前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[Metatable 与面向对象编程在Lu...]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
HBase
...na等现代监控工具,实现对HBase集群的全方位观测。 值得注意的是,HBase的性能优化并非一蹴而就,而是需要结合实际业务场景进行细致调优。例如,在金融行业中,高频交易系统对数据一致性要求极高,因此需要特别关注GC时间对事务处理的影响;而在物联网领域,则可能更侧重于降低单点延迟,确保海量设备的数据上报能够及时响应。 回顾历史,HBase自2008年开源以来,一直致力于为企业级应用场景提供可靠的数据存储解决方案。正如Apache基金会主席比尔·霍普金斯所说:“HBase的成功离不开全球开发者社区的支持。”未来,随着5G、边缘计算等新技术的普及,HBase有望在更多新兴领域发挥重要作用,成为企业数字化转型不可或缺的一部分。
2025-04-14 16:00:01
63
落叶归根
Kibana
...完全删除。 实现方案: 1. 创建索引模式,命名为orders-。 2. 定义生命周期策略 javascript PUT _ilm/policy/orders_policy { "policy": { "phases": { "hot": { "actions": { "rollover": { "max_size": "10gb", "max_age": "3m" } } }, "warm": { "actions": { "freeze": {} } }, "delete": { "min_age": "1y", "actions": { "delete": {} } } } } } 3. 将策略绑定到索引 bash POST /orders-/_settings { "index.lifecycle.name": "orders_policy", "index.lifecycle.rollover_alias": "orders" } 运行以上代码后,你会发现: - 每隔3个月,新的订单日志会被滚动到一个新的索引中。 - 超过3个月的旧数据会被冻结,存入冷存储。 - 超过1年的数据会被彻底删除,释放存储空间。 --- 5. 总结与展望 通过今天的分享,相信大家对如何在Kibana中设置数据保留策略有了更深的理解。虽然设置过程看似繁琐,但实际上只需要几步就能搞定。而且啊,要是咱们好好用数据保留这招,不仅能让系统跑得更快、更顺畅,还能帮咱们把那些藏在数据里的宝贝疙瘩给挖出来,多好呀! 最后,我想说的是,技术学习是一个不断探索的过程。如果你在实践中遇到问题,不妨多查阅官方文档或者向社区求助。毕竟,我们每个人都是技术路上的探索者,一起努力才能走得更远! 好了,今天的分享就到这里啦!如果你觉得这篇文章有用,记得点赞支持哦~咱们下次再见!
2025-04-30 16:26:33
16
风轻云淡
Logstash
...们看看如何通过它们来实现高效的实时索引优化吧! 2.1 数据采集与预处理 首先,我们需要利用Logstash从各种数据源采集数据。好嘞,咱们换个说法:比如说,我们要从服务器的日志里挖出点儿有用的东西,就像找宝藏一样,目标就是那些访问时间、用户ID和请求的网址这些信息。我们可以用Filebeat这个工具来读取日志文件,然后再用Grok这个插件来解析这些数据,让信息变得更清晰易懂。下面是一个具体的配置示例: yaml input { file { path => "/var/log/nginx/access.log" start_position => "beginning" } } filter { grok { match => { "message" => "%{COMBINEDAPACHELOG}" } } } 这段配置告诉Logstash,从/var/log/nginx/access.log这个路径下的日志文件开始读取,并使用Grok插件中的COMBINEDAPACHELOG模式来解析每一行日志内容。这样子一来,原始的文本信息就被拆成了一个个有组织的小块儿,给接下来的处理铺平了道路,简直不要太方便! 2.2 高效索引策略 一旦数据被Logstash处理完毕,下一步就是将其导入Elasticsearch。为了确保索引操作尽可能高效,我们可以采取一些策略: - 批量处理:减少网络往返次数,提高吞吐量。 - 动态映射:允许Elasticsearch根据文档内容自动创建字段类型,简化索引管理。 - 分片与副本:合理设置分片数量和副本数量,平衡查询性能与集群稳定性。 下面是一个简单的Logstash输出配置示例,演示了如何将处理后的数据批量发送给Elasticsearch: yaml output { elasticsearch { hosts => ["localhost:9200"] index => "nginx-access-%{+YYYY.MM.dd}" document_type => "_doc" user => "elastic" password => "changeme" manage_template => false template => "/path/to/template.json" template_name => "nginx-access" template_overwrite => true flush_size => 5000 idle_flush_time => 1 } } 在这段配置中,我们设置了批量大小为5000条记录,以及空闲时间阈值为1秒,这意味着当达到这两个条件之一时,Logstash就会将缓冲区内的数据一次性发送至Elasticsearch。此外,我还指定了自定义的索引模板,以便更好地控制字段映射规则。 3. 实战案例 打造高性能日志分析平台 好了,理论讲得差不多了,接下来让我们通过一个实际的例子来看看这一切是如何运作的吧! 假设你是一家电商网站的运维工程师,最近你们网站频繁出现访问异常的问题,客户投诉不断。为了找出问题根源,你需要对Nginx服务器的日志进行深入分析。幸运的是,你们已经部署了Logstash和Elasticsearch作为日志处理系统。 3.1 日志采集与预处理 首先,我们需要确保Logstash能够正确地从Nginx服务器上采集到所有相关的日志信息。根据上面说的设置,我们可以搞一个Logstash配置文件,用来从特定的日志文件里扒拉出重要的信息。嘿,为了让大家看日志的时候能更轻松明了,我们可以加点小技巧,比如说统计每个用户逛网站的频率,或者找出那些怪怪的访问模式啥的。这样一来,信息就一目了然啦! 3.2 索引优化与查询分析 接下来,我们将这些处理后的数据发送给Elasticsearch进行索引存储。有了合适的索引设置,就算同时来一大堆请求,我们的查询也能嗖嗖地快,不会拖泥带水的。比如说,在上面那个输出配置的例子里面,我们调高了批量处理的门槛,同时把空闲时间设得比较短,这样就能大大加快数据写入的速度啦! 一旦数据被成功索引,我们就可以利用Elasticsearch的强大查询功能来进行深度分析了。比如说,你可以写个DSL查询,找出最近一周内访问量最大的10个页面;或者,你还可以通过用户ID捞出某个用户的操作记录,看看能不能从中发现问题。 4. 结语 拥抱变化,不断探索 通过以上介绍,相信大家已经对如何使用Logstash与Elasticsearch实现高效的实时索引优化有了一个全面的认识。当然啦,技术这东西总是日新月异的,所以我们得保持一颗好奇的心,不停地学新技术,这样才能更好地迎接未来的各种挑战嘛! 希望这篇文章能对你有所帮助,如果你有任何疑问或建议,欢迎随时留言交流。让我们一起加油,共同成长!
