前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[Flink on Kubernetes ...]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Kubernetes
Kubernetes的多集群资源优化与性能提升 1. 为什么我们需要多集群? 兄弟们,先别急着写代码,咱们得搞清楚为啥要用多集群啊!在 Kubernetes 的世界里,单集群已经能解决很多问题了,但随着业务规模的不断扩大,你会发现单集群开始显得力不从心。 比如说,当你有多个团队需要部署不同的服务,或者你的应用需要覆盖全球范围内的用户时,单集群可能就有点捉襟见肘了。这个时候,多集群就派上用场了。它不仅能提高系统的容错能力,还能让资源分配更加灵活。 不过,多集群也不是万能药,它也有自己的挑战,比如跨集群通信、数据一致性等问题。嘿,今天咱们就来聊聊怎么把多集群环境管得漂漂亮亮的,重点就是优化和提速! --- 2. 多集群资源优化的基本思路 2.1 资源隔离与共享 首先,我们得明确一个问题:在多集群环境下,资源是完全隔离还是可以共享?答案当然是两者兼备! 假设你有两个团队,一个负责前端服务,另一个负责后端服务。你可以为每个团队分配独立的集群,这样可以避免相互干扰。不过呢,要是咱们几个一起用同一个东西,比如说数据库或者缓存啥的,那肯定得有个办法让大家都能分到这些资源呀。 这里有个小技巧:使用 Kubernetes 的命名空间(Namespace)来实现资源的逻辑隔离。比如: yaml apiVersion: v1 kind: Namespace metadata: name: frontend-team --- apiVersion: v1 kind: Namespace metadata: name: backend-team 每个团队可以在自己的命名空间内部署服务,同时通过 ServiceAccount 和 RoleBinding 来控制权限。 --- 2.2 负载均衡与调度策略 接下来,我们得考虑负载均衡的问题。你可以这么想啊,假设你有两个集群,一个在北方,一个在南方,结果所有的用户请求都一股脑地涌向北方的那个集群,把那边忙得团团转,而南方的这个呢?就只能干坐着,啥事没有。这画面是不是有点搞笑?明显不合理嘛! Kubernetes 提供了一种叫做 Federation 的机制,可以帮助你在多个集群之间实现负载均衡。嘿,你知道吗?从 Kubernetes 1.19 开始,Federation 这个功能就被官方“打入冷宫”了,说白了就是不推荐再用它了。不过别担心,现在有很多更时髦、更好用的东西可以替代它,比如 KubeFed,或者干脆直接上手 Istio 这种服务网格工具,它们的功能可比 Federation 强大多了! 举个栗子,假设你有两个集群 cluster-a 和 cluster-b,你可以通过 Istio 来配置全局路由规则: yaml apiVersion: networking.istio.io/v1alpha3 kind: DestinationRule metadata: name: global-route spec: host: myapp.example.com trafficPolicy: loadBalancer: simple: ROUND_ROBIN 这样,Istio 就会根据负载情况自动将流量分发到两个集群。 --- 3. 性能提升的关键点 3.1 数据中心间的网络优化 兄弟们,网络延迟是多集群环境中的大敌!如果你的两个集群分别位于亚洲和欧洲,那么每次跨数据中心通信都会带来额外的延迟。所以,我们必须想办法减少这种延迟。 一个常见的做法是使用边缘计算节点。简单来说,就是在靠近用户的地理位置部署一些轻量级的 Kubernetes 集群。这样一来,用户的请求就能直接在当地搞定,不用大老远跑到远程的数据中心去处理啦! 举个例子,假设你在美国东海岸和西海岸各有一个集群,你可以通过 Kubernetes 的 Ingress 控制器来实现就近访问: yaml apiVersion: networking.k8s.io/v1 kind: Ingress metadata: name: edge-ingress spec: rules: - host: us-east.example.com http: paths: - path: / pathType: Prefix backend: service: name: east-cluster-service port: number: 80 - host: us-west.example.com http: paths: - path: / pathType: Prefix backend: service: name: west-cluster-service port: number: 80 这样,用户访问 us-east.example.com 时,请求会被转发到东海岸的集群,而访问 us-west.example.com 时,则会转发到西海岸的集群。 --- 3.2 自动化运维工具的选择 最后,我们得谈谈运维自动化的问题。在多集群环境中,手动管理各个集群是非常痛苦的。所以,选择合适的自动化工具至关重要。 我个人比较推荐 KubeFed,这是一个由 Google 开发的多集群管理工具。它允许你在多个集群之间同步资源,比如 Deployment、Service 等。 举个例子,如果你想在所有集群中同步一个 Deployment,可以这样做: bash kubectl kubefedctl federate deployment my-deployment --clusters=cluster-a,cluster-b 是不是很酷?通过这种方式,你只需要维护一份配置文件,就能确保所有集群的状态一致。 --- 4. 我的思考与总结 兄弟们,写到这里,我觉得有必要停下来聊一聊我的感受。说实话,搞多集群的管理和优化这事吧,真挺费脑子的,特别是当你摊上一堆复杂得让人头大的业务场景时,那感觉就像是在迷宫里找出口,越走越晕。但只要你掌握了核心原理,并且善于利用现有的工具,其实也没那么可怕。 我觉得,Kubernetes 的多集群方案就像是一把双刃剑。它既给了我们无限的可能性,也带来了不少挑战。所以啊,在用它的过程中,咱们得脑袋清醒点,别迷迷糊糊的。别害怕去试试新鲜玩意儿,说不定就有惊喜呢!而且呀,心里得有根弦,感觉不对就赶紧调整策略,灵活一点总没错。 最后,我想说的是,技术的世界永远没有终点。就算咱们今天聊了个痛快,后面还有好多好玩的东西在等着咱们呢!所以,让我们一起继续学习吧!
