前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[Tomcat最小化镜像启动及webapp...]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Java
...素数的和,我们可以从最小的素数2开始尝试,看看能不能凑出来。如果不行,就换下一个素数继续尝试。这样一步步往下走,直到找到所有可能的组合。 下面是一段Java代码示例: java import java.util.ArrayList; public class PrimeSum { public static void main(String[] args) { int target = 10; ArrayList primes = new ArrayList<>(); for (int i = 2; i <= target; i++) { if (isPrime(i)) { primes.add(i); } } findPrimeSums(target, primes, new ArrayList<>()); } public static boolean isPrime(int num) { if (num <= 1) return false; for (int i = 2; i i <= num; i++) { if (num % i == 0) { return false; } } return true; } public static void findPrimeSums(int remaining, ArrayList primes, ArrayList currentCombination) { if (remaining == 0) { System.out.println(currentCombination); return; } for (Integer prime : primes) { if (prime > remaining) break; currentCombination.add(prime); findPrimeSums(remaining - prime, primes, currentCombination); currentCombination.remove(currentCombination.size() - 1); } } } 这段代码里,findPrimeSums方法就是一个递归函数。这玩意儿呢,要收三个东西当输入:一个是剩下的数字,一个是所有的素数小弟们列好队等着用,还有一个是咱们现在正在拼凑的那个组合。当剩余数字为0时,我们就找到了一组有效的组合。 --- 四、结果展示 数字的无限可能性 运行上面的代码后,你会看到类似如下的输出: [2, 2, 2, 2, 2] [2, 2, 2, 3, 1] [2, 2, 3, 3] [2, 3, 5] [3, 7] 哇哦!原来10可以有这么多不同的拆分方式呢!每一组都是由素数组成的,并且它们的和正好等于10。 在这个过程中,我一直在想,为什么会有这么多种可能性呢?是不是因为素数本身就具有某种特殊的规律?还是说这只是数学世界中的一种巧合? 不管怎样,我觉得这种探索的过程真的很迷人。每一次运行程序,都像是在打开一个新的宝藏箱,里面装满了未知的答案。 --- 五、总结与展望 好了朋友们,今天的旅程到这里就要结束了。我们不仅学会了如何用Java找到素数,还掌握了如何用递归的方法拆分数字。虽然过程有点复杂,但每一步都很值得回味。 未来,如果你对这个问题感兴趣,不妨尝试优化代码,或者挑战更大的数字。也许你会发现更多有趣的规律呢! 最后,希望大家都能喜欢编程带来的乐趣。记住,学习编程就像学习一门新的语言,多实践、多思考,总有一天你会说得非常流利!再见啦,下次见!
2025-03-17 15:54:40
64
林中小径
Kafka
... Kafka副本同步数据的复制策略 引言:为什么要讨论这个问题? 嗨,大家好!今天我们要聊的是Apache Kafka这个分布式流处理平台中的一个重要概念——副本同步的数据复制策略。我为啥要挑这个话题呢?其实是因为我自己在学Kafka和用Kafka的时候,发现不管是新手还是有些经验的老手,都对副本同步和数据复制这些事一头雾水,挺让人头疼的。这不仅仅是因为里面藏着一堆复杂的技巧行头,更是因为它直接关系到系统能不能稳稳当当跑得快。所以呢,我打算通过这篇文章跟大家分享一下我的心得和经验,希望能帮到大家,让大家更容易搞懂这部分内容。 1. 什么是副本同步? 在深入讨论之前,我们先要明白副本同步是什么意思。简单说,副本同步就像是Kafka为了确保消息不会丢,像快递一样在集群里的各个节点间多送几份,这样即使一个地方出了问题,别的地方还能顶上。这样做可以确保即使某个节点发生故障,其他节点仍然可以提供服务。这是Kafka架构设计中非常重要的一部分。 1.1 副本的概念 在Kafka中,一个主题(Topic)可以被划分为多个分区(Partition),而每个分区可以拥有多个副本。副本分为领导者副本(Leader Replica)和追随者副本(Follower Replica)。想象一下,领导者副本就像是个大忙人,既要处理所有的读写请求,还得不停地给其他小伙伴分配任务。而那些追随者副本呢,就像是一群勤勤恳恳的小弟,只能等着老大分活儿给他们,然后照着做,保持和老大的一致。 2. 数据复制策略 接下来,让我们来看看Kafka是如何实现这些副本之间的数据同步的。Kafka的数据复制策略主要依赖于一种叫做“拉取”(Pull-based)的机制。这就意味着那些小弟们得主动去找老大,打听最新的消息。 2.1 拉取机制的优势 采用拉取机制有几个好处: - 灵活性:追随者可以根据自身情况灵活调整同步频率。 - 容错性:如果追随者副本暂时不可用,不会影响到领导者副本和其他追随者副本的工作。 - 负载均衡:领导者副本不需要承担过多的压力,因为所有的读取操作都是由追随者完成的。 2.2 实现示例 让我们来看一下如何在Kafka中配置和实现这种数据复制策略。首先,我们需要定义一个主题,并指定其副本的数量: python from kafka.admin import KafkaAdminClient, NewTopic admin_client = KafkaAdminClient(bootstrap_servers='localhost:9092') topic_list = [NewTopic(name="example_topic", num_partitions=3, replication_factor=3)] admin_client.create_topics(new_topics=topic_list) 这段代码创建了一个名为example_topic的主题,它有三个分区,并且每个分区都有三个副本。 3. 副本同步的实际应用 现在我们已经了解了副本同步的基本原理,那么它在实际应用中是如何工作的呢? 3.1 故障恢复 当一个领导者副本出现故障时,Kafka会自动选举出一个新的领导者。这时候,新上任的大佬会继续搞定读写请求,而之前的小弟们就得重新变回小弟,开始跟新大佬取经,同步最新的消息。 3.2 负载均衡 在集群中,不同的分区可能会有不同的领导者副本。这就相当于把消息的收发任务分给了不同的小伙伴,这样大家就不会挤在一个地方排队了,活儿就干得更顺溜了。 3.3 实际案例分析 假设有一个电商网站使用Kafka来处理订单数据。要是其中一个分区的大佬挂了,系统就会自动转而听命于另一个健健康康的大佬。虽然在这个过程中可能会出现一会儿数据卡顿的情况,但总的来说,这并不会拖慢整个系统的进度。 4. 总结与展望 通过上面的讨论,我们可以看到副本同步和数据复制策略对于提高Kafka系统的稳定性和可靠性有多么重要。当然,这只是Kafka众多功能中的一个小部分,但它确实是一个非常关键的部分。以后啊,随着技术不断进步,咱们可能会见到更多新颖的数据复制方法,这样就能让Kafka跑得更快更稳了。 最后,我想说的是,学习技术就像是探险一样,充满了挑战但也同样充满乐趣。希望大家能够享受这个过程,不断探索和进步! --- 以上就是我对Kafka副本同步数据复制策略的一些理解和分享。希望对你有所帮助!如果有任何问题或想法,欢迎随时交流讨论。
2024-10-19 16:26:57
57
诗和远方
转载文章
...异步,false表示同步3.发送请求xhr.send(params);params:请求时需要传递的参数如果是GET请求,设置nu11。 (GET请求的参数设置在url后面)如果是POST请求,无参数设置为null,有参数则设置参数4.接收响应xhr.status响应状态(200=响应成功, 404=资源末找到,500=服务器异常)xhr.responseText 得到响应结果 --> <script type="text/javascript">// 同步请求function text01() {// 1.得到XMLHttpRequest对象var xhr = new XMLHttpRequest();// 2.打开请求xhr.open("get", "js/date.json", false);// 3.发送请求xhr.send(null);// 4.判断响应状态if (xhr.status == 200) {console.log("响应成功");} else {console.log("状态码:" + xhr.status + ",原因:" + xhr.responseText)}console.log("同步请求...");}text01();// 异步请求function text02() {// 1.得到XMLHttpRequest对象var xhr = new XMLHttpRequest();// 2.打开请求xhr.open("get", "js/date.json", true);// 3.发送请求xhr.send(null);// 由于是异步请求,所以需要知道后台已经将请求处理完毕,才能获取响应结果// 遇过监听readyState的变化来得知后面的处理状态 4=完全处理xhr.onreadystatechange = function(){if(xhr.readyState == 4){// 4.判断响应状态if (xhr.status == 200) {// 得到响应结果 console.log(xhr.responseText);} else {console.log("状态码:" + xhr.status + ",原因:" + xhr.responseText)} }}console.log("异步请求...");}text02();</script> 运行效果截图: 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_61507413/article/details/122895643。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-10-22 17:32:41
