前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[特权指令防护设计]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
RabbitMQ
...生分布式消息系统,其设计中采用了一种多层持久化和复制机制,有效防止了类似消息丢失的问题,提升了系统的整体稳定性。 同时,随着Kubernetes等容器编排技术的广泛应用,如何在动态环境中优化部署与管理RabbitMQ集群以避免消息丢失也成为开发者关注的话题。一些云服务商如阿里云、AWS针对此场景提供了托管型的消息队列服务,通过整合底层基础设施资源,确保即使在网络波动或节点故障时,也能保证消息的高可靠传输。 此外,从架构设计层面出发,结合微服务架构的设计原则,专家们提倡采用异步处理、幂等操作以及事件溯源等策略来增强系统对消息丢失的容忍度与自我恢复能力。这些方法论与实践不仅适用于RabbitMQ,也对其他消息中间件平台具有普遍指导意义。 综上所述,在实际项目开发过程中,持续跟进消息中间件领域的最新研究成果和技术趋势,结合具体业务场景灵活运用多种策略,是解决消息丢失问题并构建高可用、高性能系统的关键所在。
2023-07-19 16:46:45
87
草原牧歌-t
Kibana
...行深度解读,强调合理设计索引策略、充分利用缓存机制以及适时调整查询参数的重要性,这些都是确保Kibana实现真正意义上的“实时”更新不可或缺的环节。通过持续关注这些前沿技术动态与最佳实践案例,我们可以为解决类似问题提供更全面、更与时俱进的方案,从而在大数据分析与可视化领域始终保持领先地位。
2023-10-10 23:10:35
278
梦幻星空
RocketMQ
...统,它基于分布式架构设计,主要应用于处理大规模、高并发以及高可用的消息传递场景。在本文中,RocketMQ使用TCP长连接方式提高消息发送效率,通过心跳机制检测并维持TCP连接状态,以应对可能出现的连接断开问题。 心跳机制 , 在网络编程和通信领域中,心跳机制是指客户端和服务端之间定期发送特定的数据包(称为心跳包)以确认对方是否在线和连接是否正常的一种策略。在RocketMQ中,心跳机制被用来实时监控TCP长连接的状态,当一段时间内未收到心跳包时,可以判断连接可能已经断开,并尝试重新建立连接,从而保证系统的稳定性。
2023-08-30 18:14:53
134
幽谷听泉-t
Dubbo
...技术在现代分布式系统设计与优化中具有极高的实用价值。近期,阿里巴巴集团在其最新的《2022阿里云开发者最佳实践》报告中强调了线程池管理与负载均衡策略对于提升分布式服务性能的重要性,并且列举了Dubbo在众多大型项目中的成功应用案例。 同时,在开源社区和学术研究领域,对服务治理、资源调度的探讨也在不断深化。例如,一篇发表于ACM Transactions on Internet Technology的最新论文《Dynamic Thread Pool Sizing for Scalable and Responsive Microservices》提出了一种动态调整线程池大小的方法,以确保微服务在高并发场景下既能保持响应能力又能实现水平扩展,这为未来改进Dubbo等框架的线程池策略提供了新的理论依据和技术思路。 此外,随着云原生时代的到来,Kubernetes等容器编排工具也对服务提供者的资源分配和管理提出了新的挑战与机遇。诸如Istio等服务网格解决方案正逐步支持更精细的服务流量控制与线程池资源调配,这也为解决类似服务提供者线程池阻塞的问题开辟了新的实战阵地。 综上所述,无论是基于现有框架如Dubbo的深入优化,还是借鉴前沿科研成果及云原生技术的发展趋势,持续探索并优化服务提供者的线程池管理策略,对于构建高性能、高可用的分布式系统都具有重要意义。
2023-09-01 14:12:23
484
林中小径-t
MemCache
... Locking)的设计理念也被越来越多地应用于现代缓存服务中,它假设并发访问一般情况下不会发生冲突,仅在更新数据时检查是否发生并发修改,从而降低锁带来的性能开销。 此外,云原生时代的容器化与微服务架构也对缓存系统的并发控制提出了新的挑战。Kubernetes等容器编排平台上的应用实例可能随时扩缩容,这要求缓存服务不仅要处理好内部的多线程同步问题,还要适应外部动态环境的变化。因此,诸如具有更强一致性保证的CRDT(Conflict-free Replicated Data Types)数据结构的研究与应用也在不断推进,旨在提供一种更为灵活且能应对网络分区的分布式锁方案。 综上所述,理解并妥善处理Memcache乃至更多现代缓存系统中的锁机制冲突,是构建高性能、高可用分布式系统的基石,而紧跟技术发展趋势,关注相关领域的最新研究成果与实践案例,将有助于我们在实际工作中更好地解决此类问题。
