前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[MyBatis注解SQL映射实现]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
.net
...Service类实现了IService接口,现在我们需要在程序中使用这个服务。按照传统的做法,可能会直接在类内部实例化: csharp public class Worker { private readonly IService _service = new Service(); public void Execute() { _service.DoWork(); } } 这种方式看起来没什么问题,但实际上隐藏着巨大的隐患。比如,如果你需要替换Service为其他实现(比如MockService),你就得修改Worker类的代码。这违背了开闭原则。 于是,我们引入了依赖注入框架,比如Microsoft的Microsoft.Extensions.DependencyInjection。让我们看看如何正确配置。 --- 3. 正确配置 DI容器的正确姿势 首先,你需要注册服务。比如,在Program.cs文件中: csharp using Microsoft.Extensions.DependencyInjection; var services = new ServiceCollection(); services.AddTransient(); var serviceProvider = services.BuildServiceProvider(); 这里的关键点在于Transient这个词。它表示每次请求时都会生成一个新的实例。对了,还有别的选择呢,比如说 Scoped——在一个作用域里大家用同一个实例,挺节省资源的;再比如 Singleton——在整个应用跑着的时候大家都用一个“独苗”实例,从头到尾都不换。选择合适的生命周期很重要,否则可能会导致意想不到的行为。 接下来,我们可以通过依赖注入获取实例: csharp public class Worker { private readonly IService _service; public Worker(IService service) { _service = service; } public void Execute() { _service.DoWork(); } } 在这个例子中,Worker类不再负责创建IService的实例,而是由DI容器提供。这种解耦的方式让代码更加灵活。 --- 4. 配置错误 常见的坑 然而,现实总是比理想复杂得多。以下是一些常见的DI配置错误,以及它们可能带来的后果。 4.1 注册类型时搞错了 有时候我们会不小心把类型注册错了。比如: csharp services.AddTransient(); // 想注册MockService,却写成了Service 结果就是,无论你在代码中怎么尝试,拿到的永远是Service而不是MockService。其实这个坑挺容易被忽略的,毕竟编译器又不报错,一切都看起来风平浪静,直到程序跑起来的时候,问题才突然冒出来,啪叽一下给你整一个大 surprise! 我的建议是,尽量使用常量或者枚举来定义服务名称,这样可以减少拼写错误的风险: csharp public static class ServiceNames { public const string MockService = "MockService"; public const string RealService = "RealService"; } services.AddTransient(ServiceNames.MockService, typeof(MockService)); 4.2 生命周期设置不当 另一个常见的问题是生命周期设置错误。比如说,你要是想弄个单例服务,结果不小心把它设成了 Transient,那每次调用的时候都会新生成一个实例。这就好比你本来想让一个人负责一件事,结果每次都换个人来干,不仅效率低得让人崩溃,搞不好还会出大乱子呢! csharp // 错误示范 services.AddTransient(); // 正确示范 services.AddSingleton(); 记住,单例模式适用于那些无状态或者状态不重要的场景。嘿,想象一下,你正在用一个数据库连接池这种“有状态”的服务,要是把它搞成单例模式,那可就热闹了——多个线程或者任务同时去抢着用它,结果就是互相踩脚、搞砸事情,什么竞争条件啦、数据混乱啦,各种麻烦接踵而至。就好比大家伙儿都盯着同一个饼干罐子,都想伸手拿饼干,但谁也没个规矩,结果不是抢得太猛把罐子摔了,就是谁都拿不痛快。所以啊,这种情况下,还是别让单例当这个“独裁者”了,分清楚责任才靠谱! 4.3 忘记注册依赖 有时候,我们可能会忘记注册某些依赖项。比如: csharp public class SomeClass { private readonly IAnotherService _anotherService; public SomeClass(IAnotherService anotherService) { _anotherService = anotherService; } } 如果IAnotherService没有被注册到DI容器中,那么在运行时就会抛出异常。为了避免这种情况,你可以使用AddScoped或AddTransient来确保所有依赖都被正确注册。 --- 5. 探讨与总结 通过今天的讨论,我们可以看到,虽然依赖注入能够极大地提高代码的质量和可维护性,但它并不是万能的。设置搞错了,那可就麻烦大了,小到一个单词拼错了,大到程序跑偏、东西乱套,什么幺蛾子都可能出现。 我的建议是,在使用DI框架时要多花时间去理解和实践。不要害怕犯错,因为正是这些错误教会了我们如何更好地编写代码。同时,也要学会利用工具和日志来帮助自己排查问题。 最后,我想说的是,编程不仅仅是解决问题的过程,更是一个不断学习和成长的过程。希望大家能够在实践中找到乐趣,享受每一次成功的喜悦! 好了,今天的分享就到这里啦,如果你有任何疑问或者想法,欢迎随时留言交流哦!😄
2025-05-07 15:53:50
37
夜色朦胧
Hive
...DFS里,然后用类似SQL的语句去查询和处理这些数据,特别方便!Hive默认支持一些常见的压缩格式,比如Snappy、LZO等。哎呀,你要是想用GZIP或者BZIP2来存表,那可得小心点啊!没准Hive会直接给你整出个错误,连数据都不让你加载。这到底是咋回事儿呢?其实吧,这是因为这两种压缩方式的性格和Hive的理念不太合拍。简单来说,它们的玩法不一样,所以Hive就觉得有点不爽,干脆就不让你这么干了。 那么问题来了:既然Hive不支持它们,为什么我们还要去折腾这些“非主流”压缩格式呢?我的回答是:因为它们可能真的有用!比如,GZIP非常适合用于压缩单个文件,而BZIP2则在某些场景下能提供更高的压缩比。所以说嘛,官方案子虽然说了不让搞,但我们不妨大胆试试,看看这些玩意儿到底能整出啥名堂! --- 二、理论基础 GZIP vs BZIP2 vs Hive的“规则” 在深入讨论具体操作之前,我们得先搞清楚这三个东西之间的差异。嘿,先说个大家可能都知道的小秘密——GZIP可是个超火的压缩“神器”呢!它最大的特点就是又快又好用,压缩文件的速度嗖一下就搞定了,效果也还行,妥妥的性价比之王!而BZIP2则是另一种高级压缩算法,虽然压缩比更高,但速度相对较慢。相比之下,Hive好像更喜欢找那种“全能型选手”,就像Snappy这种,又快又能省资源,简直两全其美! 现在问题来了:既然Hive有自己的偏好,那我们为什么要挑战它的权威呢?答案很简单:现实世界中的需求往往比理想模型复杂得多。比如说啊,有时候我们有一堆小文件,东一个西一个的,看着就头疼,想把它们整整齐齐地打包成一个大文件存起来,这时候用GZIP就很方便啦!但要是你手头的数据量超级大,比如几百万张高清图片那种,而且你还特别在意压缩效果,希望能榨干每一丢丢空间,那BZIP2就更适合你了,它在这方面可是个狠角色! 当然,这一切的前提是我们能够绕过Hive对这些格式的限制。接下来,我们就来看看具体的解决方案。 --- 三、实践篇 如何让Hive接受GZIP和BZIP2? 3.1 GZIP的逆袭之路 让我们从GZIP开始说起。想象一下,你有个文件夹,专门用来存各种日志文件,里面的文件可多啦!不过呢,这些文件都特别小巧,大概就几百KB的样子,像是些小纸条,记录着各种小事。哎呀,要是直接把一堆小文件一股脑儿塞进HDFS里,那可就麻烦了!这么多小文件堆在一起,系统就会变得特别卡,整体性能直线下降,简直像路上突然挤满了慢吞吞的小汽车,堵得不行!要解决这个问题嘛,咱们可以先把文件用GZIP压缩一下,弄个小“压缩包”,然后再把它丢进Hive里头去。 下面是一段示例代码,展示了如何创建一个支持GZIP格式的外部表: sql -- 创建数据库 CREATE DATABASE IF NOT EXISTS log_db; -- 切换到数据库 USE log_db; -- 创建外部表并指定GZIP格式 CREATE EXTERNAL TABLE IF NOT EXISTS logs ( id STRING, timestamp STRING, message STRING ) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' STORED AS TEXTFILE -- 注意这里使用TEXTFILE而不是默认的SEQUENCEFILE LOCATION '/path/to/gzipped/files'; 看到这里,你可能会问:“为什么这里要用TEXTFILE而不是SEQUENCEFILE?”这是因为Hive默认不支持直接读取GZIP格式的数据,所以我们需要手动调整存储格式。此外,还需要确保你的Hadoop集群已经启用了GZIP解压功能。 3.2 BZIP2的高阶玩法 接下来轮到BZIP2登场了。相比于GZIP,BZIP2的压缩比更高,但它也有一个明显的缺点:解压速度较慢。因此,BZIP2更适合用于那些访问频率较低的大规模静态数据集。 下面这段代码展示了如何创建一个支持BZIP2格式的分区表: sql -- 创建数据库 CREATE DATABASE IF NOT EXISTS archive_db; -- 切换到数据库 USE archive_db; -- 创建分区表并指定BZIP2格式 CREATE TABLE IF NOT EXISTS archives ( file_name STRING, content STRING ) PARTITIONED BY (year INT, month INT) STORED AS RCFILE -- RCFILE支持BZIP2压缩 TBLPROPERTIES ("orc.compress"="BZIP2"); 需要注意的是,在这种情况下,你需要确保Hive的配置文件中启用了BZIP2支持,并且相关的JAR包已经正确安装。 --- 四、实战经验分享 踩过的坑与学到的东西 在这个过程中,我遇到了不少挫折。比如说吧,有次我正打算把一个GZIP文件塞进Hive里,结果系统直接给我整了个报错,说啥解码器找不着。折腾了半天才发现,哎呀,原来是服务器上那个GZIP工具的老版本太不给劲了,跟最新的Hadoop配不上,闹起了脾气!于是,我赶紧联系运维团队升级了相关依赖,这才顺利解决问题。 还有一个教训是关于文件命名规范的。一开始啊,我老是忘了在压缩完的文件后面加“.gz”或者“.bz2”这种后缀名,搞得 Hive 一脸懵逼,根本分不清文件是啥类型的,直接就报错不认账了。后来我才明白,那些后缀名可不只是个摆设啊,它们其实是给文件贴标签的,告诉你这个文件是啥玩意儿,是图片、音乐,还是什么乱七八糟的东西。 --- 五、总结与展望 总的来说,虽然Hive对GZIP和BZIP2的支持有限,但这并不意味着我们不能利用它们的优势。相反,只要掌握了正确的技巧,我们完全可以在这两者之间找到平衡点,满足不同的业务需求。 最后,我想说的是,作为一名数据工程师,我们不应该被工具的限制束缚住手脚。相反,我们应该敢于尝试新事物,勇于突破常规。毕竟,正是这种探索精神,推动着整个行业不断向前发展! 好了,今天的分享就到这里啦。如果你也有类似的经历或者想法,欢迎随时跟我交流哦~再见啦!
