大量的用户访问、购买商品。不过呢,除了这些基本的交易数据,你是不是还想知道用户都是怎么逛你的网站的,他们在每个页面上花了多长时间啊?这些数据虽然不会直接让销售额飙升,但对提升用户体验和改进产品设计可是大有裨益。这就是我们为什么要异步采集非业务数据的原因。 2. 选择合适的数据采集工具 既然要采集非业务数据,那么选择合适的工具就显得尤为重要了。这里有几个流行的开源工具可以考虑: - Logstash: 它是Elastic Stack的一部分,专门用于日志收集。 - Fluentd: 一个开源的数据收集器,支持多种数据源。 - Telegraf: 一款轻量级的代理,用于收集各种系统和应用的度量数据。 这些工具各有特点,可以根据你的具体需求选择最适合的一个。比如,假如你的数据主要来自日志文件,那Logstash绝对是个好帮手;但要是你需要监控的是系统性能指标,那Telegraf可能会更对你的胃口。 3. 配置Elasticsearch以接收数据 接下来,我们要确保Elasticsearch已经配置好,能够接收来自不同数据源的数据。首先,你需要安装并启动Elasticsearch。假设你已经安装好了,接下来要做的就是配置索引模板(Index Template)。 json PUT _template/my_template { "index_patterns": ["my-index-"], "settings": { "number_of_shards": 1, "number_of_replicas": 1 }, "mappings": { "_source": { "enabled": true }, "properties": { "timestamp": { "type": "date" }, "message": { "type": "text" } } } } 上面这段代码定义了一个名为my_template的模板,适用于所有以my-index-开头的索引。这个模板里头设定了索引的分片数和副本数,还定义了两个字段:一个存时间戳叫timestamp,另一个存消息内容叫message。 4. 使用Logstash采集数据 现在我们有了Elasticsearch,也有了数据采集工具,接下来就是让它们协同工作。这里我们以Logstash为例,看看如何将日志数据采集到Elasticsearch中。 首先,你需要创建一个Logstash配置文件(.conf),指定输入源、过滤器和输出目标。 conf input { file { path => "/var/log/nginx/access.log" start_position => "beginning" } } filter { grok { match => { "message" => "%{COMBINEDAPACHELOG}" } } date { match => [ "timestamp", "dd/MMM/yyyy:HH:mm:ss Z" ] } } output { elasticsearch { hosts => ["localhost:9200"] index => "nginx-access-%{+YYYY.MM.dd}" } } 这段配置文件告诉Logstash从/var/log/nginx/access.log文件读取数据,使用Grok过滤器解析日志格式,然后将解析后的数据存入Elasticsearch中。这里的hosts参数指定了Elasticsearch的地址,index参数定义了索引的命名规则。 5. 实战演练 分析数据 最后,让我们来看看如何通过Elasticsearch查询和分析这些数据。好了,假设你已经把日志数据成功导入到了Elasticsearch里,现在你想看看最近一天内哪些网址被访问得最多。 bash GET /nginx-access-/_search { "size": 0, "aggs": { "top_pages": { "terms": { "field": "request", "size": 10 } } } } 这段查询语句会返回过去一天内访问量最高的10个URL。通过这种方式,你可以快速获取关键信息,从而做出相应的决策。 6. 总结与展望 通过这篇文章,我们学习了如何使用Elasticsearch异步采集非业务数据,并进行了简单的分析。这个过程让我们更懂用户的套路,还挖出了不少宝贝,帮我们更好地升级产品和服务。 当然,实际操作中可能会遇到各种问题和挑战,但只要保持耐心,不断实践和探索,相信你一定能够掌握这项技能。希望这篇教程能对你有所帮助,如果你有任何疑问或者建议,欢迎随时留言交流! --- 好了,朋友们,今天的分享就到这里。希望你能从中获得灵感,开始你的Elasticsearch之旅。记住,技术的力量在于应用,让我们一起用它来创造更美好的世界吧!
2024-12-29 16:00:49
76
飞鸟与鱼_
Mongo
...sync/await功能,有效解决了高并发场景下的数据插入瓶颈问题。通过对数据库连接池的精细化管理,确保了资源的有效复用,并显著提升了系统的整体吞吐量和响应速度。同时,MongoDB新版本中引入的Change Streams特性使得实时监听和处理数据库变更更为便捷,进一步增强了系统的实时性和业务灵活性。 此外,MongoDB官方团队近期发布的博客文章《Scaling MongoDB for the Cloud Era》中也深入探讨了如何借助MongoDB Atlas(云托管服务)和分片集群技术来满足大规模、分布式环境下的数据库需求。文中提到,异步驱动设计对于提高I/O密集型任务的执行效率至关重要,尤其在面对全球范围内的用户访问时,能够帮助开发者更好地应对流量高峰挑战。 综上所述,在实际生产环境中充分利用MongoDB的异步特性,结合现代编程范式和技术演进,不仅有助于提升系统性能,更能为企业在数字化转型过程中提供强大且灵活的数据存储解决方案。对开发者而言,紧跟MongoDB的技术发展动态,不断优化数据库操作实践,是适应日益增长的数据处理需求和提升用户体验的关键所在。
2024-03-13 11:19:09
262
寂静森林_t
Kylin
...lin,结果发现好多功能都用不了。后来才知道是因为Java版本太低了,怪自己当初没注意。所以在启动之前,记得检查一下你的电脑上是不是已经装了Java 11或者更新的版本,最好是长期支持版(LTS),这样Kylin才能乖乖地跑起来。 java 检查Java版本 java -version 接下来是Hadoop和HBase的安装。如果你用的是Cloudera CDH或者Hortonworks HDP,那安装起来就会轻松不少。但如果你是从源码编译安装,那么可能会遇到更多问题。比如说,我之前碰到过Hadoop配置文件里的一些参数不匹配,结果Kylin就启动不了。要搞定这个问题,关键就是得仔仔细细地检查一下配置文件,确保所有的参数都跟官方文档上说的一模一样。 xml 在hadoop-env.sh中设置JAVA_HOME export JAVA_HOME=/usr/lib/jvm/java-11-openjdk-amd64 3. Kylin配置详解 在完成环境搭建后,我们需要对Kylin进行配置。Kylin的配置主要集中在kylin.properties文件中。这个文件包含了Kylin运行所需的几乎所有参数。我头一回设置的时候,因为对那些参数不太熟悉,结果Kylin愣是没启动起来。后来经过多次尝试和查阅官方文档,我才找到了正确的配置方法。 一个常见的问题是,如何设置Kylin的存储位置。默认情况下,Kylin会将元数据存储在HBase中。