2024-12-17 15:55:35
41
追梦人
转载文章
...依赖于 LXDE 来实现其轻量级 Linux 操作系统的特性。LXDE 使用 GTK+ 2 库构建应用程序和图形界面,并且因其占用系统资源少而广受旧电脑用户的欢迎。 GTK+ 2 , GTK+ 2 是一种流行的开源 GUI 工具包,用于开发跨多个平台的应用程序界面。在 Lubuntu 的历史版本中,LXDE 桌面环境基于 GTK+ 2 进行构建。由于 GTK+ 2 对后续更新的支持逐渐减少,LXDE 开发人员开始寻求将其移植到 Qt 库以适应未来的发展需求。 LXQt , LXQt 是一个现代的轻量级桌面环境,由 LXDE 和 Razor-qt 项目合并而成。LXQt 基于 Qt 库开发,相较于 GTK+ 2,它提供了更现代化的功能和更好的性能表现。在 Lubuntu 20.04 LTS 版本中,LXDE 被 LXQt 取代,标志着 Lubuntu 向更先进、功能更丰富的桌面环境转型,同时仍保持其轻量级的核心特性。 Calamares , Calamares 是一款跨发行版的 Linux 安装程序框架,被 Lubuntu 20.04 LTS 版本采用,替代了传统的 Ubiquity 安装程序。Calamares 设计灵活,能够方便地定制安装过程,提供简单直观的用户界面,使得 Lubuntu 20.04 的安装体验更为流畅快捷。 Openbox , Openbox 是一个轻量级、高度可配置的窗口管理器,在 Lubuntu 20.04 LTS 中与 LXQt 桌面环境默认集成使用。Openbox 提供了较低的系统资源占用以及自定义窗口行为的能力,有助于实现 Lubuntu 系统的整体轻量化目标。 KDE , KDE(K Desktop Environment)是一个全面的自由及开放源代码桌面环境,包含了一系列应用程序和工具。尽管 Lubuntu 主要采用 LXQt,但新版本中的许多预装应用来自 KDE 生态圈,如 Ark、Bluedevil、Discover 等,这反映了 Lubuntu 20.04 在软件选择上对 KDE 技术栈的采纳和兼容。
2023-05-17 18:52:15
318
转载
MySQL
...讨论数据库问题的主要对象。 文件描述符 , 操作系统用于访问文件或其他输入/输出资源的抽象标识符,在文中指的是MySQL进程可以同时打开的文件数量上限,默认值为1024,超出此限制会导致“Too many open files”错误,进而影响数据库正常运行。 open_files_limit , MySQL配置文件中的一个参数,用于定义单个MySQL实例可打开的最大文件描述符数量,文章中将其从默认值调整为65535以解决文件描述符不足的问题,是优化数据库性能的关键配置项。
2025-04-17 16:17:44
109
山涧溪流_
转载文章
...构造非回文字符串这一编程问题后,我们可以进一步了解字符串处理与算法优化的最新研究进展。近日,《自然》杂志子刊《自然-通讯》发表了一篇关于“在线字符串编辑与动态回文判定”的研究报告。研究者提出了一种新颖的在线算法,能够在字符串实时更新过程中高效地判断其是否为回文,并能快速找到使字符串变为非回文所需的最少编辑操作。这一成果不仅对于文本处理、数据压缩等领域具有重要价值,也对解决类似的编程挑战提供了新的思路。 此外,在ACM国际大学生程序设计竞赛(ACM-ICPC)和谷歌代码 Jam 等全球顶级编程赛事中,频繁出现与回文串相关的题目,参赛者需灵活运用算法知识来解决实际问题。比如,有题目要求选手在最短时间内编写程序,找出将一个字符串转换为非回文串的最小操作次数,这与我们讨论的文章主题不谋而合,展现了理论与实践相结合的重要性。 同时,回文串在密码学、遗传学以及文学创作等多个领域均有应用。例如,在DNA序列分析中,回文结构往往关联着基因调控的重要区域;在密码学中,特定类型的回文串可用于构建加密算法的关键部分。深入理解并熟练掌握回文串的相关性质及处理方法,无疑有助于我们在这些领域取得更多的技术突破。 总之,从基础的编程题出发,我们可以洞察到字符串处理与算法优化在前沿科研和实际应用中的深远影响。通过持续关注和学习此类问题的最新研究成果与应用案例,我们能够不断提升自身的算法设计和问题解决能力。
2023-10-05 13:54:12
228
转载
Apache Solr
...提供的外部服务,可以实现数据的就近处理和快速响应,同时利用云端的弹性扩展能力应对突发流量或服务需求。此外,边缘计算还能作为数据预处理的节点,减少向云中心传输的数据量,进一步优化网络带宽使用和加速查询响应时间。 总之,云计算和边缘计算的结合,为构建更加稳定、高效且具有弹性的依赖外部服务的系统提供了丰富的技术和实践路径。它们不仅能够改善网络连接问题,还能够促进数据分析、机器学习等高级功能的部署,为用户提供更高质量的服务体验。随着技术的不断进步,未来在优化Apache Solr等搜索引擎性能方面,我们可以期待更多创新的解决方案和实践。
2024-09-21 16:30:17
39
风轻云淡
ElasticSearch
...时候你可能会想到很多实现方法: 比如你的底层数据库用的是sql数据库(比如mysql):你可能会想到在对应字段上使用field1 like '%?%',?即用户输出的关键词 比如你的底层数据库用的是mongo:你可能会想到在对应字段上使用db.collection.find({ "field1": { $regex: /aaa/ } })做查询,aaa即用户输入的关键词 比如你的底层数据库用的是elasticsearch:那厉害了,专业全文搜索神奇,全文搜索或搜索相关的需求使用elasticsearch绝对是最合适的选择 比如你的底层数据库用的是hive、impala、clickhouse等大数据计算引擎:鸟枪换炮,其实用作全文索引和搜索的场景并不合适,你可能依旧会使用sql数据库那样用like做交互 2. 方案选择 调研之后,可能会发现对于数据量相对大一点的搜索场景,在当下流行的数据库或计算引擎中,elasticsearch是其中最合适的解决方案。 无论是sql的like、还是mongo的regex,在线上环境下,数据量较多的情况下,都不是很高效的查询,甚至有的公司的dba会禁止在线上使用类似的查询语法。 与elasticsearch是“亲戚”的,大家还常提到lucene、solr,但是无论从现在的发展趋势还是公司运维人才的储备(不得不说当下的运维人才中,对es熟悉的人才会更多一些),elasticsearch是相对较合适的选择。 一些大数据计算引擎,其实更多的适合OLAP场景。当然也完全可以使用,因为比如clickhouse、starrocks等的查询速度已经发展的非常快。但你会发现在中文分词搜索上,实现起来有一定困扰。 所以,如果你不差机器,首选方案还是elasticsearch。 3. elasticsearch的适用场景 3.1 经典的日志搜索场景 提到elasticsearch不得不提到它的几个好朋友: 一些公司里经常用elasticsearch来收集日志,然后用kibana来展示和分析。 展开来说,举个例子,你的app打印日志打印到了线上日志文件,当app出现故障你需要做定位筛查的时候,可能需要登录线上机器用grep命令各种查看。 但如果你不差机器资源,可以搭建上述架构,app的日志会被收集到elasticsearch中,最终你可以在kibana中查看日志,kibana里面可以很方面的做各种筛查操作。 这个流畅大概是这样的: 3.2 通用搜索场景 但是没有上图的beats、logstash、kibana,elasticsearch可以自己工作吗?完全可以的! elasticsearch也支持单机部署,数据规模不是很大的情况下,表现也是不错的。所以,你也不用担心因为自己机器资源不够而对elasticsearch望而却步。当然,单机部署的情况下,更多的适合自己玩,对于可靠性的要求就不能太苛刻了。 如果你在用宝塔,那你可以在宝塔面板,左侧“软件商店”中直接找到elasticsearch,并“没有痛苦”的安装。 本篇文章主要讨论选型,所以不涉及安装细节。 