2025-04-04 15:56:26
21
风轻云淡
Redis
...并发控制中可能存在的问题。 Redisson作为一款基于Redis的高级Java客户端,提供了丰富的数据结构和分布式服务,其中就包括对分布式锁的优化实现。它采用Redis的Lua脚本、Redis事务以及watch命令等多种机制相结合的方式,确保了在高并发场景下获取和释放锁的操作是原子性的,有效避免了本文所述的“两人同时获得锁”的诡异现象。 此外,Redisson还支持可重入锁、公平锁、读写锁等多种锁类型,满足不同业务场景下的需求。通过定期自动续期功能,可以防止因网络抖动或进程阻塞导致的锁超时失效问题,极大地提高了系统的稳定性和可靠性。 与此同时,随着云原生技术的发展,Kubernetes等容器编排工具日益普及,Redis Cluster或者Sentinel集群部署模式成为主流。Redisson对此提供了良好的支持,使得开发者能够更加便捷地在分布式环境中利用Redis构建高性能、高可用的服务。 总之,在面对复杂的分布式系统开发时,深入理解和合理运用诸如Redisson这样的工具库,不仅可以解决Redis在实现分布式锁时的并发难题,更能提升整体系统的架构水平和运维效率。对于关注此类话题的技术人员而言,不断跟进并学习这些最新实践无疑具有极高的价值。
2023-05-29 08:16:28
269
草原牧歌_t
Saiku
...AP数据可视化工具的配置和使用攻略后,读者们或许会对大数据分析领域的最新发展、相关工具的优化升级以及更广泛的行业应用案例产生浓厚兴趣。近期,《InfoWorld》发布了一篇题为“2023年顶级开源商业智能和数据分析工具”的报道,文中详细列举了当前市场中与Saiku功能互补或有竞争关系的一系列热门工具,如Apache Superset、Pentaho BI Suite等,并对其最新特性、社区活跃度及实际应用场景进行了深度剖析。 与此同时,随着云原生技术的飞速发展,如何在Kubernetes集群上部署和优化Saiku服务成为了业界关注的焦点。一篇发表在Dzone的技术博客《利用Kubernetes实现Saiku Server的高可用部署》详尽介绍了如何借助容器化技术,使Saiku在云端环境下的部署更为灵活高效,同时确保服务稳定性和资源利用率的最大化。 此外,对于Saiku背后的Mondrian OLAP引擎,也有专家撰写了关于其在多维数据分析性能提升方面的研究论文,通过引经据典,从理论层面解析Mondrian的查询优化算法,以及未来可能影响Saiku性能表现的技术趋势。此类专业解读不仅能够帮助用户进一步挖掘Saiku潜力,也为开发者提供了改进与创新的方向。 总之,紧跟大数据分析行业的前沿动态,深入了解相关工具和技术的发展历程与最新实践,将有助于您更好地运用Saiku进行数据探索与决策支持,从而在数字化转型的大潮中抢占先机,创造更多价值。
2023-08-17 15:07:18
166
百转千回
转载文章
...与Tomcat服务器配置相关问题后,进一步了解现代开发环境中的服务器配置与项目部署策略显得尤为重要。近期,随着Spring Boot和Docker等技术的普及,开发者在处理项目部署时有了更为便捷高效的解决方案。 例如,Spring Boot通过内嵌的Tomcat服务器简化了Java Web应用的部署流程,只需构建一个可执行的JAR或WAR文件,便能在任何支持Java环境的地方启动项目,无需繁琐的服务器配置。对于版本适配问题,Spring Boot会自动管理依赖库的版本,确保项目的稳定运行。 同时,容器化技术如Docker为软件部署提供了标准化、轻量级的方式。通过编写Dockerfile定义应用环境,开发者可以快速创建包含应用程序及其所有依赖项的镜像,并在任何安装有Docker的环境中一键部署,极大提升了部署的一致性和可移植性。 另外,云原生技术的发展也改变了传统的服务器管理模式,Kubernetes作为容器编排工具,能够实现自动化部署、扩展和管理容器化应用,有效解决了多实例、动态扩容等问题,使得项目管理和运维更加灵活高效。 总之,在Eclipse等IDE之外,掌握现代化的项目部署与服务器管理技术将有助于开发者应对更多实际场景中的挑战,提升开发效率及系统的稳定性。因此,深入学习Spring Boot、Docker以及Kubernetes等相关知识,是每一位Web开发者持续进阶的必修课。
2024-02-23 12:52:12
489
转载
Impala
...代服务器架构,并结合Kubernetes等容器编排工具进行资源调度优化,可以有效解决Impala在高并发场景下的性能瓶颈问题。 同时,业界也出现了不少关于Impala与其他大数据处理框架对比研究的深度文章和技术讨论。例如,有专家通过实证分析指出,在特定场景下,合理利用Impala与Spark SQL的互补优势,能够在保持实时查询性能的同时,进一步提升大数据分析的整体效率。 此外,值得关注的是,开源社区正积极推动新一代SQL-on-Hadoop查询引擎的研发,这些新兴技术有望突破现有框架在处理超大规模数据集时所面临的限制,为用户带来更为高效、灵活的数据查询体验。在此背景下,理解并深入挖掘Impala在大数据处理上的潜力,对于企业和开发者来说,既是一种应对当前挑战的有效手段,也是对未来技术趋势的一种前瞻洞察。
2023-11-16 09:10:53
783
雪落无痕
Apache Solr
...让我头疼了好一阵子的问题——Apache Solr的查询性能不稳定。这事真让我头疼,谁不希望自己的搜索系统又快又准呢?我在一个项目里用了Solr,本来以为它能大显神通,没想到查询速度时快时慢,有时简直让人想砸键盘!我刚开始还以为是自己出了什么岔子,不过后来才发现原来不只是我一个人碰到了这个问题。我就想,干脆好好查一查,看看是不是啥外部因素或者设置问题搞的鬼。 2. 初步排查 Solr配置检查 2.1 索引优化 首先,我想到的是索引是否进行了优化。Solr的索引优化对于查询性能至关重要。如果索引过大且碎片较多,那么查询速度自然会受到影响。我查看了Solr的日志文件,发现确实存在一些索引碎片。为了优化索引,我执行了以下命令: bash curl http://localhost:8983/solr/mycollection/update?optimize=true&maxSegments=1 这个命令会将所有索引合并成一个段,并释放未使用的空间。运行后,查询速度确实有所提升,但这只是暂时的解决方案。 2.2 缓存设置 接着,我又检查了Solr的缓存设置。Solr提供了多种缓存机制,如Query Result Cache、Document Cache等,这些缓存可以显著提高查询性能。我调整了配置文件solrconfig.xml中的相关参数: xml size="512" initialSize="128" autowarmCount="64" eternal="true" ttiMillis="0" ttlMillis="0"/> 通过调整缓存大小和预热数量,我发现查询响应时间有所改善,但还是不够稳定。 3. 深入分析 外部依赖的影响 3.1 网络延迟 在排除了内部配置问题后,我开始怀疑是否有外部因素在作祟。经过一番排查,我发现网络延迟可能是罪魁祸首之一。Solr在处理查询时,得从好几个地方找信息,如果网速慢得像乌龟爬,那查询速度肯定也会变慢。我用ping命令测了一下和数据库服务器的连接,发现确实有点儿延时,挺磨人的。为了解决这个问题,我在想是不是可以在Solr服务器和数据库服务器中间加一台缓存服务器。这样就能少直接去查数据库了,效率应该能提高不少。 3.2 第三方API调用 除了网络延迟外,第三方API调用也可能是导致性能不稳定的另一个原因。Solr在处理某些查询时,可能需要调用外部服务来获取额外的数据。如果这些服务响应缓慢,整个查询过程也会变慢。我翻了一下Solr的日志,发现有些查询卡在那儿等外部服务回应,结果等超时了。