不过,如果你想把元数据存在本地的文件系统里,只需要调整一下kylin.metadata.storage这个参数就行啦。这可以显著提高开发阶段的效率,但在生产环境中并不推荐这样做。 properties 设置Kylin元数据存储为本地文件系统 kylin.metadata.storage=fs:/path/to/local/directory 另一个重要的配置是Kylin的Cube构建策略。Cube是Kylin的核心概念之一,它用于加速查询响应时间。不同的Cube构建策略会影响查询性能和存储空间的占用。我曾经因为选择了错误的构建策略而导致Cube构建速度极慢。后来,通过调整kylin.cube.algorithm参数,我成功地优化了Cube构建过程。 properties 设置Cube构建策略为INMEM kylin.cube.algorithm=INMEM 4. Kylin部署与监控 最后,我们来谈谈Kylin的部署与监控。Kylin提供了多种部署方式,包括单节点部署、集群部署等。对于初学者来说,单节点部署可能更易于理解和操作。但是,随着数据量的增长,单节点部署很快就会达到瓶颈。这时,就需要考虑集群部署方案。 在部署过程中,我遇到的一个主要问题是服务之间的依赖关系。Kylin依赖于Hadoop和HBase,如果这些服务没有正确配置,Kylin将无法启动。要搞定这个问题,就得细细排查每个服务的状况,确保它们都乖乖地在运转着。 bash 检查Hadoop服务状态 sudo systemctl status hadoop-hdfs-namenode 部署完成后,监控Kylin的运行状态变得非常重要。Kylin提供了Web界面和日志文件两种方式来进行监控。你可以直接在网页上看到Kylin的各种数据指标,就像看仪表盘一样。至于Kylin的操作记录嘛,就都记在日志文件里头了。我经常使用日志文件来排查问题,因为它能提供更多的上下文信息。 bash 查看Kylin日志文件 tail -f /opt/kylin/logs/kylin.log 结语 通过这次分享,我希望能让大家对Kylin的配置与部署有一个更全面的理解。尽管在过程中会碰到各种难题,但只要咱们保持耐心,不断学习和探索,肯定能找到解决的办法。Kylin 的厉害之处就在于它超级灵活,还能随意扩展,这正是我们在大数据分析里头求之不得的呢。希望你们在使用Kylin的过程中也能感受到这份乐趣! --- 希望这篇技术文章对你有所帮助!如果你有任何疑问或需要进一步的帮助,请随时联系我。
2024-12-31 16:02:29
29
诗和远方
SpringBoot
...t前端框架,用于构建用户界面。Vue.js以其响应式的数据绑定、组件化开发和易于学习的特点受到开发者喜爱。本文中,Vue.js负责收集用户输入,并通过axios库将数据发送给SpringBoot。 Axios , 一个基于Promise的HTTP库,用于浏览器和Node.js环境。它简化了HTTP请求的处理,使得Vue.js能够方便地与服务器进行数据交换。在文中,axios被用来发起POST请求,将前端填写的信息发送到SpringBoot后端。 RESTful API , 一种软件架构风格,用于构建web服务,它遵循一组特定的设计原则,如使用HTTP方法(GET、POST、PUT、DELETE等)表示操作,以及使用URL表示资源。SpringBoot中的Controller通常用于处理这些RESTful API请求。 JSON (JavaScript Object Notation) , 一种轻量级的数据交换格式,易于人阅读和机器解析。在SpringBoot和Vue.js的交互中,JSON被用来在前后端之间传输数据,如注册表单中的用户信息。 数据验证 , 在前端和后端,验证是确保数据符合预期格式和规则的过程。SpringBoot中的@NotBlank注解就是一个例子,用于验证邮箱字段不能为null或空字符串。 CORS (Cross-Origin Resource Sharing) , 一种安全策略,允许网页从不同的源获取资源,如图片、脚本等。在处理跨域请求时,正确配置CORS可以防止数据在传输过程中出现问题,如类型转换为0。
2024-04-13 10:41:58
83
柳暗花明又一村_
转载文章
...分保持连续存储。这样设计的优势在于可以构建动态大小的数据包或缓冲区,有效避免定长数组带来的内存冗余和越界问题,同时简化内存管理,减少内存碎片。 C99标准 , C99标准是C语言编程语言于1999年发布的最新标准,它是ANSI C(C89)标准的扩展和改进版本。该标准引入了许多新的特性以增强C语言的功能和实用性,其中包括但不限于复杂类型、变量长度数组、混合声明、内联函数以及本文提到的柔性数组成员等。C99标准旨在提升代码可读性、提高程序性能,并适应现代软件开发的需求。 内存碎片 , 内存碎片是指计算机系统在分配和回收内存时,由于各种原因导致的无法被利用的小块连续内存区域。在连续分配内存的系统中,频繁地进行小块内存分配和释放操作容易产生内存碎片,这些碎片虽然总量可能足够大,但由于它们不连续,所以无法分配给较大的内存请求使用,从而降低了内存利用率。在文章中,通过使用柔性数组,可以在一定程度上减少内存碎片的产生,因为可以一次性为结构体及其内部动态大小的数组分配连续的内存空间。
2023-01-21 13:56:11
502
转载
SpringCloud
...在现代分布式系统架构设计中,Spring Cloud 微服务框架以其强大的功能和易用性赢得了开发者的青睐。当我们谈论微服务时,往往绕不开一个重要组件——注册中心。那么问题来了,在构建Spring Cloud微服务架构时,注册中心是否是必不可少的环节呢?我们是否可以直接通过远程调用来访问其他服务的Service层方法? 1.1 注册中心的重要性 注册中心在微服务架构中的角色就像一个中央通讯录,例如Eureka、Consul或Nacos等,它们负责服务实例的注册与发现。当每个微服务启动后,它们就像一个个小员工,兴奋地跑到注册中心那报到,把自己的详细地址(也就是IP和端口)登记在册。这样一来,消费者服务这个“需求方”就可以像查电话簿一样,轻松找到生产者服务这个“供给方”的具体位置了。没有注册中心,各个服务之间的交互将变得异常复杂且难以管理。 java // Spring Cloud Eureka客户端配置示例 @Configuration @EnableEurekaClient public class EurekaClientConfig { } 2. 可以不用注册中心吗? 答案是理论上可以,但实际上不推荐。 - 无注册中心方案:在没有注册中心的情况下,服务间通信需要硬编码或者使用配置中心存储服务实例地址。这种做法在服务数量不多,变动也不是很频繁的时候,勉勉强强还能对付过去。不过,一旦服务规模开始吹气球般地膨胀起来,或者需要灵活调整服务数量时,手动去管理这些服务之间的“牵一发动全身”的依赖关系,那就真的会让人头疼得不行,甚至很可能成为引发系统故障的罪魁祸首。 - 可用性挑战:没有注册中心意味着服务发现能力的缺失,无法实时感知服务实例的上线、下线以及健康状态的变化,这会直接影响系统的稳定性和高可用性。 3. 直接调用Service层? 对于这个问题,从技术角度讲,直接跨服务调用Service层是可能的,但这并不符合微服务的设计原则。 - 侵入式调用:假设两个微服务A和B,如果服务A直接通过RPC或RESTful API的方式调用服务B的Service层方法,这就打破了微服务的边界,使得服务之间高度耦合。如果服务B的内部结构或者方式发生变动,那可能就像多米诺骨牌一样,引发一连串反应影响到服务A,这样一来,我们整个系统的维护保养和未来扩展升级就可能会遇到麻烦了。 