2024-01-06 22:54:25
79
岁月如歌-t
Beego
...可以在全局或模块层面设计一套统一的头部设置机制,避免分散在各个中间件和控制器中随意设置。 总结来说,Beego框架中的HTTP头部设置冲突是一个需要开发者关注的实际问题。理解其产生原因并采取恰当的策略规避或解决此类冲突,有助于我们构建更稳定、高效的Web服务。在这一整个挖掘问题和解决问题的过程中,我们不能光靠死板的技术知识“啃硬骨头”,更要灵活运用咱们的“人情味儿”设计思维,这样一来,才能更好地把那个威力强大的Beego开发工具玩转起来,让它乖乖听话,帮我们干活儿。
2023-04-16 17:17:44
438
岁月静好
ClickHouse
...的分布式表引擎特性,设计合理的故障转移策略,当出现节点未就绪时,能自动切换到其他可用节点。 4. 预防与优化策略 - 定期维护与监控:建立完善的监控系统,实时检测每个节点的运行状况,并对可能出现问题的节点提前预警。 - 合理规划集群规模与架构:根据业务需求,合理规划集群规模,避免单点故障,同时确保各节点负载均衡。 - 升级与补丁管理:及时关注ClickHouse的版本更新与安全补丁,确保所有节点保持最新稳定版本,降低因软件问题引发的NodeNotReadyException风险。 - 备份与恢复策略:制定有效的数据备份与恢复方案,以便在节点发生故障时,能够快速恢复服务。 总结起来,面对ClickHouse的NodeNotReadyException异常,我们不仅需要深入理解其背后的原因,更要在实践中掌握一套行之有效的排查方法和预防策略。这样子做,才能确保当我们的大数据处理平台碰上这类问题时,仍然能够坚如磐石地稳定运行,实实在在地保障业务的连贯性不受影响。这一切的一切,都离不开我们对技术细节的死磕和实战演练的过程,这正是我们在大数据这个领域不断进步、持续升级的秘密武器。
2024-02-20 10:58:16
496
月影清风
HTML
...ESTful API设计以及服务端渲染(SSR)等相关技术,以便更好地应对复杂多变的开发需求。同时,在项目实践中不断积累经验,通过编写自动化测试用例来确保视图及其它组件的正确加载与显示,也是提升开发效率、保障应用稳定运行的重要手段。
2023-11-08 14:07:42
597
时光倒流_t
SpringCloud
在实际应用中,熔断器设计模式已经成为了现代微服务架构中的关键组件。近期,随着云原生技术的快速发展和普及,熔断器的重要性日益凸显。Netflix 的Hystrix虽然为开发者提供了强大的熔断机制,但随着其进入维护模式,社区逐渐转向了其他替代方案,例如Google的Resilience4j和阿里巴巴开源的Sentinel。 Resilience4j是一个轻量级的库,它在Java 8的函数式编程模型基础上提供了容错能力,包括熔断器、重试、降级和限流等功能。其设计更加模块化,易于集成到现有系统,尤其是与Spring Boot等框架结合使用时表现出色。 另一方面,Sentinel作为阿里云的重要中间件之一,不仅支持熔断降级功能,还提供了流量控制、系统负载保护以及实时监控等功能,全面保障微服务架构的高可用性和稳定性。尤其对于国内开发者而言,Sentinel凭借丰富的文档、活跃的社区支持和本土化优势,已成为众多企业构建分布式系统的首选工具。 无论是选择Resilience4j还是Sentinel,都反映了熔断器设计理念在应对复杂分布式系统挑战中的持续演进和创新实践。未来,随着微服务架构的深入发展,我们期待看到更多先进的熔断策略和技术涌现,以更高效的方式确保系统的韧性与稳定性。
2023-05-11 23:23:51
76
晚秋落叶_t
转载文章
...态请求操作,需要后端设计一个记号,这个记号注意需要设置时效性(今天最后一秒到当前时间间隔[单位是秒])//如何设计记号?------------------------------------------------方案1:可以参照之前攻略收藏记号操作方式,设计一个key,用户uid做区分(保证唯一),value值是攻略id集合,一顶将攻略uid添加集合中方案2:设计一个key,使用用户uid跟攻略sid进行区分,value值随意,需要设置有效性 实现步骤 1.创建一个点赞接口,传入当前点赞攻略sid,获取当前登录用户uid2.通过sid跟uid拼接记号的key3.判断key是否存在如果存在,说明今天已经点赞(顶)过,不做任何处理,页面提示如果不存在,说明具体没点赞(顶)过,获取vo对象,点赞数属性+1,将记号缓存到redis中,设置过期时间:今天最后一秒到当前时间间隔[单位是秒]4.