为了搞定这个问题,我在Solr里加了个异步召唤的功能,这样Solr就能一边等着外部服务响应,一边还能接着处理别的查询请求了。具体代码如下: java public void handleExternalRequest() { CompletableFuture.supplyAsync(() -> { // 调用外部服务获取数据 return fetchDataFromExternalService(); }).thenAccept(result -> { // 处理返回的数据 processResult(result); }); } 4. 实践经验分享 配置波动与性能优化 4.1 动态配置管理 在实践中,我发现Solr的配置文件经常需要根据实际需求进行调整。然而,频繁地修改配置文件可能导致系统性能不稳定。为了更好地管理配置文件的变化,我建议使用动态配置管理工具,如Zookeeper。Zookeeper可帮我们在不耽误Solr正常运转的前提下更新配置,这样就不用担心因为调整设置而影响性能了。 4.2 监控与报警 最后,我强烈建议建立一套完善的监控和报警机制。通过实时盯着Solr的各种表现(比如查询速度咋样、CPU用得多不多等),我们就能赶紧发现状况,然后迅速出手解决。另外,咱们得设定好警报线,就像给系统设个底线。一旦性能掉到这线下,它就会自动给我们发警告。这样我们就能赶紧找出毛病,及时修好,不让小问题拖成大麻烦。例如,可以使用Prometheus和Grafana来搭建监控系统,代码示例如下: yaml Prometheus配置 global: scrape_interval: 15s scrape_configs: - job_name: 'solr' static_configs: - targets: ['localhost:8983'] json // Grafana仪表盘JSON配置 { "dashboard": { "panels": [ { "type": "graph", "title": "Solr查询响应时间", "targets": [ { "expr": "solr_query_response_time_seconds", "legendFormat": "{ {instance} }" } ] } ] } } 5. 结语 共勉与展望 总的来说,Solr查询性能不稳定是一个复杂的问题,可能涉及多方面的因素。咱们得从内部设置、外部依赖还有监控报警这些方面一起考虑,才能找出个靠谱的解决办法。在这个过程中,我也学到了很多,希望大家能够从中受益。未来,我将继续探索更多关于Solr优化的方法,希望能与大家共同进步! 希望这篇文章对你有所帮助,如果你有任何疑问或想法,欢迎随时交流讨论。
2025-02-08 16:04:27
36
蝶舞花间
Apache Solr
...ache Solr的配置错误、集群问题及安全漏洞后,我们发现随着技术的不断进步和应用场景的拓展,Solr的运维与优化工作显得愈发重要。近期,Apache Solr社区发布了8.11版本,针对索引性能、资源利用率以及安全性等方面做出了显著改进。例如,新版本增强了对并发导入任务的支持,通过更精细化的内存管理机制有效提升了大数据量下的全文检索效率。 同时,鉴于数据安全日益受到重视,Apache Solr 8.11加强了权限控制和审计功能,支持更为细致的用户角色管理和操作记录追踪,这有助于企业更好地遵守GDPR等数据保护法规要求。此外,官方文档也提供了关于如何进一步增强Solr部署安全性的最新指导,包括但不限于SSL加密通信、防火墙规则设定以及内建的安全插件使用方法。 对于那些致力于构建高可用性搜索服务的开发者来说,不妨关注一些行业内的最佳实践案例,了解他们是如何利用Zookeeper进行Solr集群状态管理,或者结合Kubernetes实现Solr云原生部署,从而提升系统的稳定性和扩展性。 总之,持续跟进Apache Solr的最新发展动态和技术实践,不仅有助于解决实际运维中的痛点问题,更能确保搜索服务始终处于行业领先水平,满足业务高速发展的需求。
2023-05-31 15:50:32
496
山涧溪流-t
Hadoop
...数据,并且支持高度的配置性和灵活性,可以处理各种类型的数据源和目的地。在与Hadoop集成时,NiFi可用于从HDFS读取数据、对其进行处理后,再将结果写入其他位置或系统。 Apache Beam , Apache Beam是一个统一的编程模型,旨在简化批处理和实时数据处理应用程序的开发过程。Beam允许开发者编写一次代码,就能在多个执行引擎(包括Apache Flink、Spark和Google Dataflow等)上运行,从而极大地提高了跨平台的数据处理效率。在文章中,Apache Beam被用于整合Hadoop,通过其SDK编写代码来处理HDFS中的数据,实现了数据处理逻辑的一致性和可移植性。
2023-06-17 13:12:22
582
繁华落尽-t
Java
...目中JSP视图渲染的配置与问题解决策略之后,我们可以进一步关注Java Web开发领域的最新动态和相关技术解读。近期,Spring Boot 3.0正式发布,其中对Web MVC框架进行了多项优化升级,包括对Thymeleaf、FreeMarker等现代模板引擎的支持更加完善,并强化了与前端框架如React、Vue.js等的集成能力。 针对多模块项目中的视图层管理,Spring官方推荐采用模块化、组件化的前端架构,结合微前端理念,通过Spring Boot提供的统一资源处理机制,实现前后端分离下的高效协同开发。例如,可以借助Webpack或Parcel等构建工具进行静态资源打包,再利用Spring Boot的ResourceHandlerMapping进行统一映射,确保跨模块视图资源的有效加载。 此外,随着云原生趋势的发展,Spring Boot也在容器化部署、服务发现、熔断限流等方面提供了更强大的支持。开发者在使用Spring Boot构建多模块应用时,应关注如何在Kubernetes、Docker等环境下正确配置和管理包含JSP视图的Web模块,以适应现代云环境的需求。 另外,对于坚持使用传统JSP技术的团队,可参考Spring官方文档及社区讨论,了解如何在新版本Spring Boot中调整配置以适配JSP,同时关注业界关于JSP未来发展的探讨,以便适时调整技术栈,提高项目的长期可维护性和扩展性。 综上所述,在实际项目开发中,持续跟进Spring Boot的最新进展,结合项目需求合理选择视图层技术,并在多模块结构中灵活运用和配置,是提升开发效率和保证系统稳定性的关键所在。
2024-02-17 11:18:11
271
半夏微凉_t
Consul
...导。 一、Kubernetes与Consul的深度融合 随着Kubernetes在云原生环境中的广泛应用,Consul与Kubernetes的集成成为现代服务治理的重要组成部分。通过Kubernetes的Ingress控制器与Consul的联合使用,实现了服务的自动路由和负载均衡。此外,Consul的健康检查功能与Kubernetes的自动重启机制相结合,大大提升了服务的稳定性和可用性。这种深度集成不仅简化了服务的部署与管理,也有效降低了故障恢复的时间成本。 二、云原生安全与Consul的策略 在云原生环境中,安全防护尤为重要。Consul提供了强大的身份认证和授权机制,通过与IAM(Identity and Access Management)系统的整合,实现了细粒度的访问控制。同时,Consul支持基于策略的流量控制,能够根据不同的业务需求调整服务间的流量分配,有效防止服务间的过度依赖和资源争抢,从而提升了整个系统的安全性和稳定性。 三、多云与多区域服务发现的挑战与应对 面对多云和多区域部署的复杂性,Consul通过其多数据中心支持和跨云服务发现功能,为开发者提供了灵活的服务发现解决方案。通过设置全局一致性策略,Consul能够在不同云环境之间实现服务的无缝切换和负载均衡,确保了服务的高可用性和快速响应能力。此外,Consul的自动化配置更新机制,使得服务在多云多区域部署下的配置管理变得简单高效,极大地减少了运维工作量。 四、Consul在DevOps流程中的应用 Consul在DevOps流程中的应用,特别是在持续集成/持续部署(CI/CD)流程中,起到了关键作用。通过集成Consul的配置管理功能,开发团队能够实现配置文件的版本化管理,简化了配置变更的流程,降低了人为错误的风险。同时,Consul的日志聚合与监控功能,为开发者提供了实时的系统状态洞察,加速了问题定位和解决的速度,从而提升了整体的开发效率与产品质量。 综上所述,Consul在现代云原生服务治理中的应用趋势与最佳实践,体现了其在服务发现、安全性、多云支持以及DevOps流程优化等方面的强大能力。随着技术的不断演进,Consul将继续发挥其在构建高效、可靠和可扩展的云原生应用中的重要作用,助力企业实现数字化转型的目标。