java @Service public class ServiceA { @Autowired private RestTemplate restTemplate; public void callServiceB() { // 这里虽然可以实现远程调用,但不符合微服务的最佳实践 String serviceBUrl = "http://service-b/service-method"; ResponseEntity response = restTemplate.getForEntity(serviceBUrl, String.class); // ... } } - 面向接口而非实现:遵循微服务的原则,服务间的通信应当基于API契约进行,即调用方只关心服务提供的接口及其返回结果,而不应关心对方具体的实现细节。所以,正确的做法就像是这样:给各个服务之间设立明确、易懂的API接口,然后就像过家家一样,通过网关或者直接“喊话”调用这些接口来实现彼此的沟通交流。 4. 探讨与建议 在实践中,构建健康的微服务生态系统离不开注册中心的支持。它不仅简化了服务间的依赖管理和通信,也极大地提升了系统的健壮性和弹性。讲到直接调用Service层这事儿,乍一看在一些简单场景里确实好像省事儿不少,不过你要是从长远角度琢磨一下,其实并不利于咱们系统的松耦合和扩展性发展。 结论:即使面临短期成本或复杂度增加的问题,为了保障系统的长期稳定和易于维护,我们强烈建议在Spring Cloud微服务架构中采用注册中心,并遵循服务间通过API进行通信的最佳实践。这样才能充分发挥微服务架构的优势,让每个服务都能独立部署、迭代和扩展。
2023-11-23 11:39:17
37
岁月如歌_
Cassandra
...于时间序列数据,如何设计Cassandra表结构? 在处理海量时序数据的场景下,Apache Cassandra是一个非常出色的选择。它的分布式架构以及对大数据读写操作的高度优化,使其成为存储和查询时间序列数据的理想平台。不过,有效地利用Cassandra的前提是精心设计数据模型。本文将带你手把手地深入挖掘,如何为时间序列数据量身打造Cassandra的表结构设计。咱会借助实例代码和亲身实战经验,像揭开宝藏地图那样揭示其中的设计秘诀,让你明明白白、实实在在地掌握这门技艺。 1. 理解时间序列数据特点 时间序列数据是指按时间顺序记录的一系列数据点,每个数据点通常与一个特定的时间戳相关联。这类数据在咱们日常生活中可不少见,比如物联网(IoT)、监控系统、金融交易还有日志分析这些领域,都离不开它。它的特点就是会随着时间的推移,像滚雪球一样越积越多。而在查询的时候,人们最关心的通常就是最近产生的那些新鲜热辣的数据,或者根据特定时间段进行汇总统计的信息。 2. 设计原则 (1)分区键选择 在Cassandra中,分区键对于高效查询至关重要。当你在处理时间序列数据时,一个很接地气的做法就是拿时间来做分区的一部分。比如说,你可以把年、月、日、小时这些信息拼接起来,弄成一个复合型的分区键。这样一来,同一时间段的数据就会乖乖地呆在同一个分区里,这样咱们就能轻松高效地一次性读取到这一整段时期的数据了,明白吧? cql CREATE TABLE sensor_data ( sensor_id uuid, event_time timestamp, data text, PRIMARY KEY ((sensor_id, date_of(event_time)), event_time) ) WITH CLUSTERING ORDER BY (event_time DESC); 这里date_of(event_time)是对事件时间进行提取日期部分的操作,形成复合分区键,便于按天或更粗粒度进行分区。 (2)排序列簇与查询路径 使用CLUSTERING ORDER BY定义排序列簇,按照时间戳降序排列,确保最新数据能快速获取。 (3)限制行大小与集合使用 尽管Cassandra支持集合类型,但对于时间序列数据,应避免在一个集合内存放大量数据,以免读取性能受到影响。由于集合不会分页,如果需要存储连续的时序数据点,最好让每一行只包含单个数据点。 (4)宽行与稀疏索引 采用“宽行”策略,即每行代表一段时间窗口内的多个数据点属性,而不是每条数据一个行。这有助于减少跨分区查询,提高查询效率。同时呢,对于那些跟时间没关系的筛选条件,我们可以琢磨着用一下稀疏索引。不过得注意啦,这里有个“度”的把握,就是索引虽然能让查询速度嗖嗖提升,但同时也会让写入数据时的开销变大。所以嘞,咱们得在这两者之间找个最佳平衡点。 3. 示例设计 物联网传感器数据存储 假设我们有一个物联网项目,需要存储来自不同传感器的实时测量值: cql CREATE TABLE sensor_readings ( sensor_id uuid, reading_time timestamp, temperature float, humidity int, pressure double, PRIMARY KEY ((sensor_id, reading_time)) ) WITH CLUSTERING ORDER BY (reading_time DESC); 这个表结构中,sensor_id和reading_time共同组成复合分区键,每个传感器在某一时刻的温度、湿度和压力读数都存放在一行里。 4. 总结与思考 设计Cassandra时间序列数据表的关键在于理解数据访问模式并结合Cassandra的特性和局限性。选对分区键这招儿,就像给海量数据找个宽敞的储藏室,让它们能分散开来存放和快速找到;而把列簇整得井井有条,那就相当于帮我们轻松摸到最新鲜的数据,一抓一个准儿。再配上精心设计的宽行结构,加上恰到好处的索引策略,甭管查询需求怎么变花样,都能妥妥地满足你。 当然,具体实践时还需要根据业务的具体情况进行调整和优化,例如预测未来的数据增长规模、评估查询性能瓶颈以及是否需要进一步的数据压缩等措施。总的来说,用Cassandra搭建时间序列数据模型不是个一劳永逸的事儿,它更像是一个持久的观察、深度思考和反复调整优化的过程。只有这样,我们才能真正把Cassandra处理海量时序数据的洪荒之力给释放出来。
2023-12-04 23:59:13
770
百转千回
转载文章
...象、解释型计算机程序设计语言,因其语法简洁清晰、易于学习且功能强大而广受欢迎。在本文中,Python语言的火爆导致了学习者数量剧增,从而引发了关于如何有效学习Python,是选择自学还是参加培训班的讨论。 在线教育平台 , 在线教育平台是指通过互联网技术提供教育资源和教学服务的数字化平台,在本文语境下,它为学习Python的用户提供了由专业教师主讲的入门课程,使学员能够不受地域限制地进行系统化学习,并强调实操以提升编程能力。 就业竞争力 , 就业竞争力是指个人在劳动力市场中相对于其他求职者的竞争优势,包括技能水平、经验积累、学历背景等多个方面。在文中提到,面对Python领域的激烈竞争,通过参加培训班可以节省时间,提高学习效率,从而增强自身的就业竞争力,获取更多的工作机会。 系统学习计划 , 系统学习计划是指为了实现特定学习目标,将学习内容按照一定的逻辑顺序和结构进行规划的过程。在自学Python的过程中,制定系统的学习计划有助于克服知识碎片化的问题,确保知识点之间的衔接性和连贯性,从而达到高效学习的目的。 实践操作 , 实践操作在本文中特指Python语言的学习过程中,理论知识应用于实际项目或案例中的动手环节。由于Python是一门应用性强的语言,只有通过不断的实践操作才能更好地掌握其精髓,实现从理论到实践的转化,提升解决实际问题的能力。
2023-07-01 23:27:10
