前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[脉冲计算]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
.net
...势和应用场景。随着云计算、大数据和微服务架构的发展,文件流处理技术正逐渐向分布式和流式计算方向演进。 例如,Azure Data Factory等云服务提供了高效的数据流处理功能,开发者可以基于.Net框架构建数据管道,实现大规模文件数据的读取、转换和加载,极大地提升了数据处理效率与灵活性。此外,.NET Core 3.0及更高版本引入了对异步IO操作的增强支持,使得文件流在处理大文件或高并发场景时能够更好地发挥性能优势,降低系统延迟。 同时,实时日志分析、持续集成/持续部署(CI/CD)流程中的文件流转存、以及数据库备份恢复等实际场景,都离不开文件流技术的深度应用。因此,掌握好文件流处理不仅对于日常编程工作至关重要,也是紧跟技术潮流、解决复杂业务问题的重要能力体现。建议读者结合具体业务需求,探索更多高级特性,如内存映射文件(Memory-Mapped Files)以提升处理超大型文件的效能,或者利用.NET的并行文件系统(parallel file system)接口优化多线程环境下的文件访问性能。
2023-05-01 08:51:54
468
岁月静好
c++
...(w) {} // 计算面积的方法 double getArea() { return length width; } }; 在这段代码中,“Rectangle”就是一个类,其包含两个公开的成员变量length和width,以及一个构造函数和一个计算面积的成员函数getArea()。构造函数用于初始化对象时设置矩形的长和宽。 3. 创建类的实例 从抽象到具体 定义好类之后,我们就可以创建该类的实例,也就是通常所说的对象。这就像从图纸上构建一个真实的矩形: cpp int main() { // 创建一个Rectangle类的对象 Rectangle myRect(5.0, 4.0); // 使用对象调用成员函数 double area = myRect.getArea(); std::cout << "The area of the rectangle is: " << area << std::endl; return 0; } 在这个例子中,myRect就是Rectangle类的一个实例,拥有长度5.0和宽度4.0的属性。通过.getArea()我们就能获取这个矩形的面积。 4. 类中的访问控制与封装 C++支持对类成员的访问权限进行控制,主要分为public、private和protected三种。比方说,在上面的例子中,我们把成员变量和成员函数都设置成了“public”,这就意味着它们完全对外开放,任何人在类的外部都能直接访问到这些内容,就像你去超市货架上拿东西一样方便。然而在实际开发中,我们往往需要隐藏内部实现细节,仅对外提供接口,这时就可以将数据成员设为private: cpp class Rectangle { private: double length; double width; public: // ... }; 此时,尽管外部无法直接访问length和width,但可以通过公共成员函数来间接操作。 5. 探讨 深入理解类的作用 类的引入极大地丰富了C++的表达力,使代码更易于维护和复用。通过定义类,我们可以将现实世界的实体抽象成软件模型,每个对象都是类的具象表现,有着自己的状态和行为。同时,通过封装,我们保证了数据的安全性,使得代码更加健壮。 总结来说,理解和掌握在C++中定义和使用类是提升面向对象编程能力的关键一步。实践出真知,不断地尝试编写并调试各类场景下的类,将有助于深化你对此的理解,并助你在C++的编程之路上越走越远!