522
转载
MySQL
...-dir选项指定输出目录。在这个例子中,我们将数据导出到/user/hadoop/students目录下。 - 使用--delete-target-dir选项删除目标目录中的所有内容,以防数据冲突。 - 使用--split-by选项指定根据哪个字段进行拆分。在这个例子中,我们将数据按学生ID进行拆分。 - 使用--as-textfile选项指定数据格式为文本文件。 - 使用--fields-terminated-by选项指定字段分隔符。在这个例子中,我们将字段分隔符设置为竖线(|)。 - 使用--null-string和--null-non-string选项指定空值的表示方式。在这个例子中,我们将NULL字符串设置为空格,将非字符串空值设置为\\N。 - 使用--check-column和--check-nulls选项指定检查哪个字段和是否有空值。在这个例子中,我们将检查学生ID是否为空,并且如果有,将记录为NULL。 - 使用--query选项指定要从中读取数据的SQL查询语句。在这个例子中,我们只选择年龄大于18的学生。 请注意,这只是一个基本的示例。实际的脚本可能会有所不同,具体取决于您的数据和需求。 步骤五:运行Sqoop脚本 最后,我们可以使用以下命令运行Sqoop脚本: bash -sqoop \ -Dmapreduce.job.user.classpath.first=true \ --libjars $SQOOP_HOME/lib/mysql-connector-java-8.0.24.jar \ --connect jdbc:mysql://localhost:3306/test \ -m 1 \ --num-mappers 1 \ --target-dir /user/hadoop/students \ --delete-target-dir \ --split-by id \ --as-textfile \ --fields-terminated-by '|' \ --null-string 'NULL' \ --null-non-string '\\N' \ --check-column id \ --check-nulls \ --query "SELECT id, name, age FROM students WHERE age > 18" 注意,我们添加了一个-Dmapreduce.job.user.classpath.first=true参数,这样就可以保证我们的自定义JAR包在任务的classpath列表中处于最前面的位置。 如果一切正常,我们应该可以看到一条成功的消息,并且可以在MySQL中看到导出的数据。 总结 本文介绍了如何使用Apache Sqoop将HDFS中的数据导出到MySQL数据库。咱们先给环境捯饬得妥妥当当,然后捣鼓出一个MySQL表,再接再厉,编了个Sqoop脚本。最后,咱就让这个脚本大展身手,把数据导出溜溜的。希望这篇文章能帮助你解决这个问题!
2023-04-12 16:50:07
248
素颜如水_t
MySQL
目录: 一、引言 二、为什么要使用无限极分类? 三、什么是递归? 四、如何使用递归来处理无限极分类? 五、不使用递归,如何处理无限极分类? 六、案例分析 七、结论 八、参考资料 一、引言 在日常工作中,我们经常需要对一些数据进行分类,例如商品分类、用户等级等。其中,无限极分类是一种非常常用的数据分类方式,它可以用来表示一种层次结构,如商品分类中的父类、子类等。然而,在处理这种数据时,我们常常会遇到一个问题:如何快速、有效地将无限极分类转换为层级结构呢? 二、为什么要使用无限极分类? 首先,我们需要了解一下什么是无限极分类。无限极分类就像一棵大树,它的构造挺有趣。在这样的树形结构中,每一个小节点都有一个自己的‘老爹’节点,而这个‘老爹’呢,它还可能是其他许多小节点的‘老爹’。这样的构造方式,其实就像家谱一样,可以展示出各种级别的层次关系。比如说在商品分类里,就有爷爷辈的大类别、爸爸辈的中类别、儿子辈的小类别,甚至还有孙子辈的更细分的类别呢! 其次,无限极分类的优点在于它可以方便地进行扩展。假如我们想要新增一个类别,就像在家族树上添个新枝丫一样简单,你只需要在它的“老爸”类别下加一个新的“小子类别”,这样一来,数据的一致性和完整性就能轻轻松松地保持住啦! 三、什么是递归? 那么,如何使用递归来处理无限极分类呢?这就需要用到递归的概念。递归啊,就是那种函数自己调用自己的神奇操作。你想象一下,这个函数有点像一个超级有耐心的小助手,一遍又一遍地做着同一件事情,但每次做的时候都比上次更进一步。通过这种自我迭代的过程,我们竟然能解开很多看起来超级复杂、让人挠头的问题呢! 在处理无限极分类时,我们可以使用递归的方式,从根节点开始,一层一层地遍历下去,直到找到所有的叶子节点。然后,我们可以根据每层的节点,构建出相应的层级结构。 四、如何使用递归来处理无限极分类? 接下来,我们来看一下如何使用递归来处理无限极分类。假设我们有一个无限极分类的数据库表,其中包含id、parent_id和name三个字段。喏,你听我说哈,id呢,就相当于每个小节点的身份证号,是独一无二的。而parent_id呢,顾名思义,就是每个小节点它爹——父节点的身份证号啦。至于name嘛,简单易懂,那就是给每个小节点起的专属昵称哈! 我们可以定义一个函数,输入参数是一个父节点的id,输出是一个层级结构的数组。具体操作如下: php function getTree($id){ $sql = "SELECT FROM node WHERE parent_id = '$id'"; $result = mysqli_query($conn, $sql); $arr = array(); while($row = mysqli_fetch_assoc($result)){ $arr[] = $row; } foreach($arr as $value){ if($value['child'] > 0){ $arr = array_merge($arr, getTree($value['id'])); } } return $arr; } 以上就是使用递归来处理无限极分类的一个简单示例。这个例子嘛,我们先从某个特定的老爸节点下手,把它的所有小崽子(子节点)都给挖出来。接着呢,对每一个小崽子,如果它们自己还有更下一代的小崽子,那我们就得像孙悟空钻进葫芦娃的肚子里那样,一层层地往里递归调用这个过程,把那些隐藏更深的孙子辈节点也给找全了。最后呢,咱们把这一大家子所有的节点都聚到一块儿,拼成一个完整的、层层分明的家族结构。 然而,递归虽然强大,但也有它的局限性。当数据量大时,递归可能会导致栈溢出,影响程序的执行效率。因此,我们需要寻找其他的解决方案。 五、不使用递归,如何处理无限极分类? 那么,如果不使用递归,我们该如何处理无限极分类呢?答案就是使用非递归的方式,也就是我们常说的迭代法。 迭代法的基本思想是从根节点开始,每次只处理一层数据,直到处理完所有的数据。这种方法压根儿不需要递归调用,所以你完全不用担心什么栈溢出的问题。而且实话跟你说,通常情况下,它的工作效率要比递归高不少! 接下来,我们来看一下如何使用迭代法处理无限极分类。假设我们已经有了一个无限极分类的数据库表,其中包含id、parent_id和name三个字段。我们可以按照以下步骤进行处理: 1. 创建一个空的层级结构数组,用于存储所有的节点; 2. 获取根节点,将其添加到层级结构数组中; 3. 遍历所有的节点,对于每一个节点,如果它还没有被处理过,则对其进行处理,将其添加到层级结构数组中,然后处理它的所有子节点。 具体的代码实现如下: php function getTree($root){ $tree = array(); $queue = array($root); while(count($queue) > 0){ $node = array_shift($queue); $tree[$node['id']] = array( 'id' => $node['id'], 'parent_id' => $node['parent_id'], 'name' => $node['name'], 'children' => array() ); if($node['child'] > 0){ $queue = array_merge($queue, getChildren($conn, $node['id'])); } } return $tree; } function getChildren($conn, $id){ $sql = "SELECT FROM node WHERE parent_id = '$id'"; $result = mysqli_query($conn, $sql); $arr = array(); while($row = mysqli_fetch_assoc($result)){ $arr[] = $row; } return $arr; } 以上就是在非递归的情况下,处理无限极分类的一个简单示例。在举这个例子的时候,我们首先动手整了个空荡荡的层级结构数组出来,接着找准了那个根节点,把它给塞进了这个层级结构数组里头。然后,我们就像在超市排队结账一样,用一个队列来装那些等待被处理的节点。每当轮到一个节点时,我们就把它从队列里拽出来,塞进层级结构数组这个大篮子里,并且仔仔细细地处理它所有的“孩子”——也就是子节点。最后一步,咱们就像玩接龙游戏一样,把已经处理过的节点从队列里拿出来,然后美滋滋地接着处理下一个排着队的节点,就这么一直玩下去,直到队列里一个节点都不剩,就表示大功告成了! 总结来说,无论是使用递归还是非递归,都可以有效地处理无限极分类。但是,不同的方法适用于不同的场景,我们需要根据实际情况选择合适的方法。