更新vo对象 具体实现 //判断是否顶过@Overridepublic boolean strategyThumbup(String id, String sid) {String key = RedisKeys.USER_STRATEGY_THUMBUP.join(id, sid);//如果不包含,表示没有顶过,执行点赞,点赞数+1,并设置key有效时间if (!template.hasKey(key)) {StrategyStatisVO statisVO = this.getStrategyStatisVO(sid);statisVO.setThumbsupnum(statisVO.getThumbsupnum() + 1);this.setStrategyStatisVO(statisVO);//拿到最晚时间Date endDate = DateUtil.getEndDate(new Date());//计算时间间隔long time = DateUtil.getDateBetween(endDate, new Date());//设置有效时间template.opsForValue().set(key, "1", time, TimeUnit.SECONDS);return true;}return false;}-----------------------------------------------------------------------------------//时间工具类public class DateUtil {/ 获取两个时间的间隔(秒) /public static long getDateBetween(Date d1, Date d2){return Math.abs((d1.getTime()-d2.getTime())/1000);//取绝对值}public static Date getEndDate(Date date) {if (date == null) {return null;}Calendar c = Calendar.getInstance();c.setTime(date);c.set(Calendar.HOUR_OF_DAY,23);c.set(Calendar.MINUTE,59);c.set(Calendar.SECOND,59);return c.getTime();} } 小结 1.核心问题需要区分是第一次顶还是的二次顶,这种请求操作属于有状态请求操作2.有状态请求操作我们需要设置记号,问题的关键在于记号的设计3.这个记号,我们也可以使用与点赞/收藏功能类似的记号,就是以用户id为key,然后将顶的文章id放到集合中为value4.但是更推荐使用以用户id和攻略id拼接而成的为key,value随意取5.我们操作时只需要判断key是否存在,存在,我们什么操作也不用做,不存在,我们就将点赞(数)+1,然后设置key的时间即可6.最后更新vo对象7.难点在于时间的设置,看工具类,这个key键设置体现了key键的唯一性,灵活性和时效性 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_47555380/article/details/108081752。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-08-31 21:48:44
129
转载
.net
...识,结合具体业务场景设计合理的数据库访问层,并充分运用日志记录和监控工具,以便快速定位并修复如EntityException等数据库层面的异常问题。通过不断跟进前沿技术动态、实战演练和经验总结,每一位开发者都能在面对复杂数据库异常时更加游刃有余。
2023-07-20 20:00:59
509
笑傲江湖
Go-Spring
...健康检查机制和熔断器设计模式,有效提升了系统的稳定性和容错能力。 与此同时,Go语言社区也在持续关注并优化语言本身的规范和工具链,例如Go 1.18版本正式引入了泛型,这一重大改变无疑将极大提升Go语言在处理复杂业务逻辑时的灵活性和代码复用率。这对于Go-Spring这类框架来说,意味着未来能够在更大程度上满足不同场景下的定制化需求,为开发者带来更深层次的便利。 总的来说,无论是对初学者而言的基本语法规范教育,还是对资深开发者来说的高级特性和框架优化,Go-Spring都展现出了强大的适应性和前瞻性。在深入了解和熟练掌握Go-Spring的同时,持续跟进Go语言的发展动态和社区趋势,无疑将帮助开发者在微服务架构的设计与实现上取得更大的突破,从容应对日益复杂的业务场景挑战。
2024-03-23 11:30:21
417
秋水共长天一色
Docker