2023-01-30 11:25:06
846
灵动之光
Saiku
...数据的理解、比较以及计算的准确性,如果不匹配可能导致数据混乱或分析结果错误。在文中,作者详细介绍了如何在Saiku中调整维度字段的日期格式以满足实际需求。
2023-08-28 23:56:56
67
柳暗花明又一村-t
Tesseract
...辑的结构化文本格式的计算机技术。在本文中,OCR是解决字体识别问题的核心技术,其中Tesseract OCR是一款开源且强大的实现此技术的工具。 Tesseract , Tesseract是一个由HP实验室研发并现由Google维护的开源OCR引擎。它能够识别多种语言的文字,并支持自定义训练以提升对特定字体或场景的识别能力。在实际应用中,用户可能遇到“使用的字体不在支持范围内”的问题,此时可以通过更换其他OCR工具、进行自定义字体训练或者联系Tesseract开发者寻求解决方案。 自定义字体训练 , 在OCR领域中,自定义字体训练是指针对特定字体或风格设计的专门训练过程。当现有OCR工具(如Tesseract)无法有效识别某种特定字体时,用户可以提供包含该字体的样本数据,利用相关算法和技术对其进行学习和训练,从而扩展OCR工具对该特定字体的识别能力。在本文中,如果Tesseract无法识别特定字体,用户可以尝试进行自定义字体训练以解决这一问题。
2023-04-18 19:54:05
392
岁月如歌-t
Java
...的并行处理能力。在云计算、分布式系统及大数据处理等领域,这种非阻塞和异步I/O模式已经成为提高性能和扩展性的关键技术手段之一。 此外,为应对大规模、高并发场景下的网络通信需求,Netty作为基于NIO的高性能网络通信框架被广泛应用,它简化了NIO的复杂性,使得开发者能够更专注于业务逻辑的开发,而无需过多关心底层网络通信细节。 值得注意的是,尽管NIO和NIO.2在性能上有着显著的优势,但在实际项目选型时仍需根据具体应用场景权衡利弊。对于连接数较少但数据交换频繁的服务,传统的BIO可能因其编程模型简单直观,依然具有一定的适用性。 综上所述,深入理解Java IO的不同模型及其适用场景,并关注相关领域的最新发展动态和技术实践,对于提升系统设计与开发效率至关重要。同时,紧跟Java IO库的发展步伐,如Java 9及以上版本对NIO模块的持续优化,将有助于我们更好地适应未来的技术挑战。
2023-06-29 14:15:34
368
键盘勇士
Tesseract
...) , OCR是一种计算机技术,用于识别图像中的文本字符并将它们转换为可编辑和可搜索的数据。在本文的语境中,Tesseract就是一个OCR工具,可以读取图片上的文字信息,并通过算法解析出实际的文本内容,即使这些文字被水印或其他元素遮挡。 Tesseract OCR , Tesseract是由Google开发的一款开源OCR引擎,支持多种操作系统,如Windows、Linux和Mac OS X等。它能够识别多种语言的文字,包括但不限于拉丁语系、斯拉夫语系、阿拉伯语和中文等。在处理图像时,Tesseract通过一系列预处理步骤以及自身的识别算法,将图片中的文字信息提取出来,便于进一步处理和分析。 预处理图像 , 在计算机视觉和图像处理领域,预处理图像通常是指对原始图像进行一系列操作以提高后续分析或识别任务的准确性和效率。在使用Tesseract提取遮挡文字的场景下,预处理图像主要包括将图像转换为灰度图并进行二值化处理。这样做的目的是简化图像结构,突出文字部分,降低背景和其他干扰因素的影响,从而使Tesseract能够更准确地识别出图像中的文字信息。
2024-01-15 16:42:33
84
彩虹之上-t
Oracle
...,在学术研究领域,《计算机科学》期刊最近发表了一篇深度分析文章,强调了数据库系统设计中容错机制的重要性,并提出了一种基于分布式存储和区块链技术的新型备份恢复策略,为未来提升数据库系统的稳定性和可靠性提供了新的理论指导和实践路径。 综上所述,无论是紧跟技术发展步伐,采用先进的数据库备份恢复技术,还是顺应法律法规要求强化数据安全措施,都是在应对数据库无法备份或恢复问题时需要持续关注和深入研究的重要方向。
2023-09-16 08:12:28
93
春暖花开-t
Apache Pig
...理速度,还显著降低了计算资源的消耗。 此外,Google BigQuery也在不断更新其数据处理功能,引入了更多高级的数据合并和清洗技术。BigQuery团队指出,通过结合使用UNION和UNION ALL,以及自定义函数,用户可以更灵活地处理复杂的数据集。这些改进使得大数据分析变得更加高效和便捷。 与此同时,亚马逊AWS也发布了关于其Redshift数据仓库的最新版本,其中新增了许多数据合并功能。这些新功能不仅支持UNION和UNION ALL,还提供了更多的数据清洗和预处理选项。这使得用户可以在同一个平台上完成从数据导入到分析的所有步骤,大大简化了工作流程。 这些案例表明,随着技术的不断发展,数据合并和处理技术也在不断进步。了解并掌握最新的数据处理工具和方法,对于从事大数据分析的专业人士来说至关重要。未来,我们可以期待更多创新的数据处理技术,这将使大数据分析变得更加高效和准确。