314
转载
Javascript
...是一个专为现代浏览器设计的强大 JavaScript 库,主要用于简化和增强 SVG 图形的操作。它提供了一系列简洁易用的 API,允许开发者轻松地创建、修改和控制 SVG 元素。Snap.svg 支持多种复杂的图形操作,如动画、渐变、滤镜等,极大地丰富了 Web 页面的视觉表现力。同时,它具有良好的跨浏览器兼容性,几乎能在所有现代浏览器上正常工作。 模块 , 在计算机编程中,“模块”指的是一个独立的功能单元,通常包含一组相关的函数、变量和其他资源,以实现特定的任务或功能。在本文中,“模块”特指 JavaScript 中的模块化编程概念,即通过将代码分割成多个模块来提高代码的可维护性和复用性。Vite 等现代构建工具支持原生的 ES 模块规范,允许开发者直接在代码中使用 import 和 export 语法来导入和导出模块,从而简化了依赖管理和加载过程。然而,在某些情况下,如果模块路径配置不当或类型定义不匹配,可能会导致模块引入失败的问题。
2024-11-28 15:42:34
104
清风徐来_
Linux
...是个重点活儿,尤其是设计和执行备份策略这块儿,那可真是至关重要的一步棋。本文将带领大家深入探讨如何在Linux环境中,以一种高效且安全的方式对MongoDB进行备份。 1. 备份的重要性与基本原理 (情感化表达)想象一下,你精心维护的MongoDB数据库突然遭遇意外,数据丢失或损坏,那种感觉就像失去了一本珍贵的日记,令人痛心疾首。因此,定期备份是我们防止这种“悲剧”发生的最佳保险措施。MongoDB做备份这件事儿,主要靠两种方法:一是直接复制数据库文件这招,二是动用一些专门的工具去创建快照。这样一来,就可以把数据在某一时刻的样子给完好无损地保存下来啦。 2. MongoDB备份方法概述 2.1 数据库文件备份 (代码示例) bash 首先找到MongoDB的数据存储路径,通常位于/var/lib/mongodb/ (根据实际安装配置可能有所不同) sudo cp -R /var/lib/mongodb/ /path/to/backup/ 通过Linux命令行直接复制MongoDB的数据文件目录到备份位置,这是一种最基础的物理备份方式。不过要注意,在咱们进行备份的时候,务必要保证数据库没在进行任何写入操作。要不然的话,可能会让备份出来的文件出现不一致的情况,那就麻烦啦。 2.2 mongodump工具备份 (代码示例) bash mongodump --host localhost --port 27017 --db your_database_name --out /path/to/backup/ mongodump是MongoDB官方提供的用于逻辑备份的工具,它会将数据库的内容导出为JSON格式的bson文件,这样可以方便地在其他MongoDB实例上导入恢复。在上述命令中,我们指定了目标数据库地址、端口以及备份输出目录。 2.3 使用MongoDB Atlas自动备份服务(可选) 对于使用MongoDB云服务Atlas的用户,其内置了自动备份功能,只需在控制台设置好备份策略,系统就会按照设定的时间周期自动完成数据库的备份,无需手动干预。 3. 实战 结合cron定时任务实现自动化备份 (思考过程)为了保证备份的及时性与连续性,我们可以借助Linux的cron定时任务服务,每天、每周或每月定期执行备份任务。 (代码示例) bash 编辑crontab任务列表 crontab -e 添加以下定时任务,每天凌晨1点执行mongodump备份 0 1 mongodump --host localhost --port 27017 --db your_database_name --out /path/to/backup/$(date +\%Y-\%m-\%d) 保存并退出编辑器 以上示例中,我们设置了每日凌晨1点执行mongodump备份,并将备份文件保存在按日期命名的子目录下,便于后期管理和恢复。 4. 结语 备份策略的优化与完善 尽管我们已经掌握了MongoDB在Linux下的备份方法,但这只是万里长征的第一步。在实际操作时,咱们还要琢磨一下怎么把备份文件给压缩、加密了,再送到远程的地方存好,甚至要考虑只备份有变动的部分(增量备份)。而且,最好能整出一套全面的灾备方案,以备不时之需。总的来说,咱们对待数据库备份这事儿,就得像呵护自家压箱底的宝贝一样倍加小心。你想啊,数据这玩意儿的价值,那可是无价之宝,而备份呢,就是我们保护这个宝贝不丢的关键法宝,可得看重喽! (探讨性话术)亲爱的读者,你是否已开始构思自己项目的MongoDB备份方案?不妨分享你的见解和实践经验,让我们共同探讨如何更好地保护那些宝贵的数据资源。
2023-06-14 17:58:12
452
寂静森林_
转载文章
...34。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 2.1.1 Linux 目录及文件的基本操作 一、pwd命令 Linux中用pwd命令来查看当前工作目录的完整路径。 在不确定当前位置时,就会用pwd来判定当前目录在文件系统内的确切位置 命令格式:pwd 【选项】 常用参数 :-P pwd -P 显示出实际路径。而非使用连接(link)路径 注意:选项-P 是大写的P,不要搞错。 使用pwd 显示了当前的路径 实例2. 使用pwd -P显示了返回连接的真实路径 二、cd命令 1.命令格式: cd【目录名】 2.命令功能: cd的命令作用是切换当前工作目录 参数以实例表示 实例1 切换工作目录到/opt/soft 实例2 切换工作目录至当前目录的上一级目录 实例3 返回前一个目录,至/opt/soft目录 实例4 切换工作目录到当前用户的家目录 三、ls命令 ls命令的含义是list显示目录与文件的信息。注意不加参数它显示除隐藏文件外的所有文件及目录的名字。 ls的格式 ls【选项】…【文件/目录】… 下面是常用的ls命令的应用 实例1 ls -l 以格式显示文件 这里显示的文件属性第一个字符‘-‘表示这是一个普通文件,第二个字段表示权限,第三个字段表示链接数,第四个字段表示所有者,第五个字段表示所属组,第六个字段表示文件大小,第七个字段表示时间,第八个地段表示文件名。 实例2 ls -a 查看包含以 . 开始的隐藏文件与目录信息 显示隐藏文件 实例3 ls-lh 以易读的格式显示文件的大小 以人性化更清晰的显示文件 实例4 ls– i 显示文件或目录的inode(i节点)编号 i节点可以看作是一个指向磁盘上该文件存储区的地址 四、touch 命令 touch命令可创建一个文件或者更改文件时间 实例1 touch a.txt 创建一个a.txt文件 一开始使用ls命令查看当前目录显示没有文件,然后使用touch命令创建了一个a.txt文件 实例2更改a.txt的时间 可以看到文件名没有改变,只有时间改变了 五、mkdir命令 mkdir命令可以创建一个目录 命令格式: mkdir 【选项】【文件名】 命令选项参数: -p : 递归创建目录 -v : 创建新目录显示信息 实例1 mkdir abc 创建一个空目录 实例2 mkdir -p test/test1 递归创建多个目录 实例3 mkdir-v hao 创建新目录显示信息 六、cp 命令 cp命令用来对一个或多个文件,目录进行拷贝 命令格式: cp【选项】【参数】 命令选项 -r 递归的复制子文件或子目录 -a 复制时保留源文档的所有属性(包括权限、时间等) 实例1 cp -a a.txt test 复制a.txt的所有属性复制到test 实例2 cp -r text /opt 复制text下的所有子文件到opt下 