2025-04-19 16:20:43
45
翡翠梦境
转载文章
...置内存请求和限制,以实现资源的有效利用和成本控制。同时,文中还引用了Google Borg论文中的经典研究,揭示了大规模分布式系统内存资源调度的复杂性及其解决方案在Kubernetes设计中的体现。 对于希望进一步提升Kubernetes集群资源管理能力的用户,可以关注一些业内知名的案例研究,例如Netflix如何借助Kubernetes进行大规模服务部署时的内存优化策略。这些实战经验不仅有助于理解理论知识,还能指导读者在实际环境中运用和调整内存配置,从而最大化资源使用效率,降低运维风险。 总之,随着Kubernetes生态系统的持续发展和容器技术的日臻完善,不断跟进最新的内存管理实践与研究动态,将助力企业和开发者更好地驾驭这一强大的容器编排工具,构建高效、稳定的云原生架构。
2023-12-23 12:14:07
494
转载
转载文章
...文件上传、下载功能的实现原理及用户登录拦截器的应用后,我们可以进一步探索现代Web开发框架对于文件处理和安全验证机制的最新实践与发展动态。 近期,Spring Boot作为主流Java Web开发框架,在其最新的2.5版本中增强了对文件上传的支持,不仅简化了配置流程,还优化了大文件分块上传与断点续传等功能。例如,开发者可以利用MultipartFile接口轻松处理多部分表单提交的文件,并结合云存储服务(如阿里云OSS或AWS S3)进行分布式文件存储与管理,极大地提高了系统的稳定性和可扩展性。 同时,针对安全性问题,Spring Security框架提供了更严格的CSRF保护和JWT token验证等机制,确保用户在执行敏感操作(如文件上传与下载)时的身份合法性。此外,OAuth 2.0授权协议在企业级应用中的普及,使得跨系统、跨平台的用户身份验证与授权更为便捷且安全。 另外,随着前端技术的发展,诸如React、Vue.js等现代前端框架也实现了对文件上传组件的高度封装,配合后端API能够提供无缝的用户体验。例如,通过axios库在前端发起multipart/form-data类型的POST请求,配合后端的RESTful API完成文件上传过程,而后再通过响应式编程实现文件上传状态的实时反馈。 综上所述,随着技术的演进,无论是后端框架还是前端技术,都在不断提升文件上传下载功能的安全性、易用性和性能表现。在实际项目开发中,除了掌握基础的文件处理方法外,还需关注行业前沿趋势,灵活运用新技术手段以满足不断变化的业务需求。
2023-11-12 20:53:42
140
转载
Apache Lucene
...涵盖了理论解释与代码实现,还穿插了人类在面对技术难题时的思考与探讨,旨在提供一种更加贴近实际应用、充满情感与主观色彩的技术解读方式。
2024-07-25 00:52:37
391
青山绿水
Hadoop
...policy参数来实现。 --- 5. 总结与展望 通过今天的讨论,我们了解了Hadoop是如何通过HDFS实现文件的跨硬件复制的。虽然这个功能看似简单,但它背后蕴含着复杂的设计理念和技术细节。正是这些设计,才使得Hadoop成为了一个强大的大数据处理工具。 最后,我想说的是,学习新技术的过程就像探险一样,充满了未知和挑战。嘿,谁还没遇到过点麻烦事儿呢?有时候一头雾水,感觉前路茫茫,但这不正是探索的开始嘛!别急着放弃,熬过去你会发现,那些让人头疼的问题其实藏着不少小惊喜,等你拨开云雾时,成就感绝对让你觉得值了!希望这篇文章能给你带来一些启发,也希望你能亲自尝试一下Hadoop的实际操作,感受一下它的魅力! 好了,今天的分享就到这里啦!如果你有任何疑问或者想法,欢迎随时留言交流。让我们一起探索更多有趣的技术吧!
2025-03-26 16:15:40
97
冬日暖阳
转载文章
...他类或模块可以继承或实现一个密封类或接口,这种特性在编译阶段会生成更为精确的符号引用,有助于增强类型安全性和提升性能。 同时,随着JIT即时编译器的发展,如GraalVM项目,其先进的动态编译技术能更高效地将字节码转换为机器码,使得Java应用程序执行效率大幅提升。对于Class文件内部结构的理解,有助于我们更好地利用这些新特性和工具进行优化配置。 此外,随着微服务、容器化和云原生架构的普及,Class文件在服务启动速度和资源占用上的优化也显得尤为重要。例如,通过提前解析和验证Class文件以减少运行时开销,或者采用Ahead-of-Time(AOT)编译技术将部分Class文件直接编译成本地代码,从而提升系统启动速度和降低内存使用。 另外,对于安全领域,深入理解Class文件结构有助于分析恶意字节码攻击手段,以及如何通过虚拟机层面的安全防护措施来避免有害类文件的加载执行。例如,最新的Java版本不断强化类加载验证机制,防止非法或恶意篡改的Class文件危害系统安全。 综上所述,随着Java技术栈的持续演进,Class文件这一基础而又关键的概念,在实际开发和运维过程中仍具有极高的研究价值和实战意义,值得开发者们密切关注和深入探索。
2024-01-09 17:46:36
645
转载
NodeJS
...木有? 但问题是,要实现这种功能并不简单。想象一下,以前我们用老式的网页加载方式,就像打电话问朋友“嘿,有啥新鲜事儿没?”然后挂掉电话等对方回拨告诉你答案。问题是,如果你想知道最新消息,就得一直重复这个过程——不停地挂电话再拨号,也就是不停刷新页面,才能看到有没有新东西蹦出来。这显然不是最优解。而 WebSocket 就不一样了,它是一种全双工通信协议,可以让客户端和服务端随时互相推送消息,简直是实时应用的最佳拍档! 说到 Node.js,它天生就擅长处理异步事件流,再加上强大的生态系统(比如 Express、Socket.IO 等),简直就是为实时应用量身定制的工具。所以,今天我们就用 Node.js + WebSocket 来做一个简单的实时监控面板,顺便分享一下我的一些心得。 --- 2. 第一步 搭建基础环境 首先,我们需要准备开发环境。Node.js 的安装非常简单,去官网下载对应版本就行。安装完后,用 node -v 和 npm -v 验证是否成功。如果这两个命令都能正常输出版本号,那就说明环境配置好了。 接下来,我们创建项目文件夹,并初始化 npm: bash mkdir real-time-monitor cd real-time-monitor npm init -y 然后安装必要的依赖包。这里我们用到两个核心库:Express 和 ws(WebSocket 库)。Express 是用来搭建 HTTP 服务的,ws 则专门用于 WebSocket 通信。 bash npm install express ws 接下来,我们写一个最基础的 HTTP 服务,确保环境能正常工作: javascript // server.js const express = require('express'); const app = express(); app.get('/', (req, res) => { res.send('Hello World!'); }); const PORT = process.env.PORT || 3000; app.listen(PORT, () => { console.log(Server is running on port ${PORT}); }); 保存文件后运行 node server.js,然后在浏览器输入 http://localhost:3000,应该能看到 “Hello World!”。到这里,我们的基本框架已经搭好了,是不是感觉还挺容易的? --- 3. 第二步 引入 WebSocket 现在我们有了一个 HTTP 服务,接下来该让 WebSocket 上场了。WebSocket 的好处就是能在浏览器和服务器之间直接搭起一条“高速公路”,不用老是像发短信那样频繁地丢 HTTP 请求过去,省时又高效!为了方便,我们可以直接用 ws 库来实现。 修改 server.js 文件,添加 WebSocket 相关代码: javascript // server.js const express = require('express'); const WebSocket = require('ws'); const app = express(); const wss = new WebSocket.Server({ port: 8080 }); wss.on('connection', (ws) => { console.log('A client connected!'); // 接收来自客户端的消息 ws.on('message', (message) => { console.log(Received message => ${message}); ws.send(You said: ${message}); }); // 当客户端断开时触发 ws.on('close', () => { console.log('Client disconnected.'); }); }); app.get('/', (req, res) => { res.sendFile(__dirname + '/index.html'); }); const PORT = process.env.PORT || 3000; app.listen(PORT, () => { console.log(HTTP Server is running on port ${PORT}); }); 这段代码做了几件事: 1. 创建了一个 WebSocket 服务器,监听端口 8080。 2. 当客户端连接时,打印日志并等待消息。 3. 收到消息后,会回传给客户端。 4. 如果客户端断开连接,也会记录日志。 为了让浏览器能连接到 WebSocket 服务器,我们还需要一个简单的 HTML 页面作为客户端入口: html Real-Time Monitor WebSocket Test Send Message 这段 HTML 代码包含了一个简单的聊天界面,用户可以在输入框中输入内容并通过 WebSocket 发送到服务器,同时也能接收到服务器返回的信息。跑完 node server.js 之后,别忘了打开浏览器,去 http://localhost:3000 看一眼,看看它是不是能正常转起来。 --- 4. 第三步 扩展功能——实时监控数据 现在我们的 WebSocket 已经可以正常工作了,但还不能算是一个真正的监控面板。为了让它更实用一点,咱们不妨假装弄点监控数据玩玩,像CPU用得多不多、内存占了百分之多少之类的。 首先,我们需要一个生成随机监控数据的函数: javascript function generateRandomMetrics() { return { cpuUsage: Math.random() 100, memoryUsage: Math.random() 100, diskUsage: Math.random() 100 }; } 然后,在 WebSocket 连接中定时向客户端推送这些数据: javascript wss.on('connection', (ws) => { console.log('A client connected!'); setInterval(() => { const metrics = generateRandomMetrics(); ws.send(JSON.stringify(metrics)); }, 1000); // 每秒发送一次 ws.on('close', () => { console.log('Client disconnected.'); }); }); 客户端需要解析接收到的数据,并动态更新页面上的信息。我们可以稍微改造一下 HTML 和 JavaScript: html CPU Usage: Memory Usage: Disk Usage: javascript socket.onmessage = (event) => { const metrics = JSON.parse(event.data); document.getElementById('cpuProgress').value = metrics.cpuUsage; document.getElementById('memoryProgress').value = metrics.memoryUsage; document.getElementById('diskProgress').value = metrics.diskUsage; const messagesDiv = document.getElementById('messages'); messagesDiv.innerHTML += Metrics updated. ; }; 这样,每秒钟都会从服务器获取一次监控数据,并在页面上以进度条的形式展示出来。是不是很酷? --- 5. 结尾 总结与展望 通过这篇文章,我们从零开始搭建了一个基于 Node.js 和 WebSocket 的实时监控面板。别看它现在功能挺朴素的,但这东西一出手就让人觉得,WebSocket 在实时互动这块儿真的大有可为啊!嘿,听我说!以后啊,你完全可以接着把这个项目捯饬得更酷一些。比如说,弄点新鲜玩意儿当监控指标,让用户用起来更爽,或者直接把它整到真正的生产环境里去,让它发挥大作用! 其实开发的过程就像拼图一样,有时候你会遇到困难,但只要一点点尝试和调整,总会找到答案。希望这篇文章能给你带来灵感,也欢迎你在评论区分享你的想法和经验! 最后,如果你觉得这篇文章对你有帮助,记得点个赞哦!😄 --- 完