2025-01-12 16:03:41
81
昨夜星辰昨夜风
转载文章
...位问题。 同时,在云计算和容器化技术大行其道的当下,Kubernetes集群中日志分析和故障排查也离不开强大的命令行工具链。如使用kubectl命令进行资源管理,结合Fluentd或Logstash进行日志收集,再通过Elasticsearch和Kibana(ELK stack)进行分布式日志检索与分析,极大地提升了运维人员的工作效率。 此外,对于安全防护方面,除了文中提到的封禁高频连接IP外,还可以利用Fail2ban等工具动态阻止恶意访问。 Fail2ban会监控系统日志,一旦发现异常行为如多次登录失败,就会自动更新防火墙规则以限制相应IP地址的访问。 总之,Linux命令行工具在系统管理和运维中的作用不可小觑,结合现代运维体系中的各类自动化工具和服务,能够帮助我们更好地应对复杂环境下的运维挑战,提高服务质量与安全保障能力。广大运维工程师应持续关注相关领域的最新技术和最佳实践,以适应不断发展的IT需求。
2023-04-25 14:41:59
184
转载
Hadoop
...理大规模数据集的并行计算框架。它由两个核心组件——Hadoop Distributed File System (HDFS) 和 MapReduce 构成。HDFS就像个超级能吃的硬盘大胃王,不管数据量多大,都能嗖嗖嗖地读写,而且就算有点小闪失,它也能自我修复,超级可靠。而MapReduce这家伙,就是那种能把大任务拆成一小块一小块的,然后召集一堆电脑小分队,一块儿并肩作战,最后把所有答案汇总起来的聪明工头。 三、Hadoop与图像数据处理 1. 数据采集与存储 首先,我们需要将大量的图像数据上传到HDFS。你可以轻松地用一个酷酷的命令,就像在玩电脑游戏一样,输入"hadoop fs -put",就能把东西上传到Hadoop里头,操作简单得跟复制粘贴似的!例如: shell hadoop fs -put /local/images/ /user/hadoop/images/ 这里,/local/images/是本地文件夹,/user/hadoop/images/是HDFS中的目标目录。 2. 图像预处理 在处理图像数据前,可能需要进行一些预处理,如压缩、格式转换等。Hadoop的Pig或Hive可以方便地编写SQL-like查询来操作这些数据,如下所示: sql A = LOAD '/user/hadoop/images' USING PigStorage(':'); B = FILTER A BY size(A) > 1000; // 过滤出大于1MB的图像 STORE B INTO '/user/hadoop/preprocessed'; 3. 特征提取与分析 使用Hadoop的MapReduce,我们可以并行计算每个图像的特征,如颜色直方图、纹理特征等。以下是一个简单的MapReduce任务示例: java public class ImageFeatureMapper extends Mapper { @Override protected void map(LongWritable key, Text value, Context context) { // 图像处理逻辑,生成特征值 int[] feature = processImage(value.toString()); context.write(new Text(featureToString(feature)), new IntWritable(1)); } } public class ImageFeatureReducer extends Reducer { @Override protected void reduce(Text key, Iterable values, Context context) { int sum = 0; for (IntWritable val : values) { sum += val.get(); } context.write(key, new IntWritable(sum)); } } 4. 结果聚合与可视化 最后,我们将所有图像的特征值汇总,进行统计分析,甚至可以进一步使用Hadoop的Mahout库进行聚类或分类。例如,计算平均颜色直方图: java final ReduceTask reducer = job.getReducer(); reducer.setNumReduceTasks(1); 然后,用Matplotlib这样的可视化库,将结果呈现出来,便于理解和解读。 四、总结与展望 Hadoop凭借其出色的性能和易用性,为我们处理大量图像数据提供了有力支持。你知道吗,随着深度学习这家伙越来越火,Hadoop这老伙计可能得找个新拍档,比如Spark,才能一起搞定那些高难度的图片数据分析任务,毕竟单打独斗有点力不从心了。不过呢,Hadoop这家伙绝对是咱们面对海量数据时的首选英雄,特别是在刚开始那会儿,简直就是数据难题的救星,让咱们在信息的汪洋大海里也能轻松应对,游得畅快。