2024-08-05 15:42:27
34
青春印记
Shell
...提供商因系统资源分配问题导致多个客户的服务中断。据报道,该事件起因是某客户突发性的高并发请求,短时间内消耗了大量的计算资源,而系统未能及时调整资源分配策略,最终触发了一系列连锁反应,不仅影响了目标客户的业务,还波及其他正常运行的服务。 这一事件提醒我们,随着企业数字化转型的加速,云服务的稳定性变得尤为重要。尤其是在面对突发流量高峰时,如何确保资源分配的合理性和弹性成为关键挑战。许多企业已经开始采用微服务架构和容器化技术来提升系统的灵活性,例如使用Kubernetes动态调整资源池,以满足不同时间段的需求波动。此外,AI驱动的自动化运维工具也被越来越多地应用于资源管理中,通过实时监控和预测分析,提前识别潜在风险并采取预防措施。 从长远来看,加强基础设施建设与技术创新同样不可或缺。例如,引入更高效的存储方案,如分布式文件系统或对象存储,可以有效缓解传统存储方式面临的性能瓶颈。同时,制定严格的权限管理和访问控制策略,避免非必要权限滥用,也是防止类似事件再次发生的重要手段。 总之,在信息技术飞速发展的今天,无论是个人还是企业,都需要不断提升自身的IT能力,以适应复杂多变的环境。希望这次事件能引起更多人对资源分配问题的关注,共同推动行业的健康发展。
2025-05-10 15:50:56
94
翡翠梦境
转载文章
...加密传输或配合SSL配置以确保数据在传输过程中的安全性。同时,也有专家提倡利用像Percona Xtrabackup这样的第三方工具进行物理备份,特别是在InnoDB存储引擎下,它能提供更细粒度的热备份与恢复操作。 另外值得注意的是,针对数据库性能优化,业界倡导将备份时间安排在业务低峰期,并结合缓存技术与索引调整等手段减少备份期间对在线服务的影响。随着容器化和Kubernetes等云原生技术的发展,如何在分布式环境下高效运用mysqldump进行数据迁移与灾备也成为IT专业人士关注的新课题。 综上所述,掌握mysqldump的基本操作仅仅是开始,不断跟进最新的数据库管理技术和最佳实践,深入理解和灵活应用不同备份恢复策略,才能确保在复杂多变的业务场景中,有效保障数据的安全性和系统的稳定性。
2023-02-01 23:51:06
265
转载
Golang
...lang生态下的现代配置管理实践 随着云计算和微服务架构的兴起,现代应用程序的复杂度显著提升,配置管理成为确保系统稳定性和灵活性的关键环节。Golang,作为一门简洁高效的语言,因其强大的并发处理能力和模块化的特性,被广泛应用于构建高性能、可扩展的系统。然而,在快速迭代的开发环境中,传统的配置管理方式面临诸多挑战,比如配置文件的频繁变更、版本控制的困难、以及多环境部署的复杂性。本文将探讨在Golang生态下,如何采用现代配置管理实践,以适应快速发展的技术趋势和业务需求。 一、动态配置与云原生应用 在云原生时代,动态配置管理变得至关重要。云平台提供了丰富的服务,如配置管理、密钥管理、服务发现等,这些服务支持在运行时更新配置,无需重启服务即可生效。Golang生态系统中,可以通过集成这些云服务来实现动态配置管理。例如,使用Kubernetes的ConfigMap或Secrets功能,可以在不修改代码的情况下,轻松调整服务配置,满足不同环境和阶段的需求。 二、微服务间的配置协调 在微服务架构中,服务间依赖的配置往往需要统一管理和协调。传统的方法可能涉及硬编码配置或通过共享数据库存储配置,这不仅增加了维护成本,还可能导致数据同步问题。借助现代配置管理工具,如Consul、Etcd或Vault,可以实现服务之间的配置共享和安全存储。这些工具提供了强大的API和丰富的客户端库,使得在Golang项目中集成配置管理变得更加便捷和高效。 三、DevOps与自动化测试 DevOps实践强调自动化和持续交付,这对配置管理提出了更高要求。在Golang项目中,可以结合CI/CD工具链,如Jenkins、GitLab CI或GitHub Actions,实现配置文件的自动化管理。通过编写脚本或使用特定的配置管理工具,可以在每次代码提交后自动触发配置更新过程,确保生产环境与开发环境的配置一致性。此外,引入自动化测试,特别是针对配置文件的测试,可以帮助检测配置错误,提前发现潜在问题,减少上线风险。 四、未来展望 随着技术的不断演进,Golang生态下的配置管理实践也将不断发展。未来,我们可以期待更智能的配置管理系统,能够自动检测配置冲突、预测配置变更影响,甚至通过机器学习算法优化配置性能。同时,跨平台和跨语言的配置管理工具将进一步增强Golang与其他技术栈的互操作性,促进更广泛的生态系统集成和协作。 总之,Golang生态下的现代配置管理实践不仅关乎技术细节,更是企业级应用架构设计和运维策略的重要组成部分。通过采用先进的配置管理工具和技术,可以有效提升应用的可维护性、可靠性和响应速度,助力企业在竞争激烈的市场环境中保持竞争优势。
2024-08-22 15:58:15
168
落叶归根
HessianRPC
...们聊聊一个让人头疼的问题——服务异常恢复失败。这个问题啊,说起来真是让人又气又无奈。嘿,作为一个整天跟代码打交道的程序员,我最近真是摊上事儿了。有个用HessianRPC搞的服务突然罢工了,死活不干活。我各种捣鼓、重启、排查,忙活了好几天,可它就像个倔强的小破孩儿一样,愣是不给我恢复正常,气得我都想给它来顿“代码大餐”了! 先简单介绍一下背景吧。HessianRPC是一个轻量级的远程调用框架,主要用于Java项目之间的通信。它用二进制的方式传数据,速度快得飞起,特别适合微服务里那些小家伙们互相聊天儿用!唉,说真的,再厉害的工具也有它的短板啊。就像这次我的服务莫名其妙挂掉了,想让它重新站起来吧,那过程简直跟做噩梦一样,折腾得我头都大了。 --- 2. 症状 服务异常的表象 服务崩溃的表现其实挺明显的。首先,客户端请求一直超时,没有任何响应。然后,服务器日志里开始出现各种错误信息,比如: java.net.SocketTimeoutException: Read timed out 或者更糟糕的: java.lang.NullPointerException 看到这些错误,我心里咯噔一下:“坏了,这可能是服务端出现了问题。”于是赶紧登录服务器查看情况。果然,服务进程已经停止运行了。更让我抓狂的是,重启服务后问题并没有解决,反而越搞越复杂。 --- 3. 原因分析 为什么恢复失败? 接下来,我们来聊聊为什么会发生这种状况。经过一番排查,我发现问题可能出在以下几个方面: 3.1 配置问题 第一个怀疑对象是配置文件。HessianRPC的配置其实很简单,但有时候细节决定成败。比如说啊,在配置文件里我给超时时间设成了5秒,结果一到高并发那场面,这时间简直不够塞牙缝的,分分钟就崩了。修改配置后,虽然有一定的改善,但问题依然存在。 java // 修改HessianRPC的超时时间 Properties properties = new Properties(); properties.setProperty("hessian.read.timeout", "10000"); // 设置为10秒 3.2 线程池耗尽 第二个怀疑对象是线程池。