2025-05-06 16:24:48
68
清风徐来
转载文章
... ntpdate命令实现 ntpdate 安装: yum install ntpdate -y Centos系统======================================sudo apt install ntpdate Ubuntu系统 时间同步 sudo ntpdate -u cn.pool.ntp.org18 Mar 18:25:22 ntpdate[18673]: adjust time server 84.16.73.33 offset 0.015941 sec 使用ntpdate 只是强制将系统时间设置为ntp服务器时间,如果cpu tick有问题,时间还是会不准。所以,一般配合cron命令,来进行定期同步设置。比如,在crontab中添加: sudo crontab -e0 12 /usr/sbin/ntpdate 192.168.10.110 上述命令的意思是:每天的12点整,从192.168.10.110 ntp服务器同步一次时间(前提是 192.168.10.110有ntp服务)。 2.2 Ntp客户端代码实现 本质上还是创建socket连接去获取ntp服务的时间与本地时间比较,不一致修改本机时间即可。 NtpClient.h //// Created by lwang on 2023-03-18.//ifndef NTP_CLIENT_Hdefine NTP_CLIENT_Hinclude <stdio.h>include <stdlib.h>include <string.h>include <time.h>include <iostream>include <unistd.h>include <sys/select.h>include <sys/time.h>include <sys/socket.h>include <arpa/inet.h>include <netdb.h>include <errno.h>include <endian.h>include <map>include <string>include <mutex>using namespace std;define NTP_LI 0define NTP_VERSION_NUM 3define NTP_MODE_CLIENT 3define NTP_MODE_SERVER 4define NTP_STRATUM 0define NTP_POLL 4define NTP_PRECISION -6define NTP_MIN_LEN 48define NTP_SERVER_PORT 123define NTP_SERVER_ADDR "119.28.183.184"define TIMEOUT 2define BUFSIZE 1500define JAN_1970 0x83aa7e80define NTP_CONV_FRAC32(x) (uint64_t)((x) ((uint64_t)1 << 32))define NTP_REVE_FRAC32(x) ((double)((double)(x) / ((uint64_t)1 << 32)))define NTP_CONV_FRAC16(x) (uint32_t)((x) ((uint32_t)1 << 16))define NTP_REVE_FRAC16(x) ((double)((double)(x) / ((uint32_t)1 << 16)))define USEC2FRAC(x) ((uint32_t)NTP_CONV_FRAC32((x) / 1000000.0))define FRAC2USEC(x) ((uint32_t)NTP_REVE_FRAC32((x)1000000.0))define NTP_LFIXED2DOUBLE(x) ((double)(ntohl(((struct l_fixedpt )(x))->intpart) - JAN_1970 + FRAC2USEC(ntohl(((struct l_fixedpt )(x))->fracpart)) / 1000000.0))struct s_fixedpt{uint16_t intpart;uint16_t fracpart;};struct l_fixedpt{uint32_t intpart;uint32_t fracpart;};struct ntphdr{if __BYTE_ORDER == __BID_ENDIANunsigned int ntp_li : 2;unsigned int ntp_vn : 3;unsigned int ntp_mode : 3;endifif __BYTE_ORDER == __LITTLE_ENDIANunsigned int ntp_mode : 3;unsigned int ntp_vn : 3;unsigned int ntp_li : 2;endifuint8_t ntp_stratum;uint8_t ntp_poll;int8_t ntp_precision;struct s_fixedpt ntp_rtdelay;struct s_fixedpt ntp_rtdispersion;uint32_t ntp_refid;struct l_fixedpt ntp_refts;struct l_fixedpt ntp_orits;struct l_fixedpt ntp_recvts;struct l_fixedpt ntp_transts;};class NtpClient {public:NtpClient();virtual ~NtpClient();void GetNtpTime(std::string &ntpTime);in_addr_t HostTransfer(const char host);int PaddingNtpPackage(void buf, size_t size);double GetOffset(const struct ntphdr ntp, const struct timeval recvtv);private:int m_sockfd;};endif / NTP_CLIENT_H / NtpClient.cpp //// Created by lwang on 2023-03-18.//include "NtpClient.h"NtpClient::NtpClient() { }NtpClient::~NtpClient() {}in_addr_t NtpClient::HostTransfer(const char host){in_addr_t saddr;struct hostent hostent;if ((saddr = inet_addr(host)) == INADDR_NONE){if ((hostent = gethostbyname(host)) == NULL){return INADDR_NONE;}memmove(&saddr, hostent->h_addr, hostent->h_length);}return saddr;}int NtpClient::PaddingNtpPackage(void buf, size_t size) // 构建并发送NTP请求报文{if (!size)return -1;struct ntphdr ntp;struct timeval tv;memset(buf, 0, BUFSIZE);ntp = (struct ntphdr )buf;ntp->ntp_li = NTP_LI;ntp->ntp_vn = NTP_VERSION_NUM;ntp->ntp_mode = NTP_MODE_CLIENT;ntp->ntp_stratum = NTP_STRATUM;ntp->ntp_poll = NTP_POLL;ntp->ntp_precision = NTP_PRECISION;gettimeofday(&tv, NULL); // 把目前的时间用tv 结构体返回ntp->ntp_transts.intpart = htonl(tv.tv_sec + JAN_1970);ntp->ntp_transts.fracpart = htonl(USEC2FRAC(tv.tv_usec));size = NTP_MIN_LEN;return 0;}double NtpClient::GetOffset(const struct ntphdr ntp, const struct timeval recvtv) // 偏移量{double t1, t2, t3, t4;t1 = NTP_LFIXED2DOUBLE(&ntp->ntp_orits);t2 = NTP_LFIXED2DOUBLE(&ntp->ntp_recvts);t3 = NTP_LFIXED2DOUBLE(&ntp->ntp_transts);t4 = recvtv->tv_sec + recvtv->tv_usec / 1000000.0;return ((t2 - t1) + (t3 - t4)) / 2;}void NtpClient::GetNtpTime(std::string &ntpTime){char buffer[64] = {0};char cmd[128] = {0};tm local;char buf[BUFSIZE];size_t nbytes;int maxfd1;struct sockaddr_in servaddr;fd_set readfds;struct timeval timeout, recvtv, tv;double offset;servaddr.sin_family = AF_INET;servaddr.sin_port = htons(NTP_SERVER_PORT);servaddr.sin_addr.s_addr = HostTransfer(NTP_SERVER_ADDR);if ((m_sockfd = socket(AF_INET, SOCK_DGRAM, 0)) < 0){perror("socket error");return ;}if (connect(m_sockfd, (struct sockaddr )&servaddr, sizeof(struct sockaddr)) != 0){perror("connect error");return ;}nbytes = BUFSIZE;if (PaddingNtpPackage(buf, &nbytes) != 0){fprintf(stderr, "construct ntp request error \n");exit(-1);}send(m_sockfd, buf, nbytes, 0);FD_ZERO(&readfds);FD_SET(m_sockfd, &readfds);maxfd1 = m_sockfd + 1;timeout.tv_sec = TIMEOUT;timeout.tv_usec = 0;if (select(maxfd1, &readfds, NULL, NULL, &timeout) > 0){if (FD_ISSET(m_sockfd, &readfds)){if ((nbytes = recv(m_sockfd, buf, BUFSIZE, 0)) < 0){perror("recv error");exit(-1);}// 计算C/S时间偏移量gettimeofday(&recvtv, NULL);offset = GetOffset((struct ntphdr )buf, &recvtv);gettimeofday(&tv, NULL);tv.tv_sec += (int)offset;tv.tv_usec += offset - (int)offset;local = localtime((time_t )&tv.tv_sec);strftime(buffer, 64, "%Y-%m-%d %H:%M:%S", local);ntpTime = std::string(buffer);} }return ;} main.cpp include "NtpClient.h"int main(){std::string ntpTime = "";char curBuf[64] = {0};struct timeval cur;tm local;NtpClient client;client.GetNtpTime(ntpTime);cout << "ntpTime: " << ntpTime << endl;gettimeofday(&cur, NULL);local = localtime((time_t )&cur.tv_sec);strftime(curBuf, 64, "%Y-%m-%d %H:%M:%S", local);std::string curTime = std::string(curBuf);cout << "curTime: " << curTime << endl;if (curTime != ntpTime){cout << "start time calibrate!" << endl;std::string cmd = "sudo date -s \"" + ntpTime + "\"";system(cmd.c_str());cout << "cmd: " << cmd << endl;}else{cout << "time seem" << endl;}return 0;} 推荐一个零声学院免费教程,个人觉得老师讲得不错, 分享给大家:[Linux,Nginx,ZeroMQ,MySQL,Redis, fastdfs,MongoDB,ZK,流媒体,CDN,P2P,K8S,Docker, TCP/IP,协程,DPDK等技术内容,点击立即学习: 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_46935110/article/details/129683157。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-01 12:56:47