2024-04-03 10:56:59
439
时光倒流
Ruby
... 时间复杂度 , 在计算机科学中,时间复杂度是对算法运行时间增长趋势的一个定量描述,表示随着输入数据规模的增长,算法执行所需要的计算工作量的增长速度。不同的算法有不同的时间复杂度,例如线性时间复杂度O(n)、对数时间复杂度O(log n)等。在编写高性能Ruby代码时,选择合适的时间复杂度较低的算法,能够在处理大量数据时显著提高代码运行速度。
2023-08-03 12:22:26
92
月影清风-t
Javascript
...t;,导致商品库存计算出现严重偏差,最终造成数百万美元的损失。这一事件不仅引起了业界的广泛关注,也提醒广大开发者,在日常开发过程中必须严格遵守编码规范,尤其是对于循环条件和逻辑判断部分,要格外谨慎。 此外,Stack Overflow社区也针对此问题进行了深入讨论,众多资深开发者分享了他们在实际工作中遇到的类似案例,以及如何通过自动化测试和代码审查机制来减少这类错误的发生。他们强调,虽然现代IDE具备强大的语法检测功能,但在复杂的项目中,人工复核仍然是不可或缺的一环。 因此,除了依赖工具和技术手段外,开发者还需要不断提高自身的编程素养,培养良好的编码习惯。只有这样,才能在复杂多变的开发环境中,有效避免诸如SyntaxError: Unexpected token这样的低级错误,确保软件系统的稳定运行。
2025-01-19 16:04:29
100
繁华落尽
ZooKeeper
...还为大数据处理、实时计算以及微服务通信等领域提供了更为高效、灵活的解决方案。 此外,对于ZooKeeper本身,尽管在分布式协调领域具有举足轻重的地位,但随着技术的发展,诸如etcd等新一代的键值存储系统也开始崭露头角,它们在提供分布式一致性保证的同时,提升了性能并优化了API设计,以满足现代云环境对快速响应和大规模集群管理的需求。 深入探究这些技术的实际运用与最新发展,有助于我们更好地理解数据发布订阅模型在分布式系统中的价值,也能启发我们在实际项目中如何选择和优化技术栈,以应对日益复杂且高并发的业务场景。同时,这也鼓励我们不断探索更多可能的技术路径,推动分布式系统理论与实践的进步。
2023-10-24 09:38:57
71
星河万里-t
Apache Lucene
...及现代处理器多核并行计算能力,设计更精细的并发控制策略,以应对指数级增长的数据规模和用户查询需求。 同时,云原生环境下的搜索服务也在不断演进,如阿里云OpenSearch、AWS OpenSearch Service等云服务提供商,均在底层引擎层面深度集成并优化了Lucene的并发索引处理能力,并提供了可动态扩展、高可用的搜索解决方案,使得开发者无需过多关心底层细节,就能实现高效稳定的搜索功能。 综上所述,随着技术的持续进步和应用场景的丰富多元,Lucene及其衍生产品的并发索引写入策略将在实践中不断迭代和完善,为用户提供更为强大且高效的搜索体验。而对于相关从业人员来说,紧跟这些前沿技术趋势,洞悉背后的设计原理与优化思路,无疑具有极其重要的实战指导意义。
2023-09-12 12:43:19
441
夜色朦胧-t
转载文章
...数,整个三角使用递归计算较为方便 可以新设置递归函数 /include<iostream>using namespace std;int number(int row,int len){int num;if (row == 1||row == len||len == 1)return 1;num = number(row-1,len-1)+number(row-1,len);return num;} void angle(int num){int i,j,k;for(i = 1;i<=num;i++){for(k = i;k<=num;k++)cout<<" ";for(j = 1;j<=i;j++){cout<<number(i,j)<<" ";}cout<<endl;} }int main(){//第六题///公式解法 int book = -1 ,people = 0;while(people>book){cin>>book>>people;}int i;int count = 1;for(i = book;i>=people;i--){count = i;} cout<<count<<endl;//穷举法int a,b,c,count=0;for(a=1;a<=5;a++){for(b=1;b<=5;b++){for(c=1;c<=5;c++){if(a!=b&&b!=c&&a!=c){count++;} }} }cout<<count<<endl; ///第七题 int number;cin>>number;angle(number);return 0;} 这其中有不合适或者不正确的地方欢迎指正,我的QQ号码:2867221444(乔金明),谢谢,也可以相互交流下,备注信息随意,只要能看得出是开发者或者学习者即可。 本篇文章为转载内容。原文链接:https://blog.csdn.net/QJM1995/article/details/87903710。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-23 14:00:17