七、rm 命令 rm命令可以删除不需要的文件或者目录 命令格式 rm 【选项】【文件】 选项:-i 删除前,提示是否删除 -f 不提示,强制删除-r 递归删除,删除目录以及目录下的所有内容 实例1 rm -i a.txt删除a.txt 并显示提示 实例2 rm -f text 强制删除text 实例3 rm -r test 递归删除test下所有子文件 实例4 rm -rf hao 递归强制删除文件 八、mv命令 mv命令用来移动或者重命名文件或目录 实例1 mv a.txt b.txt 将a.txt改名为b.txt 实例2 mv b.txt /opt 将b.txt 移动到opt下 九、 find 命令 find命令用来搜索文件或目录 命令格式: find 【命令选项】【路径】【表达式选项】 命令选项: -empty 查找空白文件或目录 -group 按组查找 -name 按文档名称查找 -iname 按文档名称查找,且不区分大小写 -mtime 按修改时间查找 -size 按容量大小查找 -type 按文档类型查找,文件(f),目录(d),设备(b,c),链接(l)等 -user 按用户查找 -exec 对找到的档案执行特定的命令 -a 并且 -o 或者 查找当前目录下所有的普通文件 find ./ -type f 查找大于1mb的文件后列出文件的详细信息‘ find ./ -size +1M -exec ls – l {} ; 查找计算机中所有大于1mb的文件 find / -size +1M -a -type f 查找当前目录下名为hello.doc 的文档 find -name hello.doc 查找/root目录下所有名称以.log 结尾的文档 十、du命令 用来计算文件或目录的容量大小 命令格式: du 【选项】 【文件或目录】 命令选项: -h 人性化显示容量信息 -a 查看所有目录以及文件的容量信息 -s 仅显示总容量 实例1 du -h /opt 实例2 du -a /opt 实例3 du -s /opt 2.1.2查看文件内容 一、 cat 命令 cat命令用来查看文件内容 命令格式: cat 【选项】 【文件】 选项命令 -b 显示行号,空白行不显示行号 -n 显示行号,包含空白行 实例1. cat /opt/test 查看test里面的内容 实例2.cat -n /opt/test 显示行号 二、more命令和less命令 more命令可以分页查看文件内容,通过空格键查看下一页,q键则退出查看。 less命令也可以分页查看文件内容,空格是下一页,方向键可以上下翻页,q键退出查看 命令格式: more 【文件名】 用来查看指定文件 more -num 【文件名】 可以指定显示行数 less 【文件名】 查看指定文件 三、head 命令 head 命令可以查看文件头部内容,默认显示前10行 命令格式 head -6 【文件名】 显示的是文件前6行 head -n -6 【文件名】 显示除了最后6行最后的行 head -c 10 【文件名】显示前十个字节的数据 四、tail 命令 tail命令用来查看文件尾部内容,默认显示后10行 命令格式: tail -6 【文件名】 显示最后6行 tail -f 【文件名】即时显示文件中新写入的行 五、wc 命令 wc命令用来显示文件的行、单词与字节统计信息 命令格式: wc 【选项】【文件】 选项: -c 显示文件字节统计信息 -l 显示文件行数统计信息 -w 显示文件单词统计信息 实例1 依次显示文件的行数,单词数,字节数 实例2 使用-c选项显示文件的字节信息 实例3 使用-l 选项显示文件行数 实例4 使用-w选项显示文件单词个数 六、grep命令 grep命令用来查找关键字并打印匹配的值 命令格式: grep【选项】 匹配模式【文件】 选项: -i 查找时忽略大小写 -v 取反匹配 -w 匹配单词 –color 显示颜色 实例1 在test文件中过滤出包含a的行 实例2 过滤不包含a关键词的行 七、echo 命令 echo命令用来输出显示一行指定的字符串 实例1 显示一行普通的字符串 实例2 显示转义字符使用-e选项 本篇文章为转载内容。原文链接:https://blog.csdn.net/Zenian_dada/article/details/88669234。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-16 19:29:49
512
转载
转载文章
...语言以实现更多定制化功能,开发者可以借此构建更具表现力的语音交互产品。此外,百度也推出了自家的语音开放平台,其中包含丰富的中文语音识别模型和TTS技术,为中国市场提供了强大的本地化解决方案。 其次,在深度学习技术推动下,语音识别准确率不断提升。阿里云团队最近发布了一项研究成果,通过先进的端到端神经网络模型,实现了在复杂环境下的高精度普通话识别,尤其针对噪声抑制和口音适应性有显著提升,为智能设备、智能家居等场景提供了有力的技术支撑。 同时,随着开源社区的发展,Mozilla旗下的Deepspeech项目也在不断迭代,该项目基于RNN-T架构,致力于打造开源、免费且准确度高的语音识别引擎,让更多开发者能够参与到语音技术的研究和创新中来。 总之,随着人工智能及机器学习技术的不断发展,Python语音识别技术的应用将更加广泛,无论是日常生活中的智能助手,还是工业级的自动化设备,都将受益于这项技术的进步。对于开发者而言,紧跟最新技术动态并结合实际应用场景进行技术创新,将是掌握这一领域未来发展的关键所在。
2023-01-27 19:34:15
279
转载
Apache Lucene
...发者们准备了一些高级功能,让大家能更灵活地掌控多线程访问的事儿。 并发控制的基本策略: - 乐观并发控制(Optimistic Concurrency Control):这种策略假设冲突很少发生,因此在大多数情况下不会加锁。当检测到冲突时,会抛出异常,需要重试操作。 - 悲观并发控制(Pessimistic Concurrency Control):这种策略假设冲突很常见,因此会提前锁定资源,直到操作完成。 在Lucene中,我们可以选择适合自己的策略,以达到最佳的性能和数据一致性。 3. Apache Lucene中的并发控制实现 接下来,我们将通过一些实际的例子,看看如何在Apache Lucene中实现并发控制。 示例1:使用IndexWriter添加文档 java // 创建IndexWriter实例 Directory directory = FSDirectory.open(Paths.get("/path/to/index")); IndexWriterConfig config = new IndexWriterConfig(new StandardAnalyzer()); IndexWriter writer = new IndexWriter(directory, config); // 添加文档 Document doc = new Document(); doc.add(new TextField("content", "This is a test document.", Field.Store.YES)); writer.addDocument(doc); 在这个例子中,我们创建了一个IndexWriter实例,并向索引中添加了一个文档。这个地方没提并发控制的事儿,但要是碰上高并发的情况,我们就得琢磨琢磨怎么管好一堆线程去抢同一个IndexWriter了。毕竟大家都挤在一起用一个东西,很容易出问题嘛。 