前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[第三方JavaScript模块类型安全增...]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
...重背包,用多重背包的方法做;也可以看成总共有2n个物品,用一般背包的方法做 //方法1include <bits/stdc++.h>using namespace std;int c[1005],w[1005];//重量 能量int f[10005];int main(){int n,m;cin>>n>>m;for(int i=1;i<=n;i++)cin>>c[i]>>w[i];for(int i=1;i<=n;i++)for(int j=m;j>=c[i];--j){for(int k=1;k<=2&&kc[i]<=j;k++){f[j]=max(f[j],f[j-c[i]k]+w[i]k);} }cout<<f[m]<<endl;return 0;}//方法2include<bits/stdc++.h>using namespace std;const int N=1e3+5;int a[2N],b[2N],dp[N],n,m;int main(){cin>>n>>m;for(int i=1;i<=n;i++){cin>>a[i]>>b[i];a[i+n]=a[i],b[i+n]=b[i];}for(int i=1;i<=2n;i++){for(int j=m;j>=a[i];j--){dp[j]=max(dp[j],dp[j-a[i]]+b[i]);} }cout<<dp[m]<<'\n';return 0;} E: 最大素数 题目描述 输入一个数字字符串,从中删除若干个(包含0个)数字后可以得到一个素数,请编写一个程序求解删除部分数字之后能够得到的最大素数。 例如,输入“1234”,删除1和4,可以得到的最大素数为23。 输入 输入一个数字字符串,从中删除若干个(包含0个)数字后可以得到一个素数,请编写一个程序求解删除部分数字之后能够得到的最大素数。 例如,输入“1234”,删除1和4,可以得到的最大素数为23。 输出 输入一个数字字符串,从中删除若干个(包含0个)数字后可以得到一个素数,请编写一个程序求解删除部分数字之后能够得到的最大素数。 例如,输入“1234”,删除1和4,可以得到的最大素数为23。 搜索 这里用的bfs,优先搜索当前最大的数,如果这个数已经是素数那么就是答案 我说不清楚,参考代码吧 include <bits/stdc++.h>using namespace std;bool isprime(int n){//素数判断if(n<2)return 0;for(int i=2;i<=(int)sqrt(n);++i)if(n%i==0)return 0;return 1;}struct node {string s;int len;bool operator<(const node &q)const{if(len!=q.len)return len<q.len;return s<q.s;} };bool check(string str){int m=0;for(int i=0;i<str.size();i++){m=m10+str[i]-'0';}return isprime(m);}bool flag;map<string,bool>vis;string s;void bfs(){priority_queue<node>q;q.push({s,s.size()});while(!q.empty()){node k=q.top();q.pop();if(vis[k.s])continue;vis[k.s]=1;if(check(k.s)){cout<<k.s<<endl;flag=1;return ;}for(int i=0;i<k.s.size();i++){//去掉第i个字符string s1=k.s.substr(0,i)+k.s.substr(i+1);q.push({s1,s1.size()});} }}int main(){cin>>s;bfs();if(!flag)puts("No result.");return 0;} F: 最大计分 题目描述 小米和小花在玩一个删除数字的游戏。 游戏规则如下: 首先随机写下N个正整数,然后任选一个数字作为起始点,从起始点开始从左往右每次可以删除一个数字,但是必须满足下一个删除的数字要小于上一个删除的数字。每成功删除一个数字计1分。 请问对于给定的N个正整数,一局游戏过后可以得到的最大计分是多少? 输入 单组输入。 第1行输入一个正整数N表示数字的个数(N<=10^3)。 第2行输入N个正整数,两两之间用空格隔开。 输出 对于给定的N个正整数,一局游戏过后可以得到的最大计分值。 最长下降子序列 将数组逆转就等价于求最长上升子序列长度 include <bits/stdc++.h>using namespace std;int arr[1005];int main(){int n;cin>>n;for(int i=0;i<n;i++)cin>>arr[i];reverse(arr,arr+n);vector<int>stk;stk.push_back(arr[0]);for (int i = 1; i < n; ++i) {if (arr[i] > stk.back())stk.push_back(arr[i]);elselower_bound(stk.begin(), stk.end(), arr[i]) = arr[i];}cout << stk.size() << endl;return 0;} G: 密钥 题目描述 X星人又截获了Y星人的一段密文。 破解这段密文需要使用一个密钥,而这个密钥存在于一个正整数N中。 聪明的X星人终于找到了获取密钥的方法:这个正整数的最后一位是一个非零数K(K>=2),需要将正整数N切分成K个小的整数,并且要使得这K个较小整数的乘积达到最大。而所得到的最大乘积就是破解密文所需的密钥。 你能否帮X星人编写一段程序来得到密钥呢? 输入 X星人又截获了Y星人的一段密文。 破解这段密文需要使用一个密钥,而这个密钥存在于一个正整数N中。 聪明的X星人终于找到了获取密钥的方法:这个正整数的最后一位是一个非零数K(K>=2),需要将正整数N切分成K个小的整数,并且要使得这K个较小整数的乘积达到最大。而所得到的最大乘积就是破解密文所需的密钥。 你能否帮X星人编写一段程序来得到密钥呢? 输出 将N划分为K个整数后的最大乘积。 搜索 include <bits/stdc++.h>using namespace std;define ll long longll n;ll ans;void dfs(ll sum,ll m,int res){if(res==1){ans=max(ans,summ);return ;}int num=(int)log10(m)+1;//m的位数int k=10;for(int i=1;i<=num-res+1;i++){//保证剩余的数至少还有res-1位dfs(sum(m%k),m/k,res-1);k=10;}return ;}int main(){cin>>n;dfs(1ll,n,n%10);cout<<ans<<endl;return 0;} H: X星大学 题目描述 X星大学新校区终于建成啦! 新校区一共有N栋教学楼和办公楼。现在需要用光纤把这N栋连接起来,保证任意两栋楼之间都有一条有线网络通讯链路。 已知任意两栋楼之间的直线距离(单位:千米)。为了降低成本,要求两栋楼之间都用直线光纤连接。 光纤的单位成本C已知(单位:X星币/千米),请问最少需要多少X星币才能保证任意两栋楼之间都有光纤直接或者间接相连? 注意:如果1号楼和2号楼相连,2号楼和3号楼相连,则1号楼和3号楼间接相连。 输入 单组输入。 