HessianRPC默认使用线程池来处理请求,但如果线程池配置不当,可能会导致线程耗尽,进而引发服务不可用。我检查了一下线程池参数,发现最大线程数设置得太低了。 java // 修改线程池配置 ExecutorService executor = Executors.newFixedThreadPool(50); // 将线程数增加到50 3.3 内存泄漏 第三个怀疑对象是内存泄漏。有时候服务崩溃并不是因为CPU或网络的问题,而是内存不足导致的。我用JProfiler这个工具去给服务做了一次内存“体检”,结果一查,嘿,还真揪出了几个“大块头”对象,愣是赖在那儿没走,该回收的内存也没释放掉。 java // 使用WeakReference避免内存泄漏 WeakReference weakRef = new WeakReference<>(new Object()); --- 4. 解决方案 一步步修复服务 好了,找到了问题所在,接下来就是动手解决问题了。这里分享一些具体的解决方案,希望能帮到大家。 4.1 优化配置 首先,优化配置是最直接的方式。我调整了HessianRPC的超时时间和线程池大小,让服务能够更好地应对高并发场景。 java // 配置HessianRPC客户端 HessianProxyFactory factory = new HessianProxyFactory(); factory.setOverloadEnabled(true); // 开启方法重载 factory.setConnectTimeout(5000); // 设置连接超时时间为5秒 factory.setReadTimeout(10000); // 设置读取超时时间为10秒 4.2 异常处理 其次,完善异常处理机制也很重要。我给这个服务加了不少“兜底”的代码,就像在每个关键步骤都放了个小垫子,这样就算某个地方突然“摔跤”了,整个服务也不至于直接“趴下”,还能继续撑着运行。 java try { // 执行业务逻辑 } catch (Exception e) { log.error("服务执行失败", e); } 4.3 日志监控 最后,加强日志监控也是必不可少的。嘿,我装了个ELK日志系统,就是那个 Elasticsearch、Logstash 和 Kibana 的组合拳,专门用来实时盯着服务的日志输出。只要一出问题,我马上就能找到是哪里卡住了,超方便! java // 使用Logback记录日志 logs/service.log %d{yyyy-MM-dd HH:mm:ss} [%thread] %-5level %logger{36} - %msg%n --- 5. 总结 从失败中成长 经过这次折腾,我对HessianRPC有了更深的理解,也明白了一个道理:技术不是一蹴而就的,需要不断学习和实践。虽然这次服务异常恢复失败的经历让我很沮丧,但也让我积累了宝贵的经验。 如果你也有类似的问题,不妨按照以下步骤去排查: 1. 检查配置文件,确保所有参数都合理。 2. 监控线程池状态,避免线程耗尽。 3. 使用工具检测内存泄漏,及时清理无用资源。 4. 完善异常处理机制,增强服务的健壮性。 希望这篇文章能对你有所帮助!如果还有其他问题,欢迎随时交流。我们一起进步,一起成长! --- PS:记住,技术之路虽难,但每一步都是值得的!
2025-05-05 15:38:48
31
风轻云淡
Apache Lucene
...着性能瓶颈和用户体验问题。而Lucene凭借其强大的索引能力和灵活的搜索选项,成为了许多企业的首选解决方案。然而,随着数据量的激增,如何优化索引和查询性能成为了一个亟待解决的问题。例如,Netflix在其博客中分享了如何利用Lucene和Elasticsearch构建高效搜索系统的经验,特别强调了索引合并和缓存机制的重要性。 同时,Java 17的发布也为开发者提供了新的工具和改进,如更强的类型推断和更好的性能优化。这些新特性使得处理NullPointerException等常见异常变得更加容易,从而提升了代码的质量和稳定性。根据Oracle官方文档,Java 17引入了若干新特性,包括密封类(Sealed Classes)、记录类型(Record Patterns)等,这些都可以帮助开发者更安全地编写代码。 此外,对于那些正在寻找更强大、更易于扩展的搜索解决方案的企业而言,基于Lucene的分布式搜索系统,如Solr和Elasticsearch,正变得越来越受欢迎。这些系统不仅提供了高度的可伸缩性和容错性,还能通过集群管理工具轻松地进行部署和维护。例如,Elasticsearch的官方文档中详细介绍了如何使用Kubernetes进行部署,这为企业提供了更为便捷的解决方案。 综上所述,无论是通过优化现有技术还是采用新兴工具,企业都能够更好地应对大数据时代的挑战,提供更快、更准确的搜索服务。而对于开发者而言,掌握最新的编程语言特性和搜索技术,将有助于他们在竞争激烈的市场中脱颖而出。
2024-10-16 15:36:29
88
岁月静好
Kafka
...框架如Apache Flink或KSQL进行实时分析,以快速识别市场趋势、异常交易或潜在的风险点。这种实时分析能力对于金融机构提升运营效率、加强风险管理具有重要意义。 面临的挑战 1. 数据隐私与合规性:金融行业对数据隐私和合规性有着极高的要求。在使用Kafka处理敏感数据时,必须确保数据传输的安全性,遵守相关法律法规,如GDPR、CCPA等。 2. 高可用性与容错性:金融系统要求极高可用性,任何数据丢失或服务中断都可能导致重大经济损失。因此,Kafka集群需要具备高度的可扩展性、容灾能力和故障恢复机制。 3. 性能优化与成本控制:金融交易数据量庞大,对处理速度和存储容量有极高要求。如何在保证性能的同时,合理控制成本,成为金融机构面临的挑战。 解决方案与展望 1. 加密与认证:采用SSL/TLS协议加密数据传输,使用OAuth2等认证机制保护敏感数据,确保数据在Kafka集群内外的安全流通。 2. 容灾与备份:建立多数据中心的Kafka集群,通过副本复制和ZooKeeper协调,实现数据的高可用性和快速恢复。同时,定期备份数据,确保在灾难发生时能够迅速恢复服务。 3. 性能优化与成本管理:通过优化Kafka配置、使用高效的索引机制、引入缓存策略等方式提高数据处理速度。同时,采用云服务提供的弹性计算资源,根据业务需求动态调整集群规模,实现成本效益最大化。 随着金融行业数字化转型的加速,Kafka将继续发挥其不可或缺的作用。未来,随着技术的不断进步,Kafka在金融领域的应用将更加深入,同时也将面临新的挑战,如边缘计算、人工智能融合等,这些都将推动Kafka技术的发展和创新。
2024-08-11 16:07:45
52
醉卧沙场
Dubbo
...迭代更新,还积极拥抱Kubernetes等现代容器化平台,推出了Dubbo 3.x版本,大幅提升了分布式系统的性能与可扩展性。这一系列改进让Dubbo在面对高并发、大规模服务治理时表现出色,尤其是在电商、金融等行业中得到了广泛应用。 例如,在刚刚结束的双十一购物节期间,某头部电商平台利用Dubbo实现了全链路压测与动态扩容,确保了亿级用户的访问请求能够稳定高效地被处理。该平台的技术团队表示,通过引入Dubbo的负载均衡算法优化以及服务熔断机制,他们在高峰期成功将请求延迟降低了30%以上,极大地提升了用户体验。此外,Dubbo与Spring Cloud的深度融合也为开发者提供了更加统一的微服务治理方案,使得不同技术栈的应用程序能够无缝协作。 然而,尽管Dubbo具备诸多优势,但在实际部署过程中仍需注意潜在风险。比如,部分企业在迁移至新版本时遇到了兼容性挑战,特别是对于老旧代码库而言,如何平衡创新与稳定性始终是一个难题。对此,业内专家建议,企业应优先评估现有系统的依赖关系,制定详细的升级计划,并借助Dubbo提供的灰度发布功能逐步推进改造工作,从而降低整体改造成本。 展望未来,随着Service Mesh概念的兴起,Dubbo也在积极探索与Istio等服务网格框架的合作模式,试图构建更为灵活且智能的服务管理体系。可以预见的是,Dubbo将在更广泛的业务场景下发挥重要作用,为企业数字化转型注入新的活力。与此同时,我们也期待Dubbo社区能够继续倾听用户需求,不断完善产品功能,共同推动开源生态的发展壮大。