示例2:使用并发控制策略 java // 使用乐观并发控制策略 IndexWriterConfig config = new IndexWriterConfig(new StandardAnalyzer()); config.setOpenMode(OpenMode.CREATE_OR_APPEND); config.setRAMBufferSizeMB(256.0); config.setMaxBufferedDocs(1000); config.setMergeScheduler(new ConcurrentMergeScheduler()); IndexWriter writer = new IndexWriter(directory, config); // 添加文档 Document doc = new Document(); doc.add(new TextField("content", "This is another test document.", Field.Store.YES)); writer.addDocument(doc); 在这个例子中,我们通过设置IndexWriterConfig来启用并发控制。这里我们使用了ConcurrentMergeScheduler,这是一个允许并发执行合并操作的调度器,从而提高索引更新的效率。 4. 深入探讨 在高并发场景下的最佳实践 在高并发环境下,合理地设计并发控制策略对于保证系统的性能至关重要。除了上述提到的技术细节外,还有一些通用的最佳实践值得我们关注: - 最小化锁的范围:尽可能减少锁定的资源和时间,以降低死锁的风险并提高并发度。 - 使用批量操作:批量处理可以显著减少对资源的请求次数,从而提高整体吞吐量。 - 监控和调优:定期监控系统性能,并根据实际情况调整并发控制策略。 结语:一起探索更多可能性 通过本文的探讨,希望你对Apache Lucene中的索引并发控制有了更深刻的理解。记住,技术的进步永无止境,而掌握这些基础知识只是开始。在未来的学习和实践中,不妨多尝试不同的配置和策略,探索更多可能,让我们的应用在大数据时代下也能游刃有余! 好了,今天的分享就到这里。如果你有任何疑问或者想法,欢迎随时留言讨论!
2024-11-03 16:12:51
116
笑傲江湖
转载文章
...09。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 标签:FFT Description 我的室友最近喜欢上了一个可爱的小女生。马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一个送给她。每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度。但是在她生日的前一天,我的室友突然发现他好像拿错了一个手环,而且已经没时间去更换它了!他只能使用一种特殊的方法,将其中一个手环中所有装饰物的亮度增加一个相同的自然数 c(即非负整数)。并且由于这个手环是一个圆,可以以任意的角度旋转它,但是由于上面 装饰物的方向是固定的,所以手环不能翻转。需要在经过亮度改造和旋转之后,使得两个手环的差异值最小。在将两个手环旋转且装饰物对齐了之后,从对齐的某个位置开始逆时针方向对装饰物编号 1,2,…,n,其中 n 为每个手环的装饰物个数,第 1 个手环的 i 号位置装饰物亮度为 xi,第 2 个手 环的 i 号位置装饰物亮度为 yi,两个手环之间的差异值为(参见输入输出样例和样例解释): ∑ni=1(xi−yi)2∑i=1n(xi−yi)2 麻烦你帮他计算一下,进行调整(亮度改造和旋转),使得两个手环之间的差异值最小, 这个最小值是多少呢? Input 输入数据的第一行有两个数n, m,代表每条手环的装饰物的数量为n,每个装饰物的初始 亮度小于等于m。 接下来两行,每行各有n个数,分别代表第一条手环和第二条手环上从某个位置开始逆时 针方向上各装饰物的亮度。 1≤n≤50000, 1≤m≤100, 1≤ai≤m Output 输出一个数,表示两个手环能产生的最小差异值。 注意在将手环改造之后,装饰物的亮度 可以大于 m。 不妨设第一个手环为S,第二个手环为T,则题意变为求∑(Si−Ti+k+C)2∑(Si−Ti+k+C)2 的最小值 我们将上式展开,可以得到 ∑(S2i+T2i+k+C2+2∗C(Si−Ti+k)−2∗SiTi+k)∑(Si2+Ti+k2+C2+2∗C(Si−Ti+k)−2∗SiTi+k) 进一步得到 ∑S2i+∑T2i+n∗C2+2∗c∗∑(Si−Ti)−2∗∑SiTi+k∑Si2+∑Ti2+n∗C2+2∗c∗∑(Si−Ti)−2∗∑SiTi+k 先抛开CC 不看,我们发现只有∑SiTi+k ∑ S i T i + k 不是常数 如何求∑SiTi+k∑SiTi+k 最大值呢?标准套路:将T数组反转,求出S与T的卷积,不难发现,∑SiTi+k∑SiTi+k 对应每一个k的取值,都是卷积中两个相差n次的项的系数之和,这里可以用FFT,将复杂度降到O(nlogn)。 求完∑SiTi+k∑SiTi+k 最大值后,我们发现只有关于C的二次项与一次项,直接用二次函数求最值的方法即可,注意C只能为整数。 /Problem: 4827User: P1atformLanguage: C++Result: AcceptedTime:592 msMemory:9108 kb/include<cstdio>include<algorithm>include<cstring>include<iostream>include<cmath>define N 200000define INF 1000000000define pi acos(-1.0)using namespace std;typedef long long ll;ll n,m,M,p=0ll,q=0ll,z=0ll,ans=INF,r[N+50],x,l;struct com{double x,y;inline com operator +(com b){com ret;ret.x=x+b.x,ret.y=y+b.y;return ret;}inline com operator -(com b){com ret;ret.x=x-b.x,ret.y=y-b.y;return ret;}inline com operator (com b){com ret;ret.x=xb.x-yb.y,ret.y=xb.y+yb.x;return ret;} }s[N+50],t[N+50]; template<class _T> inline void read(_T &x){x=0;char ch=getchar();int f=0;while (!isdigit(ch)) {if (ch=='-') f=1;ch=getchar();}while (isdigit(ch)) x=(x<<3)+(x<<1)+ch-'0',ch=getchar();if (f) x=-x; } inline void fft(com a[],int k){for (int i=1;i<n;i++) if (i<r[i]) swap(a[i],a[r[i]]);for (int i=1;i<n;i<<=1){com w,wn,X,Y;wn.x=cos(pi/i),wn.y=ksin(pi/i);for (int j=0;j<n;j+=(i<<1)){w.x=1,w.y=0;for (int _=0;_<i;_++,w=wwn){X=a[j+_],Y=wa[j+_+i];a[j+_]=X+Y,a[j+_+i]=X-Y;} } }if (k==-1) for (int