2023-08-24 16:14:06
59
星河万里_t
转载文章
...el执行时默认从当前目录查找配置文件,支持的配置文件格式有:.babelrc,.babelrc.js,babel.config.js和package.json。它们的配置项都是相同,作用也是一样的,只需要选择其中一种,推荐使用.js结尾的文件,这样可以在配置文件中进行编程控制,如下: module.exports = function (api) {api.cache(true);const presets = [ ... ];const plugins = [ ... ];return {presets,plugins};} 也可以直接使用module.exports = {},没有必要一定是一个function。 在编写配置文件中,最主要的就是设置plugins(插件)和presets(预设),每个插件或预设都是一个npm包,插件和预设会在编译过程中把我们的ES6+代码转换成ES5。 二、插件和预设的关系 babel中的插件太多,以es2015为例: @babel/plugin-transform-arrow-functions @babel/plugin-transform-block-scoped-functions @babel/plugin-transform-block-scoping .... 如果只采用插件的话,我们需要配置非常多的插件数组,如果项目使用了es2016又得增加一堆,而且我们压根也记不住哪个es版本里该使用哪些插件。 preset就是解决这个问题的,它是一系列插件的集合,以@babel/preset-env为例,假设项目中安装的npm包版本是2020年1月发布的,那么这个预设里包含了2020年1月以前所有进入到stage4阶段的语法转换插件。 可能有小伙伴会问,假如我设置了一个语法插件,指定某个预设里又包含了插件,此时会发生什么?这就涉及到插件和预设的执行顺序了,具体的规则如下: 插件比预设先执行 插件执行顺序是插件数组从前向后执行 预设执行顺序是预设数组从后向前执行 三、插件和预设的参数 不配置参数的情况下,每个插件或预设都是数组中的一个字符串成员,例:preset:["@babel/preset-env","@babel/preset-react"],如果某个插件或预设需要配置参数,成员项就需要由字符串换成一个数组,数组的第一项是插件或预设的名称字符串,第二项为对象,该对象用来设置插件或预设的参数,格式如下: {"presets": [["@babel/preset-env",{"useBuiltIns": "entry"}]]} 四、插件和预设的简写 插件或可以在配置文件里用简写名称,如果插件的npm包名称的前缀为 babel-plugin-,可以省略前缀。例如"plugins": ["babel-plugin-transform-decorators-legacy"]可以简写为"plugins": ["transform-decorators-legacy"]。 如果npm包名称的前缀带有作用域@,例如@scope/babel-plugin-xxx,短名称可以写成@scope/xxx。 到babel7版本时,官方的插件大多采用@babel/plugin-xxx格式的,没有明确说明是否可以省略@babel/plugin-,遇到这中npm包时,最好还是采用全称写法比较稳妥。 预设的短名称规则跟插件差不多,前缀为babel-preset-或带有作用域的包@scope/babel-preset-xxx的可以省略掉babel-preset-。 babel7里@babel/preset-前缀开头的包,例如@babel/preset-env的短名称是@babel/env,官方并没有给出明确说明以@babel/preset-xxx卡头的包是否都可以采用简写,因此最好还是采用全称。 五、混乱的babel6预设 如果直接接触babel7的前端同事都知道es预设直接用@babel/preset-env就行了,但是如果要维护和迭代基于babel6的项目呢?各个项目中使用的可能都不一样,babel-preset-es20xx、babel-preset-stage-x、babel-preset-latest这些预设是啥意思? babel-preset-es20xx: TC39每年发布的、进入标准的ES语法转换器预设,最后一个预设是babel-preset-es2017,不再更新。 babel-preset-stage-x: TC39每年草案阶段的ES语法转换器预设。x的值是0到3,babel7时已废弃,不再更新。 babel-preset-latest: TC39每年发布的、进入标准的ES语法转换器预设。在babel6时等于babel-preset-es2015、babel-preset-es2016、babel-preset-es2017。该包从 v2 开始,需要@babel/core@^7.0.0,也就是需要babel7才能使用,既然要升级到babel7,不如使用更加强大的@babel/preset-env。 本篇文章为转载内容。原文链接:https://blog.csdn.net/douyinbuwen/article/details/123729828。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-01-16 22:15:54
122
转载
Javascript
...atch块只能捕获同步代码中的错误。如果是异步代码(比如Promise),你需要用.catch()方法来捕获错误,而不是catch块。 --- 3. 自定义错误 让错误更有个性 有时候,内置的错误类型可能无法完全满足我们的需求。比如说啊,有时候咱们就想把不同的业务情况分开来,或者给错误消息补充点更多的背景信息,这样看起来更清楚嘛。这时,自定义错误就派上用场了! 在JavaScript中,我们可以继承Error类来自定义错误类型。这样一来,不仅能明确到底哪里出错了,还让别的程序员能迅速搞清楚问题到底出在哪儿,省得他们一头雾水地瞎猜。 javascript class CustomError extends Error { constructor(message, code) { super(message); this.name = "CustomError"; this.code = code; } } function validateAge(age) { if (age < 0) { throw new CustomError("年龄不能为负数", 400); } } try { validateAge(-5); } catch (error) { console.log(错误名称: ${error.name}); console.log(错误信息: ${error.message}); console.log(错误代码: ${error.code}); } 在这个例子中,我们创建了一个CustomError类,它继承自Error类,并额外添加了一个code属性。当我们验证年龄时,如果年龄小于零,就会抛出自定义错误。在 catch 块里啊,不仅能捞到错误的信息,还能瞅见咱们自己定义的错误码呢!这就像是给代码加了点调料,让它既好看又好用,读起来顺眼,改起来也方便。 --- 4. finally 无论成败,都要善后 最后,我们再来说说finally关键字。不管你是否成功地捕获到了错误,finally块都会被执行。它就像是个“收尾小能手”,专门负责那些非做不可的事儿,比如说关掉文件流啦,释放占用的资源啦,总之就是那种拖不得也偷懒不得的任务。 javascript try { console.log("开始操作..."); throw new Error("发生了错误"); } catch (error) { console.error(error.message); } finally { console.log("无论如何,我都会执行!"); } 在这个例子中,无论是否有错误发生,finally块都会被执行。这对于清理工作特别有用,比如关闭数据库连接、清除缓存等等。 --- 总结:拥抱错误,掌控未来 好了,朋友们,今天的分享就到这里啦!通过这篇文章,我希望你能对throw语句有了更深的理解。其实啊,错误并不可怕,可怕的是我们不去面对它。throw语句就像是一个信号灯,提醒我们及时调整方向;而try...catch则是我们的导航系统,帮助我们顺利抵达目的地。 记住一句话:错误不是终点,而是成长的契机。所以,别害怕抛出错误,也不要逃避捕获错误。让我们一起用throw语句打造更加健壮的代码吧!如果你还有什么疑问,欢迎随时来找我讨论哦~