...kerfile定义的指令集,可以生成一个高度可移植的Docker镜像,这个镜像可以在任何安装了Docker的主机上启动为容器,并在其中运行相应的应用程序。 持续集成/持续部署(CI/CD) , CI/CD是现代软件开发流程中的重要实践,其中持续集成是指开发人员频繁地(如每次提交代码后)将代码合并到主分支,并自动进行构建和测试的过程,确保新代码能够与其他团队成员的工作顺畅集成,及时发现并修复问题。而持续部署则是在持续集成的基础上进一步自动化部署流程,当所有测试通过后,能将应用自动部署到生产环境或预发布环境,显著提高软件交付速度与质量。在Docker的环境中,CI/CD可以通过预先构建好的Docker镜像实现快速、可靠的应用程序部署。
2023-02-17 17:09:52
515
追梦人-t
Sqoop
...版本引入了全新的架构设计,支持更灵活的插件机制,进一步优化了大规模数据迁移的性能与稳定性。此外,业界也涌现出诸多基于Sqoop的扩展工具及解决方案,例如Cloudera提供的增强型Sqoop服务,不仅增强了安全特性,还针对云环境进行了深度优化。 同时,随着数据湖、实时数据分析等新场景的兴起,Sqoop与现代数据栈中其他组件如Kafka、Flink等结合使用的案例日益增多。例如,通过Sqoop将传统数据库的数据实时导入到Kafka topic中,再由Flink进行流式处理分析,构建出更加高效的数据集成与处理流水线。 不仅如此,对于Sqoop在企业级应用场景下的最佳实践和挑战,诸如如何实现复杂ETL流程自动化、如何保证数据迁移过程中的零丢失与一致性等问题,近期许多专业博客和技术论坛都进行了深入探讨与分享,为Sqoop用户提供了宝贵的实践经验参考。 因此,建议读者在掌握基本Sqoop使用方法的基础上,紧跟技术前沿动态,关注Sqoop的最新版本特性以及行业内的实际应用案例,并参阅相关的专业技术文章和社区讨论,以不断丰富和完善自身的大数据技术知识体系。
2023-02-17 18:50:30
131
雪域高原
HessianRPC
...让你在捣鼓分布式系统设计和开发时,感觉轻松愉快、如虎添翼。 三、启用Hessian RPC协议 在Hessian中,我们可以通过设置hessian.config.useBinaryProtocol属性为true,来启用Hessian RPC协议的二进制模式。具体代码如下: java // 设置Hessian配置 HessianConfig config = new HessianConfig(); config.setUseBinaryProtocol(true); // 创建Hessian服务端对象 HessianService service = new HessianService(config); service.export(new EchoServiceImpl()); 上述代码首先创建了一个Hessian配置对象,并将其useBinaryProtocol属性设置为true,表示启用二进制模式。接着,我们捣鼓出一个Hessian服务端的小家伙,把它帅气地挂到网上,这样一来客户端的伙伴们就能随时来调用它了。 四、使用Hessian RPC协议进行数据交换 在启用Hessian RPC协议后,我们就可以使用二进制格式进行数据交换了。下面是一个简单的示例: java // 创建Hessian客户端对象 HessianClient client = new HessianClient("http://localhost:8080/hessian"); // 调用服务端方法并获取结果 EchoResponse response = (EchoResponse) client.invoke("echo", "Hello, Hessian!"); System.out.println(response.getMessage()); // 输出:Hello, Hessian! 上述代码首先创建了一个Hessian客户端对象,并连接到了运行在本地主机上的Hessian服务端。然后,我们调用了服务端的echo方法,并传入了一个字符串参数。最后,我们将服务端返回的结果打印出来。 五、结论 总的来说,通过启用Hessian RPC协议,我们可以将Hessian的默认文本格式转换为高效的二进制格式,从而显著提高Hessian的性能。另外,Hessian RPC协议还带了一整套超给力的功能,这对我们更顺溜地设计和搭建分布式系统可是大有裨益! 在未来的工作中,我们将继续探索Hessian和Hessian RPC协议的更多特性,以及它们在实际应用中的最佳实践。不久的将来,我可以肯定地跟你说,会有越来越多的企业开始拥抱Hessian和Hessian RPC协议,为啥呢?因为它们能让网络应用跑得更快、更稳、更靠谱。这样一来,构建出的网络服务就更加顶呱呱了!