i=0;i<n;i++) a[i].x/=n;}int main(){read(n),n--,read(M),memset(s,0,sizeof(s)),memset(t,0,sizeof(t));for (int i=0;i<=n;i++) read(x),p+=xx,q+=x,s[i].x=x;for (int i=0;i<=n;i++) read(x),p+=xx,q-=x,t[n-i].x=x;for (m=2n,n=1;n<=m;n<<=1) l++;for (int i=1;i<n;i++) r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));fft(s,1),fft(t,1);for (int i=0;i<=n;i++) s[i]=s[i]t[i];fft(s,-1),n=m/2,z=(ll)(s[n].x+0.5);for (int i=1;i<=n;i++) z=max(z,(ll)(s[i-1].x+0.5)+(ll)(s[i+n].x+0.5));for (int i=-M;i<=M;i++) ans=min(ans,p-2z+i((n+1)i+2q));printf("%lld\n",ans);} 本篇文章为转载内容。原文链接:https://blog.csdn.net/P1atform/article/details/79324409。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-20 17:51:37
525
转载
Redis
...系统环境下用于同步多节点间并发访问共享资源的技术手段。它通过在多个独立运行的服务器或服务实例之间协调,确保在同一时间仅有一个节点能够获得对特定资源的独占访问权,从而避免了因并发访问导致的数据不一致问题。 RedLock算法 , RedLock算法是由Redis作者Salvatore Sanfilippo提出的一种增强型分布式锁实现方案。该算法要求在至少半数以上的独立Redis实例上同时获取锁,并且每个实例上的锁都有一个较短的有效期,以此提高分布式锁的安全性和容错性。即便某个Redis实例出现故障,只要多数实例正常工作,仍然可以保证分布式锁的安全有效,从而降低了死锁和锁失效的风险。 SETNX命令 , SETNX是Redis的一个原语命令(set if not exists),在Redis中执行原子操作。当键不存在时,SETNX命令将设置键值对,并返回1表示设置成功;若键已存在,则不会修改键的值并返回0。在实现分布式锁时,SETNX命令常被用来尝试获取锁,只有首次请求的客户端才能成功设置键值对,从而实现互斥锁的功能。
2023-10-15 17:22:05
316
百转千回_t
SpringBoot
...技术活儿,还得懂怎么设计整个系统,还得对各种小细节特别上心。接下来,我会通过几个实际的例子,带你一步步揭开权限管理失败的面纱。 1. 初识权限管理 首先,让我们从最基本的概念说起。权限管理,顾名思义,就是控制用户对资源的访问权限。在Web应用中,这通常涉及到用户登录、角色分配以及特定操作的授权等环节。说到SpringBoot,实现这些功能其实挺简单的,但是要想让它稳定又安全,那可就得花点心思了。 举个例子: 假设我们有一个简单的用户管理系统,其中包含了添加、删除用户的功能。为了保证安全,我们需要限制只有管理员才能执行这些操作。这时,我们就需要用到权限管理了。 java // 使用Spring Security进行简单的权限检查 @Service public class UserService { @PreAuthorize("hasRole('ADMIN')") public void addUser(User user) { // 添加用户的逻辑 } @PreAuthorize("hasRole('ADMIN')") public void deleteUser(Long userId) { // 删除用户的逻辑 } } 在这个例子中,我们利用了Spring Security框架提供的@PreAuthorize注解来限定只有拥有ADMIN角色的用户才能调用addUser和deleteUser方法。这事儿看着挺简单,但就是这种看似不起眼的设定,经常被人忽略,结果权限管理就搞砸了。 2. 权限管理失败的原因分析 权限管理失败可能是由多种原因造成的。最常见的原因包括但不限于: - 配置错误:比如在Spring Security的配置文件中错误地设置了权限规则。 - 逻辑漏洞:例如,在进行权限验证之前,就已经执行了敏感操作。 - 测试不足:在上线前没有充分地测试各种边界条件下的权限情况。 案例分享: 有一次,我在一个项目中负责权限模块的开发。最开始我觉得一切风平浪静,直到有天一个同事告诉我,他居然能删掉其他人的账户,这下可把我吓了一跳。折腾了一番后,我才明白问题出在哪——原来是在执行删除操作之前,我忘了仔细检查用户的权限,就直接动手删东西了。这个错误让我深刻认识到,即使是最基本的安全措施,也必须做到位。 3. 如何避免权限管理失败 既然已经知道了可能导致权限管理失败的因素,那么如何避免呢?这里有几个建议: - 严格遵循最小权限原则:确保每个用户仅能访问他们被明确允许访问的资源。 - 全面的测试:不仅要测试正常情况下的权限验证,还要测试各种异常情况,如非法请求等。 - 持续学习与更新:安全是一个不断变化的领域,新的攻击手段和技术层出不穷,因此保持学习的态度非常重要。 代码示例: 为了进一步加强我们的权限管理,我们可以使用更复杂的权限模型,如RBAC(基于角色的访问控制)。下面是一个使用Spring Security结合RBAC的简单示例: java @Configuration @EnableWebSecurity public class SecurityConfig extends WebSecurityConfigurerAdapter { @Override protected void configure(HttpSecurity http) throws Exception { http.authorizeRequests() .antMatchers("/admin/").hasRole("ADMIN") .anyRequest().authenticated() .and() .formLogin().permitAll(); } @Autowired public void configureGlobal(AuthenticationManagerBuilder auth) throws Exception { auth.inMemoryAuthentication() .withUser("user").password("{noop}password").roles("USER") .and() .withUser("admin").password("{noop}password").roles("ADMIN"); } } 在这个配置中,我们定义了两种角色:USER和ADMIN。嘿,你知道吗?只要网址里有/admin/这串字符的请求,都得得有个ADMIN的大角色才能打开。其他的请求嘛,就简单多了,只要登录了就行。 4. 结语 权限管理的艺术 权限管理不仅是技术上的挑战,更是对开发者细心和耐心的考验。希望看完这篇文章,你不仅能get到一些实用的技术小技巧,还能深刻理解到权限管理这事儿有多重要,毕竟安全无小事嘛!记住,安全永远是第一位的! 好了,这就是今天的分享。如果你有任何想法或疑问,欢迎随时留言交流。希望我的经验对你有所帮助,让我们一起努力,构建更加安全的应用吧!