3.2.1 性能顾虑 上面提到了“表现”,其实性能只是elasticsearch的一个方面,主要你的机器资源足够(机器资源?对,包括你的机器个数,elasticsearch可以非常方便的横向扩展,以及单机的配置,cpu+内存,内存越高越好,elasticsearch比较吃内存!),它一定会给你很好的性能反应。试想,公司里的app打印线上日志的行数其实可比一般业务系统产生的订单数量要大很多很多,elasticsearch都可以常在日志的实时分析,所以如果你要做通用场景,而且机器资源不是问题,这是完全行得通的。 3.2.2 易用性和可玩性 此外,在使用elasticsearch的时候,会有很多的可玩性。这里不引经据典,呈现很多elasticsearch官方文章的列举优秀特性(当然,确实很优秀!)。 这里举几个例子: (1)中文分词:第一章提到的其它引擎几乎很难实现,elasticsearch对分词器的支持是原生的,因为elasticsearch天生就为全文索引而生,elasticsearch的汉语名字就是“弹性搜索”。这家伙可是专门搞搜索的! 有的朋友可能不了解分词器,比如你的一个字段里存储“今天我要吃冰激凌”,在分词器的加持下,es最终会存储为“今天|我|要|吃|冰激凌”,并且使用倒排索引的形式进行存储。当你搜索“冰激凌”的时候,可以很快的反馈回来。 关于elasticsearch的原理,这里不展开说明,分词器和倒排索引是elasticsearch的最基本的概念。如果有不了解的朋友,可以自行百度一下。而且这两个概念,与elasticsearch其实不挂钩,是搜索中的通用概念。 关于倒排索引,其核心表现如下图: 如果你要用mysql、mongo实现中文分词,这......其实挺麻烦的,可能在后面的版本支持中会实现的很好,但在当前的流行版本中,它们对中文分词是不够友好的。 mysql5.7之后支持外挂第三方分词器,支持中文分词。而在数据量较大的情况下,mysql的多机器部署几乎很难实现,elasticsearch可以很容易的水平扩展。 mongo支持西方语言的分词,但不支持中文、日语、汉语等东方语言,你需要在自己的逻辑代码中实现分词器。 ngram分词,你看看效果:依旧是“今天我要吃冰激凌”,ngram二元分词后即将得到结果“今天、天我、我要、要吃、吃冰、冰激、激凌”。这....,那你搜索冰激凌就搜不出来!咋办呢,当然可以使用三元分词。但是更好的解决方案还是中文分词器,但它们原生并不支持的。 (2)自定义排名场景:比如你的搜索“冰激凌”,结果中返回了有10条,这10条应该有你想对它指定的顺序。最简单的就是用默认的得分,但是如果你想人为干预这个得分怎么办? elasticsearch支持function_score功能(可以不用,这个是增强功能),es会在计算最终得分之前回调这个你指定的function_score回调函数,传入原始得分、行的原始数据,你可以在里面做计算,比如查询其它参考表、或查看是否是广告位,以得到新的score返回给用户。 function_scrore的功能不展开描述,是一个在自定义得分场景下十分有用又简单易用的功能!下面是一个使用示例,不仅如此,它是支持自定义函数的,自由度非常高。 (3)文本高亮:你用mysql或mongo也可以实现,比如用户搜索“冰激凌”,你只需要在逻辑代码中对“冰激凌”替换为“<span class='highlight-term'>冰激凌</span>”,然后前端做样式即可。但如果用户搜索了“好吃的冰激凌”咋办呢?还有就是英文大小写的场景,用户搜索"MAIN",那结果及时匹配到了“main”(小写的),这个单词是否应该高亮呢?也许这时候你会用业务代码实现toLowerCase下基于位置下标的匹配。 挺麻烦的吧,elasticsearch,自动可以返回高亮字段!并且可以自由指定高亮的html前后标签。 (4)实在太多了....这家伙天生为索引而生,而且版本还在不断地迭代。不差机器的话,用用吧! 4. 退而求其次 4.1 普通数据库 尽管elasticsearch在搜索场景下,是非常好用的利器!但是它比较消耗机器资源,如果你的数据规模并不大,而且想快速实现功能。你可以使用mysql或mongo来代替,完全没有问题。 技术是为了解决特定业务场景下的问题,结合当前手头的资源,适合自己的才是最好的。也许你搞了一个单机器的elasticsearch,单机器内存只有2G,它的表现并不会比mysql、mongo来的好。 当然,如果你为了使用上边提到的一些优秀的独有的特性,那elasticsearch一定还是最佳选择! 对于mysql(关系型数据库)和mongo(文档数据库)的区别这里不展开描述了,但对于搜索而言,两种都合适。有时候选型也不用很纠结,其实都是差不太多的东西,适合自己的、自己熟悉的、运维起来顺手的,就是最好的。 4.2 普通数据库实现中文分词搜索的原理 尽管mysql在5.7以后支持外挂第三方分词器,mongo在截止目前的版本中也不支持中文分词(你可能会看到一些文章中说可以指定language为chinese,但其实会报错的)。 其实当你选择普通数据库,你就不得不在逻辑代码中自己实现一套索引分词+搜索分词逻辑。 索引分词+搜索分词?为什么分开写,如果你有用过elasticsearch或solr,你会知道,在指定字段的时候,需要指定index分词器和search分词器。 下面以mongo为例做简要说明。 4.2.1 index分词器 意思是当数据“索引”截断如何分词。首先,这里必须要承认,数据之后存储了,才能被查询。在搜索中,这句话可以换成是“数据只有被索引了,才能被搜索”。 这时候请求打过来了,要索引一条数据,其中某字段是“今天我要吃冰激凌”,分词后得到“今天|我|要|吃|冰激凌”,这个就可以入库了。 如果你使用elasticsearch或solr,这个过程是自动的。如果你使用不支持外观分词器的常规数据库,这个过程你就要手动了,并把分词后的结果用空格分开(最好使用空格,因为西方语言的分词规则就是按空格拆分,以及逗号句号),存入数据库的一个待搜索的字段上。 效果如下图: 本站的其它博文中有介绍IKAnalyzer:https://www.52itw.com/java/6268.html 4.2.2 search分词器 当用户的查询请求打过来,用户输入了“好吃的冰激凌”,分词后得到“好吃|冰激凌”(“的”作为停用词stopwords,被自动忽略了,IKAnalyzer可以指定停用词表)。 于是这时候就回去上图的数据库表里面搜索“好吃 冰激凌”(与index分词器结果统一,还是用空格分隔)。 当然,对于mongo而言,你需要事先开启全文索引db.xxx.ensureIndex({content: "text"}),xxx是集合名,content是字段名,text是全文索引的标识。 mongo搜索的时候用这个语法:db.xxx.find( { $text: { $search: "好吃 冰激凌" } },{ score: { $meta: "textScore" } }).sort( { score: { $meta: "textScore" } } ) 4.2.3 索引库和存储库分开 为了减少单表的大小,为了让普通的列表查询、普通筛选可以跑的更快,你可以对原有的数据原封不动的做一张表。 然后对于搜索场景,再单独对需要被搜索的字段单独拎一张表出来! 然后二者之间做增量信号同步或定时差额同步,可能会有延迟,这个就看你能容忍多长时间(悄悄告诉你,elasticsearch也需要指定这个refresh时间,一般是1s到几秒、甚至分钟级。当然,二者的这个时间对饮的底层目的是不一样的)。 这样,搜索的时候先查询搜索库,拿到一个指针id的列表,然后拿到指针id的列表区存储里把数据一次性捞出来。当然,也是支持分页的,你查询搜索库其实也是普通的数据库查询嘛,支持分页参数的。 4.3 存储库和索引库的延伸阅读 很多有名的开源软件也是使用的存储库与索引库分离的技术方案,如apache atlas: apache atlas对于大数据领域的数据资产元数据管理、数据血缘上可谓是专家,也涉及资产搜索的特性,它的实现思路就是:从搜索库中做搜索、拿到key、再去存储库中做查询。 搜索库:上图右下角,可以看到使用的是elasticsearch、solr或lucene,多个选一个 存储库:上图左下角,可以看到使用的是Cassandra、HBase或BerkeleyDB,多个选一个 虽然apache atlas在只有搜索库或只有存储库的时候也可以很好的工作,但只针对于数据量并不大的场景。 搜索库,擅长搜索!存储库,擅长海量存储!搜索库多样化搜索,然后去存储库做点查。 当你的数据达到海量的时候,es+hbase也是一种很好的解决方案,不在这里展开说明了。