112
转载
转载文章
...随机推荐 【转】MySQL索引背后的数据结构及算法原理 摘要 本文以MySQL数据库为研究对象,讨论与数据库索引相关的一些话题.特别需要说明的是,MySQL支持诸多存储引擎,而各种存储引擎对索引的支持也各不相同,因此MySQL数据库支持多种索引类型,如BT ... IIS7 / IIS7.5 URL 重写 HTTP 重定向到 HTTPS(转) 转自: http://www.cnblogs.com/yipu/p/3880518.html 1.购买SSL证书,参考:http://www.cnblogs.com/yipu/p/3722135. ... OpenGL的glViewPort窗口设置函数实现分屏 之前实现过全景图片查看(OpenGL的几何变换3之内观察全景图),那么我们需要进行分屏该如何实现呢?如下图: 没错就是以前提过的glViewPort函数,废话不多说了,我直接上代码: //从这里开始进 ... hdu 4764 Stone (巴什博弈,披着狼皮的羊,小样,以为换了身皮就不认识啦) 今天(2013/9/28)长春站,最后一场网络赛! 3~5分钟后有队伍率先发现伪装了的签到题(博弈) 思路: 与取石头的巴什博弈对比 题目要求第一个人取数字在[1,k]间的某数x,后手取x加[1,k] ... android报表图形引擎(AChartEngine)demo解析与源码 AchartEngine支持多种图表样式,本文介绍两种:线状表和柱状表. AchartEngine有两种启动的方式:一种是通过ChartFactory.getView()方式来直接获取到view ... CSS长度单位及区别 em ex px pt in 1. css相对长度单位 Ø em 元素的字体高度 Ø ex 字体x的高度 Ø px ... es6的箭头函数 1.使用语法 : 参数 => 函数语句; 分为以下几种形式 : (1) ()=>语句 ( )=> statement 这是一种简写方法省略了花括号和return 相当于 ()=&g ... pdfplumber库解析pdf格式 参考地址:https://github.com/jsvine/pdfplumber 简单的pdf转换文本: import pdfplumber with pdfplumber.open(path) a ... KMP替代算法——字符串Hash 很久以前写的... 今天来谈谈一种用来替代KMP算法的奇葩算法--字符串Hash 例题:给你两个字符串p和s,求出p在s中出现的次数.(字符串长度小于等于1000000) 字符串的Hash 根据字面意 ... SSM_CRUD新手练习(5)测试mapper 上一篇我们使用逆向工程生成了所需要的bean.dao和对应的mapper.xml文件,并且修改好了我们需要的数据库查询方法. 现在我们来测试一下DAO层,在test包下新建一个MapperTest.j ... 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_35666639/article/details/118169985。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-16 11:42:34
252
转载
转载文章
...ive-C的嫌疑),实现对同一块内存可以有多个引用,在最后一个引用被释放时,指向的内存才释放,这也是和unique_ptr最大的区别。 另外,使用shared_ptr过程中有几点需要注意: 构造shared_ptr的方法,如下示例代码所示,我们尽量使用shared_ptr构造函数或者make_shared的方式创建shared_ptr,禁止使用裸指针赋值的方式,这样会shared_ptr难于管理指针的生命周期。 // 使用裸指针赋值构造,不推荐,裸指针被释放后,shared_ptr就野了,不能完全控制裸指针的生命周期,失去了智能指针价值int p = new int(10);shared_ptr<int>sp = p;delete p; // sp将成为野指针,使用sp将crash// 将裸指针作为匿名指针传入构造函数,一般做法,让shared_ptr接管裸指针的生命周期,更安全shared_ptr<int>sp1(new int(10));// 使用make_shared,推荐做法,更符合工厂模式,可以连代码中的所有new,更高效;方法的参数是用来初始化模板类shared_ptr<int>sp2 = make_shared<int>(10); 禁止使用指向shared_ptr的裸指针,也就是智能指针的指针,这听起来就很奇怪,但开发中我们还需要注意,使用shared_ptr的指针指向一个shared_ptr时,引用计数并不会加一,操作shared_ptr的指针很容易就发生野指针异常。 shared_ptr<int>sp = make_shared<int>(10);cout << sp.use_count() << endl; //输出1shared_ptr<int> sp1 = &sp;cout << (sp1).use_count() << endl; //输出依然是1(sp1).reset(); //sp成为野指针cout << sp << endl; //crash 使用shared_ptr创建动态数组,在介绍unique_ptr时我们就讲过创建动态数组,而shared_ptr同样可以做到,不过稍微复杂一点,如下代码所示,除了要显示指定析构方法外(因为默认是T的析构函数,不是T[]),另外对外的数据类型依然是shared_ptr<T>,非常有迷惑性,看不出来是数组,最后不能直接使用下标读写数组,要先get()获取裸指针才可以使用下标。所以,不推荐使用shared_ptr来创建动态数组,尽量使用unique_ptr,这可是unique_ptr为数不多的优势了。 template <typename T>shared_ptr<T> make_shared_array(size_t size) {return shared_ptr<T>(new T[size], default_delete<T[]>());}shared_ptr<int>sp = make_shared_array(10); //看上去是shared<int>类型,实际上是数组sp.get()[0] = 100; //不能直接使用下标读写数组元素,需要通过get()方法获取裸指针后再操作 用shared_ptr实现多态,在我们使用裸指针时,实现多态就免不了定义虚函数,那么用shared_ptr时也不例外,不过有一处是可以省下的,就是析构函数我们不需要定义为虚函数了,如下面代码所示: class A {public:~A() {cout << "dealloc A" << endl;} };class B : public A {public:~B() {cout << "dealloc B" << endl;} };int main(int argc, const char argv[]) {A a = new B();delete a; //只打印dealloc Ashared_ptr<A>spa = make_shared<B>(); //析构spa是会先打印dealloc B,再打印dealloc Areturn 0;} 循环引用,笔者最先接触引用计数的语言就是Objective-C,而OC中最常出现的内存问题就是循环引用,如下面代码所示,A中引用B,B中引用A,spa和spb的强引用计数永远大于等于1,所以直到程序退出前都不会被退出,这种情况有时候在正常的业务逻辑中是不可避免的,而解决循环引用的方法最有效就是改用weak_ptr,具体可见下一章。 class A {public:shared_ptr<B> b;};class B {public:shared_ptr<A> a;};int main(int argc, const char argv[]) {shared_ptr<A> spa = make_shared<A>();shared_ptr<B> spb = make_shared<B>();spa->b = spb;spb->a = spa;return 0;} //main函数退出后,spa和spb强引用计数依然为1,无法释放 刚柔并济:weak_ptr 正如上一章提到,使用shared_ptr过程中有可能会出现循环引用,关键原因是使用shared_ptr引用一个指针时会导致强引用计数+1,从此该指针的生命周期就会取决于该shared_ptr的生命周期,然而,有些情况我们一个类A里面只是想引用一下另外一个类B的对象,类B对象的创建不在类A,因此类A也无需管理类B对象的释放,这个时候weak_ptr就应运而生了,使用shared_ptr赋值给一个weak_ptr不会增加强引用计数(strong_count),取而代之的是增加一个弱引用计数(weak_count),而弱引用计数不会影响到指针的生命周期,这就解开了循环引用,上一章最后的代码使用weak_ptr可改造为如下代码。 class A {public:shared_ptr<B> b;};class B {public:weak_ptr<A> a;};int main(int argc, const char argv[]) {shared_ptr<A> spa = make_shared<A>();shared_ptr<B> spb = make_shared<B>();spa->b = spb; //spb强引用计数为2,弱引用计数为1spb->a = spa; //spa强引用计数为1,弱引用计数为2return 0;} //main函数退出后,spa先释放,spb再释放,循环解开了使用weak_ptr也有需要注意的点,因为既然weak_ptr不负责裸指针的生命周期,那么weak_ptr也无法直接操作裸指针,我们需要先转化为shared_ptr,这就和OC的Strong-Weak Dance有点像了,具体操作如下:shared_ptr<int> spa = make_shared<int>(10);weak_ptr<int> spb = spa; //weak_ptr无法直接使用裸指针创建if (!spb.expired()) { //weak_ptr最好判断是否过期,使用expired或use_count方法,前者更快spb.lock() += 10; //调用weak_ptr转化为shared_ptr后再操作裸指针}cout << spa << endl; //20 智能指针原理 看到这里,智能指针的用法基本介绍完了,后面笔者来粗浅地分析一下为什么智能指针可以有效帮我们管理裸指针的生命周期。 使用栈对象管理堆对象 在C++中,内存会分为三部分,堆、栈和静态存储区,静态存储区会存放全局变量和静态变量,在程序加载时就初始化,而堆是由程序员自行分配,自行释放的,例如我们使用裸指针分配的内存;而最后栈是系统帮我们分配的,所以也会帮我们自动回收。因此,智能指针就是利用这一性质,通过一个栈上的对象(shared_ptr或unique_ptr)来管理一个堆上的对象(裸指针),在shared_ptr或unique_ptr的析构函数中判断当前裸指针的引用计数情况来决定是否释放裸指针。 shared_ptr引用计数的原理 一开始笔者以为引用计数是放在shared_ptr这个模板类中,但是细想了一下,如果这样将shared_ptr赋值给另一个shared_ptr时,是怎么做到两个shared_ptr的引用计数同时加1呢,让等号两边的shared_ptr中的引用计数同时加1?不对,如果还有第二个shared_ptr再赋值给第三个shared_ptr那怎么办呢?或许通过下面的类图便清楚个中奥秘。 [ boost中shared_ptr与weak_ptr类图 ] 我们重点关注shared_ptr<T>的类图,它就是我们可以直接操作的类,这里面包含裸指针T,还有一个shared_count的对象,而shared_count对象还不是最终的引用计数,它只是包含了一个指向sp_counted_base的指针,这应该就是真正存放引用计数的地方,包括强应用计数和弱引用计数,而且shared_count中包含的是sp_counted_base的指针,不是对象,这也就意味着假如shared_ptr<T> a = b,那么a和b底层pi_指针指向的是同一个sp_counted_base对象,这就很容易做到多个shared_ptr的引用计数永远保持一致了。 多线程安全 本章所说的线程安全有两种情况: 多个线程操作多个不同的shared_ptr对象 C++11中声明了shared_ptr的计数操作具有原子性,不管是赋值导致计数增加还是释放导致计数减少,都是原子性的,这个可以参考sp_counted_base的源码,因此,基于这个特性,假如有多个shared_ptr共同管理一个裸指针,那么多个线程分别通过不同的shared_ptr进行操作是线程安全的。 多个线程操作同一个shared_ptr对象 同样的道理,既然C++11只负责sp_counted_base的原子性,那么shared_ptr本身就没有保证线程安全了,加入两个线程同时访问同一个shared_ptr对象,一个进行释放(reset),另一个读取裸指针的值,那么最后的结果就不确定了,很有可能发生野指针访问crash。 作者:腾讯技术工程 https://mp.weixin.qq.com/s?__biz=MjM5ODYwMjI2MA==&mid=2649743462&idx=1&sn=c9d94ddc25449c6a0052dc48392a33c2&utm_source=tuicool&utm_medium=referralmp.weixin.qq.com 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_31467557/article/details/113049179。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-24 18:25:46
