前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[TLS协议版本兼容性问题解决]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Linux
...的新型网络架构,旨在解决传统网络架构在云环境下的局限性,如资源弹性、自动化运维、高性能与低延迟等需求。这一趋势不仅推动了网络技术的革新,也为企业数字化转型提供了坚实的基础。 云原生网络架构的关键特性 1. 微服务化:将大型应用分解为多个小型、独立的服务,每个服务具有独立的生命周期管理,便于快速迭代和部署。 2. 容器化:利用Docker等容器技术实现应用的轻量化封装,提高资源利用率和跨平台移植性。 3. 服务网格:通过引入服务网格(如Istio、Linkerd等),提供细粒度的服务间通信管理和治理能力,增强网络的可观察性和可靠性。 4. 自动化的网络策略:利用政策驱动的网络配置,实现网络资源的动态调整和优化,提高网络效率和安全性。 5. 面向API的网络设计:强调以API为中心的网络设计,支持API的快速开发、部署和管理,适应微服务架构的特性和需求。 实施云原生网络架构的挑战与机遇 实施云原生网络架构并非一蹴而就,企业需要克服技术、组织和文化等方面的挑战。首先,在技术层面,需要具备先进的网络技术和工具,如服务网格、自动化运维平台等。其次,组织层面的变革同样重要,需要培养跨部门协作的能力,以及适应快速变化的敏捷文化。最后,文化层面的转变,鼓励创新和实验,接受失败作为成长的一部分,对于成功实施云原生网络架构至关重要。 结论 云原生网络架构是未来网络发展的必然趋势,它不仅提升了网络的灵活性、可扩展性和安全性,也为业务创新提供了无限可能。面对这一变革,企业需紧跟技术前沿,积极拥抱变化,通过持续的技术投资、组织优化和文化重塑,实现网络架构的现代化转型,从而在激烈的市场竞争中保持领先优势。
2024-09-17 16:01:33
25
山涧溪流
ElasticSearch
...的新特性。例如,最新版本中优化的近义词自动扩展功能,能更精准地捕捉用户意图,极大提升用户体验,尤其适用于电商、新闻资讯等行业的大规模内容检索。 同时,随着物联网、日志分析等领域的快速发展,Elasticsearch的应用边界也在不断拓宽。不少企业利用其地理空间搜索功能进行车辆定位追踪、物流路径优化等业务实践,实现数据驱动决策。此外,Elasticsearch结合Kibana可视化工具,可将复杂的数据以直观易懂的图表形式展现,为数据分析人员提供高效的数据洞察手段。 对于希望深入研究Elasticsearch技术原理与实战应用的读者,可以参考《Elasticsearch权威指南》一书,或关注Elastic Stack官方博客及社区论坛,获取最新的技术动态和最佳实践案例。通过持续学习和实践,您将能够更好地驾驭这一强大的搜索引擎,为企业数字化转型赋能。
2023-02-26 23:53:35
527
岁月如歌-t
转载文章
... API,用于在任何兼容的Web浏览器中呈现交互式2D、3D图形而无需插件。在更复杂的烟花特效实现中,开发者可以利用WebGL结合着色器(shader)进行高性能的三维立体烟花渲染,模拟更加真实和细腻的烟花爆炸效果。
2023-02-15 08:02:38
276
转载
Scala
...集中的键值查找和更新问题,它可以自动利用系统中的多核资源,以提高处理速度和效率。 并行度 , 在讨论并发和并行计算时,术语“并行度”指的是在同一时间内系统可以执行的任务数量或参与运算的线程数、进程数、CPU核心数等。在Scala中使用ParSeq或ParMap时,合理的并行度设置对于充分发挥硬件潜力至关重要。过高的并行度可能导致额外的上下文切换开销,而过低则无法充分利用所有可用的计算资源。因此,在使用并发集合时,开发者需要根据实际情况调整并行度,确保程序达到最优性能。
2023-03-07 16:57:49
130
落叶归根
Element-UI
...所帮助。如果你有任何问题或想要了解更多细节,请随时告诉我!