第1行输入两个正整数N和C,分别表示楼栋的数量和光纤的单位成本(单位:X星币/千米),N<=100,C<=100。两者之间用英文空格隔开。 接下来N(N-1)/2行,每行包含三个正整数,第1个正整数和第2个正整数表示楼栋的编号(从1开始一直到N),编号小的在前,编号大的在后,第3个正整数为两栋楼之间的直线距离(单位:千米)。 输出 输出最少需要多少X星币才能保证任意两栋楼之间都有光纤直接或者间接相连。 最小生成树模板题 //prim()最小生成树include <bits/stdc++.h>using namespace std;define ll long longdefine INF 0x3f3f3f3fint n,c;int dist[105];bool vis[105];int a[105][105];ll prim(int pos){memset(dist,INF,sizeof(dist));dist[pos]=0;ll sum=0;for(int i=1;i<=n;i++){int cur=-1;for(int j=1;j<=n;j++){if(!vis[j]&&(cur==-1||dist[j]<dist[cur]))cur=j;}if(dist[cur]>=INF)return INF;sum+=dist[cur];vis[cur]=1;for(int l=1;l<=n;l++)if(!vis[l])dist[l]=min(dist[l],a[cur][l]);}return sum;}int main() {scanf("%d%d",&n,&c);int x,y,z;memset(a,INF,sizeof(a));for(int i=1;i<=n;i++)a[i][i]=0;for(int i=1;i<=n(n-1)/2;i++){scanf("%d%d%d",&x,&y,&z);a[x][y]=min(a[x][y],z);a[y][x]=a[x][y];}printf("%lld\n",prim(1)c);return 0;}//Kruskal()最小生成树include<bits/stdc++.h>using namespace std;struct node {int x,y,z;}edge[10005];bool cmp(node a,node b) {return a.z < b.z;}int fa[105];int n,m,c;long long sum;int get(int x) {return x == fa[x] ? x : fa[x] = get(fa[x]);}int main() {scanf("%d%d",&n,&c);m=n(n-1)/2;for(int i = 1; i <= m; i ++) {scanf("%d%d%d",&edge[i].x,&edge[i].y,&edge[i].z);}for(int i = 0; i <= n; i ++) {fa[i] = i;}sort(edge + 1,edge + 1 + m,cmp);// 每次加入一条最短的边for(int i = 1; i <= m; i ++) {int x = get(edge[i].x);int y = get(edge[i].y);if(x == y) continue;fa[y] = x;sum += edge[i].z;}printf("%lld\n",sumc);return 0;} 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_52139055/article/details/123284091。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-01-20 16:20:26
468
转载
转载文章
...算法,它结合深度学习方法提升了在复杂场景中的重定位精度和鲁棒性。 同时,在自动驾驶领域,Waymo等公司在其无人驾驶车辆上广泛采用了基于视觉惯性导航的技术,并不断优化以提高实时定位和姿态估计的准确性。例如,一篇发布于《Nature》子刊《Machine Intelligence》上的文章揭示了他们如何将VIO与高精地图信息深度融合,以应对城市道路中的各种挑战。 此外,对于学术界和工业界来说,开源项目如OpenVINS、OKVIS以及本文提及的VINS-Fusion等持续迭代更新,不仅推动了VIO技术的发展,也为广大研究者提供了宝贵的实验平台。这些项目通过融合多传感器数据,实现了在无人机、机器人以及其他移动设备上的高效稳定定位导航。 总的来说,随着硬件性能的提升和算法优化的深化,视觉惯性里程计正逐渐成为自主导航系统中不可或缺的核心组件。在未来,我们期待看到更多创新性的研究成果和技术突破,进一步提升VIO在复杂环境下的适用性和可靠性。
2023-09-13 20:38:56
310
转载
转载文章
...e;//重新调用下载方法this.download();},// 分段下载需要后端配合download() {// 下载地址const url = "/down?fileName="+this.keyword.trim()+"&drive=E";console.log(url)const chunkSize = 1024 1024 50; // 单个分段大小,这里测试用100Mlet filesTotalSize = chunkSize; // 安装包总大小,默认100Mlet filesPages = 1; // 总共分几段下载//计算百分比之前先清空上次的if(this.percentage==100){this.percentage=0;}let sentAxios = (num) => {let rande = chunkSize;//判断是否开启了断点续传(断点续传没法并行-需要上次请求的结果作为参数)if (this.breakpointResumeTags){rande = ${Number(this.fileFinalOffset)+1}-${num chunkSize + 1};}else {if (num) {rande = ${(num - 1) chunkSize + 2}-${num chunkSize + 1};} else {// 第一次0-1方便获取总数,计算下载进度,每段下载字节范围区间rande = "0-1";} }let headers = {range: rande,};axios({method: "get",url: url.trim(),async: true,data: {},headers: headers,responseType: "blob"}).then((response) => {if (response.status == 200 || response.status == 206) {//检查了下才发现,后端对文件流做了一层封装,所以将content指向response.data即可const content = response.data;//截取文件总长度和最后偏移量let result= response.headers["content-range"].split("/");// 获取文件总大小,方便计算下载百分比filesTotalSize =result[1];//获取最后一片文件位置,用于断点续传this.fileFinalOffset=result[0].split("-")[1]// 计算总共页数,向上取整filesPages = Math.ceil(filesTotalSize / chunkSize);// 文件流数组this.contentList.push(content);// 递归获取文件数据(判断是否要继续递归)if (this.filesCurrentPage < filesPages&&this.stopRecursiveTags==true) {this.filesCurrentPage++;//计算下载百分比 