141
转载
Hadoop
...在保障数据安全的同时实现高效的数据处理成为了一个重要课题。为此,许多公司正在探索基于零知识证明等加密技术的新一代分布式存储方案,这或许会为未来的HDFS发展提供新的方向。 此外,国内多家互联网巨头也在积极布局自研的大规模分布式文件系统。比如阿里巴巴集团推出的飞天平台就整合了多种先进的存储技术,旨在为企业提供更加灵活、可靠的存储服务。这类本土化创新不仅满足了国内市场日益增长的需求,也为国际同行树立了标杆。 值得注意的是,尽管技术进步带来了诸多便利,但我们也必须警惕随之而来的潜在风险。例如,过度依赖第三方云服务商可能导致数据主权问题;而复杂系统的引入则可能增加管理难度。因此,在享受技术创新红利的同时,企业和开发者还需审慎评估自身的安全策略和技术选型。 总之,随着技术的不断发展,HDFS及其相关生态正经历着深刻的变革。未来,我们期待看到更多创新性的解决方案涌现出来,助力各行各业更好地应对数字化转型带来的挑战。
2025-05-04 16:24:39
102
月影清风
Netty
Netty如何实现故障恢复? 一、背景与初衷 嘿,各位搞技术的小伙伴们!今天咱们聊聊一个超级重要的东西——Netty。如果你正在做网络编程或者分布式系统开发,那一定绕不开它。Netty作为一个高性能、异步事件驱动的Java网络应用框架,简直是程序员的福音。话说回来,再厉害的工具也不是全能的啊,在那种超高并发、必须稳如老狗的场景里,总免不了会出点幺蛾子。今天咱们就来聊聊Netty是如何帮我们实现故障恢复的。 说到故障恢复,其实很多人可能会觉得这是个很玄乎的事情。但其实,Netty在这方面做得相当出色。它的设计思路非常人性化,既考虑了性能,也兼顾了稳定性。咱们可以从以下几个方面入手,看看它是怎么做到的。 --- 二、为什么需要故障恢复? 首先,咱们得明白一个问题:为什么我们需要故障恢复?在现实世界中,网络环境复杂多变,服务器宕机、网络抖动、数据丢失等情况随时随地可能发生。如果我们的程序没有应对这些问题的能力,那后果简直不堪设想! 想象一下,你正在做一个在线支付系统,用户刚输入完支付信息,结果服务器突然挂了,这笔交易失败了。哎呀,这要是让用户碰上了,那可真是抓狂了!所以啊,咱们得想点办法,给系统加点“容错”的本事,不然出了问题用户可就懵圈了。说白了,故障恢复不就是干这个的嘛,就是为了不让小问题变成大麻烦! Netty在这方面做得非常到位。它有一套挺管用的招数,就算网络突然“捣乱”或者出问题了,也能尽量把损失降到最低,然后赶紧恢复到正常状态,一点儿都不耽误事儿。接下来,咱们就一步步拆解这些机制。 --- 三、Netty的故障恢复机制 3.1 异常处理与重试机制 首先,咱们来看看Netty最基础的故障恢复手段:异常处理与重试机制。 Netty提供了一种优雅的方式来处理异常。好比说呗,当客户端和服务器之间的连接突然“闹别扭”了,Netty就会立刻反应过来,自动给我们发个提醒,就像是“叮咚!出问题啦!”这样,咱们就能赶紧去处理这个小麻烦了。具体代码如下: java // 定义一个ChannelFutureListener,用于监听连接状态 ChannelFuture future = channel.connect(remoteAddress); future.addListener((ChannelFutureListener) futureListen -> { if (!futureListen.isSuccess()) { System.out.println("连接失败,尝试重新连接..."); // 这里可以加入重试逻辑 scheduleRetry(); } }); 在这段代码中,我们通过addListener为连接操作添加了一个监听器。如果连接失败,我们会打印一条日志并调用scheduleRetry()方法。这个办法啊,特别适合用来搞那种简单的重试操作,比如说隔一会儿就再试试重新连上啥的,挺实用的! 当然啦,实际项目中可能需要更复杂的重试策略,比如指数退避算法。不过Netty已经为我们提供了足够的灵活性,剩下的就是根据需求去实现啦! --- 3.2 零拷贝技术与内存管理 接下来,咱们聊聊另一个关键点:零拷贝技术与内存管理。 在高并发场景下,频繁的数据传输会导致内存占用飙升,进而引发GC(垃圾回收)风暴。Netty通过零拷贝技术很好地解决了这个问题。简单说呢,零拷贝技术就像是给数据开了一条“直达通道”,不用再把数据倒来倒去地复制一遍,就能让它直接从这儿跑到那儿。 举个例子,假设我们要将文件内容发送给远程客户端,传统的做法是先将文件读取到内存中,然后再逐字节写入Socket输出流。这样不仅效率低下,还会浪费大量内存资源。Netty 这家伙可聪明了,它能用 FileRegion 类直接把文件塞进 Socket 通道里,这样就省得在内存里来回倒腾数据啦,效率蹭蹭往上涨! java // 使用FileRegion发送文件 FileInputStream fileInputStream = new FileInputStream(new File("data.txt")); FileRegion region = new DefaultFileRegion(fileInputStream.getChannel(), 0, fileSize); channel.writeAndFlush(region); 在这段代码中,我们利用DefaultFileRegion将文件内容直接传递给了Netty的通道,大大提升了传输效率。 --- 3.3 长连接复用与心跳检测 第三个重要的机制是长连接复用与心跳检测。 在高并发环境下,频繁创建和销毁TCP连接的成本是非常高的。所以啊,Netty这个家伙超级聪明,它能让一个TCP连接反复用,不用每次都重新建立新的连接。这就像是你跟朋友煲电话粥,不用每次说完一句话就挂断重拨,直接接着聊就行啦,省心又省资源! 与此同时,为了防止连接因为长时间闲置而失效,Netty还引入了心跳检测机制。简单说吧,就像你隔一会儿给对方发个“我还在线”的消息,就为了确认你们的联系没断就行啦! java // 设置心跳检测参数 Bootstrap bootstrap = new Bootstrap(); bootstrap.option(ChannelOption.SO_KEEPALIVE, true); // 开启TCP保活功能 bootstrap.option(ChannelOption.CONNECT_TIMEOUT_MILLIS, 5000); // 设置连接超时时间 在这里,我们通过设置SO_KEEPALIVE选项开启了TCP保活功能,并设置了最长的连接等待时间为5秒。这样一来,即使网络出现短暂中断,Netty也会自动尝试恢复连接。 --- 3.4 数据缓冲与批量处理 最后一个要点是数据缓冲与批量处理。 在网络通信过程中,数据的大小和频率往往不可控。要是每次传来的数据都一点点的,那老是去处理这些小碎数据,就会多花不少功夫啦。Netty通过内置的缓冲区(Buffer)解决了这个问题。 例如,我们可以使用ByteBuf来存储和处理接收到的数据。ByteBuf就像是内存管理界的“万金油”,不仅能够灵活地伸缩大小,还能轻松应对各种编码需求,简直是程序员手里的瑞士军刀! java // 创建一个ByteBuf实例 ByteBuf buffer = Unpooled.buffer(1024); buffer.writeBytes(data); // 处理数据 while (buffer.readableBytes() > 0) { byte b = buffer.readByte(); process(b); } 在这段代码中,我们首先创建了一个容量为1024字节的缓冲区,然后将接收到的数据写入其中。接着,我们通过循环逐个读取并处理缓冲区中的数据。这种方式不仅可以提高处理效率,还能更好地应对突发流量。 --- 四、总结与展望 好了,朋友们,今天的分享就到这里啦!通过上面的内容,相信大家对Netty的故障恢复机制有了更深的理解。不管是应对各种意外情况的异常处理,还是能让数据传输更高效的零拷贝技术,又或者是能重复利用长连接和设置数据缓冲这些招数,Netty可真是个实力派选手啊! 不过,技术的世界永远没有尽头。Netty虽然已经足够优秀,但在某些特殊场景下仍可能存在局限性。未来的日子啊,我超级期待能看到更多的小伙伴,在Netty的基础上大展身手,把自己的系统捯饬得既聪明又靠谱,简直就像给它装了个“智慧大脑”一样! 最后,我想说的是,技术的学习是一个不断探索的过程。希望大家能在实践中积累经验,在挑战中成长进步。如果你有任何疑问或者想法,欢迎随时留言交流哦! 祝大家都能写出又快又稳的代码,一起迈向技术巅峰吧!😎
2025-03-19 16:22:40
79
红尘漫步
转载文章
...是Docker内部的实现细节,并且能够 在主机(译者注:运行Docker的机器)的文件系统上访问到。统一文件系统(union file system)技术能够将不同的层整合成一个文件系统,为这些层提供了一个统一的视角,这样就隐藏了多层的存在,在用户的角度看来,只存在一个文件系统。 我们可以在图片的右边看到这个视角的形式。 你可以在你的主机文件系统上找到有关这些层的文件。需要注意的是,在一个运行中的容器内部,这些层是不可见的。在我的主机上,我发现它们存在于/var/lib/docker/aufs目录下。 sudo tree -L 1 /var/lib/docker/ /var/lib/docker/├── aufs├── containers├── graph├── init├── linkgraph.db├── repositories-aufs├── tmp├── trust└── volumes7 directories, 2 files Container Definition 容器(container)的定义和镜像(image)几乎一模一样,也是一堆层的统一视角,唯一区别在于容器的最上面那一层是可读可写的。 细心的读者可能会发现,容器的定义并没有提及容器是否在运行,没错,这是故意的。正是这个发现帮助我理解了很多困惑。 要点:容器 = 镜像 + 可读层。并且容器的定义并没有提及是否要运行容器。 接下来,我们将会讨论运行态容器。 Running Container Definition 一个运行态容器(running container)被定义为一个可读写的统一文件系统加上隔离的进程空间和包含其中的进程。下面这张图片展示了一个运行中的容器。 正是文件系统隔离技术使得Docker成为了一个前途无量的技术。一个容器中的进程可能会对文件进行修改、删除、创建,这些改变都将作用于可读写层(read-write layer)。下面这张图展示了这个行为。 我们可以通过运行以下命令来验证我们上面所说的: docker run ubuntu touch happiness.txt 即便是这个ubuntu容器不再运行,我们依旧能够在主机的文件系统上找到这个新文件。 find / -name happiness.txt /var/lib/docker/aufs/diff/860a7b...889/happiness.txt Image Layer Definition 为了将零星的数据整合起来,我们提出了镜像层(image layer)这个概念。下面的这张图描述了一个镜像层,通过图片我们能够发现一个层并不仅仅包含文件系统的改变,它还能包含了其他重要信息。 元数据(metadata)就是关于这个层的额外信息,它不仅能够让Docker获取运行和构建时的信息,还包括父层的层次信息。需要注意,只读层和读写层都包含元数据。 除此之外,每一层都包括了一个指向父层的指针。