2025-03-28 15:37:21
56
翡翠梦境
ActiveMQ
...ActiveMQ,并启动了服务。接下来,我们可以通过Java的ActiveMQ客户端库来发送一条消息: java import org.apache.activemq.ActiveMQConnectionFactory; public class Sender { public static void main(String[] args) throws Exception { String url = "tcp://localhost:61616"; // 连接URL ActiveMQConnectionFactory factory = new ActiveMQConnectionFactory(url); Connection connection = factory.createConnection(); connection.start(); Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE); Destination destination = session.createQueue("myQueue"); MessageProducer producer = session.createProducer(destination); TextMessage message = session.createTextMessage("Hello, this is a test message!"); producer.send(message); System.out.println("Sent message successfully."); session.close(); connection.close(); } } 二、多语言环境中的ActiveMQ部署策略 在多语言环境下部署ActiveMQ,关键在于确保各个语言环境之间能够无缝通信。这通常涉及以下步骤: 1. 统一消息格式 确保所有语言版本的客户端都使用相同的协议和数据格式,如JSON或XML,以减少跨语言通信的复杂性。 2. 使用统一的API 尽管不同语言有不同的客户端库,但它们都应该遵循统一的API规范,这样可以简化开发和维护。 3. 配置共享资源 在部署时,确保所有语言环境都能访问到同一台ActiveMQ服务器,或者设置多个独立的服务器实例来满足不同语言环境的需求。 4. 性能优化 针对不同语言环境的特点进行性能调优,例如,对于并发处理需求较高的语言(如Java),可能需要更精细地调整ActiveMQ的参数。 示例代码(Python): 利用Apache Paho库来接收刚刚发送的消息: python import paho.mqtt.client as mqtt import json def on_connect(client, userdata, flags, rc): print("Connected with result code "+str(rc)) client.subscribe("myQueue") def on_message(client, userdata, msg): message = json.loads(msg.payload.decode()) print("Received message:", message) client = mqtt.Client() client.on_connect = on_connect client.on_message = on_message client.connect("localhost", 1883, 60) client.loop_forever() 三、实践案例 多语言环境下的一体化消息系统 在一家电商公司中,我们面临了构建一个支持多语言环境的实时消息系统的需求。哎呀,这个系统啊,得有点儿本事才行!首先,它得能给咱们的商品更新发个通知,就像是快递到了,你得知道一样。还有,用户那边的活动提醒也不能少,就像朋友生日快到了,你得记得送礼物那种感觉。最后,后台的任务调度嘛,那就像是家里的电器都自动工作,你不用操心一样。这整个系统要能搞定Java、Python和Node.js这些编程语言,得是个多才多艺的家伙呢! 实现细节: - 消息格式:采用JSON格式,便于解析和处理。 - 消息队列:使用ActiveMQ作为消息中间件,确保消息的可靠传递。 - 语言间通信:通过统一的消息API接口,确保不同语言环境的客户端能够一致地发送和接收消息。 - 负载均衡:通过配置多个ActiveMQ实例,实现消息系统的高可用性和负载均衡。 四、结论与展望 ActiveMQ在多语言环境下的部署不仅提升了开发效率,也增强了系统的灵活性和可扩展性。哎呀,你知道的,编程这事儿,就像是个拼图游戏,每个程序员手里的拼图都代表一种编程语言。每种语言都有自己的长处,比如有的擅长处理并发任务,有的则在数据处理上特别牛。所以,聪明的开发者会好好规划,把最适合的拼图放在最合适的位置上。这样一来,咱们就能打造出既快又稳的分布式系统了。就像是在厨房里,有的人负责洗菜切菜,有的人专门炒菜,分工合作,效率噌噌往上涨!哎呀,你懂的,现在微服务这东西越来越火,加上云原生应用也搞得风生水起的,这不,多语言环境下的应用啊,那可真是遍地开花。你看,ActiveMQ这个家伙,它就像个大忙人似的,天天在多语言环境中跑来跑去,传递消息,可不就是缺不了它嘛!这货一出场,就给多语言环境下的消息通信添上了不少色彩,推动它往更高级的方向发展,你说它是不是有两把刷子? --- 通过上述内容的探讨,我们不仅了解了如何在多语言环境下部署和使用ActiveMQ,还看到了其实现复杂业务逻辑的强大潜力。无论是对于企业级应用还是新兴的微服务架构,ActiveMQ都是一个值得信赖的选择。哎呀,随着科技这玩意儿天天在变新,我们能期待的可是超棒的创新点子和解决办法!这些新鲜玩意儿能让我们在不同语言的世界里写程序时更爽快,系统的运行也更顺溜,就像喝了一大杯冰凉透心的柠檬水一样,那叫一个舒坦!
2024-10-09 16:20:47
66
素颜如水
Nginx
...样就可以对一组文件或目录进行统一管理。 - 权限(Permissions):读(read)、写(write)和执行(execute)权限,分别用r、w、x表示。 1.3 示例代码 假设我们有一个网站,其根目录位于/var/www/html。为了让Web服务器能顺利读取这个目录里的文件,我们得确保Nginx使用的用户账户有足够的权限。通常情况下,Nginx以www-data用户身份运行: bash sudo chown -R www-data:www-data /var/www/html sudo chmod -R 755 /var/www/html 这里,755权限意味着所有者(即www-data用户)可以读、写和执行文件,而组成员和其他用户只能读和执行(但不能修改)。 二、常见的权限设置错误 2.1 错误示例1:过度宽松的权限 bash sudo chmod -R 777 /var/www/html 这个命令将使任何人都可以读、写和执行该目录及其下所有文件。虽然这个方法在开发时挺管用的,但真要是在生产环境里用,那简直就是一场灾难啊!要是谁有了这个目录的权限,那他就能随便改或者删里面的东西,这样可就麻烦大了,安全隐患多多啊。 2.2 错误示例2:忽略SELinux/AppArmor 许多Linux发行版都默认启用了SELinux或AppArmor这样的强制访问控制(MAC)系统。要是咱们不重视这些安全措施,只靠老掉牙的Unix权限设置,那可就得做好准备迎接各种意料之外的麻烦了。例如,在CentOS上,如果我们没有正确配置SELinux策略,可能会导致Nginx无法访问某些文件。 2.3 错误示例3:不合理的用户分配 有时候,我们会不小心让Nginx以root用户身份运行。这样做虽然看似方便,但实际上是非常危险的。因为一旦Nginx被攻击,攻击者就有可能获得系统的完全控制权。因此,始终要确保Nginx以非特权用户身份运行。 2.4 错误示例4:忽略文件系统权限 即使我们已经为Nginx设置了正确的权限,但如果文件系统本身存在漏洞(如ext4的某些版本中的稀疏超级块问题),也可能导致安全风险。因此,定期检查并更新文件系统也是非常重要的。 三、如何避免权限设置错误 3.1 学习最佳实践 了解并遵循行业内的最佳实践是避免错误的第一步。比如,应该始终限制对敏感文件的访问,确保Web服务器仅能访问必要的资源。 3.2 使用工具辅助 利用如auditd这样的审计工具可以帮助我们监控和记录权限更改,以便及时发现潜在的安全威胁。 3.3 定期审查配置 定期审查和测试你的Nginx配置文件,确保它们仍然符合当前的安全需求。这就像是看看有没有哪里锁得不够紧,或者是不是该再加把锁来确保安全。 3.4 保持警惕 安全永远不是一次性的工作。随着网络环境的变化和技术的发展,新的威胁不断出现。保持对最新安全趋势的关注,并适时调整你的防御策略。 四、结语 让我们一起变得更安全 通过这篇文章,我希望你能对Nginx权限设置的重要性有所认识,并了解到一些常见的错误以及如何避免它们。记住,安全是一个持续的过程,需要我们不断地学习、实践和改进。让我们携手努力,共同打造一个更加安全的网络世界吧! --- 以上就是关于Nginx权限设置错误的一篇技术文章。希望能帮到你,如果有啥不明白的或者想多了解点儿啥,尽管留言,咱们一起聊聊!