当前下载的片数/总片数this.percentage=Number((this.contentList.length/filesPages)100).toFixed(2);sentAxios(this.filesCurrentPage);//结束递归return;}//递归标签为true 才进行下载if (this.stopRecursiveTags){// 文件名称const fileName =decodeURIComponent(response.headers["fname"]);//构造一个blob对象来处理数据const blob = new Blob(this.contentList);//对于<a>标签,只有 Firefox 和 Chrome(内核) 支持 download 属性//IE10以上支持blob但是依然不支持downloadif ("download" in document.createElement("a")) {//支持a标签download的浏览器const link = document.createElement("a"); //创建a标签link.download = fileName; //a标签添加属性link.style.display = "none";link.href = URL.createObjectURL(blob);document.body.appendChild(link);link.click(); //执行下载URL.revokeObjectURL(link.href); //释放urldocument.body.removeChild(link); //释放标签} else {//其他浏览器navigator.msSaveBlob(blob, fileName);} }} else {//调用暂停方法,记录当前下载位置console.log("下载失败")} }).catch(function (error) {console.log(error);});};// 第一次获取数据方便获取总数sentAxios(this.filesCurrentPage);this.$message({message: '文件开始下载!',type: 'success'});} }})</script></body></html> 本篇文章为转载内容。原文链接:https://blog.csdn.net/kangshihang1998/article/details/129407214。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-19 08:12:45
546
转载
转载文章
...底是不是指向B,这种方法效率太低,可以优化为一个对象一个对象地移动(这里涉及JVM如何识别对象,以及如何区分指针和立即数),但效率还是太低。 ·借助额外的数据结构描述这种引用关系,例如使用类似位图(bitmap)的方法,记录A和B的内存块之间的引用关系,用一个位来描述一个字,假设在32位机器上(一个字为32位),需要32KB(32KB×32=1M)的空间来描述一个分区。那么我们就可以在这个对象ObjA所在分区A里面添加一个额外的指针,这个指针指向另外一个分区B的位图,如果我们可以把对象ObjA和指针关系进行映射,那么当访问ObjA的时候,顺便访问这个额外的指针,从这个指针指向的位图就能找到被ObjA引用的分区B对应的内存块。通常我们只需要判定位图里面对应的位是否有1,有的话则认为发生了引用。 class CardTable: public CHeapObj<mtGC> {friend class VMStructs;public:typedef uint8_t CardValue;// All code generators assume that the size of a card table entry is one byte.// They need to be updated to reflect any change to this.// This code can typically be found by searching for the byte_map_base() method.STATIC_ASSERT(sizeof(CardValue) == 1);protected:// The declaration order of these const fields is important; see the// constructor before changing.const MemRegion _whole_heap; // the region covered by the card tableconst size_t _page_size; // page size used when mapping _byte_mapsize_t _byte_map_size; // in bytesCardValue _byte_map; // the card marking arrayCardValue _byte_map_base;// Some barrier sets create tables whose elements correspond to parts of// the heap; the CardTableBarrierSet is an example. Such barrier sets will// normally reserve space for such tables, and commit parts of the table// "covering" parts of the heap that are committed. At most one covered// region per generation is needed.static constexpr int max_covered_regions = 2;// The covered regions should be in address order.MemRegion _covered[max_covered_regions];// The last card is a guard card; never committed.MemRegion _guard_region;inline size_t compute_byte_map_size(size_t num_bytes);enum CardValues {clean_card = (CardValue)-1,dirty_card = 0,CT_MR_BS_last_reserved = 1};// a word's worth (row) of clean card valuesstatic const intptr_t clean_card_row = (intptr_t)(-1);// CardTable entry sizestatic uint _card_shift;static uint _card_size;static uint _card_size_in_words;size_t last_valid_index() const {return cards_required(_whole_heap.word_size()) - 1;}private:void initialize_covered_region(void region0_start, void region1_start);MemRegion committed_for(const MemRegion mr) const;public:CardTable(MemRegion whole_heap);virtual ~CardTable() = default;void initialize(void region0_start, void region1_start);// Barrier set functions.