2025-03-20 16:29:46
63
雪落无痕
Spark
...能优化成为亟待解决的问题。本文将深入探讨如何通过优化日志记录策略、引入自动化监控工具、实施精准性能调优等方法,全面提升Spark应用的稳定性和性能,从而更好地支撑大数据时代的业务需求。 一、日志记录优化:从被动到主动 传统的日志记录方式往往侧重于问题发生后的记录和事后分析,缺乏事前预警和预防机制。为了提升Spark应用的稳定性,应采用主动监控和预测性分析相结合的日志记录策略: - 日志级别调整:根据应用不同阶段的需求动态调整日志级别,既能保证关键信息的完整记录,又能避免无谓的性能开销。 - 日志聚合与分析:利用现代大数据分析工具(如ELK Stack、Logstash、Kibana等),实现日志的实时聚合、分析与可视化,便于快速识别异常模式和性能瓶颈。 - 自定义告警规则:基于历史数据和业务特性,设定合理的异常阈值和告警规则,实现异常的即时发现和响应。 二、自动化监控工具的引入 自动化监控工具能够持续跟踪Spark应用的运行状况,及时发现潜在问题并采取措施: - 实时监控:通过集成Prometheus、Grafana等监控工具,实现对应用性能、资源使用、任务执行时间等关键指标的实时监控。 - 自动扩展:利用Kubernetes等容器化平台的自动扩展功能,根据负载变化动态调整集群规模,确保资源高效利用。 - 故障恢复:通过HDFS、Zookeeper等组件提供的容错机制,实现任务失败时的自动重试或数据冗余备份,提升应用的高可用性。 三、精准性能调优策略 针对Spark应用的特定场景,实施精准的性能调优策略,可以从以下几个方面入手: - 参数优化:根据具体工作负载,调整Spark配置参数,如executor内存分配、shuffle操作的并行度等,以达到最优性能。 - 数据倾斜处理:采用数据预洗、分桶等技术,减少数据倾斜对任务执行效率的影响。 - 任务调度优化:合理规划任务执行顺序和依赖关系,避免不必要的等待时间,提高任务执行效率。 结论 通过优化日志记录策略、引入自动化监控工具、实施精准性能调优,可以显著提升Apache Spark应用的稳定性和性能,有效应对大数据时代面临的挑战。结合实时数据分析、故障预测与自动恢复等现代技术手段,企业能够构建更加可靠、高效的Spark生态系统,支持复杂业务场景下的数据驱动决策。
2024-09-07 16:03:18
141
秋水共长天一色
NodeJS
...的应用。 此外,随着Kubernetes的兴起,容器编排工具逐渐成为主流。Kubernetes不仅支持Docker容器,还提供了强大的自动化管理能力,使得大规模部署Node.js应用变得更加高效。例如,某知名电商公司在去年成功将其电商平台迁移到基于Kubernetes的Docker容器集群上,不仅提升了系统的稳定性和扩展性,还显著降低了运维成本。 从长远来看,容器化技术将继续推动DevOps文化的普及,促进开发人员和运维团队之间的协作。正如Linux之父Linus Torvalds所说:“开源的本质在于合作而非竞争。”通过拥抱开源技术和社区的力量,开发者可以更快地创新并解决实际问题。对于Node.js开发者而言,掌握Docker和Kubernetes等工具,不仅是技术上的提升,更是职业发展的必要条件。在未来几年,我们有理由相信,容器化技术将在更多领域展现出其独特的价值,为软件行业带来更多的可能性。
2025-05-03 16:15:16
33
海阔天空
DorisDB
...带你深入揭秘这个棘手问题的真相。咱们不只停留在表面,而是要挖出问题的根儿,然后一起找寻解决的钥匙。想象一下,我们是在大海捞针,但有了指南针和渔网,这场寻找就变得既刺激又充满乐趣。跟着我,咱们在数据的汪洋里畅游,找到属于你的那片宁静海港,让你不再被信息的洪流淹没,而是能稳稳驾驭,轻松自在地航行。准备好了吗?出发吧! 第一章:写入失败的初探 现象描述:当你尝试向DorisDB表中插入数据时,突然间,一切变得静止。查询返回一个错误信息,告诉你“写入失败”。这不仅让你感到沮丧,还可能影响了业务流程的连续性。 原因分析:写入失败可能是由多种因素引起的,包括但不限于网络延迟、资源限制(如磁盘空间不足)、事务冲突、以及数据库配置问题等。理解这些原因有助于我们对症下药。 第二章:案例研究:网络延迟引发的写入失败 场景还原:假设你正使用Python的dorisdb库进行数据插入操作。代码如下: python from dorisdb import DorisDBClient client = DorisDBClient(host='your_host', port=your_port, database='your_db') cursor = client.cursor() 插入数据 cursor.execute("INSERT INTO your_table (column1, column2) VALUES ('value1', 'value2')") 问题浮现:执行上述代码后,你收到了“写入失败”的消息,同时发现网络连接偶尔会中断。 解决方案:首先,检查网络连接稳定性。确保你的服务器与DorisDB实例之间的网络畅通无阻。其次,优化SQL语句的执行效率,减少网络传输的数据量。例如,可以考虑批量插入数据,而不是逐条插入。 第三章:资源限制:磁盘空间不足的挑战 场景还原:你的DorisDB实例运行在一个资源有限的环境中,某天,当你试图插入大量数据时,系统提示磁盘空间不足。 问题浮现:尽管你已经确保了网络连接稳定,但写入仍然失败。 解决方案:增加磁盘空间是显而易见的解决方法,但这需要时间和成本。哎呀,兄弟,你得知道,咱们手头的空间那可是个大问题啊!要是想在短时间内搞定它,我这儿有个小妙招给你。首先,咱们得做个大扫除,把那些用不上的数据扔掉。就像家里大扫除一样,那些过时的文件、照片啥的,该删就删,别让它占着地方。其次呢,咱们可以用更牛逼的压缩工具,比如ZIP或者RAR,它们能把文件压缩得更小,让硬盘喘口气。这样一来,不仅空间大了,还能节省点资源,挺划算的嘛!试试看,说不定你会发现自己的设备运行起来比以前流畅多了!嘿,兄弟!你听说过 DorisDB 的分片和分布式功能吗?这玩意儿超级厉害!它就像个大仓库,能把咱们的数据均匀地摆放在多个小仓库里(那些就是节点),这样不仅能让数据更高效地存储起来,还能让我们的系统跑得更快,用起来更顺畅。试试看,保管让你爱不释手! 第四章:事务冲突与并发控制 场景还原:在高并发环境下,多个用户同时尝试插入数据到同一表中,导致了写入失败。 问题浮现:即使网络连接稳定,磁盘空间充足,事务冲突仍可能导致写入失败。 解决方案:引入适当的并发控制机制是关键。在DorisDB中,可以通过设置合理的锁策略来避免或减少事务冲突。例如,使用行级锁或表级锁,根据具体需求选择最合适的锁模式。哎呀,兄弟,咱们在优化程序的时候,得注意一点,别搞那些没必要的同时进行的操作,这样能大大提升系统的稳定性。就像是做饭,你要是同时炒好几个菜,肯定得忙得团团转,而且容易出错。所以啊,咱们得一个个来,稳扎稳打,这样才能让系统跑得又快又稳! 结语:从困惑到解决的旅程 面对“写入失败”,我们需要冷静分析,从不同的角度寻找问题所在。哎呀,你知道嘛,不管是网速慢了点、硬件不够给力、操作过程中卡壳了,还是设置哪里没对劲,这些事儿啊,都有各自的小妙招来解决。就像是遇到堵车了,你得找找是哪段路的问题,然后对症下药,说不定就是换个路线或者等等红绿灯,就能顺畅起来呢!哎呀,你知道不?咱们要是能持续地学习和动手做,那咱处理问题的能力就能慢慢上个新台阶。就像给水管通了塞子,数据的流动就更顺畅了。这样一来,咱们的业务跑起来也快多了,就像是有了个贴身保镖,保护着业务高效运转呢!嘿!听好了,每回遇到难题都不是白来的,那可是让你升级打怪的好机会!咱们就一起手牵手,勇闯数据的汪洋大海,去发现那些藏在暗处的新世界吧!别怕,有我在你身边,咱俩一起探险,一起成长!