2024-01-27 17:49:04
537
admin-tim
Kafka
...副本机制等技术手段,实现了高吞吐量、低延迟及容错能力,广泛应用于日志收集、消息传递和流数据处理等领域。 持久化 , 指将数据存储在非易失性存储介质(如磁盘)中,以防止因服务器宕机等原因导致的数据丢失。在Kafka中,所有数据均以日志文件的形式存储,并通过fsync等机制确保数据写入磁盘后再返回确认,从而保障了数据的持久性和可靠性。 分区 , Kafka将主题中的消息划分为多个分区,每个分区独立存储和管理数据。分区机制不仅能够提升系统的吞吐量,还能实现水平扩展。在Kafka中,每个分区可以有多个副本,其中一个为主副本,负责处理读写请求,其余为从副本,用于备份和容灾。通过合理的分区策略,可以有效分摊负载,提高系统的可用性和容错性。
2025-04-11 16:10:34
95
幽谷听泉
转载文章
...Pi-hole结合,实现全方位的家庭网络安全防护。 此外,开源社区围绕Pi-hole开发了许多增强功能和插件,以适应不断变化的网络环境。TechCrunch发表的一篇文章介绍了几个重要的Pi-hole拓展工具,它们能够帮助用户更精细地管理网络流量,优化家庭网络体验,同时确保个人隐私不受侵犯。 总之,在数字化生活越发普及的今天,深入了解和运用像Pi-hole这样的开源解决方案,不仅能有效提升网络安全性,也是对个人隐私保护意识的重要体现。通过持续关注相关的技术发展和实践案例,我们可以更好地应对未来的网络挑战。
2023-08-12 20:49:59
61
转载
NodeJS
本文介绍如何用Docker实现Node.js应用的容器化部署,重点讲解环境一致性与镜像优化。通过编写Dockerfile,利用多阶段构建减少镜像体积,同时借助镜像和容器化技术确保开发与生产环境的一致性。端口映射保障服务正常运行,实践部署流程展示从Node.js项目准备到最终运行的具体步骤,旨在提升开发效率并优化资源利用。
2025-05-03 16:15:16
32
海阔天空
DorisDB
...分发数据和计算任务,实现了数据的高可用性和高扩展性。这种方式不仅能处理大规模数据集,还能在增加节点时轻松扩展系统容量,同时通过负载均衡和故障转移机制提高了系统的可靠性和性能。 名词 , 事务一致性。 解释 , 事务一致性是数据库管理中的一个重要概念,指在事务处理过程中,无论是否成功完成,都应保持数据的一致性状态。在DorisDB中,面对并发写入时,事务一致性确保了数据的正确性和完整性。通过使用锁机制、事务隔离级别等技术手段,DorisDB能够在多用户同时访问数据的情况下,防止出现数据不一致的情况,保证了数据的正确性和业务逻辑的正确执行。
2024-10-07 15:51:26
122
醉卧沙场
转载文章
...“新市民”政策,以期实现农民工与城市的深度融合。 此外,针对新生代农民工的生活状况,《中国青年农民工社会融入研究报告》指出,尽管收入水平有所提高,但他们在住房、子女教育、医疗等方面依然面临较大压力,对此,各地政府也在探索实施租赁住房补贴、随迁子女平等接受义务教育、建立覆盖农民工的社会保险体系等一系列改革措施,力求解决新生代农民工在城市化进程中的痛点难点问题。 综上所述,新生代农民工已成为我国经济社会发展中不可或缺的力量,其市民化过程不仅关乎个人命运变迁,更影响着新型城镇化乃至整个国家的发展走向。社会各界应密切关注这一群体的需求变化,提供更加全面的支持和服务,共同助力新生代农民工顺利融入城市,共享社会发展成果。
2023-06-28 17:16:54
62
转载
转载文章
...案及登录机码的存取之对象和方式。用它来寻找您权限下的安全性漏洞。 AdRestore 取消删除 Server 2003 Active Directory 物件。 BgInfo 这个可完全设定的程式,会自动产生包括含有 IP 位址、电脑名称,和网路介面卡等等重要资讯的桌面背景。 BlueScreen 这个萤幕保护程式不只将「蓝色萤幕」(Blue Screens) 模仿得维妙维肖,也能模仿重新开机 (需使用 CHKDSK 完成),而且在 Windows NT 4、Windows 2000、Windows XP、Server 2003 和 Windows 9x 中皆能执行。 CacheSet CacheSet 是一种能让您使用 NT 提供的功能来控制 Cache Manager 的工作组大小。除了和 NT 所有版本相容之外,还提供原始程式码。 检视系统时钟的解析度,同时也是计时器解析度的最大值。 Contig 希望能够快速地将常用的档案进行磁碟重组吗?使用 Contig 最佳化个别档案,或是建立新的连续档案。 Ctrl2cap 这是一种核心模式驱动程式,展示键盘输入筛选只在键盘类别驱动程式之上,目的是为了将大写锁定按键转换至控制按键。这个层级的筛选允许在 NT 「发现」按键之前,先进行转换和隐藏按键。包括完整的来源。此外,Ctrl2cap 还会显示如何使用 NtDisplayString() 将讯息列印至初始化的蓝色萤幕。 DebugView Sysinternals 的另一个首开先例:这个程式会拦截分别由 DbgPrint 利用装置驱动程式,和 OutputDebugString 利用 Win32 程式所做的呼叫。它能够在您的本机上或跨往际往路,在不需要作用中的侦错工具情况下,检视和录制侦错工作阶段输出。 DiskExt 显示磁碟区磁碟对应。 Diskmon 这个公用程式会撷取全部的硬碟活动,或是提供系统匣中的软体磁碟活动指示器的功能。 DiskView 图形化磁区公用程式。 Du 依目录检视磁碟使用状况。 EFSDump 检视加密档案的资讯。 Filemon 这个监控工具让您即时检视所有档案系统的活动。 Handle 这个易於操纵的命令列公用程式能够显示档案开启的种类和使用的处理程序等更多资讯。 Hex2dec 十六进位数字和十进位数字相互转换。 Junction 建立 Win2K NTFS 符号连结。 LDMDump 倾印逻辑磁碟管理员的磁碟上之资料库内容,其中描述 Windows 2000 动态磁碟分割。 ListDLLs 列出所有目前载入的 DLL,包括载入位置和他们的版本编号。2.0 版列印载入模组的完整路径名称。 LiveKd 使用 Microsoft 核心侦错工具检视即时系统。 LoadOrder 检视在您 WinNT/2K 系统上载入装置的顺序。 LogonSessions 列出系统上的作用中登入工作阶段。 MoveFile 允许您对下一次开机进行移动和删除命令的排程。 NTFSInfo 使用 NTFSInfo 检视详细的 NTFS 磁碟区资讯,包括主档案表格 (MFT) 和 MFT 区的大小和位置,还有 NTFS 中继资料档案的大小。 PageDefrag 将您的分页档和登录 Hive 进行磁碟重组。 PendMoves 列举档案重新命名的清单,删除下次开机将会执行的命令。 Portmon 使用这个进阶的监视工具进行监视序列和平行连接埠活动。它不仅掌握所有标准的序列和平行 IOCTL,甚至会显示传送和接收的资料部份。Version 3.x 具有强大的新 UI 增强功能和进阶的筛选功能。 Process Monitor 即时监控档案系统、登录、程序、执行绪和 DLL 活动。 procexp 任务管理器,这个管理器比windows自带的管理器要强大方便的很多,建议替换自带的任务管理器(本人一直用这个管理器,很不错)。此工具也有汉化版,fans可以自己搜索下载 ProcFeatures 这个小应用程式会描述「实体位址扩充」的处理器和 Windows 支援,而没「没有执行」缓冲区溢位保护。 