2024-12-14 16:30:28
83
素颜如水_
ZooKeeper
...oKeeper集群的同步。 - 代码示例: java // 注册一个节点变更的监听器 Watcher watcher = new Watcher() { @Override public void process(WatchedEvent event) { switch (event.getType()) { case NodeDeleted: System.out.println("ZNode deleted: " + event.getPath()); break; case NodeCreated: System.out.println("New ZNode created: " + event.getPath()); break; // ... other cases for updated or child events } }; }; zk.getData("/my/znode", false, watcher); 三、ZooKeeper设计原则的实际应用与影响 综上所述,顺序一致性提供了数据操作的可靠性,最终一致性则兼顾了系统的容错性和可扩展性,而可观测性则是ZooKeeper支持分布式协调的关键特征。这三大原则,不仅在很大程度上决定了ZooKeeper自身的行为习惯和整体架构,还实实在在地重塑了我们开发分布式应用的方式。比如说,在搭建分布式锁、配置中心或者进行分布式服务注册与发现这些常见应用场景时,开发者能够直接借用ZooKeeper提供的API和设计思路,轻而易举地打造出高效又稳定的解决方案,就像是在玩乐高积木一样,把不同的模块拼接起来,构建出强大的系统。 结论 随着云计算时代的到来,大规模分布式系统对于一致性和可靠性的需求愈发凸显,ZooKeeper正是在这个背景下诞生并不断演进的一颗璀璨明星。真正摸透并灵活运用ZooKeeper的设计精髓,那咱们就仿佛掌握了在分布式世界里驰骋的秘诀,能够随心所欲地打造出既稳如磐石又性能超群的分布式应用。
2024-02-15 10:59:33
34
人生如戏-t
转载文章
...RELOAD环境变量启动程序即可,甚至并不需要重新编译。 1.1 ptmalloc2 malloc是一个C库中的函数,malloc向glibc请求内存空间。glibc初始分配或者通过brk和sbrk或者mmap向内核批发内存,然后“卖”给我们malloc使用。 既然brk、mmap提供了内存分配的功能,直接使用brk、mmap进行内存管理不是更简单吗,为什么需要glibc呢? 因为系统调用,导致程序从用户态陷入内核态,比较消耗资源。为了减少系统调用带来的性能损耗,glibc采用了内存池的设计,增加了一个代理层,每次内存分配,都优先从内存池中寻找,如果内存池中无法提供,再向操作系统申请。 1.2 tcmalloc tcmalloc 是google开发的内存分配算法库,用来替代传统的malloc内存分配函数,它有减少内存碎片,适用于多核,更好的并行性支持等特性。 要使用tcmalloc,只要将tcmalloc通过-ltcmalloc连接到应用程序即可。 也可以使用LD_PRELOAD在不是你自己编译的应用程序中使用:$ LD_PRELOAD="/usr/lib/libtcmalloc.so" 2. 内核空间内存管理 linux操作系统内核,将内存分为一个个页去管理。 2.1 页面管理算法–伙伴系统 在实际应用中,而频繁地申请和释放不同大小的连续页框,必然导致在已分配页框的内存块中分散了许多小块的空闲页框。这样,即使这些页框是空闲的,其他需要分配连续页框的应用也很难得到满足。 为了避免出现这种内存碎片,Linux内核中引入了伙伴系统算法(buddy system)。 2.1.1 Buddy(伙伴的定义) 满足以下三个条件的称为伙伴: 1)两个块大小相同; 2)两个块地址连续; 3)两个块必须是同一个大块中分离出来的; 2.1.2 Buddy算法的分配 假设要申请一个256个页框的块,先从256个页框的链表中查找空闲块,如果没有,就去512个页框的链表中找,找到了则将页框块分为2个256个页框的块,一个分配给应用,另外一个移到256个页框的链表中。如果512个页框的链表中仍没有空闲块,继续向1024个页框的链表查找,如果仍然没有,则返回错误。 2.1.3 Buddy算法的释放 内存的释放是分配的逆过程,也可以看作是伙伴的合并过程。页框块在释放时,会主动将两个连续的页框块合并为一个较大的页框块。 2.2 Slab机制 slab是Linux操作系统的一种内存分配机制。其工作是针对一些经常分配并释放的对象,如进程描述符等,这些对象的大小一般比较小,如果直接采用伙伴系统来进行分配和释放,不仅会造成大量的内碎片,而且处理速度也太慢。 而slab分配器是基于对象进行管理的,相同类型的对象归为一类(如进程描述符就是一类),每当要申请这样一个对象,slab分配器就从一个slab列表中分配一个这样大小的单元出去,而当要释放时,将其重新保存在该列表中,而不是直接返回给伙伴系统,从而避免这些内碎片。slab分配器并不丢弃已分配的对象,而是释放并把它们保存在内存中。当以后又要请求新的对象时,就可以从内存直接获取而不用重复初始化。 2.3 内核中申请内存的函数 2.3.1 __get_free_pages __get_free_pages函数是最原始的内存分配方式,直接从伙伴系统中获取原始页框,返回值为第一个页框的起始地址. 2.3.2 kmem_cache_alloc kmem_cache_create/ kmem_cache_alloc是基于slab分配器的一种内存分配方式,适用于反复分配释放同一大小内存块的场合。首先用kmem_cache_create创建一个高速缓存区域,然后用kmem_cache_alloc从 该高速缓存区域中获取新的内存块。 2.3.3 kmalloc kmalloc是内核中最常用的一种内存分配方式,它通过调用kmem_cache_alloc函数来实现。 kmalloc() 申请的内存位于物理内存映射区域,而且在物理上也是连续的,它们与真实的物理地址只有一个固定的偏移,因为存在较简单的转换关系,所以对申请的内存大小有限制,不能超过128KB。 较常用的flags()有: GFP_ATOMIC —— 不能睡眠; GFP_KERNEL —— 可以睡眠; GFP_DMA —— 给 DMA 控制器分配内存,需要使用该标志。 2.3.4 vmalloc vmalloc() 函数则会在虚拟内存空间给出一块连续的内存区,但这片连续的虚拟内存在物理内存中并不一定连续。由于 vmalloc() 没有保证申请到的是连续的物理内存,因此对申请的内存大小没有限制,如果需要申请较大的内存空间就需要用此函数了。 注意vmalloc和vfree时可以睡眠的,因此不能从中断上下问调用。 一般情况下,内存只有在要被 DMA 访问的时候才需要物理上连续,但为了性能上的考虑,内核中一般使用 kmalloc(),而只有在需要获得大块内存时才使用 vmalloc()。例如,当模块被动态加载到内核当中时,就把模块装载到由 vmalloc() 分配的内存上。 本篇文章为转载内容。原文链接:https://secdev.blog.csdn.net/article/details/109731954。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-26 20:46:17
232
转载
转载文章
...噪的时候更平滑一些。镜像填充后的图如下: 输入网络后,得到预测结果。最后进行裁剪,得到去噪后的图像。 prediction = prediction[:, :, :H, :W] 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_42948594/article/details/124712116。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-13 14:44:26
129
转载
Apache Solr