2024-10-07 15:51:26
122
醉卧沙场
转载文章
...容器编排技术 -- Kubernetes 给容器和Pod分配内存资源 1 Before you begin 2 创建一个命名空间 3 配置内存申请和限制 4 超出容器的内存限制 5 配置超出节点能力范围的内存申请 6 内存单位 7 如果不配置内存限制 8 内存申请和限制的原因 9 清理 这篇教程指导如何给容器分配申请的内存和内存限制。我们保证让容器获得足够的内存 资源,但是不允许它使用超过限制的资源。 Before you begin You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured to communicate with your cluster. If you do not already have a cluster, you can create one by using Minikube. 你的集群里每个节点至少必须拥有300M的内存。 这个教程里有几个步骤要求Heapster , 但是如果你没有Heapster的话,也可以完成大部分的实验,就算跳过这些Heapster 步骤,也不会有什么问题。 检查看Heapster服务是否运行,执行命令: kubectl get services --namespace=kube-system 如果Heapster服务正在运行,会有如下输出: NAMESPACE NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGEkube-system heapster 10.11.240.9 <none> 80/TCP 6d 创建一个命名空间 创建命名空间,以便你在实验中创建的资源可以从集群的资源中隔离出来。 kubectl create namespace mem-example 配置内存申请和限制 给容器配置内存申请,只要在容器的配置文件里添加resources:requests就可以了。配置限制的话, 则是添加resources:limits。 本实验,我们创建包含一个容器的Pod,这个容器申请100M的内存,并且内存限制设置为200M,下面 是配置文件: memory-request-limit.yaml apiVersion: v1kind: Podmetadata:name: memory-demospec:containers:- name: memory-demo-ctrimage: vish/stressresources:limits:memory: "200Mi"requests:memory: "100Mi"args:- -mem-total- 150Mi- -mem-alloc-size- 10Mi- -mem-alloc-sleep- 1s 在这个配置文件里,args代码段提供了容器所需的参数。-mem-total 150Mi告诉容器尝试申请150M 的内存。 创建Pod: kubectl create -f https://k8s.io/docs/tasks/configure-pod-container/memory-request-limit.yaml --namespace=mem-example 验证Pod的容器是否正常运行: kubectl get pod memory-demo --namespace=mem-example 查看Pod的详细信息: kubectl get pod memory-demo --output=yaml --namespace=mem-example 这个输出显示了Pod里的容器申请了100M的内存和200M的内存限制。 ...resources:limits:memory: 200Mirequests:memory: 100Mi... 启动proxy以便我们可以访问Heapster服务: kubectl proxy 在另外一个命令行窗口,从Heapster服务获取内存使用情况: curl http://localhost:8001/api/v1/proxy/namespaces/kube-system/services/heapster/api/v1/model/namespaces/mem-example/pods/memory-demo/metrics/memory/usage 这个输出显示了Pod正在使用162,900,000字节的内存,大概就是150M。这很明显超过了申请 的100M,但是还没达到200M的限制。 {"timestamp": "2017-06-20T18:54:00Z","value": 162856960} 删除Pod: kubectl delete pod memory-demo --namespace=mem-example 超出容器的内存限制 只要节点有足够的内存资源,那容器就可以使用超过其申请的内存,但是不允许容器使用超过其限制的 资源。如果容器分配了超过限制的内存,这个容器将会被优先结束。如果容器持续使用超过限制的内存, 这个容器就会被终结。如果一个结束的容器允许重启,kubelet就会重启他,但是会出现其他类型的运行错误。 本实验,我们创建一个Pod尝试分配超过其限制的内存,下面的这个Pod的配置文档,它申请50M的内存, 内存限制设置为100M。 memory-request-limit-2.yaml apiVersion: v1kind: Podmetadata:name: memory-demo-2spec:containers:- name: memory-demo-2-ctrimage: vish/stressresources:requests:memory: 50Milimits:memory: "100Mi"args:- -mem-total- 250Mi- -mem-alloc-size- 10Mi- -mem-alloc-sleep- 1s 在配置文件里的args段里,可以看到容器尝试分配250M的内存,超过了限制的100M。 创建Pod: kubectl create -f https://k8s.io/docs/tasks/configure-pod-container/memory-request-limit-2.yaml --namespace=mem-example 查看Pod的详细信息: kubectl get pod memory-demo-2 --namespace=mem-example 这时候,容器可能会运行,也可能会被杀掉。如果容器还没被杀掉,重复之前的命令直至 你看到这个容器被杀掉: NAME READY STATUS RESTARTS AGEmemory-demo-2 0/1 OOMKilled 1 24s 查看容器更详细的信息: kubectl get pod memory-demo-2 --output=yaml --namespace=mem-example 这个输出显示了容器被杀掉因为超出了内存限制。 lastState:terminated:containerID: docker://65183c1877aaec2e8427bc95609cc52677a454b56fcb24340dbd22917c23b10fexitCode: 137finishedAt: 2017-06-20T20:52:19Zreason: OOMKilledstartedAt: null 本实验里的容器可以自动重启,因此kubelet会再去启动它。