如果一个层没有这个指针,说明它处于最底层。 Metadata Location: 我发现在我自己的主机上,镜像层(image layer)的元数据被保存在名为”json”的文件中,比如说: /var/lib/docker/graph/e809f156dc985.../json e809f156dc985...就是这层的id 一个容器的元数据好像是被分成了很多文件,但或多或少能够在/var/lib/docker/containers/<id>目录下找到,<id>就是一个可读层的id。这个目录下的文件大多是运行时的数据,比如说网络,日志等等。 全局理解(Tying It All Together) 现在,让我们结合上面提到的实现细节来理解Docker的命令。 docker create <image-id> docker create 命令为指定的镜像(image)添加了一个可读写层,构成了一个新的容器。注意,这个容器并没有运行。 docker start <container-id> Docker start命令为容器文件系统创建了一个进程隔离空间。注意,每一个容器只能够有一个进程隔离空间。 docker run <image-id> 看到这个命令,读者通常会有一个疑问:docker start 和 docker run命令有什么区别。 从图片可以看出,docker run 命令先是利用镜像创建了一个容器,然后运行这个容器。这个命令非常的方便,并且隐藏了两个命令的细节,但从另一方面来看,这容易让用户产生误解。 题外话:继续我们之前有关于Git的话题,我认为docker run命令类似于git pull命令。git pull命令就是git fetch 和 git merge两个命令的组合,同样的,docker run就是docker create和docker start两个命令的组合。 docker ps docker ps 命令会列出所有运行中的容器。这隐藏了非运行态容器的存在,如果想要找出这些容器,我们需要使用下面这个命令。 docker ps –a docker ps –a命令会列出所有的容器,不管是运行的,还是停止的。 docker images docker images命令会列出了所有顶层(top-level)镜像。实际上,在这里我们没有办法区分一个镜像和一个只读层,所以我们提出了top-level 镜像。只有创建容器时使用的镜像或者是直接pull下来的镜像能被称为顶层(top-level)镜像,并且每一个顶层镜像下面都隐藏了多个镜像层。 docker images –a docker images –a命令列出了所有的镜像,也可以说是列出了所有的可读层。如果你想要查看某一个image-id下的所有层,可以使用docker history来查看。 docker stop <container-id> docker stop命令会向运行中的容器发送一个SIGTERM的信号,然后停止所有的进程。 docker kill <container-id> docker kill 命令向所有运行在容器中的进程发送了一个不友好的SIGKILL信号。 docker pause <container-id> docker stop和docker kill命令会发送UNIX的信号给运行中的进程,docker pause命令则不一样,它利用了cgroups的特性将运行中的进程空间暂停。具体的内部原理你可以在这里找到:https://www.kernel.org/doc/Doc ... m.txt,但是这种方式的不足之处在于发送一个SIGTSTP信号对于进程来说不够简单易懂,以至于不能够让所有进程暂停。 docker rm <container-id> docker rm命令会移除构成容器的可读写层。注意,这个命令只能对非运行态容器执行。 docker rmi <image-id> docker rmi 命令会移除构成镜像的一个只读层。你只能够使用docker rmi来移除最顶层(top level layer)(也可以说是镜像),你也可以使用-f参数来强制删除中间的只读层。 docker commit <container-id> docker commit命令将容器的可读写层转换为一个只读层,这样就把一个容器转换成了不可变的镜像。 docker build docker build命令非常有趣,它会反复的执行多个命令。 我们从上图可以看到,build命令根据Dockerfile文件中的FROM指令获取到镜像,然后重复地1)run(create和start)、2)修改、3)commit。在循环中的每一步都会生成一个新的层,因此许多新的层会被创建。 docker exec <running-container-id> docker exec 命令会在运行中的容器执行一个新进程。 docker inspect <container-id> or <image-id> docker inspect命令会提取出容器或者镜像最顶层的元数据。 docker save <image-id> docker save命令会创建一个镜像的压缩文件,这个文件能够在另外一个主机的Docker上使用。和export命令不同,这个命令为每一个层都保存了它们的元数据。这个命令只能对镜像生效。 docker export <container-id> docker export命令创建一个tar文件,并且移除了元数据和不必要的层,将多个层整合成了一个层,只保存了当前统一视角看到的内容(译者注:expoxt后 的容器再import到Docker中,通过docker images –tree命令只能看到一个镜像;而save后的镜像则不同,它能够看到这个镜像的历史镜像)。 docker history <image-id> docker history命令递归地输出指定镜像的历史镜像。 参考: http://www.cnblogs.com/bethal/p/5942369.html 本篇文章为转载内容。原文链接:https://blog.csdn.net/u010098331/article/details/53485539。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-26 15:47:20
538
转载
Mahout
...。这可以通过以下步骤实现: - 数据接入:首先,我们需要将实时数据流接入Spark Streaming。这可以通过定义一个DStream(Data Stream)对象来完成,该对象代表了数据流的抽象表示。 scala import org.apache.spark.streaming._ import org.apache.spark.streaming.dstream._ val sparkConf = new SparkConf().setAppName("RealtimeMahoutAnalysis").setMaster("local[2]") val sc = new SparkContext(sparkConf) valssc = new StreamingContext(sc, Seconds(1)) // 创建StreamingContext,时间间隔为1秒 val inputStream = TextFileStream("/path/to/your/data") // 假设数据来自文件系统 val dstream = inputStream foreachRDD { rdd => rdd.map { line => val fields = line.split(",") (fields(0), fields.slice(1, fields.length)) } } - Mahout模型训练:然后,我们可以使用Mahout中的算法对数据进行预处理和建模。例如,假设我们想要进行用户行为的聚类分析,可以使用Mahout的KMeans算法。 scala import org.apache.mahout.cf.taste.hadoop.recommender.KNNRecommender import org.apache.mahout.cf.taste.impl.model.file.FileDataModel import org.apache.mahout.cf.taste.impl.neighborhood.ThresholdUserNeighborhood import org.apache.mahout.cf.taste.impl.recommender.GenericUserBasedRecommender import org.apache.mahout.cf.taste.impl.similarity.PearsonCorrelationSimilarity import org.apache.mahout.math.RandomAccessSparseVector import org.apache.hadoop.conf.Configuration val dataModel = new FileDataModel(new File("/path/to/your/data.csv")) val neighborhood = new ThresholdUserNeighborhood(0.5, dataModel, new Configuration()) val similarity = new PearsonCorrelationSimilarity(dataModel) val recommender = new GenericUserBasedRecommender(dataModel, neighborhood, similarity) val recommendations = dstream.map { (user, ratings) => val userVector = new RandomAccessSparseVector(ratings.size()) for ((itemId, rating) <- ratings) { userVector.setField(itemId.toInt, rating.toDouble) } val recommendation = recommender.recommend(user, userVector) (user, recommendation.map { (itemId, score) => (itemId, score) }) } - 结果输出:最后,我们可以将生成的推荐结果输出到合适的目标位置,如日志文件或数据库,以便后续分析和应用。 scala recommendations.foreachRDD { rdd => rdd.saveAsTextFile("/path/to/output") } 5. 总结与展望 通过将Mahout与Spark Streaming集成,我们能够构建一个强大的实时流数据分析平台,不仅能够实时处理大量数据,还能利用Mahout的高级机器学习功能进行深入分析。哎呀,这个融合啊,就像是给数据分析插上了翅膀,能即刻飞到你眼前,又准确得不得了!这样一来,咱们做决定的时候,心里那根弦就更紧了,因为有它在身后撑腰,决策那可是又稳又准,妥妥的!哎呀,随着科技车轮滚滚向前,咱们的Mahout和Spark Streaming这对好搭档,未来肯定会越来越默契,联手为我们做决策时,用上实时数据这个大宝贝,提供更牛逼哄哄的武器和方法!想象一下,就像你用一把锋利的剑,能更快更准地砍下胜利的果实,这俩家伙在数据战场上,就是那把超级厉害的宝剑,让你的决策快人一步,精准无比! --- 以上内容是基于实际的编程实践和理论知识的融合,旨在提供一个从概念到实现的全面指南。哎呀,当真要将这个系统或者项目实际铺展开来的时候,咱们得根据手头的实际情况,比如数据的个性、业务的流程和咱们的技术底子,来灵活地调整策略,让一切都能无缝对接,发挥出最大的效用。就像是做菜,得看食材的新鲜度,再搭配合适的调料,才能做出让人满意的美味佳肴一样。所以,别死板地照搬方案,得因地制宜,因材施教,这样才能确保我们的工作既高效又有效。
2024-09-06 16:26:39
59
月影清风
转载文章
.../IPS系统。它不仅实现了对网络数据包的精细解析,还在处理海量数据时保证了高效能,同时提供了丰富的API接口以供用户自定义插件和扩展功能。 此外,针对网络扫描攻击等行为,业界也提出了新的防御策略和技术。例如,基于人工智能的动态防火墙策略,可以根据网络流量特征自动调整规则,有效应对端口扫描等攻击行为,极大地提升了网络安全防护水平。 综上所述,在持续演进的网络安全领域,Libnids所涉及的数据包处理机制、TCP连接管理等功能是构建现代网络防御体系的基础,而结合最新的研究进展和技术应用,则有助于我们更好地理解和应对日趋复杂且变化多端的网络威胁环境。
2023-02-08 17:36:31
306
转载
Docker