...有节点是否都已经正常启动; - 最后,查看日志文件,查看是否有其他异常信息。 在实践中,我们可以尝试如下代码实现: java // 启动集群 CoreContainer cc = CoreContainer.create(CoreContainer.DEFAULT_CONFIG); cc.load(new File("/path/to/solr/home/solr.xml")); cc.start(); // 查询集群状态 Collections cores = cc.getCores(); for (SolrCore core : cores) { System.out.println(core.getName() + " status : " + core.getStatus()); } 如果以上步骤无法解决问题,建议查阅相关文档或寻求专业人士的帮助。 三、Solr代码执行漏洞排查及解决方法 近年来,随着Apache Solr的广泛应用,安全问题日益突出。嘿,你知道吗?在2019年11月19日曝出的一条消息,Apache Solr这个家伙在默认设置下有个不小的安全隐患。如果它以cloud模式启动,并且对外开放的话,那么远程的黑客就有机会利用这个漏洞,在目标系统上随心所欲地执行任何代码呢!就像是拿到了系统的遥控器一样,想想都有点让人捏把汗呐! 对于这个问题,我们可以从以下几个方面进行排查: - 首先,检查solr的安全配置,确保只允许受信任的IP地址访问; - 其次,关闭不必要的服务端功能,如远程管理、JMX等; - 最后,定期更新solr到最新版本,以获取最新的安全补丁。 在实践中,我们可以尝试如下代码实现: java // 关闭JMX服务 String configPath = "/path/to/solr/home/solr.xml"; File configFile = new File(configPath); DocumentBuilder db = DocumentBuilderFactory.newInstance().newDocumentBuilder(); Document doc = db.parse(configFile); Element root = doc.getDocumentElement(); if (!root.getElementsByTagName("jmx").isEmpty()) { Node jmxNode = root.getElementsByTagName("jmx").item(0); jmxNode.getParentNode().removeChild(jmxNode); } TransformerFactory tf = TransformerFactory.newInstance(); Transformer transformer = tf.newTransformer(); transformer.setOutputProperty(OutputKeys.INDENT, "yes"); transformer.setOutputProperty("{http://xml.apache.org/xslt}indent-amount", "2"); DOMSource source = new DOMSource(doc); StreamResult result = new StreamResult(new File(configPath)); transformer.transform(source, result); 如果以上步骤无法解决问题,建议查阅相关文档或寻求专业人士的帮助。 四、总结 总的来说,Apache Solr虽然强大,但在使用过程中也会遇到各种各样的问题。了解并搞定这些常见问题后,咱们就能把Solr的潜能发挥得更淋漓尽致,这样一来,工作效率蹭蹭上涨,用户体验也噌噌提升,妥妥的双赢局面!希望本文能对你有所帮助!
2023-05-31 15:50:32
498
山涧溪流-t
转载文章
...t; 递归 递归显示目录中文件 import osdef get_files_recursion_dir(path):file_list = []if os.path.exists(path):for f in os.listdir(path):new_path = path + "/" + fif os.path.isdir(new_path):file_list += get_files_recursion_dir(new_path)else:file_list.append(new_path)else:print(f"指定的目录{path},不存在")return []return file_listif __name__ == '__main__':print(get_files_recursion_dir("D:\test")) 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_29385297/article/details/128085103。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-05-28 18:35:16
91
转载
Spark
...read函数从指定目录下读取CSV文件,并将其转化为DataFrame。然后,我们可以通过各种函数对DataFrame进行操作,如show、filter、groupBy等。 2. 使用Spark SQL Spark SQL是一种高级抽象,用于查询关系表。就像Dataframe API那样,Spark SQL也给我们带来了一种超级实用又高效的处理小文件的方法,一点儿也不复杂,特别接地气儿。Spark SQL还自带了一堆超级实用的内置函数,比如COUNT、SUM、AVG这些小帮手,用它们来处理小文件,那速度可真是嗖嗖的,轻松又高效。 下面是一个简单的例子,展示如何使用Spark SQL来读取小文件: scss val df = spark.sql("SELECT FROM /path/to/files/") 在这个例子中,我们使用sql函数来执行SQL语句,从而从指定目录下读取CSV文件并转化为DataFrame。 3. 使用Partitioner Partitioner是Spark的一种内置机制,用于将数据分割成多个块。当我们处理大量小文件时,可以使用Partitioner来提高处理效率。其实呢,我们可以这样来操作:比如说,按照文件的名字呀,或者文件里边的内容这些规则,把那些小文件分门别类地整理一下。就像是给不同的玩具放在不同的抽屉里一样,每个类别都单独放到一个文件夹里面去存储,这样一来就清清楚楚、井井有条啦!这样一来,每次我们要读取文件的时候,就只需要瞄一眼一个文件夹里的内容,压根不需要把整个目录下的所有文件都翻个底朝天。 下面是一个简单的例子,展示如何使用Partitioner来处理小文件: python val partitioner = new HashPartitioner(5) val rdd = sc.textFile("/path/to/files/") .map(line => (line.split(",").head, line)) .partitionBy(partitioner) val output = rdd.saveAsTextFile("/path/to/output/") 在这个例子中,我们首先使用textFile函数从指定目录下读取文本文件,并将其转化为RDD。接着,我们运用一个叫做map的神奇小工具,就像魔法师挥动魔杖那样,把每一行文本巧妙地一分为二,一部分是文件名,另一部分则是内容。然后,我们采用了一个叫做partitionBy的神奇函数,就像把RDD里的数据放进不同的小篮子里那样,按照文件名给它们分门别类。这样一来,每个“篮子”里都恰好装了5个小文件,整整齐齐,清清楚楚。最后,我们使用saveAsTextFile函数将RDD保存为文本文件。因为我们已经按照文件名把文件分门别类地放进不同的“小桶”里了,所以现在每次找文件读取的时候,就不用像无头苍蝇一样满目录地乱窜,只需要轻轻松松打开一个文件夹,就能找到我们需要的文件啦! 四、结论 通过以上三种方法,我们可以有效地优化Spark在读取大量小文件时的性能。Dataframe API和Spark SQL提供了简单且高效的API,可以快速处理结构化数据。Partitioner这个小家伙,就像个超级有条理的文件整理员,它能够按照特定的规则,麻利地把那些小文件分门别类放好。这样一来,当你需要读取文件的时候,就仿佛拥有了超能力一般,嗖嗖地提升读取速度,让效率飞起来!当然啦,这只是入门级别的小窍门,真正要让方案火力全开,还得瞅准实际情况灵活变通,不断打磨和优化才行。