2024-11-02 15:49:32
62
醉卧沙场
转载文章
...,如图论、数据库索引设计、网络路由优化等方面发挥着重要作用。 近年来,随着大数据和人工智能技术的发展,处理大规模图数据的需求日益增强,对LCA问题求解效率的要求也随之提高。例如,在社交网络分析中,寻找两个用户的最近共同好友或社群,实质上就是一种LCA问题的应用;而在基因组学中,比对不同物种间的进化关系时,利用改进的LCA算法能更高效地定位序列的共同祖先节点。 2021年,一项发表在《ACM Transactions on Algorithms》的研究中,科研人员提出了一种基于预处理和动态规划相结合的新型LCA算法,能够在保持较低空间复杂度的同时,进一步提升查询速度,为大规模图数据处理提供了新的解决方案。同时,针对并查集在求解LCA问题上的局限性,也有学者提出了更为精细的设计策略,通过引入路径压缩与按秩合并等优化手段,使得经典Tarjan算法在处理特定类型的数据时,性能得到显著改善。 总之,LCA问题作为基础算法研究的重要组成部分,其理论发展与实践应用的紧密结合,将持续推动信息技术的进步,并在更多新兴领域产生深远影响。不断涌现的创新研究成果,正持续拓宽我们对LCA问题理解的深度和广度,也为未来算法设计与优化指明了方向。
2023-02-09 23:03:55
155
转载
PostgreSQL
...实现数据的分页和排序功能?——以PostgreSQL为例 1. 开场白 为什么我们需要分页和排序? 嘿,朋友们!今天我们要聊的是一个非常实用的话题:如何在PostgreSQL数据库中实现数据的分页和排序功能。这事儿每个搞数据库的小伙伴都可能碰到,不管是做那个让大伙儿用起来顺手的网页应用,还是搭建那个能搞定一大堆数据的分析平台,怎么把海量数据弄得清清楚楚、井井有条,真的是太关键了。 1.1 为什么需要分页? 想象一下,如果你正在开发一个电商网站,而你的产品目录里有成千上万种商品,如果直接把所有商品一次性展示给用户,不仅页面加载速度会慢得让人抓狂,而且用户也很难找到他们想要的商品。这时候,分页功能就显得尤为重要了。这家伙能帮我们把海量数据切成小块,吃起来方便,还能让咱们用得更爽,系统也跑得飞快! 1.2 为什么需要排序? 再来聊聊排序。在数据展示中,排序功能可以帮助用户根据自己的需求快速定位到所需信息。比如说,在新闻网站上,大家通常都想第一时间看到最新的新闻动态,或者是想找那些大家都爱看的热门文章,点开看看究竟多火。这样一来,我们就能按照用户的喜好来调整数据的排列顺序,让用户看着更舒心,自然也就更满意啦! 2. PostgreSQL中的分页与排序 既然了解了为什么我们需要这些功能,那么现在让我们来看看如何在PostgreSQL中实现它们吧! 2.1 分页的基本概念 在SQL中,分页通常涉及到两个关键参数:OFFSET 和 LIMIT。OFFSET用于指定从结果集的哪个位置开始返回数据,而LIMIT则限制了返回的数据条目数量。例如,如果你想从第5条记录开始获取10条数据,你可以这样写: sql SELECT FROM your_table_name ORDER BY some_column OFFSET 5 LIMIT 10; 这里,ORDER BY some_column是可选的,但强烈建议你总是为查询加上一个排序条件,因为没有明确的排序规则时,返回的数据可能会出现不一致的情况。 2.2 实战演练:分页查询实例 假设你有一个名为products的表,里面存储了各种产品的信息,你想实现一个分页功能来展示这些产品。首先,你得搞清楚用户现在要看的是哪一页(就是每页显示多少条记录),然后用这个信息算出正确的OFFSET值。这样子才能让用户的请求对上数据库里的数据。 sql -- 假设每页显示10条记录 WITH page AS ( SELECT product_id, name, price, ROW_NUMBER() OVER (ORDER BY product_id) AS row_number FROM products ) SELECT FROM page WHERE row_number BETWEEN (page_number - 1) items_per_page + 1 AND page_number items_per_page; 这里的page_number和items_per_page是根据前端传入的参数动态计算出来的。这样,无论用户请求的是第几页,你都可以正确地返回对应的数据。 2.3 排序的魅力 排序同样重要。通过在查询中添加ORDER BY子句,我们可以控制数据的输出顺序。比如,如果你想按价格降序排列产品列表,可以这样写: sql SELECT FROM products ORDER BY price DESC; 或者,如果你想让用户能够自由选择排序方式,可以在应用层接收用户的输入,并相应地调整SQL语句中的排序条件。 3. 结合分页与排序 实战案例 接下来,让我们将分页和排序结合起来,看看实际效果。咱们有个卖东西的网站,得弄个页面能让大伙儿按不同的标准(比如说价格高低、卖得快不快这些)来排产品。这样大家找东西就方便多了。 sql WITH sorted_products AS ( SELECT FROM products ORDER BY CASE WHEN :sort_by = 'price' THEN price END ASC, CASE WHEN :sort_by = 'sales' THEN sales END DESC ) SELECT FROM sorted_products LIMIT :items_per_page OFFSET (:page_number - 1) :items_per_page; 在这个例子中,:sort_by、:items_per_page和:page_number都是从用户输入或配置文件中获取的变量。这种方式使得我们的查询更加灵活,能够适应不同的业务场景。 4. 总结与反思 通过这篇文章,我们探索了如何在PostgreSQL中有效地实现数据的分页和排序功能。别看这些技术好像挺简单,其实它们对提升用户体验和让系统跑得更顺畅可重要着呢!当然啦,随着项目的不断推进,你可能会碰到更多棘手的问题,比如说要应对大量的同时访问,还得绞尽脑汁优化查询速度啥的。不过别担心,掌握了基础之后,一切都会变得容易起来。 希望这篇技术分享对你有所帮助,也欢迎你在评论区分享你的想法和经验。让我们一起进步,共同成长! --- 这就是我关于“如何在数据库中实现数据的分页和排序功能?”的全部内容啦!如果你对PostgreSQL或者其他数据库技术有任何疑问或见解,记得留言哦。编程路上,我们一起加油!
2024-10-17 16:29:27
54
晚秋落叶
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
df -hT
- 显示磁盘分区的空间使用情况及文件系统类型。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"