// Initialization utilities; covered_words is the size of the covered region// in, um, words.inline size_t cards_required(size_t covered_words) const {assert(is_aligned(covered_words, _card_size_in_words), "precondition");return covered_words / _card_size_in_words;}// Dirty the bytes corresponding to "mr" (not all of which must be// covered.)void dirty_MemRegion(MemRegion mr);// Clear (to clean_card) the bytes entirely contained within "mr" (not// all of which must be covered.)void clear_MemRegion(MemRegion mr);// Return true if "p" is at the start of a card.bool is_card_aligned(HeapWord p) {CardValue pcard = byte_for(p);return (addr_for(pcard) == p);}// Mapping from address to card marking array entryCardValue byte_for(const void p) const {assert(_whole_heap.contains(p),"Attempt to access p = " PTR_FORMAT " out of bounds of "" card marking array's _whole_heap = [" PTR_FORMAT "," PTR_FORMAT ")",p2i(p), p2i(_whole_heap.start()), p2i(_whole_heap.end()));CardValue result = &_byte_map_base[uintptr_t(p) >> _card_shift];assert(result >= _byte_map && result < _byte_map + _byte_map_size,"out of bounds accessor for card marking array");return result;}// The card table byte one after the card marking array// entry for argument address. Typically used for higher bounds// for loops iterating through the card table.CardValue byte_after(const void p) const {return byte_for(p) + 1;}void invalidate(MemRegion mr);// Provide read-only access to the card table array.const CardValue byte_for_const(const void p) const {return byte_for(p);}const CardValue byte_after_const(const void p) const {return byte_after(p);}// Mapping from card marking array entry to address of first wordHeapWord addr_for(const CardValue p) const {assert(p >= _byte_map && p < _byte_map + _byte_map_size,"out of bounds access to card marking array. p: " PTR_FORMAT" _byte_map: " PTR_FORMAT " _byte_map + _byte_map_size: " PTR_FORMAT,p2i(p), p2i(_byte_map), p2i(_byte_map + _byte_map_size));// As _byte_map_base may be "negative" (the card table has been allocated before// the heap in memory), do not use pointer_delta() to avoid the assertion failure.size_t delta = p - _byte_map_base;HeapWord result = (HeapWord) (delta << _card_shift);assert(_whole_heap.contains(result),"Returning result = " PTR_FORMAT " out of bounds of "" card marking array's _whole_heap = [" PTR_FORMAT "," PTR_FORMAT ")",p2i(result), p2i(_whole_heap.start()), p2i(_whole_heap.end()));return result;}// Mapping from address to card marking array index.size_t index_for(void p) {assert(_whole_heap.contains(p),"Attempt to access p = " PTR_FORMAT " out of bounds of "" card marking array's _whole_heap = [" PTR_FORMAT "," PTR_FORMAT ")",p2i(p), p2i(_whole_heap.start()), p2i(_whole_heap.end()));return byte_for(p) - _byte_map;}CardValue byte_for_index(const size_t card_index) const {return _byte_map + card_index;}// Resize one of the regions covered by the remembered set.void resize_covered_region(MemRegion new_region);// Card-table-RemSet-specific things.static uintx ct_max_alignment_constraint();static uint card_shift() {return _card_shift;}static uint card_size() {return _card_size;}static uint card_size_in_words() {return _card_size_in_words;}static constexpr CardValue clean_card_val() { return clean_card; }static constexpr CardValue dirty_card_val() { return dirty_card; }static intptr_t clean_card_row_val() { return clean_card_row; }// Initialize card sizestatic void initialize_card_size();// Card marking array base (adjusted for heap low boundary)// This would be the 0th element of _byte_map, if the heap started at 0x0.