2023-09-19 23:31:34
45
清风徐来-t
RabbitMQ
...事件,实现高效的数据同步与处理。 面临的挑战与应对策略 1. 性能优化:随着微服务数量的增加,消息队列的压力也随之增大。为应对这一挑战,可以通过优化网络配置、增加服务器资源、引入消息队列水平扩展策略等方式,提升RabbitMQ的吞吐量和响应速度。 2. 数据一致性问题:在高并发环境下,数据的一致性问题尤为突出。通过设计合理的消息处理流程,引入消息队列的事务机制,或者使用幂等性设计,可以在一定程度上解决这一问题。 3. 安全性与权限管理:随着微服务的规模扩大,如何保证消息传输的安全性和权限管理的严谨性成为重要议题。通过实施严格的认证、授权机制,以及加密传输等手段,可以有效提升RabbitMQ的安全性。 4. 监控与日志管理:实时监控RabbitMQ的运行状态,包括消息队列的长度、消费者状态、延迟时间等关键指标,有助于及时发现和解决问题。同时,建立完善的日志体系,便于追踪消息流经的路径和处理过程,对于问题定位和性能优化具有重要意义。 总之,RabbitMQ在微服务架构中的应用既带来了便利,也伴随着挑战。通过持续的技术优化与管理策略的创新,可以有效克服这些问题,充分发挥RabbitMQ在构建高效、可靠、可扩展的现代应用程序中的潜力。
2024-08-01 15:44:54
180
素颜如水
转载文章
...2 部分的文档,我也同步放在知识星球里面了,有需要的可以去下载。 网上关于 MP4 文件格式的文章内容,基本都可以在第 12 部分中找到,可以说它才是学习知识的源头,当做教科书来学肯定没问题。 有官方文档的情况下,会尽量根据文档来学习,而不是盲目的参考网络博客,那样得到的知识体系太零散了。 MP4 文件组成 摘录一段官方文档的内容: 关于 MP4 文件格式,参照文档说明:文件是由一系列叫做 Box 的对象组成的,所有的数据都存储在 Box 中。 官方文档中把这些由对象结构组成的文件叫做 Object-structured File ,算是一个比较广义的概念,但我们就当做 MP4 格式好了,狭义地理解一下,并且这种文件格式必须要包含 File Type 类型的 Box 。 MP4 中的 Box MP4 中的 Box 有很多类型,每个类型中的 Box 代表的含义还不相同,但他们的基础结构还是相同的,继续往下看文档: 每个 Box 是由 Header 和 Data 两部分组成的,Header 中包含了很多标识信息,而 Data 可以是纯数据也可以是其他的子 Box 。 参照文档内容,Header 中包含了 Box 的大小 Size 和类型 Type。 关于 Size 的说明,参考文档: size 字段包含了 Box 和子 Box 的大小,如果 size 为 1 ,说明实际的大小在 largesize 字段中,如果 size 为 0 ,说明这是文件最后一个 Box 了。 关于 Type 的说明,参考文档: type 字段表示该 Box 的类型,标准的 Box 类型都是用四个字母来表示的,如果是用户自定义的类型,就用 uuid 来表示。 另外,要强调一下 Box 的字节序是网络字节序,也就是大端序,关于 Box 结构的伪代码文档中也给出了: 根据伪代码再看 Box 的结构定义就一目了然了。 MP4 中的 FullBox Box 可以说是所有 Box 类型的基类,接下来要了解它的第一个子类 FullBox 。 FullBox 在 Box 的基础上多了 version 和 flags 字段。 其中 version 字段表示 Box 的版本,flags 字段是标志位。 如果 Box 遇到了无法识别的 version 或者 type 字段,就应该跳过或者忽略。 MP4 中更多的 Box MP4 中还有很多类型的 Box ,其实有些 Box 相当重要,甚至面试中还会经常问到,下面从文档中给大家摘录一下所有的 Box 类型。 这些内容在文档中都有,自行下载了,网络的一些资料可能还没有文档全面呢。 后面我们也会继续讲解这些 Box 类型的,以及使用工具来查看 Box 信息,这节就先到这里啦!!! 众所周知,开通了知识星球,邀请了一些在头条、快手等知名IT企业从事过音视频研发的朋友们做专业咨询,涉及的范围比较广,包括 Android/iOS 开发、Camera 开发、视频编辑、在线直播、WebRTC、播放器、OpenGL、C++ 等等,基本上涵盖了音视频工程领域的绝大部分内容。 关于音视频入门如何学习,学习了 FFmpeg 之后又该怎么办,跳槽选择哪个方向比较好,程序员职业软技能等等之类的问题,更是会以行业一线开发人员的角度帮你认真分析,出谋划策。 力求做到有问必答。在知识范围内,认真地对待每一个提问,不一定所有的问题都能答案,但每一个答案都是详细思考过的。 更多开发资料、博客源码、文档教程都会在星球内给出,白菜价即可加入,iOS 用户可以加我微信 ezglumes 拉你进去!!! 一个音视频领域专业问答的小圈子! 加我微信 ezglumes 拉你入技术交流群 推荐阅读: 音视频开发工作经验分享 || 视频版 OpenGL ES 学习资源分享 开通专辑 | 细数那些年写过的技术文章专辑 Android NDK 免费视频在线学习!!! 你想要的音视频开发资料库来了 推荐几个堪称教科书级别的 Android 音视频入门项目 觉得不错,点个在看呗~ 本篇文章为转载内容。原文链接:https://blog.csdn.net/zhying719/article/details/124464016。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-01-21 17:43:21
438
转载
ElasticSearch
...icsearch/目录下),然后发现日志里显示了一个错误:“MapperParsingException[failed to parse]”。看到这个,我就明白了,可能是数据格式有问题。 这时候我开始反思:是不是我的数据结构不符合ElasticSearch的映射规则?于是我又仔细检查了一下我的数据结构,发现确实有一个字段的数据类型没有定义好。比如说啊,我有个字段叫age,本来应该是整数类型的,但之前手滑写成字符串了,真是自己给自己挖坑。 修正后的代码如下: python actions = [ { "_index": "my_index", "_id": "1", "_source": {"name": "John", "age": 30} 确保age是整数类型 }, { "_index": "my_index", "_id": "2", "_source": {"name": "Jane", "age": 25} } ] 再次运行代码后,果然不再报错了。这就算是舒了口气吧,不过也给我提了个醒:用 ElasticSearch 做批量索引的时候,这数据格式啊,真的一点都不能含糊,不然分分钟让你抓狂! 三、深入分析 为什么会出现这种问题? 虽然问题解决了,但作为一个喜欢刨根问底的人,我还是想知道为什么会发生这样的事情。说白了,就是下次再碰到这种事儿,我可不想抓耳挠腮半天还搞不定,希望能一下子就找到路子! 首先,我想到了ElasticSearch的映射机制。Elasticsearch 会检查每个字段的类型,就像老师检查作业一样认真。要是你传的数据类型跟它预想的对不上号,它就会直接“翻脸”,给你抛个 MapperParsingException 错误,仿佛在说:“哎哟喂,这啥玩意儿?重写!”比如说啊,你有个字段叫age(年龄),本来应该填数字的,结果你非得塞个字符串进去,那ElasticSearch就直接不认你的文档,直接拒收,根本不带商量的! 其次,我还想到,ElasticSearch的bulk API其实是非常强大的,但它也有自己的规则。比如,bulk API要求每条文档必须包含_index、_type(虽然现在已经被废弃了)和_source字段。如果你漏掉了某个字段,或者字段名拼写错误,都会导致批量索引失败。 最后,我还注意到,ElasticSearch的bulk API是基于HTTP协议的,这意味着它对网络环境非常敏感。要是你的网络老是断线,或者你等了半天也没收到回应,那可能就搞不定批量索引这事啦。