输入多几次这个命令看看它是怎么 被杀掉又被启动的: kubectl get pod memory-demo-2 --namespace=mem-example 这个输出显示了容器被杀掉,被启动,又被杀掉,又被启动的过程: stevepe@sperry-1:~/steveperry-53.github.io$ kubectl get pod memory-demo-2 --namespace=mem-exampleNAME READY STATUS RESTARTS AGEmemory-demo-2 0/1 OOMKilled 1 37sstevepe@sperry-1:~/steveperry-53.github.io$ kubectl get pod memory-demo-2 --namespace=mem-exampleNAME READY STATUS RESTARTS AGEmemory-demo-2 1/1 Running 2 40s 查看Pod的历史详细信息: kubectl describe pod memory-demo-2 --namespace=mem-example 这个输出显示了Pod一直重复着被杀掉又被启动的过程: ... Normal Created Created container with id 66a3a20aa7980e61be4922780bf9d24d1a1d8b7395c09861225b0eba1b1f8511... Warning BackOff Back-off restarting failed container 查看集群里节点的详细信息: kubectl describe nodes 输出里面记录了容器被杀掉是因为一个超出内存的状况出现: Warning OOMKilling Memory cgroup out of memory: Kill process 4481 (stress) score 1994 or sacrifice child 删除Pod: kubectl delete pod memory-demo-2 --namespace=mem-example 配置超出节点能力范围的内存申请 内存的申请和限制是针对容器本身的,但是认为Pod也有容器的申请和限制是一个很有帮助的想法。 Pod申请的内存就是Pod里容器申请的内存总和,类似的,Pod的内存限制就是Pod里所有容器的 内存限制的总和。 Pod的调度策略是基于请求的,只有当节点满足Pod的内存申请时,才会将Pod调度到合适的节点上。 在这个实验里,我们创建一个申请超大内存的Pod,超过了集群里任何一个节点的可用内存资源。 这个容器申请了1000G的内存,这个应该会超过你集群里能提供的数量。 memory-request-limit-3.yaml apiVersion: v1kind: Podmetadata:name: memory-demo-3spec:containers:- name: memory-demo-3-ctrimage: vish/stressresources:limits:memory: "1000Gi"requests:memory: "1000Gi"args:- -mem-total- 150Mi- -mem-alloc-size- 10Mi- -mem-alloc-sleep- 1s 创建Pod: kubectl create -f https://k8s.io/docs/tasks/configure-pod-container/memory-request-limit-3.yaml --namespace=mem-example 查看Pod的状态: kubectl get pod memory-demo-3 --namespace=mem-example 输出显示Pod的状态是Pending,因为Pod不会被调度到任何节点,所有它会一直保持在Pending状态下。 kubectl get pod memory-demo-3 --namespace=mem-exampleNAME READY STATUS RESTARTS AGEmemory-demo-3 0/1 Pending 0 25s 查看Pod的详细信息包括事件记录 kubectl describe pod memory-demo-3 --namespace=mem-example 这个输出显示容器不会被调度因为节点上没有足够的内存: Events:... Reason Message------ -------... FailedScheduling No nodes are available that match all of the following predicates:: Insufficient memory (3). 内存单位 内存资源是以字节为单位的,可以表示为纯整数或者固定的十进制数字,后缀可以是E, P, T, G, M, K, Ei, Pi, Ti, Gi, Mi, Ki.比如,下面几种写法表示相同的数值:alue: 128974848, 129e6, 129M , 123Mi 删除Pod: kubectl delete pod memory-demo-3 --namespace=mem-example 如果不配置内存限制 如果不给容器配置内存限制,那下面的任意一种情况可能会出现: 容器使用内存资源没有上限,容器可以使用当前节点上所有可用的内存资源。 容器所运行的命名空间有默认内存限制,容器会自动继承默认的限制。集群管理员可以使用这个文档 LimitRange来配置默认的内存限制。 内存申请和限制的原因 通过配置容器的内存申请和限制,你可以更加有效充分的使用集群里内存资源。配置较少的内存申请, 可以让Pod跟任意被调度。设置超过内存申请的限制,可以达到以下效果: Pod可以在负载高峰时更加充分利用内存。 可以将Pod的内存使用限制在比较合理的范围。 清理 删除命名空间,这会顺便删除命名空间里的Pod。 kubectl delete namespace mem-example 译者:NickSu86 原文链接 本篇文章为转载内容。原文链接:https://blog.csdn.net/Aria_Miazzy/article/details/99694937。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-23 12:14:07
495
转载
Hadoop
...低的成本。与此同时,Kubernetes作为容器编排的事实标准,也正在改变传统Hadoop集群的管理模式。越来越多的企业开始尝试将Hadoop与Kubernetes结合,通过容器化部署来简化运维工作,提高资源利用率。 此外,隐私保护法规的变化也为Hadoop的应用带来了新挑战。随着《个人信息保护法》等法律法规在全球范围内的实施,企业在处理敏感数据时必须更加谨慎。在这种背景下,如何在保证数据安全的同时实现高效的大数据分析成为了一个亟待解决的问题。一些公司正在探索使用加密技术和联邦学习等方法,以确保数据在传输和处理过程中不被泄露。 另一方面,尽管Hadoop本身仍在持续迭代更新,但社区的关注点已经开始向边缘计算转移。边缘计算能够有效缓解中心化数据中心的压力,特别是在物联网设备数量激增的情况下。通过在靠近数据源的地方进行预处理,不仅可以降低延迟,还能减少带宽消耗。这为Hadoop未来的发展指明了一条新的路径。 总之,虽然Hadoop面临诸多挑战,但凭借其成熟的技术体系和广泛的应用基础,它仍然是许多企业和组织不可或缺的选择。未来,Hadoop可能会与其他新兴技术深度融合,共同推动大数据产业的进步。
2025-03-26 16:15:40
97
冬日暖阳
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
cut -d ',' -f 1,3 file.csv
- 根据逗号分隔符提取csv文件中第1列和第3列的内容。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"