// But since the heap starts at some higher address, this points to somewhere// before the beginning of the actual _byte_map.CardValue byte_map_base() const { return _byte_map_base; }virtual bool is_in_young(const void p) const = 0;}; class G1CardTable : public CardTable {friend class VMStructs;friend class G1CardTableChangedListener;G1CardTableChangedListener _listener;public:enum G1CardValues {g1_young_gen = CT_MR_BS_last_reserved << 1,// During evacuation we use the card table to consolidate the cards we need to// scan for roots onto the card table from the various sources. Further it is// used to record already completely scanned cards to avoid re-scanning them// when incrementally evacuating the old gen regions of a collection set.// This means that already scanned cards should be preserved.//// The merge at the start of each evacuation round simply sets cards to dirty// that are clean; scanned cards are set to 0x1.//// This means that the LSB determines what to do with the card during evacuation// given the following possible values://// 11111111 - clean, do not scan// 00000001 - already scanned, do not scan// 00000000 - dirty, needs to be scanned.//g1_card_already_scanned = 0x1};static const size_t WordAllClean = SIZE_MAX;static const size_t WordAllDirty = 0;STATIC_ASSERT(BitsPerByte == 8);static const size_t WordAlreadyScanned = (SIZE_MAX / 255) g1_card_already_scanned;G1CardTable(MemRegion whole_heap): CardTable(whole_heap), _listener() {_listener.set_card_table(this);}static CardValue g1_young_card_val() { return g1_young_gen; }static CardValue g1_scanned_card_val() { return g1_card_already_scanned; }void verify_g1_young_region(MemRegion mr) PRODUCT_RETURN;void g1_mark_as_young(const MemRegion& mr);size_t index_for_cardvalue(CardValue const p) const {return pointer_delta(p, _byte_map, sizeof(CardValue));}// Mark the given card as Dirty if it is Clean. Returns whether the card was// Clean before this operation. This result may be inaccurate as it does not// perform the dirtying atomically.inline bool mark_clean_as_dirty(CardValue card);// Change Clean cards in a (large) area on the card table as Dirty, preserving// already scanned cards. Assumes that most cards in that area are Clean.inline void mark_range_dirty(size_t start_card_index, size_t num_cards);// Change the given range of dirty cards to "which". All of these cards must be Dirty.inline void change_dirty_cards_to(CardValue start_card, CardValue end_card, CardValue which);inline uint region_idx_for(CardValue p);static size_t compute_size(size_t mem_region_size_in_words) {size_t number_of_slots = (mem_region_size_in_words / _card_size_in_words);return ReservedSpace::allocation_align_size_up(number_of_slots);}// Returns how many bytes of the heap a single byte of the Card Table corresponds to.static size_t heap_map_factor() { return _card_size; }void initialize(G1RegionToSpaceMapper mapper);bool is_in_young(const void p) const override;}; 以位为粒度的位图能准确描述每一个字的引用关系,但是一个位通常包含的信息太少,只能描述2个状态:引用还是未引用。实际应用中JVM在垃圾回收的时候需要更多的状态,如果增加至一个字节来描述状态,则位图需要256KB的空间,这个数字太大,开销占了25%。所以一个可能的做法位图不再描述一个字,而是一个区域,JVM选择512字节为单位,即用一个字节描述512字节的引用关系。选择一个区域除了空间利用率的问题之外,实际上还有现实的意义。我们知道Java对象实际上不是一个字能描述的(有一个参数可以控制对象最小对齐的大小,默认是8字节,实际上Java在JVM中还有一些附加信息,所以对齐后最小的Java对象是16字节),很多Java对象可能是几十个字节或者几百个字节,所以用一个字节描述一个区域是有意义的。