2025-04-20 16:05:02
64
春暖花开
HBase
...护、命名服务、分布式同步、组服务等。在HBase集群中,Zookeeper扮演着集群管理和协调的重要角色,用于维护元信息、监控RegionServer状态、管理服务器故障转移以及保证系统的全局一致性。 BlockCache , 在HBase中,BlockCache是一种基于LRU(最近最少使用)策略的内存缓存机制,用于存储最近访问过的HFile块(HBase内部存储格式)。BlockCache提高了随机读取操作的性能,因为它可以从内存中快速获取数据,而无需直接访问较慢的磁盘存储(如HDFS)。 MemStore , MemStore是HBase为每个Region维护的内存缓冲区,用于暂存待写入HDFS的修改操作。当MemStore达到一定阈值时,会被flush到磁盘形成新的HFile文件。通过这种方式,HBase能够在内存中累积多次写操作并批量写入磁盘,从而减少了磁盘I/O次数,提升了写入性能。同时,由于MemStore中的数据按列族排序,也优化了后续查询和Compaction过程。
2023-03-14 18:33:25
581
半夏微凉
ZooKeeper
...会让各个节点间的数据同步乱成一团糟,甚至可能把整个集群都搞得摇摇欲坠,稳定性大打折扣!这篇东西,我们打算从实实在在的案例开始聊起,再配上些代码实例,把这个问题掰开揉碎了讲明白,同时也会分享一些咱们想到的解决办法和对策,保证接地气儿! 2. ZooKeeper与磁盘I/O的关系 ZooKeeper作为一个高度依赖持久化存储的服务,它需要频繁地将内存中的数据变更同步到磁盘上以保证数据的一致性。当ZooKeeper节点的磁盘I/O性能不足或者磁盘空间紧张时,就容易触发此类错误。例如,当我们调用ZooKeeper的create()方法创建一个新的节点时: java ZooKeeper zookeeper = new ZooKeeper("localhost:2181", 3000, null); String path = "/my_znode"; String data = "Hello, ZooKeeper!"; zookeeper.create(path, data.getBytes(), ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT); 上述代码会在ZooKeeper服务器上创建一个持久化的节点并写入数据,这个过程就涉及到磁盘I/O操作。如果此时磁盘I/O出现问题,那么节点创建可能会失败,抛出异常。 3. 磁盘I/O错误的表现及影响 当ZooKeeper日志中频繁出现“Disk is full”、“No space left on device”或“I/O error”的警告时,表明存在磁盘I/O问题。这种状况会导致ZooKeeper没法顺利完成事务日志和快照文件的写入工作,这样一来,那些关键的数据持久化,还有服务器之间的选举、同步等核心功能都会受到连带影响。到了严重的时候,甚至会让整个服务直接罢工,无法提供服务。 4. 探究原因与解决方案 (1)磁盘空间不足 这是最直观的原因,可以通过清理不必要的数据文件或增加磁盘空间来解决。例如,定期清理ZooKeeper的事务日志和快照文件,可以使用自带的zkCleanup.sh脚本进行自动维护: bash ./zkCleanup.sh -n myServer1:2181/myZooKeeperCluster -p /data/zookeeper/version-2 (2)磁盘I/O性能瓶颈 如果磁盘读写速度过慢,也会影响ZooKeeper的正常运行。此时应考虑更换为高性能的SSD硬盘,或者优化磁盘阵列配置,提高I/O吞吐量。另外,一个蛮实用的办法就是灵活调整ZooKeeper的刷盘策略。比如说,我们可以适当地给syncLimit和tickTime这两个参数值加加油,让它们变大一些,这样一来,就能有效地降低刷盘操作的频率,让它不用那么频繁地进行写入操作,更贴近咱们日常的工作节奏啦。 (3)并发写入压力大 高并发场景下,大量写入请求可能会导致磁盘I/O瞬间飙升。对于这个问题,我们可以采取一些措施,比如运用负载均衡技术,让ZooKeeper集群的压力得到分散缓解,就像大家一起扛米袋,别让一个节点给累垮了。另外,针对实际情况,咱们也可以灵活调整,对ZooKeeper客户端API的调用来个“交通管制”,根据业务需求合理限流控制,避免拥堵,保持运行流畅。 5. 结论 面对ZooKeeper运行过程中出现的磁盘I/O错误,我们需要具体问题具体分析,结合监控数据、日志信息以及系统资源状况综合判断,采取相应措施进行优化。此外,良好的运维习惯和预防性管理同样重要,如定期检查磁盘空间、合理分配资源、优化系统配置等,都是避免这类问题的关键所在。说真的,ZooKeeper就相当于我们分布式系统的那个“底座大石头”,没它不行。只有把这块基石稳稳当当地砌好,咱们的系统才能健壮得像头牛,让人放心可靠地用起来。 以上内容,不仅是我在实践中积累的经验总结,也是我不断思考与探索的过程,希望对你理解和处理类似问题有所启发和帮助。记住,技术的魅力在于持续学习与实践,让我们一起在ZooKeeper的世界里乘风破浪!
2023-02-19 10:34:57
128
夜色朦胧
Etcd
...现了跨数据中心的库存同步管理,显著提升了系统的可用性和响应速度。这一成功实践不仅证明了Etcd在高并发场景下的稳定性,也展示了其在大规模分布式系统中的广泛应用前景。 与此同时,Etcd社区也在不断迭代更新,最新版本已支持更多高级特性,例如更高效的压缩算法和更强的安全加密机制。这些改进使得Etcd在面对日益复杂的分布式环境时更具竞争力。值得一提的是,国内某大型云计算服务商近日宣布将全面支持Etcd 3.x系列,并计划在未来几个月内推出基于Etcd的托管服务,为企业用户提供更加便捷的部署和管理体验。 此外,关于分布式事务管理的话题,近期有专家指出,尽管Etcd提供了强大的工具集,但在实际应用中仍需谨慎对待事务的粒度和范围。过细的事务划分可能导致性能瓶颈,而过于粗略的设计则可能引发数据不一致的风险。因此,在设计分布式事务时,需要综合考虑业务逻辑、系统规模以及硬件资源等因素,制定合理的策略。 最后,回顾历史,我们可以发现,无论是早期的ZooKeeper还是如今的Etcd,这类分布式协调服务始终伴随着分布式计算的发展而演进。正如《分布式系统设计》一书中提到的:“分布式系统的设计是一门艺术,它要求我们在灵活性与可靠性之间找到平衡。”未来,随着5G、物联网等新技术的兴起,分布式系统的复杂性将进一步增加,而像Etcd这样的工具无疑将在其中扮演越来越重要的角色。
2025-03-21 15:52:27
55
凌波微步
Cassandra
...预热功能,旨在减少冷启动带来的性能瓶颈,这与Cassandra的TTL机制有异曲同工之妙。 与此同时,亚马逊推出的DynamoDB也在不断改进其缓存策略。DynamoDB通过引入全局二级索引和自动分片技术,提高了系统的灵活性和响应速度。然而,如何在保证高并发的同时维持缓存的一致性,依然是DynamoDB亟待解决的问题。这与Cassandra的缓存清洗策略形成了有趣的对比。 从更深层面来看,这些数据库技术的发展反映了现代企业在数据管理上的多样化需求。无论是处理结构化数据还是非结构化数据,企业都需要找到最适合自身业务场景的解决方案。未来,随着AI和机器学习技术的普及,数据库的智能化将成为一个重要趋势。例如,利用机器学习算法预测数据访问模式,动态调整缓存策略,有望进一步提升数据库的性能和可靠性。 总之,Cassandra的缓存清洗策略只是数据库技术发展的一个缩影。在全球范围内,越来越多的企业正在探索更高效的数据库解决方案,以应对日益复杂的业务需求和技术挑战。
2025-05-11 16:02:40
68
心灵驿站
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
xargs -I{} command {} < list_of_files.txt
- 使用文件列表作为参数执行命令。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"