2023-01-11 23:44:57
445
雪落无痕-t
SeaTunnel
...unnel通过插件化设计,支持从各类数据源抽取数据,并能灵活转换和加载到多种目标系统中。我们心目中的Zeta引擎,就像一个超级厉害的幕后英雄,它拥有超强的并行处理能力和独门的分布式计算优化秘籍。这样一来,甭管是面对海量数据的实时处理需求,还是批量任务的大挑战,它都能轻松应对,游刃有余。 3. Zeta引擎如何助力SeaTunnel? - 并行处理增强: 假设SeaTunnel原本在处理大规模数据时,可能会因为单节点资源限制而导致处理速度受限。这时,我们可以设想SeaTunnel结合Zeta引擎,通过调用其分布式并行处理能力,将大任务分解为多个子任务在集群环境中并行执行,例如: python 假想代码示例 zeta_engine.parallel_execute(seatunnel_tasks, cluster_resources) 这段假想的代码意在表示SeaTunnel的任务可以通过Zeta引擎并行调度执行。 - 资源优化分配: Zeta引擎还可以动态优化各个任务在集群中的资源分配,确保每个任务都能获得最优的计算资源,从而提高整体处理效能。例如: python 假想代码示例 optimal资源配置 = zeta_engine.optimize_resources(seatunnel_task_requirements) seatunnel.apply_resource(optimal资源配置) - 数据流加速: 对于流式数据处理场景,Zeta引擎可以凭借其高效的内存管理和数据缓存机制,减少I/O瓶颈,使SeaTunnel的数据流处理能力得到显著提升。 4. 实践探讨与思考 虽然上述代码是基于我们的设想编写的,但在实际应用场景中,如果真的存在这样一款名为“Zeta”的高性能引擎,那么它与SeaTunnel的深度融合将会是一次极具挑战性和创新性的尝试。要真正让SeaTunnel在处理超大规模数据时大显神威,你不仅得像侦探破案一样,把它的运作机理摸个门儿清,还得把Zeta引擎的独门绝技用到极致。比如它那神速的数据分发能力、巧妙的负载均衡设计和稳如磐石的故障恢复机制,这些都是咱们实现数据处理能力质的飞跃的关键所在。 5. 结语 期待未来能看到SeaTunnel与类似“Zeta”这样的高性能计算引擎深度集成,打破现有数据处理边界,共同推动大数据处理技术的发展。让我们一起见证这个充满无限可能的融合过程,用技术创新的力量驱动世界前行。 请注意,以上内容完全是基于想象的情景构建,旨在满足您对主题的要求,而非真实存在的技术和代码实现。对于SeaTunnel的实际使用和性能提升策略,请参考官方文档和技术社区的相关资料。
2023-05-13 15:00:12
79
灵动之光
Hive
...为实现复杂数据分析而设计。在Hive SQL中,窗口函数可以在一组相关的行(窗口)上执行计算,而不是在整个表或查询结果集上全局执行。窗口可以按照指定的列进行分区,并在每个分区内部根据指定排序规则对行进行排序。窗口函数能够在保持分区内的行上下文的同时,完成如排序、排名、聚合等计算任务。 分区(PARTITION BY) , 在Hive窗口函数中,PARTITION BY是一个关键子句,用于将数据集划分为逻辑上的独立部分。每个分区内部应用窗口函数时互不影响,这样可以针对不同分区分别执行相应的排序或聚合操作。例如,在上述文章示例中,我们按customer_id字段对销售记录进行了分区,意味着窗口函数会在每个客户的所有销售记录上独立运行。 聚合操作 , 在数据库和大数据处理领域,聚合操作是指对一组值执行某种计算以生成一个单一输出值的过程。常见的聚合函数有SUM(求和)、COUNT(计数)、AVG(平均值)、MAX(最大值)、MIN(最小值)等。在Hive窗口函数中,可以结合聚合函数来实现对窗口内数据的累计、滚动统计等功能,如文中所述的计算每个客户在一定时间范围内的累计销售额。
2023-10-19 10:52:50
472
醉卧沙场
Redis
...于它的性能,更在于其设计的灵活性和易用性。懂透这些基本技巧后,就像给应用程序穿上了一双疾速又稳健的红鞋,Redis能让你的应用跑得飞快又稳如老马,效率和稳定性双双升级!下次你碰到那个棘手的“按键没影子还想填值”的情况,不妨来点新鲜玩意儿——Redis,保证让你一试就爱上它的魔力!