PsExec 以有限的使用者权限执行处理程序。 PsFile 检视远端开启档案有哪些。 PsGetSid 显示电脑或使用者的 SID。 PsInfo 取得有关系统的资讯。 PsKill 终止本机或远端处理程序。 PsList 显示处理程序和执行绪的相关资讯。 PsLoggedOn 显示使用者登录至一个系统。 PsLogList 倾印事件记录档的记录。 PsPasswd 变更帐户密码。 PsService 检视及控制服务。 PsShutdown 关机及选择重新启动电脑。 PsSuspend 暂停及继续处理程序。 PsTools PsTools 产品系列包括命令列公用程式,其功能有列出在本机或远端电脑上执行的处理程序、远端执行的处理程序、重新开机的电脑和倾印事件记录等等。 RegDelNull 扫描并删除登录机码,这些登录机码包括了标准登录编辑工具无法删除的内嵌式 Null 字元。 RegHide 建立名为 "HKEY_LOCAL_MACHINE\Software\Sysinternals\Can't touch me!\0" 并使用原生 API 的金钥,而且会在此金钥内建立一个值。 Regjump 跳至您在 Regedit 中指定的登录路径。 Regmon 这个监视工具让您即时看到全部的登录活动。 RootkitRevealer 扫描您系统上 Rootkit 为基础的恶意程式码。 SDelete 以安全的方法覆写您的机密档案,并且清除因先前使用这个 DoD 相容安全删除程式所删除档案後而释放的可用空间。包括完整的原始程式码。 ShareEnum 扫描网路上档案共用并检视其安全性设定,来关闭安全性漏洞。 Sigcheck 倾印档案版本资讯和验证系统上的影像皆已完成数位签章。 Strings 搜寻 binaryimages 中的 ANSI 和 UNICODE 字串。 Sync 将快取的资料清除至磁碟。 TCPView 作用中的通讯端命令列检视器。 VolumeId 设定 FAT 或 NTFS 磁碟区 ID。 Whois 看看谁拥有一个网际网路位址。 Winobj 最完整的物件管理员命名空间检视器在此。 ZoomIt 供萤幕上缩放和绘图的简报公用程式。 转自:http://www.360doc.com/content/15/0323/06/20545288_457293504.shtml 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_33515088/article/details/80721846。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-01-22 15:44:41
102
转载
ElasticSearch
...! 2.2 实现步骤 2.2.1 生成证书 首先,我们需要生成自签名证书。虽然自签名证书不能用于生产环境,但它能帮助我们快速测试。 bash openssl req -x509 -newkey rsa:4096 -keyout elastic.key -out elastic.crt -days 365 -nodes 这段命令会生成一个有效期为一年的证书文件elastic.crt和私钥文件elastic.key。 2.2.2 修改配置文件 接下来,我们需要在Elasticsearch的配置文件elasticsearch.yml中启用SSL/TLS。找到以下配置项: yaml xpack.security.http.ssl: enabled: true keystore.path: "/path/to/elastic.keystore" 这里的keystore.path指向你刚刚生成的证书和私钥文件。 2.2.3 启动Elasticsearch 启动Elasticsearch后,客户端连接时必须提供对应的证书才能正常工作。例如,使用curl命令时可以这样: bash curl --cacert elastic.crt https://localhost:9200/ 2.3 小结 通过SSL/TLS加密,我们可以大大降低数据泄露的风险。不过,自签名证书只适合开发和测试环境。如果是在生产环境中,建议购买由权威机构签发的证书。 --- 3. 用户认证与授权 接下来,咱们谈谈用户认证和授权。想象一下,如果没有身份验证机制,任何人都可以访问你的Elasticsearch集群,那简直是噩梦! 3.1 背景故事 有一次,我在调试一个项目时,无意间发现了一个未设置密码的Elasticsearch集群。我当时心里一惊,心想:“乖乖,要是有谁发现这个漏洞,那可就麻烦大了!”赶紧招呼团队的小伙伴们注意一下,提醒大家赶紧加上用户认证功能,别让问题溜走。 3.2 使用内置角色管理 Elasticsearch自带了一些内置角色,比如superuser和read_only。你可以根据需求创建自定义角色,并分配给不同的用户。 3.2.1 创建用户 假设我们要创建一个名为admin的管理员用户,可以使用以下命令: bash curl -X POST "https://localhost:9200/_security/user/admin" \ -H 'Content-Type: application/json' \ -u elastic \ -d' { "password" : "changeme", "roles" : [ "superuser" ] }' 这里的-u elastic表示使用默认的elastic用户进行操作。 3.2.2 测试用户权限 创建完用户后,我们可以尝试登录并执行操作。例如,使用admin用户查看索引列表: bash curl -X GET "https://localhost:9200/_cat/indices?v" \ -u admin:changeme 如果一切正常,你应该能看到所有索引的信息。 3.3 RBAC(基于角色的访问控制) 除了内置角色外,Elasticsearch还支持RBAC。你可以给每个角色设定超级详细的权限,比如说准不准用某个API,能不能访问特定的索引之类的。 json { "role": "custom_role", "cluster": ["monitor"], "indices": [ { "names": [ "logstash-" ], "privileges": [ "read", "view_index_metadata" ] } ] } 这段JSON定义了一个名为custom_role的角色,允许用户读取logstash-系列索引的数据。 --- 4. 日志审计与监控 最后,咱们得关注日志审计和监控。即使你做了所有的安全措施,也不能保证万无一失。定期检查日志和监控系统可以帮助我们及时发现问题。 4.1 日志审计 Elasticsearch自带的日志功能非常强大。你可以通过配置日志级别来记录不同级别的事件。例如,启用调试日志: yaml logger.org.elasticsearch: debug 将这条配置添加到logging.yml文件中即可。 4.2 监控工具 推荐使用Kibana来监控Elasticsearch的状态。装好Kibana之后,你就能通过网页界面瞅一眼你的集群健不健康、各个节点都在干嘛,还能看看性能指标啥的,挺直观的! 4.2.1 配置Kibana 在Kibana的配置文件kibana.yml中,添加以下内容: yaml elasticsearch.hosts: ["https://localhost:9200"] elasticsearch.username: "kibana_system" elasticsearch.password: "changeme" 然后重启Kibana服务,打开浏览器访问http://localhost:5601即可。 --- 5. 总结 好了,朋友们,今天的分享就到这里啦!优化Elasticsearch的安全性并不是一件容易的事,但只要我们用心去做,就能大大降低风险。从SSL/TLS加密到用户认证,再到日志审计和监控,每一个环节都很重要。 我希望这篇文章对你有所帮助,如果你还有其他问题或者经验分享,欢迎随时留言交流!让我们一起打造更安全、更可靠的Elasticsearch集群吧!