335
转载
Tomcat
...的算法,减少不必要的计算等。 2)增加硬件资源:如果代码本身没有问题,但是由于硬件资源不足导致性能瓶颈,那么我们可以通过增加硬件资源(如CPU、内存等)来解决问题。 3)调整系统参数:Tomcat有一些配置参数,如maxThreads、minSpareThreads等,这些参数的设置可能会影响Tomcat的性能。我们可以通过调整这些参数来改善性能。 6. 总结 在实际应用中,我们经常会遇到性能瓶颈的问题。这个问题初看可能会觉得有点棘手,但实际上呢,只要我们肚子里有足够的墨水,再加上丰富的实战经验,就完全有能力把它给妥妥地搞定。记住啊,性能瓶颈这玩意儿可不是什么无解的难题,它更像是一个等待我们去挖掘、去攻克的小挑战。只要咱发现了,就一定有办法解决掉它。同时,我们也应该意识到,良好的编程习惯和清晰的设计思想是预防性能瓶颈的重要手段。
2023-07-31 10:08:12
342
山涧溪流-t
NodeJS
近期,随着云计算和微服务架构的普及,API文档的重要性愈发凸显。例如,GitHub最近发布了一篇文章,详细探讨了如何利用API文档提升软件开发效率。文章指出,通过引入自动化工具和持续集成策略,可以显著减少人工错误,提高文档的准确性和实时性。GitHub还分享了他们在内部使用Swagger和SwaggerHub的经验,展示了如何通过这些工具实现API文档的自动化生成和版本控制。 此外,另一篇来自InfoQ的文章深入分析了API文档对DevOps实践的影响。作者强调,在DevOps环境中,API文档不仅是开发人员的工具,也是运维团队的重要参考。通过建立统一的API文档标准,可以促进开发、测试和运维之间的沟通,从而加快产品迭代速度,减少生产环境中的问题。 另外,Stack Overflow上的一篇热门帖子讨论了如何利用Docusaurus等静态站点生成工具来增强API文档的可读性和用户体验。帖子中提到,通过结合Markdown和YAML,可以创建出既美观又实用的API文档网站,使开发者更容易理解和使用API。 这些资源不仅提供了关于API文档的最佳实践,也为开发者和团队提供了新的思路和方法,帮助他们更好地应对现代软件开发中的挑战。通过学习这些案例和经验,我们可以进一步优化API文档的生成和维护流程,提升整个团队的工作效率。
2025-02-14 15:48:24
61
春暖花开
c++
...常。 同时,在高性能计算、游戏引擎开发等领域,函数模板结合模板元编程被广泛应用于优化代码执行效率,通过编译期计算生成针对性强、执行速度快的代码。近期一篇发表于《ACM通讯》的研究文章深入探讨了函数模板在实时渲染引擎中的实践应用,展示了如何利用模板特化实现对不同数据类型的高效处理,从而显著提升图形渲染性能。 此外,函数模板在泛型编程库如STL(Standard Template Library)的设计和使用中更是不可或缺,新版C++标准库也不断优化和新增模板类与函数以适应更多复杂场景的需求。因此,对于热衷于提升代码质量、追求极致性能以及探索现代C++编程技巧的开发者来说,持续关注函数模板及其相关领域的最新研究进展具有极高的价值和时效性。
2023-09-27 10:22:50
552
半夏微凉_t
Scala
...概念,它提供了一种将计算过程组织起来的方法,使得这些计算能够以链式方式进行,并且可以在每一步都考虑计算结果是否存在的可能性。在本文中提到的Maybe(Haskell)和Option(Scala)都是monad的具体实现,它们允许开发者在处理可能缺失的值时保持代码的一致性和可读性,同时保证了程序的正确性和健壮性。在处理Option类型时,map、flatMap以及getOrElse等方法体现了monad的行为特征,允许程序员在处理可能为空的值时,能写出简洁且不易出错的代码逻辑。
2023-11-11 08:18:06
151
青山绿水-t
Datax
...件。随着分布式存储和计算技术的不断发展,如何确保关键服务如NameNode的高可用性成为大数据从业者关注的重点。 近期,Apache Hadoop社区发布了最新的3.3.x版本,对HDFS的稳定性及容错性进行了显著提升,包括改进NameNode的故障切换机制、优化网络通信协议等,从而降低此类连接失败的风险。此外,对于复杂网络环境下的防火墙策略配置,有专家建议采用SDN(Software-Defined Networking)技术进行智能管理,以自动适应不同服务间的端口需求,避免因人为误配导致的服务中断。 同时,针对大规模数据迁移场景下的挑战,业内研究者正积极探索基于容器化和Kubernetes编排技术的新一代数据同步解决方案,旨在通过灵活调度和资源优化进一步提高Datax等工具的性能表现和容错能力。这些前沿动态和实践经验为我们解决类似Datax与HDFS交互中出现的问题提供了新的思路和方法论,值得广大技术人员深入学习和借鉴。