但是我没有找到512的来源,为什么512效果最好?没有相应的数据来支持这个数字,而且这个值不可以配置,不能修改,但是有理由相信512字节的区域是为了节约内存额外开销。按照这个值,1MB的内存只需要2KB的额外空间就能描述引用关系。这又带来另一个问题,就是512字节里面的内存可能被引用多次,所以这是一个粗略的关系描述,那么在使用的时候需要遍历这512字节。 再举一个例子,假设有两个对象B、C都在这512字节的区域内。为了方便处理,记录对象引用关系的时候,都使用对象的起始位置,然后用这个地址和512对齐,因此B和C对象的卡表指针都指向这一个卡表的位置。那么对于引用处理也有可有两种处理方法:·处理的时候会以堆分区为处理单位,遍历整个堆分区,在遍历的时候,每次都会以对象大小为步长,结合卡表,如果该卡表中对应的位置被设置,则说明对象和其他分区的对象发生了引用。具体内容在后文中介绍Refine的时候还会详细介绍。·处理的时候借助于额外的数据结构,找到真正对象的位置,而不需要从头开始遍历。在后文的并发标记处理时就使用了这种方法,用于找到第一个对象的起始位置。在G1除了512字节粒度的卡表之外,还有bitMap,例如使用bitMap可以描述一个分区对另外一个分区的引用情况。在JVM中bitMap使用非常多,例如还可以描述内存的分配情况。 在G1除了512字节粒度的卡表之外,还有bitMap,例如使用bitMap可以描述一个分区对另外一个分区的引用情况。在JVM中bitMap使用非常多,例如还可以描述内存的分配情况。G1在混合收集算法中用到了并发标记。在并发标记的时候使用了bitMap来描述对象的分配情况。例如1MB的分区可以用16KB(16KB×ObjectAlignmentInBytes×8=1MB)来描述,即16KB额外的空间。其中ObjectAlignmentInBytes是8字节,指的是对象对齐,第二个8是指一个字节有8位。即每一个位可以描述64位。例如一个对象长度对齐之后为24字节,理论上它占用3个位来描述这个24字节已被使用了,实际上并不需要,在标记的时候只需要标记这3个位中的第一个位,再结合堆分区对象的大小信息就能准确找出。其最主要的目的是为了效率,标记一个位和标记3个位相比能节约不少时间,如果对象很大,则更划算。这些都是源码的实现细节,大家在阅读源码时需要细细斟酌。 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_16500963/article/details/132133125。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-16 20:37:50
246
转载
转载文章
...都需要设立明确目标,增强执行力,并懂得投资自己,通过不断学习实现职业生涯的可持续发展。 同时,心理学专家也强调,保持积极心态是中年人应对职场挑战的关键要素之一。正如美国心理学家卡罗尔·德韦克提出的“成长思维模式”,鼓励人们以开放的态度看待困难和挑战,相信能力可以通过努力得以提升,这对于中年职场人士打破现状、激发潜力具有深远意义。 综上所述,面对日新月异的社会变迁和职场环境,中年群体需树立长期职业规划意识,提高实际行动力,强化个人核心竞争力,并始终保持与时俱进的学习态度和积极进取的心态,以此来应对职业道路上的各种挑战,实现职业生涯的二次腾飞。
2023-06-29 14:16:29
119
转载
转载文章
...简史:从智人到智神》第三章:人类的特质。 ↩︎ “Unconscious determinants of free decisions in the human brain” in nature neuroscience, http://www.rifters.com/real/articles/NatureNeuroScience_Soon_et_al.pdf. ↩︎ 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_39384184/article/details/79288150。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-02 11:30:59
620
转载
转载文章
... Layer 的计算方法 , 把这部分放到了 SurfaceFlinger 主线程去执行, 如果后台 Layer 过多, 就会导致 SurfaceFlinger 在执行 rebuildLayerStacks 的时候耗时 , 导致 SurfaceFlinger 主线程执行时间过长。 可以选择降低Surface层级来优化卡顿。 12.光栅化/Display:这里暂时忽略,底层系统行为; Buffer 切换:主要是屏幕的显示,这里 buffer 的数量也会影响帧的整体延迟,不过是系统行为,不能干预。 2.系统负载 内存:内存的吃紧会直接导致 GC 的增加甚至 ANR,是造成卡顿的一个不可忽视的因素; CPU:CPU 对卡顿的影响主要在于线程调度慢、任务执行的慢和资源竞争,比如 1.降频会直接导致应用卡顿; 2.后台活动进程太多导致系统繁忙,cpu \ io \ memory 等资源都会被占用, 这时候很容易出现卡顿问题 ,这种情况比较常见,可以使用dumpsys cpuinfo查看当前设备的cpu使用情况: 3.主线程调度不到 , 处于 Runnable 状态,这种情况比较少见 4.System 锁:system_server 的 AMS 锁和 WMS 锁 , 在系统异常的情况下 , 会变得非常严重 , 如下图所示 , 许多系统的关键任务都被阻塞 , 等待锁的释放 , 这时候如果有 App 发来的 Binder 请求带锁 , 那么也会进入等待状态 , 这时候 App 就会产生性能问题 ; 如果此时做 Window 动画 , 那么 system_server 的这些锁也会导致窗口动画卡顿 GPU:GPU 的影响见渲染流程,但是其实还会间接影响到功耗和发热; 功耗/发热:功耗和发热一般是不分家的,高功耗会引起高发热,进而会引起系统保护,比如降频、热缓解等,间接的导致卡顿。 如何监控卡顿 线下监控: 我们知道卡顿问题的原因错综复杂,但最终都可以反馈到CPU使用率上来 1.使用dumpsys cpuinfo命令 这个命令可以获取当时设备cpu使用情况,我们可以在线下通过重度使用应用来检测可能存在的卡顿点 A8S:/ $ dumpsys cpuinfoLoad: 1.12 / 1.12 / 1.09CPU usage from 484321ms to 184247ms ago (2022-11-02 14:48:30.793 to 2022-11-02 14:53:30.866):2% 1053/scanserver: 0.2% user + 1.7% kernel0.6% 934/system_server: 0.4% user + 0.1% kernel / faults: 563 minor0.4% 564/signserver: 0% user + 0.4% kernel0.2% 256/ueventd: 0.1% user + 0% kernel / faults: 320 minor0.2% 474/surfaceflinger: 0.1% user + 0.1% kernel0.1% 576/vendor.sprd.hardware.gnss@2.0-service: 0.1% user + 0% kernel / faults: 54 minor0.1% 286/logd: 0% user + 0% kernel / faults: 10 minor0.1% 2821/com.allinpay.appstore: 0.1% user + 0% kernel / faults: 1312 minor0.1% 447/android.hardware.health@2.0-service: 0% user + 0% kernel / faults: 1175 minor0% 1855/com.smartpos.dataacqservice: 0% user + 0% kernel / faults: 755 minor0% 2875/com.allinpay.appstore:pushcore: 0% user + 0% kernel / faults: 744 minor0% 1191/com.android.systemui: 0% user + 0% kernel / faults: 70 minor0% 1774/com.android.nfc: 0% user + 0% kernel0% 172/kworker/1:2: 0% user + 0% kernel0% 145/irq/24-70900000: 0% user + 0% kernel0% 575/thermald: 0% user + 0% kernel / faults: 300 minor... 