2025-05-12 15:42:52
96
星辰大海
Nacos
...在Nacos客户端的实现中,有一个方法是用来获取配置的: java String content = configService.getConfig(dataId, group, timeoutMs); 我仔细检查了这个方法的调用点,发现它是在服务启动时被调用的。你瞧,服务一启动呢,就会加载一堆东西,像数据库连接池啦,缓存配置啦,各种各样的“装备”都得准备好,这样它才能顺利开工干活呀! “会不会是某个配置项的加载顺序影响了Nacos的读取?”我突然想到这一点。我琢磨着这事儿,干脆把所有的配置加载顺序仔仔细细捋了一遍,就为了确保Nacos的配置能在服务刚启动的时候就给安排上,别拖到后面出了幺蛾子。 同时,我还加强了异常处理逻辑,给Nacos的读取操作加上了try-catch块,以便捕获具体的异常信息: java try { String content = configService.getConfig(dataId, group, timeoutMs); System.out.println("Config loaded successfully: " + content); } catch (NacosException e) { System.err.println("Failed to load config: " + e.getMessage()); } 经过一番调整后,我再次启动服务,终于看到了一条令人振奋的消息:“Config loaded successfully”。 “太好了!”我长舒一口气,“原来问题就出在这里啊。” --- 五、总结与感悟 经过这次折腾,我对Nacos有了更深的理解。Nacos这东西确实挺牛的,是个超棒的配置管理工具,但用着用着你会发现,它也不是完美无缺的,各种小问题啊、坑啊,时不时就冒出来折腾你一下。其实吧,这些问题真不一定是Nacos自己惹的祸,八成是咱们的代码写得有点问题,或者是环境配错了,带偏了Nacos。 “其实啊,调试的过程就像侦探破案一样,需要耐心和细心。我坐在电脑前忍不住感慨:“哎,有时候觉得这问题看起来平平无奇的,可谁知道背后可能藏着啥惊天大秘密呢!”” 总之,这次经历让我明白了一个道理:遇到问题不要慌,要冷静分析,逐步排查。只有这样,才能找到问题的根本原因,解决问题。希望我的经验能对大家有所帮助,如果有类似的问题,不妨按照这个思路试试看!
2025-04-06 15:56:57
67
清风徐来
转载文章
...S Office不仅实现了对Linux系统的全面支持,还不断优化跨平台兼容性,并且积极跟进Microsoft Office的新功能,使得国产办公软件在用户体验上逐渐与国际接轨(参考来源:WPS官方公告及媒体报道)。而在浏览器市场,除了Edge浏览器之外,Firefox、Chromium-based浏览器如Chrome和Opera同样提供Linux版,它们之间的性能对比、隐私保护策略以及对Web新技术的支持情况值得深入研究(参考来源:各大浏览器官网及第三方评测报告)。 总之,随着开源生态的繁荣和Linux发行版的普及,关注和掌握deepin系统及其周边软件的最新发展动态,将有助于我们更好地利用这一平台进行高效开发和舒适办公。
2023-11-15 19:14:44
54
转载
转载文章
...置内存请求和限制,以实现资源的有效利用和成本控制。同时,文中还引用了Google Borg论文中的经典研究,揭示了大规模分布式系统内存资源调度的复杂性及其解决方案在Kubernetes设计中的体现。 对于希望进一步提升Kubernetes集群资源管理能力的用户,可以关注一些业内知名的案例研究,例如Netflix如何借助Kubernetes进行大规模服务部署时的内存优化策略。这些实战经验不仅有助于理解理论知识,还能指导读者在实际环境中运用和调整内存配置,从而最大化资源使用效率,降低运维风险。 总之,随着Kubernetes生态系统的持续发展和容器技术的日臻完善,不断跟进最新的内存管理实践与研究动态,将助力企业和开发者更好地驾驭这一强大的容器编排工具,构建高效、稳定的云原生架构。
2023-12-23 12:14:07
495
转载
Beego
... 最后,我想说的是,编程其实是一个不断学习和成长的过程。当我们遇到困难时,不要气馁,也不要急于求成。静下心来,一步步分析问题,总能找到解决方案。这就跟处理配置文件出错那会儿似的,说白了嘛,只要你能沉住气,再琢磨出点门道来,这坎儿肯定能迈过去! 5. 结语 好了,今天的分享就到这里了。希望能通过这篇文章,让大家弄明白在 Beego 里怎么正确解决配置文件出错的问题,这样以后遇到类似情况就不会抓耳挠腮啦!如果你还有什么疑问或者更好的方法,欢迎随时跟我交流。我们一起进步,一起成为更优秀的开发者! 记住,编程不仅仅是解决问题,更是一种艺术。愿你在编程的道路上越走越远,越走越宽广!
2025-04-13 15:33:12
24
桃李春风一杯酒
Hadoop
...policy参数来实现。 --- 5. 总结与展望 通过今天的讨论,我们了解了Hadoop是如何通过HDFS实现文件的跨硬件复制的。虽然这个功能看似简单,但它背后蕴含着复杂的设计理念和技术细节。正是这些设计,才使得Hadoop成为了一个强大的大数据处理工具。 最后,我想说的是,学习新技术的过程就像探险一样,充满了未知和挑战。嘿,谁还没遇到过点麻烦事儿呢?有时候一头雾水,感觉前路茫茫,但这不正是探索的开始嘛!别急着放弃,熬过去你会发现,那些让人头疼的问题其实藏着不少小惊喜,等你拨开云雾时,成就感绝对让你觉得值了!希望这篇文章能给你带来一些启发,也希望你能亲自尝试一下Hadoop的实际操作,感受一下它的魅力! 好了,今天的分享就到这里啦!如果你有任何疑问或者想法,欢迎随时留言交流。让我们一起探索更多有趣的技术吧!