...手动下载PHP、MySQL、Nginx等一堆软件,再逐一配置。而如果你用Docker,只需要一条命令就能搞定: bash docker run --name wordpress -d -p 80:80 \ -v /path/to/wordpress:/var/www/html \ -e WORDPRESS_DB_HOST=db \ -e WORDPRESS_DB_USER=root \ -e WORDPRESS_DB_PASSWORD=yourpassword \ wordpress 这段代码的意思是:启动一个名为wordpress的容器,并将本地目录/path/to/wordpress挂载到容器内的/var/www/html路径下,同时设置数据库连接信息。是不是比传统的安装方式简洁多了? 不过,单独使用Docker虽然强大,但对于不熟悉命令行的人来说还是有点门槛。这时候就需要一些辅助工具来帮助我们更好地管理和调度容器了。 --- 3. Portainer 可视化管理Docker的好帮手 Portainer绝对是我最近发现的一颗“宝藏”。它的界面非常直观,几乎不需要学习成本。不管是想看看现有的容器啥情况,还是想启动新的容器,甚至连网络和卷的管理,都只需要动动鼠标拖一拖、点一点就行啦! 比如,如果你想快速创建一个新的MySQL容器,只需要打开Portainer的Web界面,点击“Add Container”,然后填写几个基本信息即可: yaml image: mysql:5.7 name: my-mysql ports: - "3306:3306" volumes: - /data/mysql:/var/lib/mysql environment: MYSQL_ROOT_PASSWORD: rootpassword 这段YAML配置文件描述了一个MySQL容器的基本参数。Portainer会自动帮你解析并生成对应的Docker命令。是不是超方便? 另外,Portainer还有一个特别棒的功能——实时监控。你打开页面就能看到每个“小房子”(就是容器)里用掉的CPU和内存情况,而且还能像穿越空间一样,去访问别的机器上跑着的那些“小房子”(Docker实例)。这种功能对于运维人员来说简直是福音! --- 4. Rancher 企业级的容器编排利器 如果你是一个团队协作的开发者,或者正在运营一个大规模的服务集群,那么Rancher可能是你的最佳选择。它不仅仅是一个Docker管理工具,更是一个完整的容器编排平台。 Rancher的核心优势在于它的“多集群管理”能力。想象一下,你的公司有好几台服务器,分别放在地球上的不同角落,有的在美国,有的在欧洲,还有的在中国。每台服务器上都跑着各种各样的服务,比如网站、数据库啥的。这时候,Rancher就派上用场了!它就像一个超级贴心的小管家,让你不用到处切换界面,在一个地方就能轻松搞定所有服务器和服务的管理工作,省时又省力! 举个例子,如果你想在Rancher中添加一个新的节点,只需要几步操作即可完成: 1. 登录Rancher控制台。 2. 点击“Add Cluster”按钮。 3. 输入目标节点的信息(IP地址、SSH密钥等)。 4. 等待几分钟,Rancher会自动为你安装必要的组件。 一旦节点加入成功,你就可以直接在这个界面上部署应用了。比如,用Kubernetes部署一个Redis集群: bash kubectl create deployment redis --image=redis:alpine kubectl expose deployment redis --type=LoadBalancer --port=6379 虽然这条命令看起来很简单,但它背后实际上涉及到了复杂的调度逻辑和网络配置。而Rancher把这些复杂的事情封装得很好,让我们可以专注于业务本身。 --- 5. Traefik 反向代理与负载均衡的最佳拍档 最后要介绍的是Traefik,这是一个轻量级的反向代理工具,专门用来处理HTTP请求的转发和负载均衡。它最厉害的地方啊,就是能跟Docker完美地融为一体,还能根据容器上的标签,自动调整路由规则呢! 比如说,你有两个服务分别监听在8080和8081端口,现在想通过一个域名访问它们。只需要给这两个容器加上相应的标签: yaml labels: - "traefik.enable=true" - "traefik.http.routers.service1.rule=Host(service1.example.com)" - "traefik.http.services.service1.loadbalancer.server.port=8080" - "traefik.http.routers.service2.rule=Host(service2.example.com)" - "traefik.http.services.service2.loadbalancer.server.port=8081" 这样一来,当用户访问service1.example.com时,Traefik会自动将请求转发到监听8080端口的容器;而访问service2.example.com则会指向8081端口。这种方式不仅高效,还极大地减少了配置的工作量。 --- 6. 总结 找到最适合自己的工具 好了,到这里咱们已经聊了不少关于服务器管理工具的话题。从Docker到Portainer,再到Rancher和Traefik,每一种工具都有其独特的优势和适用场景。 我的建议是,先根据自己的需求确定重点。要是你只想弄个小玩意儿,图个省事儿快点搞起来,那用Docker配个Portainer就完全够用了。但要是你们团队一起干活儿,或者要做大范围的部署,那Rancher这种专业的“老司机工具”就得安排上啦! 当然啦,技术的世界永远没有绝对的答案。其实啊,很多时候你会发现,最适合你的工具不一定是最火的那个,而是那个最合你心意、用起来最顺手的。就像穿鞋一样,别人觉得好看的根本不合脚,而那双不起眼的小众款却让你走得又稳又舒服!所以啊,在用这些工具的时候,别光顾着看,得多动手试试,边用边记下自己的感受和想法,这样你才能真的搞懂它们到底有啥门道! 好了,今天的分享就到这里啦!如果你还有什么问题或者想法,欢迎随时留言交流哦~咱们下次再见啦!
2025-04-16 16:05:13
97
月影清风_
Sqoop
...。它能够将数据从MySQL等关系型数据库导入到Hadoop的HDFS中,也可以将HDFS中的数据导出到关系型数据库。文章中提到,Sqoop在处理某些特殊字符或复杂数据类型时可能会出现问题,尤其是在数据量较大或存在复杂约束条件的情况下。为了确保数据迁移的成功,用户需要深入了解Sqoop的工作原理,并通过调整分隔符、换行符等参数来优化配置。 透明性 , 透明性是指Sqoop能否准确理解用户需求并按照预期方式执行任务的能力。文章中指出,当涉及多列且某些列包含复杂数据类型时,Sqoop可能无法正确识别这些数据类型而导致作业失败。此外,它不会给出明确提示,而是默默报错,让用户感到困惑。为了提高透明性,作者建议在操作前使用describe命令查看表结构,并通过指定检查列等方式确认所有字段都被正确识别。 增量作业 , 增量作业是一种通过定期更新目标目录中的数据来避免一次性加载过多数据造成性能瓶颈的方法。文章中展示了一个创建增量作业的例子,使用sqoop job命令定义了一个名为my_job的作业,用于从MySQL数据库的employees表中导入数据到HDFS的目标目录中。该作业通过指定--check-column参数检查是否有重复记录,并使用--incremental append模式追加新数据,从而实现了高效的增量数据迁移。这种方法特别适合于需要持续更新的大规模数据集。
2025-03-22 15:39:31
93
风中飘零
Hadoop
...三、Hadoop如何实现跨访问控制协议迁移? 接下来,让我们来看看Hadoop是如何做到这一点的。其实,这主要依赖于Hadoop的分布式文件系统(HDFS)和它的API库。为了更好地理解,我们可以一步步来分析。 3.1 HDFS的基本概念 HDFS是Hadoop的核心组件之一,它是用来存储大量数据的分布式文件系统。这就像是一个超大号的硬盘,不过它有点特别,不是集中在一个地方存东西,而是把数据切成小块,分散到不同的“小房间”里去。这样做的好处是即使某个节点坏了,也不会影响整个系统的运行。 HDFS还提供了一套丰富的接口,允许开发者自定义文件的操作行为。这就为实现跨访问控制协议迁移提供了可能性。 3.2 实现步骤 实现跨访问控制协议迁移大致分为以下几个步骤: (1)读取源系统的访问控制信息 第一步是获取源系统的访问控制信息。比如,如果你正在从Linux系统迁移到Windows系统,你需要先读取Linux上的ACL配置。 java // 示例代码:读取Linux ACL import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import java.io.IOException; public class AccessControlReader { public static void main(String[] args) throws IOException { Path path = new Path("/path/to/source/file"); FileSystem fs = FileSystem.get(new Configuration()); // 获取ACL信息 String acl = fs.getAclStatus(path).toString(); System.out.println("Source ACL: " + acl); } } 这段代码展示了如何使用Hadoop API读取Linux系统的ACL信息。可以看到,Hadoop已经为我们封装好了相关的API,调用起来非常方便。 (2)转换为目标系统的格式 接下来,我们需要将读取到的访问控制信息转换为目标系统的格式。比如,将Linux的ACL转换为Windows的NTFS权限。 java // 示例代码:模拟ACL到NTFS的转换 public class AclToNtfsConverter { public static void convert(String linuxAcl) { // 这里可以编写具体的转换逻辑 System.out.println("Converting ACL to NTFS: " + linuxAcl); } } 虽然这里只是一个简单的打印函数,但实际上你可以根据实际需求编写复杂的转换算法。 (3)应用到目标系统 最后一步是将转换后的权限应用到目标系统上。这一步同样可以通过Hadoop提供的API来完成。 java // 示例代码:应用NTFS权限 public class NtfsPermissionApplier { public static void applyPermissions(Path targetPath, String ntfsPermissions) { try { // 模拟应用权限的过程 System.out.println("Applying NTFS permissions to " + targetPath.toString() + ": " + ntfsPermissions); } catch (Exception e) { e.printStackTrace(); } } } 通过这三个步骤,我们就完成了从源系统到目标系统的访问控制协议迁移。 --- 四、实战演练 一个完整的案例 为了让大家更直观地理解,我准备了一个完整的案例。好啦,想象一下,我们现在要干的事儿就是把一个文件从一台Linux服务器搬去Windows服务器,而且还得保证这个文件在新家里的“门禁权限”跟原来一模一样,不能搞错! 4.1 准备工作 首先,确保你的开发环境中已经安装了Hadoop,并且配置好相关的依赖库。此外,还需要准备两台机器,一台装有Linux系统,另一台装有Windows系统。 4.2 编写代码 接下来,我们编写代码来实现迁移过程。首先是读取Linux系统的ACL信息。 java // 读取Linux ACL Path sourcePath = new Path("/source/file.txt"); FileSystem linuxFs = FileSystem.get(new Configuration()); String linuxAcl = linuxFs.getAclStatus(sourcePath).toString(); System.out.println("Linux ACL: " + linuxAcl); 然后,我们将这些ACL信息转换为NTFS格式。 java // 模拟ACL到NTFS的转换 AclToNtfsConverter.convert(linuxAcl); 最后,将转换后的权限应用到Windows系统上。 java // 应用NTFS权限 Path targetPath = new Path("\\\\windows-server\\file.txt"); NtfsPermissionApplier.applyPermissions(targetPath, "Full Control"); 4.3 执行结果 执行完上述代码后,你会发现文件已经被成功迁移到了Windows系统,并且保留了原有的访问控制设置。是不是很神奇? --- 五、总结与展望 通过这篇文章,我相信你对Hadoop支持文件的跨访问控制协议迁移有了更深的理解。Hadoop不仅是一个强大的工具,更是一种思维方式的转变。它就像个聪明的老师,不仅教我们怎么用分布式的思路去搞定问题,还时不时敲打我们:嘿,别忘了数据的安全和规矩可不能丢啊! 未来,随着技术的发展,Hadoop的功能会越来越强大。我希望你能继续探索更多有趣的话题,一起在这个充满挑战的世界里不断前行! 加油吧,程序员们!