2023-02-22 13:53:57
551
初心未变-t
Apache Solr
...有研究者提出了结合云计算技术进行Solr集群扩展和负载均衡的策略,通过容器化部署和动态资源调度,实现并发更新请求的高效处理与故障隔离,从而避免因并发过高导致的各种异常情况。 此外,对于那些需要频繁进行大量数据更新的业务场景,业界也在积极探索采用异步队列、批处理更新等模式来提升系统的吞吐量和响应速度,减少由于并发写入冲突引发的问题。 综上所述,在实际运维和开发过程中,持续跟踪Apache Solr项目的最新进展,深入研究和借鉴相关领域的最佳实践,将有助于我们更好地应对包括ConcurrentUpdateRequestHandlerNotAvailableCheckedException在内的各种并发处理挑战,以确保搜索引擎服务在大数据环境下的稳定性和高性能。
2023-07-15 23:18:25
469
飞鸟与鱼-t
Flink
...。它支持实时和批处理计算,并且具有强大的容错和状态管理功能。本文将深入探讨Flink的状态管理和容错机制。 二、Flink的状态管理 1. 什么是Flink的状态 Flink中的状态是分布在所有TaskManager上的变量,它们用于存储中间结果。状态可以分为可变状态和不可变状态两种类型。可变状态可以被修改,而不可变状态则不能。 2. 如何定义状态 在Flink API中,我们可以使用DataStream API或者Table API来定义状态。比如说,如果我们想在写一个Stream程序的时候,有一个能被所有地方都看到的全局变量,我们可以在开启源代码编辑时,创建一个所谓的“StateObject”对象,就像是搭建舞台前先准备好道具一样。 java env.setStateBackend(new MemoryStateBackend()); DataStream stream = env.addSource(new RichParallelSourceFunction() { private transient ValueState state; @Override public void open(Configuration parameters) throws Exception { super.open(parameters); state = getRuntimeContext().getState(TypedKey.of("my-state", Types.STRING)); } @Override public void run(SourceContext ctx) throws Exception { for (int i = 0; i < 10; i++) { String value = "value" + i; state.update(value); ctx.collect(value); } } }); 在这个例子中,我们在open方法中创建了一个名为"my-state"的ValueState对象。然后,在run这个方法里头,咱们就不断地给这个状态“刷新”最新的信息,同时把这些新鲜出炉的数值一股脑儿地塞进输出流里去。 三、Flink的容错机制 1. checkpointing checkpointing是Flink的一种容错机制,它可以确保在任务失败后可以从上一次检查点恢复。Flink会在预定义的时间间隔内自动进行checkpoint,也可以通过设置maxConcurrentCheckpoints参数手动控制并发的checkpoint数量。 java env.enableCheckpointing(500); // 每500ms做一次checkpoint 2. savepoint savepoint是另一种Flink的容错机制,它不仅可以保存任务的状态,还可以保存数据的完整图。跟checkpoint不一样的地方在于,savepoint有个大优点:它不会打扰到当前任务的运行。而且你知道吗?恢复savepoint就像按下了快进键,比从checkpoint那里恢复起来速度嗖嗖的,可快多了! java env.getSavepointDirectory(); 四、结论 总的来说,Flink的状态管理和容错机制都是非常强大和灵活的。它们使得Flink能够应对各种复杂的实时和批处理场景。如果你想真正摸透Flink的运行机制,还有它在实际场景中的应用门道,我真心实意地建议你,不妨花点时间钻研一下它的官方文档和教程,保准收获满满!
2023-06-05 11:35:34
462
初心未变-t
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
ln -s target link
- 创建符号链接。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"