2025-03-26 16:15:40
97
冬日暖阳
NodeJS
...木有? 但问题是,要实现这种功能并不简单。想象一下,以前我们用老式的网页加载方式,就像打电话问朋友“嘿,有啥新鲜事儿没?”然后挂掉电话等对方回拨告诉你答案。问题是,如果你想知道最新消息,就得一直重复这个过程——不停地挂电话再拨号,也就是不停刷新页面,才能看到有没有新东西蹦出来。这显然不是最优解。而 WebSocket 就不一样了,它是一种全双工通信协议,可以让客户端和服务端随时互相推送消息,简直是实时应用的最佳拍档! 说到 Node.js,它天生就擅长处理异步事件流,再加上强大的生态系统(比如 Express、Socket.IO 等),简直就是为实时应用量身定制的工具。所以,今天我们就用 Node.js + WebSocket 来做一个简单的实时监控面板,顺便分享一下我的一些心得。 --- 2. 第一步 搭建基础环境 首先,我们需要准备开发环境。Node.js 的安装非常简单,去官网下载对应版本就行。安装完后,用 node -v 和 npm -v 验证是否成功。如果这两个命令都能正常输出版本号,那就说明环境配置好了。 接下来,我们创建项目文件夹,并初始化 npm: bash mkdir real-time-monitor cd real-time-monitor npm init -y 然后安装必要的依赖包。这里我们用到两个核心库:Express 和 ws(WebSocket 库)。Express 是用来搭建 HTTP 服务的,ws 则专门用于 WebSocket 通信。 bash npm install express ws 接下来,我们写一个最基础的 HTTP 服务,确保环境能正常工作: javascript // server.js const express = require('express'); const app = express(); app.get('/', (req, res) => { res.send('Hello World!'); }); const PORT = process.env.PORT || 3000; app.listen(PORT, () => { console.log(Server is running on port ${PORT}); }); 保存文件后运行 node server.js,然后在浏览器输入 http://localhost:3000,应该能看到 “Hello World!”。到这里,我们的基本框架已经搭好了,是不是感觉还挺容易的? --- 3. 第二步 引入 WebSocket 现在我们有了一个 HTTP 服务,接下来该让 WebSocket 上场了。WebSocket 的好处就是能在浏览器和服务器之间直接搭起一条“高速公路”,不用老是像发短信那样频繁地丢 HTTP 请求过去,省时又高效!为了方便,我们可以直接用 ws 库来实现。 修改 server.js 文件,添加 WebSocket 相关代码: javascript // server.js const express = require('express'); const WebSocket = require('ws'); const app = express(); const wss = new WebSocket.Server({ port: 8080 }); wss.on('connection', (ws) => { console.log('A client connected!'); // 接收来自客户端的消息 ws.on('message', (message) => { console.log(Received message => ${message}); ws.send(You said: ${message}); }); // 当客户端断开时触发 ws.on('close', () => { console.log('Client disconnected.'); }); }); app.get('/', (req, res) => { res.sendFile(__dirname + '/index.html'); }); const PORT = process.env.PORT || 3000; app.listen(PORT, () => { console.log(HTTP Server is running on port ${PORT}); }); 这段代码做了几件事: 1. 创建了一个 WebSocket 服务器,监听端口 8080。 2. 当客户端连接时,打印日志并等待消息。 3. 收到消息后,会回传给客户端。 4. 如果客户端断开连接,也会记录日志。 为了让浏览器能连接到 WebSocket 服务器,我们还需要一个简单的 HTML 页面作为客户端入口: html Real-Time Monitor WebSocket Test Send Message 这段 HTML 代码包含了一个简单的聊天界面,用户可以在输入框中输入内容并通过 WebSocket 发送到服务器,同时也能接收到服务器返回的信息。跑完 node server.js 之后,别忘了打开浏览器,去 http://localhost:3000 看一眼,看看它是不是能正常转起来。 --- 4. 第三步 扩展功能——实时监控数据 现在我们的 WebSocket 已经可以正常工作了,但还不能算是一个真正的监控面板。为了让它更实用一点,咱们不妨假装弄点监控数据玩玩,像CPU用得多不多、内存占了百分之多少之类的。 首先,我们需要一个生成随机监控数据的函数: javascript function generateRandomMetrics() { return { cpuUsage: Math.random() 100, memoryUsage: Math.random() 100, diskUsage: Math.random() 100 }; } 然后,在 WebSocket 连接中定时向客户端推送这些数据: javascript wss.on('connection', (ws) => { console.log('A client connected!'); setInterval(() => { const metrics = generateRandomMetrics(); ws.send(JSON.stringify(metrics)); }, 1000); // 每秒发送一次 ws.on('close', () => { console.log('Client disconnected.'); }); }); 客户端需要解析接收到的数据,并动态更新页面上的信息。我们可以稍微改造一下 HTML 和 JavaScript: html CPU Usage: Memory Usage: Disk Usage: javascript socket.onmessage = (event) => { const metrics = JSON.parse(event.data); document.getElementById('cpuProgress').value = metrics.cpuUsage; document.getElementById('memoryProgress').value = metrics.memoryUsage; document.getElementById('diskProgress').value = metrics.diskUsage; const messagesDiv = document.getElementById('messages'); messagesDiv.innerHTML += Metrics updated. ; }; 这样,每秒钟都会从服务器获取一次监控数据,并在页面上以进度条的形式展示出来。是不是很酷? --- 5. 结尾 总结与展望 通过这篇文章,我们从零开始搭建了一个基于 Node.js 和 WebSocket 的实时监控面板。别看它现在功能挺朴素的,但这东西一出手就让人觉得,WebSocket 在实时互动这块儿真的大有可为啊!嘿,听我说!以后啊,你完全可以接着把这个项目捯饬得更酷一些。比如说,弄点新鲜玩意儿当监控指标,让用户用起来更爽,或者直接把它整到真正的生产环境里去,让它发挥大作用! 其实开发的过程就像拼图一样,有时候你会遇到困难,但只要一点点尝试和调整,总会找到答案。希望这篇文章能给你带来灵感,也欢迎你在评论区分享你的想法和经验! 最后,如果你觉得这篇文章对你有帮助,记得点个赞哦!😄 --- 完
2025-05-06 16:24:48
71
清风徐来
转载文章
... ntpdate命令实现 ntpdate 安装: yum install ntpdate -y Centos系统======================================sudo apt install ntpdate Ubuntu系统 时间同步 sudo ntpdate -u cn.pool.ntp.org18 Mar 18:25:22 ntpdate[18673]: adjust time server 84.16.73.33 offset 0.015941 sec 使用ntpdate 只是强制将系统时间设置为ntp服务器时间,如果cpu tick有问题,时间还是会不准。所以,一般配合cron命令,来进行定期同步设置。比如,在crontab中添加: sudo crontab -e0 12 /usr/sbin/ntpdate 192.168.10.110 上述命令的意思是:每天的12点整,从192.168.10.110 ntp服务器同步一次时间(前提是 192.168.10.110有ntp服务)。 2.2 Ntp客户端代码实现 本质上还是创建socket连接去获取ntp服务的时间与本地时间比较,不一致修改本机时间即可。 NtpClient.h //// Created by lwang on 2023-03-18.