2025-04-29 15:54:59
77
风轻云淡
转载文章
...的构造经验表明,系统实现的困难程度和系统构造的质量都严重的依赖于是否选择了最优的数据结构。 许多时候,确定了数据结构后,算法就容易得到了。有些时候事情也会反过来,我们根据特定算法来选择数据结构与之适应。不论哪种情况,选择合适的数据结构都是非常重要的。 选择了数据结构,算法也随之确定,是数据而不是算法是系统构造的关键因素。这种洞见导致了许多种软件设计方法和程序设计语言的出现,面向对象的程序设计语言就是其中之一。 也就是说,选定数据结构往往是解决问题的核心,比如我们做一道算法题,往往就要先确定数据结构,再根据这个数据结构去思考怎么解题。 如果没有数据结构的基础知识,也就没有谈算法的意义了,很多时候即使你会使用一些封装好的编程api,但你却不知道其背后的实现原理,比如hashmap,linkedlist这些Java里的集合类,实际上都是JDK封装好的基础数据结构。 如何学习数据结构 第一次接触 我第一次接触数据结构这门课还是4年前,那这时候我在准备考研,专业课考的就是数据结构与算法,作为一个非科班的小白,对这个东西可以说是一窍不通。 这个时候的我只有一点点c语言的基础,基本上可以忽略不计,所以小白同学也可以按照这个思路进行学习。 数据结构基本上是考研的必考科目,所以我一开始使用的是考研的复习书籍,《天勤数据结构》和《王道数据结构》这两个家的书都是专门为计算机考研服务的,可以直接百度,这两本书对于我这种小白来说居然都是可以看懂的,所以,用来入门也是ok的。 入门学习阶段 最早的时候我并没有直接看书,而是先打算先看视频,因为视频更好理解呀,找视频的办法就是百度,于是当时找到的最好资源就是《郝斌的数据结构》这个视频应该是很早之前录制的了,但是对于小白来说是够用的,特别基础,讲的很仔细。 从最开始的数组、线性表,再讲到栈和队列,以及后面更复杂的二叉树、图、哈希表,大概有几十个视频,那个时候正值暑假,我按照每天一个视频的进度看完了,看的时候还得时不时地实践一下,更有助于理解。 看完了这个系列的视频之后,我又转战开始啃书了,视频里讲的都是数据结构的基础,而书上除了基础之外,还有一些算法题目,比如你学完了线性表和链表之后,书上就会有相关的算法题,比如数组的元素置换,链表的逆置等等,这些在日后看来很容易的题目,当时把我难哭了。 好在大部分题目是有讲解的,看完讲解之后还能安抚一下我受伤的心灵。 记住这本书,我在考研之前翻了至少有三四遍。 强化学习阶段 完成了第一波视频+书籍的学习之后,我们应该已经对数据结构有了初步的了解了,对一些简单的数据结构算法也应该有所了解了,比如栈的入栈和出栈,队列的进队和出队,二叉树的先序遍历和后续遍历、层次遍历,图的最短路径算法,深度优先遍历等等。 有了一定的基础之后,我们需要对哪方面进行强化学习呢? 那就要看你学习数据结构的目的是什么了,比如你学习数据结构是为了能做算法题,那么接下来你应该重点去学习算法方面的知识,后续我们也将有一篇新的文章来讲怎么学习算法,敬请期待。 当然,我当时主要是复习考研,所以还是针对专业课的历年真题来复习,像我们的卷子中就考察了很多关于哈希表、最短路径算法、KMP算法、赫夫曼算法以及最短路径算法的应用。 对于考卷上的一些知识点,我觉得掌握的并不是很好,于是又买了《王道数据结构》以及一些并没有什么卵用的书回来看,再次强化了基础。 并且,由于我们的复试通常会考察一些比较经典的算法问题,所以我又花了很多时间去学习这些算法题,这些题目并非数据结构的基础算法,所以在之前的书和视频中可能找不到答案。 于是我又在网上搜到了另一个系列视频《小甲鱼的数据结构视频》里面除了讲解数据结构之外,还讲解了更多经典的算法题,比如八皇后问题,汉诺塔问题,马踏棋盘,旅行商问题等,这些问题对于新手来说真的是很头大的,使用视频学习确实效果更佳。 实践阶段 纸上得来终觉浅,绝知此事要躬行。 众所周知,算法题和数学题一样,需要多加练习,而且考研的时候必须要手写算法,于是我就经常在纸上写(抄)算法,你还别说,就算是抄,多抄几次也有助于理解。 很多基础的算法,比如层次遍历,深度优先遍历和广度优先遍历,多写几遍更有助理解,再比如稍微复杂一点的迪杰斯特拉算法,不多写几遍你可真记不住。 除了在纸上写之外,更好的办法自然是在电脑上敲了,写Java的使用Java写,写C++ 的用C++ 写,总之用自己擅长的语言实现就好,尴尬的是我当时只会c,所以就只好老老实实地用devc++写简单的c语言程序了。 至此,我们也算是学会了数据结构的基础知识了,至少知道每个数据结构的特性,会写常见的数据结构算法,甚至偶尔还能掏出一个八皇后出来。 推荐资源 书籍 《天勤数据结构》 《王道数据结构》 如果你要考研的话,这两本书可不要错过 严蔚敏《数据结构C语言版》 这本书是大学本科计算机专业常用的教科书,年代久远,可以看看,官方也有配套的教学视频 《大话数据结构》 官方教材大家都懂的,比较不接地气,这本书对于很多新手来说是更适合入门的书籍。 《数据结构与算法Java版》 如果你是学Java的,想有一本Java语言描述的数据结构书籍,可以试试这本,但是这本书显然比较复杂,不适合入门使用。 视频 《郝斌数据结构》 这个视频上文有提到过,年代比较久远,但是入门足够了。 《小甲鱼数据结构与算法》 这个视频比较新,更加全面,有很多关于经典算法的教程,作者也入驻了B站,有兴趣也可以到B站看他的视频。 总结 关于数据结构的学习,我们就讲到这里了,如果还有什么疑问也可以到我公众号里找我探讨,虽然我们提到了算法,但是这里只关注一些基础的数据结构算法,后续会有关于“怎么学算法“的文章推出,敬请期待。 本篇文章为转载内容。原文链接:https://blog.csdn.net/a724888/article/details/104586757。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-12 23:35:52
133
转载
ZooKeeper
...在复杂的分布式环境下实现高效协作。文中提到,ZooKeeper内部存在一个请求队列,当队列满时会触发CommitQueueFullException。 异步API , ZooKeeper提供的两种API之一,允许客户端在发起请求后无需等待立即响应即可继续执行后续操作。这种方式可以减少请求等待时间,从而降低队列满的风险。文中举例说明了使用异步API创建节点的过程,展示了其与同步API的区别在于不阻塞主线程,适合高并发场景。
2025-03-16 15:37:44
10
林中小径
转载文章
...播放.ts片段,从而实现视频流的无缝播放。 ts文件 , .ts文件是MPEG-2 Transport Stream(传输流)文件格式,常用于数字电视广播、DVD和在线流媒体服务中存储音频和视频数据。在本文中,斗鱼视频将完整的视频内容分割成多个.ts片段进行存储和传输。每个.ts文件包含一小段连续的音视频数据,通过合并这些.ts片段可以重构原始的完整视频。 MongoDB , MongoDB是一个开源的、面向文档的NoSQL数据库系统,适用于大规模数据存储和处理场景。在文章所给出的Python代码实现中,MongoDB被用来存储已经下载过的斗鱼视频信息,以避免重复下载。其灵活的数据模型允许开发者以JSON-like文档的形式存储数据,并提供了丰富的查询语言和高可用性特征,使得在整个采集流程中能够方便地对数据进行增删查改等操作。例如,在文中提到的save_to_mango函数中,就使用了MongoDB来存储抓取到的斗鱼视频ID,以便后续检查是否已下载过该视频。
2023-12-18 11:34:00
119
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
dig +short myip.opendns.com @resolver4.opendns.com
- 获取公网IP地址。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"