2024-04-08 11:13:38
219
岁月如歌
ClickHouse
...量数据进行快速分析而设计的数据库,与传统的关系型数据库(行式存储)不同,它将数据按列存储和压缩,而不是按行存储。在ClickHouse中,列式存储使得查询时只需要读取相关列的数据,从而大幅提高大数据查询效率,尤其适合OLAP(在线分析处理)场景。 系统表 system.metrics 和 system.events , 在ClickHouse中,系统表是用于提供服务器运行状态、性能指标以及内部事件信息的特殊表。其中,system.metrics 表提供了诸如内存使用量、查询执行时间等实时监控指标;而 system.events 表记录了数据库内部发生的各种事件,如查询执行次数、磁盘读写次数等。通过查询这些系统表,用户可以了解并调整ClickHouse集群的资源使用情况。 JOIN操作 , JOIN操作是在关系型数据库或支持SQL查询的数据库系统中,用于合并来自两个或更多表的数据行的一种机制。在ClickHouse中,max_bytes_in_join 参数用于控制JOIN操作过程中,在内存中能容纳的最大字节数,以防止JOIN操作消耗过多内存导致性能下降或其他问题。通过合理设置这个参数,用户可以根据实际业务需求和硬件资源限制优化JOIN查询的执行效率。
2023-03-18 23:06:38
492
夜色朦胧
转载文章
...个内核都可以同时执行指令,能够并行处理多个任务,提升了计算机系统的整体运算能力。在前端开发场景下,由于JavaScript语言本身为单线程模型,因此在处理大量文件构建时无法充分利用多核CPU的优势。而借助于HappyPack这类工具,可以将任务分解到多个子进程中并发执行,从而发挥多核CPU的性能潜力,提高构建速度。 Loader , 在Webpack中,Loader是一个转换器,负责对不同类型资源文件进行预处理或转换工作。例如,Babel Loader可以将ES6+的语法转换为浏览器兼容的ES5语法,Style Loader和CSS Loader则可以处理CSS样式文件。Loader通常按照一定的链式规则配置,在Webpack处理过程中逐个执行,确保所有资源都能被正确识别和处理后,再整合到最终的bundle中。 ThreadPool(线程池) , 在HappyPack中提到的ThreadPool(线程池)是一种多线程编程中的资源管理手段,用于高效地管理和复用系统中的线程资源。HappyPack通过创建一个线程池,允许多个HappyPack实例共享这些子进程去处理Webpack构建中的任务,避免频繁创建销毁线程造成的开销,同时也防止了因大量并发导致的系统资源过度消耗。在Webpack构建场景中,ThreadPool让多个任务可以在多个子进程中并发执行,有效提高了构建效率。
2023-08-07 15:02:47
951
转载
转载文章
...用 在做接下来的功能设计的时候,需要去了解游戏王卡牌游戏这个游戏的相关逻辑,关于卡片逻辑编写可以看B站这位大佬的视频游戏王Lua脚本编写教程·改二_哔哩哔哩_bilibili 关于技能的发动: 1、GAS中取对象的技能设计,使用targetData Actor来表征选选择对象的信息。 另一种实现方式是设定一个定时器,当技能开始的时候⏲,如果超时没有获取到对象,那么就当作对局失败或者技能发动失败处理。我偏向于后者的实现。 2、关于效果的类型,我们可以看到ygopro和DL的分类大体相似,如果用GAS设计技能的话也可以从简单的技能类型设计起来 3、卡片的表示 沿用ygopro的卡片类型的定义,在游戏中用Pawn做为基类。初始化的时候传入基本的信息,一开始将cards.db读入内存,用map存储,后续信息的查找都查询该map 效果卡片,仍然可以用lua实现逻辑,具体的后续再看看怎么实现比较合适。 4、设计简单的演示方案,仍然是从最简单的初代规则和初代卡牌考虑 a:summon a monster 利用动态资源加载的方式,先完成了一个简单的召唤逻辑。 先实现最基本的功能。后面再考虑详细的state信息 接下来实现三种基本的技能方式,然后看看技能资源该如何组织比较好 b:进行攻击 c:装备卡发动 d:生命值回复效果 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_33232568/article/details/117932910。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-07 13:59:47
150
转载
Tomcat
...实际开发过程中,遵循设计模式、合理运用依赖注入以及严格管理对象生命周期,是防止内存泄漏的关键所在。 总之,随着技术的不断进步,我们拥有越来越多的工具和策略来应对Tomcat内存泄漏问题。然而,从根本上来说,提高对内存管理的理解,养成良好的编程习惯,才能确保我们的Java Web应用在面对复杂业务场景时依然能保持稳健高效的运行状态。
2023-03-15 09:19:49
291
红尘漫步
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
passwd user
- 更改用户密码。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"