//ifndef NTP_CLIENT_Hdefine NTP_CLIENT_Hinclude <stdio.h>include <stdlib.h>include <string.h>include <time.h>include <iostream>include <unistd.h>include <sys/select.h>include <sys/time.h>include <sys/socket.h>include <arpa/inet.h>include <netdb.h>include <errno.h>include <endian.h>include <map>include <string>include <mutex>using namespace std;define NTP_LI 0define NTP_VERSION_NUM 3define NTP_MODE_CLIENT 3define NTP_MODE_SERVER 4define NTP_STRATUM 0define NTP_POLL 4define NTP_PRECISION -6define NTP_MIN_LEN 48define NTP_SERVER_PORT 123define NTP_SERVER_ADDR "119.28.183.184"define TIMEOUT 2define BUFSIZE 1500define JAN_1970 0x83aa7e80define NTP_CONV_FRAC32(x) (uint64_t)((x) ((uint64_t)1 << 32))define NTP_REVE_FRAC32(x) ((double)((double)(x) / ((uint64_t)1 << 32)))define NTP_CONV_FRAC16(x) (uint32_t)((x) ((uint32_t)1 << 16))define NTP_REVE_FRAC16(x) ((double)((double)(x) / ((uint32_t)1 << 16)))define USEC2FRAC(x) ((uint32_t)NTP_CONV_FRAC32((x) / 1000000.0))define FRAC2USEC(x) ((uint32_t)NTP_REVE_FRAC32((x)1000000.0))define NTP_LFIXED2DOUBLE(x) ((double)(ntohl(((struct l_fixedpt )(x))->intpart) - JAN_1970 + FRAC2USEC(ntohl(((struct l_fixedpt )(x))->fracpart)) / 1000000.0))struct s_fixedpt{uint16_t intpart;uint16_t fracpart;};struct l_fixedpt{uint32_t intpart;uint32_t fracpart;};struct ntphdr{if __BYTE_ORDER == __BID_ENDIANunsigned int ntp_li : 2;unsigned int ntp_vn : 3;unsigned int ntp_mode : 3;endifif __BYTE_ORDER == __LITTLE_ENDIANunsigned int ntp_mode : 3;unsigned int ntp_vn : 3;unsigned int ntp_li : 2;endifuint8_t ntp_stratum;uint8_t ntp_poll;int8_t ntp_precision;struct s_fixedpt ntp_rtdelay;struct s_fixedpt ntp_rtdispersion;uint32_t ntp_refid;struct l_fixedpt ntp_refts;struct l_fixedpt ntp_orits;struct l_fixedpt ntp_recvts;struct l_fixedpt ntp_transts;};class NtpClient {public:NtpClient();virtual ~NtpClient();void GetNtpTime(std::string &ntpTime);in_addr_t HostTransfer(const char host);int PaddingNtpPackage(void buf, size_t size);double GetOffset(const struct ntphdr ntp, const struct timeval recvtv);private:int m_sockfd;};endif / NTP_CLIENT_H / NtpClient.cpp //// Created by lwang on 2023-03-18.//include "NtpClient.h"NtpClient::NtpClient() { }NtpClient::~NtpClient() {}in_addr_t NtpClient::HostTransfer(const char host){in_addr_t saddr;struct hostent hostent;if ((saddr = inet_addr(host)) == INADDR_NONE){if ((hostent = gethostbyname(host)) == NULL){return INADDR_NONE;}memmove(&saddr, hostent->h_addr, hostent->h_length);}return saddr;}int NtpClient::PaddingNtpPackage(void buf, size_t size) // 构建并发送NTP请求报文{if (!size)return -1;struct ntphdr ntp;struct timeval tv;memset(buf, 0, BUFSIZE);ntp = (struct ntphdr )buf;ntp->ntp_li = NTP_LI;ntp->ntp_vn = NTP_VERSION_NUM;ntp->ntp_mode = NTP_MODE_CLIENT;ntp->ntp_stratum = NTP_STRATUM;ntp->ntp_poll = NTP_POLL;ntp->ntp_precision = NTP_PRECISION;gettimeofday(&tv, NULL); // 把目前的时间用tv 结构体返回ntp->ntp_transts.intpart = htonl(tv.tv_sec + JAN_1970);ntp->ntp_transts.fracpart = htonl(USEC2FRAC(tv.tv_usec));size = NTP_MIN_LEN;return 0;}double NtpClient::GetOffset(const struct ntphdr ntp, const struct timeval recvtv) // 偏移量{double t1, t2, t3, t4;t1 = NTP_LFIXED2DOUBLE(&ntp->ntp_orits);t2 = NTP_LFIXED2DOUBLE(&ntp->ntp_recvts);t3 = NTP_LFIXED2DOUBLE(&ntp->ntp_transts);t4 = recvtv->tv_sec + recvtv->tv_usec / 1000000.0;return ((t2 - t1) + (t3 - t4)) / 2;}void NtpClient::GetNtpTime(std::string &ntpTime){char buffer[64] = {0};char cmd[128] = {0};tm local;char buf[BUFSIZE];size_t nbytes;int maxfd1;struct sockaddr_in servaddr;fd_set readfds;struct timeval timeout, recvtv, tv;double offset;servaddr.sin_family = AF_INET;servaddr.sin_port = htons(NTP_SERVER_PORT);servaddr.sin_addr.s_addr = HostTransfer(NTP_SERVER_ADDR);if ((m_sockfd = socket(AF_INET, SOCK_DGRAM, 0)) < 0){perror("socket error");return ;}if (connect(m_sockfd, (struct sockaddr )&servaddr, sizeof(struct sockaddr)) != 0){perror("connect error");return ;}nbytes = BUFSIZE;if (PaddingNtpPackage(buf, &nbytes) != 0){fprintf(stderr, "construct ntp request error \n");exit(-1);}send(m_sockfd, buf, nbytes, 0);FD_ZERO(&readfds);FD_SET(m_sockfd, &readfds);maxfd1 = m_sockfd + 1;timeout.tv_sec = TIMEOUT;timeout.tv_usec = 0;if (select(maxfd1, &readfds, NULL, NULL, &timeout) > 0){if (FD_ISSET(m_sockfd, &readfds)){if ((nbytes = recv(m_sockfd, buf, BUFSIZE, 0)) < 0){perror("recv error");exit(-1);}// 计算C/S时间偏移量gettimeofday(&recvtv, NULL);offset = GetOffset((struct ntphdr )buf, &recvtv);gettimeofday(&tv, NULL);tv.tv_sec += (int)offset;tv.tv_usec += offset - (int)offset;local = localtime((time_t )&tv.tv_sec);strftime(buffer, 64, "%Y-%m-%d %H:%M:%S", local);ntpTime = std::string(buffer);} }return ;} main.cpp include "NtpClient.h"int main(){std::string ntpTime = "";char curBuf[64] = {0};struct timeval cur;tm local;NtpClient client;client.GetNtpTime(ntpTime);cout << "ntpTime: " << ntpTime << endl;gettimeofday(&cur, NULL);local = localtime((time_t )&cur.tv_sec);strftime(curBuf, 64, "%Y-%m-%d %H:%M:%S", local);std::string curTime = std::string(curBuf);cout << "curTime: " << curTime << endl;if (curTime != ntpTime){cout << "start time calibrate!" << endl;std::string cmd = "sudo date -s \"" + ntpTime + "\"";system(cmd.c_str());cout << "cmd: " << cmd << endl;}else{cout << "time seem" << endl;}return 0;} 推荐一个零声学院免费教程,个人觉得老师讲得不错, 分享给大家:[Linux,Nginx,ZeroMQ,MySQL,Redis, fastdfs,MongoDB,ZK,流媒体,CDN,P2P,K8S,Docker, TCP/IP,协程,DPDK等技术内容,点击立即学习: 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_46935110/article/details/129683157。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-01 12:56:47
112
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
systemctl start|stop|restart|status service_name
- 管理systemd服务。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"