2.CPU Profiler 这个工具是AS自带的CPU性能检测工具,可以在PC上实时查看我们CPU使用情况。 AS提供了四种Profiling Model配置: 1.Sample Java Methods:在应用程序基于Java的代码执行过程中,频繁捕获应用程序的调用堆栈 获取有关应用程序基于Java的代码执行的时间和资源使用情况信息。 2.Trace java methods:在运行时对应用程序进行检测,以在每个方法调用的开始和结束时记录时间戳。收集时间戳并进行比较以生成方法跟踪数据,包括时序信息和CPU使用率。 请注意与检测每种方法相关的开销会影响运行时性能,并可能影响性能分析数据。对于生命周期相对较短的方法,这一点甚至更为明显。此外,如果您的应用在短时间内执行大量方法,则探查器可能会很快超过其文件大小限制,并且可能无法记录任何进一步的跟踪数据。 3.Sample C/C++ Functions:捕获应用程序本机线程的示例跟踪。要使用此配置,您必须将应用程序部署到运行Android 8.0(API级别26)或更高版本的设备。 4.Trace System Calls:捕获细粒度的详细信息,使您可以检查应用程序与系统资源的交互方式 您可以检查线程状态的确切时间和持续时间,可视化CPU瓶颈在所有内核中的位置,并添加自定义跟踪事件进行分析。在对性能问题进行故障排除时,此类信息可能至关重要。要使用此配置,您必须将应用程序部署到运行Android 7.0(API级别24)或更高版本的设备。 使用方式: Debug.startMethodTracing("");// 需要检测的代码片段...Debug.stopMethodTracing(); 优点:有比较全面的调用栈以及图像化方法时间显示,包含所有线程的情况 缺点:本身也会带来一点的性能开销,可能会带偏优化方向 火焰图:可以显示当前应用的方法堆栈: 3.Systrace Systrace在前面一篇分析启动优化的文章讲解过 这里我们简单来复习下: Systrace用来记录当前应用的系统以及应用(使用Trace类打点)的各阶段耗时信息包括绘制信息以及CPU信息等。 使用方式: Trace.beginSection("MyApp.onCreate_1");alt(200);Trace.endSection(); 在命令行中: python systrace.py -t 5 sched gfx view wm am app webview -a "com.chinaebipay.thirdcall" -o D:\trac1.html 记录的方法以及CPU中的耗时情况: 优点: 1.轻量级,开销小,CPU使用率可以直观反映 2.右侧的Alerts能够根据我们应用的问题给出具体的建议,比如说,它会告诉我们App界面的绘制比较慢或者GC比较频繁。 4.StrictModel StrictModel是Android提供的一种运行时检测机制,用来帮助开发者自动检测代码中不规范的地方。 主要和两部分相关: 1.线程相关 2.虚拟机相关 基础代码: private void initStrictMode() {// 1、设置Debug标志位,仅仅在线下环境才使用StrictModeif (DEV_MODE) {// 2、设置线程策略StrictMode.setThreadPolicy(new StrictMode.ThreadPolicy.Builder().detectCustomSlowCalls() //API等级11,使用StrictMode.noteSlowCode.detectDiskReads().detectDiskWrites().detectNetwork() // or .detectAll() for all detectable problems.penaltyLog() //在Logcat 中打印违规异常信息// .penaltyDialog() //也可以直接跳出警报dialog// .penaltyDeath() //或者直接崩溃.build());// 3、设置虚拟机策略StrictMode.setVmPolicy(new StrictMode.VmPolicy.Builder().detectLeakedSqlLiteObjects()// 给NewsItem对象的实例数量限制为1.setClassInstanceLimit(NewsItem.class, 1).detectLeakedClosableObjects() //API等级11.penaltyLog().build());} } 线上监控: 线上需要自动化的卡顿检测方案来定位卡顿,它能记录卡顿发生时的场景。 自动化监控原理: 采用拦截消息调度流程,在消息执行前埋点计时,当耗时超过阈值时,则认为是一次卡顿,会进行堆栈抓取和上报工作 首先,我们看下Looper用于执行消息循环的loop()方法,关键代码如下所示: / Run the message queue in this thread. Be sure to call {@link quit()} to end the loop./public static void loop() {...for (;;) {Message msg = queue.next(); // might blockif (msg == null) {// No message indicates that the message queue is quitting.return;// This must be in a local variable, in case a UI event sets the loggerfinal Printer logging = me.mLogging;if (logging != null) {// 1logging.println(">>>>> Dispatching to " + msg.target + " " +msg.callback + ": " + msg.what);}...try {// 2 msg.target.dispatchMessage(msg);dispatchEnd = needEndTime ? SystemClock.uptimeMillis() : 0;} finally {if (traceTag != 0) {Trace.traceEnd(traceTag);} }...if (logging != null) {// 3logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);} 在Looper的loop()方法中,在其执行每一个消息(注释2处)的前后都由logging进行了一次打印输出。可以看到,在执行消息前是输出的">>>>> Dispatching to “,在执行消息后是输出的”<<<<< Finished to ",它们打印的日志是不一样的,我们就可以由此来判断消息执行的前后时间点。 具体的实现可以归纳为如下步骤: 1、首先,我们需要使用Looper.getMainLooper().setMessageLogging()去设置我们自己的Printer实现类去打印输出logging。这样,在每个message执行的之前和之后都会调用我们设置的这个Printer实现类。 2、如果我们匹配到">>>>> Dispatching to "之后,我们就可以执行一行代码:也就是在指定的时间阈值之后,我们在子线程去执行一个任务,这个任务就是去获取当前主线程的堆栈信息以及当前的一些场景信息,比如:内存大小、电脑、网络状态等。 3、如果在指定的阈值之内匹配到了"<<<<< Finished to ",那么说明message就被执行完成了,则表明此时没有产生我们认为的卡顿效果,那我们就可以将这个子线程任务取消掉。 这里我们使用blockcanary来做测试: BlockCanary APM是一个非侵入式的性能监控组件,可以通过通知的形式弹出卡顿信息。它的原理就是我们刚刚讲述到的卡顿监控的实现原理。 使用方式: 1.导入依赖 implementation 'com.github.markzhai:blockcanary-android:1.5.0' Application的onCreate方法中开启卡顿监控 // 注意在主进程初始化调用BlockCanary.install(this, new AppBlockCanaryContext()).start(); 3.继承BlockCanaryContext类去实现自己的监控配置上下文类 public class AppBlockCanaryContext extends BlockCanaryContext {....../ 指定判定为卡顿的阈值threshold (in millis), 你可以根据不同设备的性能去指定不同的阈值 @return threshold in mills/public int provideBlockThreshold() {return 1000;}....} 4.在Activity的onCreate方法中执行一个耗时操作 try {Thread.sleep(4000);} catch (InterruptedException e) {e.printStackTrace();} 5.结果: 可以看到一个和LeakCanary一样效果的阻塞可视化堆栈图 那有了BlockCanary的方法耗时监控方式是不是就可以解百愁了呢,呵呵。有那么容易就好了 根据原理:我们拿到的是msg执行前后的时间和堆栈信息,如果msg中有几百上千个方法,就无法确认到底是哪个方法导致的耗时,也有可能是多个方法堆积导致。 这就导致我们无法准确定位哪个方法是最耗时的。如图中:堆栈信息是T2的,而发生耗时的方法可能是T1到T2中任何一个方法甚至是堆积导致。 那如何优化这块? 这里我们采用字节跳动给我们提供的一个方案:基于 Sliver trace 的卡顿监控体系 Sliver trace 整体流程图: 主要包含两个方面: 检测方案: 在监控卡顿时,首先需要打开 Sliver 的 trace 记录能力,Sliver 采样记录 trace 执行信息,对抓取到的堆栈进行 diff 聚合和缓存。 同时基于我们的需要设置相应的卡顿阈值,以 Message 的执行耗时为衡量。对主线程消息调度流程进行拦截,在消息开始分发执行时埋点,在消息执行结束时计算消息执行耗时,当消息执行耗时超过阈值,则认为产生了一次卡顿。 堆栈聚合策略: 当卡顿发生时,我们需要为此次卡顿准备数据,这部分工作是在端上子线程中完成的,主要是 dump trace 到文件以及过滤聚合要上报的堆栈。分为以下几步: 1.拿到缓存的主线程 trace 信息并 dump 到文件中。 2.然后从文件中读取 trace 信息,按照数据格式,从最近的方法栈向上追溯,找到当前 Message 包含的全部 trace 信息,并将当前 Message 的完整 trace 写入到待上传的 trace 文件中,删除其余 trace 信息。 3.遍历当前 Message trace,按照(Method 执行耗时 > Method 耗时阈值 & Method 耗时为该层堆栈中最耗时)为条件过滤出每一层函数调用堆栈的最长耗时函数,构成最后要上报的堆栈链路,这样特征堆栈中的每一步都是最耗时的,且最底层 Method 为最后的耗时大于阈值的 Method。 之后,将 trace 文件和堆栈一同上报,这样的特征堆栈提取策略保证了堆栈聚合的可靠性和准确性,保证了上报到平台后堆栈的正确合理聚合,同时提供了进一步分析问题的 trace 文件。 可以看到字节给的是一整套监控方案,和前面BlockCanary不同之处就在于,其是定时存储堆栈,缓存,然后使用diff去重的方式,并上传到服务器,可以最大限度的监控到可能发生比较耗时的方法。 开发中哪些习惯会影响卡顿的发生 1.布局太乱,层级太深。 1.1:通过减少冗余或者嵌套布局来降低视图层次结构。比如使用约束布局代替线性布局和相对布局。 1.2:用 ViewStub 替代在启动过程中不需要显示的 UI 控件。 1.3:使用自定义 View 替代复杂的 View 叠加。 2.主线程耗时操作 2.1:主线程中不要直接操作数据库,数据库的操作应该放在数据库线程中完成。 2.2:sharepreference尽量使用apply,少使用commit,可以使用MMKV框架来代替sharepreference。 2.3:网络请求回来的数据解析尽量放在子线程中,不要在主线程中进行复制的数据解析操作。 2.4:不要在activity的onResume和onCreate中进行耗时操作,比如大量的计算等。 2.5:不要在 draw 里面调用耗时函数,不能 new 对象 3.过度绘制 过度绘制是同一个像素点上被多次绘制,减少过度绘制一般减少布局背景叠加等方式,如下图所示右边是过度绘制的图片。 4.列表 RecyclerView使用优化,使用DiffUtil和notifyItemDataSetChanged进行局部更新等。 5.对象分配和回收优化 自从Android引入 ART 并且在Android 5.0上成为默认的运行时之后,对象分配和垃圾回收(GC)造成的卡顿已经显著降低了,但是由于对象分配和GC有额外的开销,它依然又可能使线程负载过重。 在一个调用不频繁的地方(比如按钮点击)分配对象是没有问题的,但如果在在一个被频繁调用的紧密的循环里,就需要避免对象分配来降低GC的压力。 减少小对象的频繁分配和回收操作。 好了,关于卡顿优化的问题就讲到这里,下篇文章会对卡顿中的ANR情况的处理,这里做个铺垫。 如果喜欢我的文章,欢迎关注我的公众号。 点击这看原文链接: 参考 Android卡顿检测及优化 一文读懂直播卡顿优化那些事儿 “终于懂了” 系列:Android屏幕刷新机制—VSync、Choreographer 全面理解! 深入探索Android卡顿优化(上) 西瓜卡顿 & ANR 优化治理及监控体系建设 5376)] 参考 Android卡顿检测及优化 一文读懂直播卡顿优化那些事儿 “终于懂了” 系列:Android屏幕刷新机制—VSync、Choreographer 全面理解! 深入探索Android卡顿优化(上) 西瓜卡顿 & ANR 优化治理及监控体系建设 本篇文章为转载内容。原文链接:https://blog.csdn.net/yuhaibing111/article/details/127682399。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-26 08:05:57
214
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
date +%Y-%m-%d - 获取当前日期(YYYY-MM
-DD格式)。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"