2024-10-29 15:57:21
76
心灵驿站
转载文章
...待看到更多创新的滚动解决方案,推动前端开发向更加高效、人性化的方向发展。
2024-05-06 12:38:02
624
转载
Impala
SpringBoot
...g Boot 2.5版本,其中对测试模块进行了多项改进和优化,例如增强了MockMvc功能以支持WebFlux应用的测试,并引入了新的@TestConstructor注解,使得在测试类中自定义构造函数注入更为便捷。 同时,JUnit 5作为目前最活跃的Java测试框架,持续迭代更新,JUnit Lambda、条件测试、参数化测试等功能愈发完善,为开发者提供了更多灵活高效的测试手段。此外,与Mockito、AssertJ等第三方库的无缝整合,使得在SpringBoot项目中实现深度、全面的单元测试变得更为轻松。 值得关注的是,随着DevOps和持续集成/持续部署(CI/CD)理念的普及,自动化测试已经成为高质量软件交付的必备环节。诸如GitHub Actions、Jenkins等工具集成了各类测试框架,可以方便地将单元测试集成到自动化流水线中,确保每次代码变更后都能快速反馈测试结果,有效提升了软件开发生命周期的整体效率和质量保证水平。 综上所述,在实际开发工作中,紧跟SpringBoot和JUnit等主流测试工具和技术的最新动态,深入理解和熟练运用这些工具进行单元测试,对于提升个人编程技能、保障项目质量具有不可忽视的实际意义。
2023-11-11 08:06:51
77
冬日暖阳
Apache Pig
...Hadoop 3.x版本对YARN资源管理和存储层性能的改进,将进一步优化Pig在大规模集群上的并行处理效率。而诸如Apache Arrow这类内存中列式数据格式的普及,也将提升Pig与其他大数据组件间的数据交换速度,为复杂的数据分析任务带来新的可能。 总之,在当前的大数据时代背景下,Apache Pig的应用不仅限于传统的Hadoop MapReduce环境,它正在与更多新兴技术和平台整合,共同推动大数据并行处理技术的发展与创新。对于相关从业人员而言,紧跟这些趋势和技术进步,无疑能更好地发挥Pig在实际业务场景中的潜力。
2023-02-28 08:00:46
497
晚秋落叶
转载文章
...想因此被贴上管理存在问题的标签。 不知你有没有觉得,当部门的离职率超过20%的时候,你会发现领导对你们的态度发生了微妙的变化,对你们开始变得友好了。 3. 你的工作岗位在公司很重要,或者说公司一时半会找不到合适的人来替代你的工作,要是你辞职了,工作没有人接手,领导当然是努力挽留你了,给你加薪也不为过。 善意待人 今日你面试别人,别人明日可能面试你,软件行业这个圈子,有时候说小还真的小。好聚好散。 对此不知你是怎么看待的,欢迎交流! -END- 往期精选推荐 闲聊区 育儿区 技术区 本篇文章为转载内容。原文链接:https://blog.csdn.net/X8i0Bev/article/details/102812977。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-02 14:22:56
134
转载
转载文章
...资源滥用和无序扩张的问题,有开发者提出了一种新型的动态资源配额管理方案,通过自定义准入控制器来实时监控并调整Namespace级别的资源限额,确保了集群资源的高效利用和公平分配。这种精细化管理方式不仅提升了集群的整体性能表现,还降低了由于资源争抢引发的故障风险。 此外,Kubernetes生态中一些第三方项目也围绕准入控制器展开了深入探索,如Open Policy Agent(OPA)集成到Webhook中,提供了强大的、声明式的策略引擎,让集群管理者能更加灵活地定义和执行复杂的准入规则,从而进一步提升集群安全性及合规性。 总之,准入控制器作为Kubernetes平台的核心组件,其发展动态与创新实践值得持续关注。未来,随着云原生技术的快速发展,准入控制器将承载更多的功能与责任,成为驱动Kubernetes集群迈向更高稳定性和安全性的基石。
2023-12-25 10:44:03
336
转载
MemCache
...来。这当中一个常见的问题就是所谓的“缓存雪崩”。 2. 缓存雪崩的概念解析 --- 缓存雪崩是指缓存系统在同一时刻大面积失效或者无法提供服务,导致所有请求直接涌向后端数据库,进而引发数据库压力激增甚至崩溃的情况。这种情况如同雪崩一般,瞬间释放出巨大的破坏力。 3. 缓存雪崩的风险源分析 --- - 缓存集中过期:例如,如果大量缓存在同一时间点过期,那么这些原本可以通过缓存快速响应的请求,会瞬时全部转向数据库查询。 - 缓存集群故障:当整个MemCache集群出现故障或重启时,所有缓存数据丢失,也会触发缓存雪崩。 - 网络异常:网络抖动或分区可能导致客户端无法访问到MemCache服务器,从而引发雪崩效应。 4. MemCache应对缓存雪崩的策略与实战代码示例 --- (1)设置合理的过期时间分散策略 为避免大量缓存在同一时间点过期,可以采用随机化过期时间的方法,例如: python import random def set_cache(key, value, expire_time): 基础过期时间 base_expire = 60 60 1小时 随机增加一个范围内的过期时间 delta_expire = random.randint(0, 60 5) 在0-5分钟内随机 total_expire = base_expire + delta_expire memcache_client.set(key, value, time=total_expire) (2)引入二级缓存或本地缓存备份 在MemCache之外,还可以设置如Redis等二级缓存,或者在应用本地进行临时缓存,以防止MemCache集群整体失效时完全依赖数据库。 (3)限流降级与熔断机制 当检测到缓存雪崩可能发生时(如缓存大量未命中),可以启动限流策略,限制对数据库的访问频次,并返回降级内容(如默认值、错误页面等)。下面是一个简单的限流实现示例: python from ratelimiter import RateLimiter limiter = RateLimiter(max_calls=100, period=60) 每分钟最多100次数据库查询 def get_data_from_db(key): if not limiter.hit(): raise Exception("Too many requests, fallback to default value.") 实际执行数据库查询操作... data = db.query_data(key) return data 同时,结合熔断器模式,如Hystrix,可以在短时间内大量失败后自动进入短路状态,不再尝试访问数据库。 (4)缓存预热与更新策略 在MemCache重启或大规模缓存失效后,可预先加载部分热点数据,即缓存预热。另外,我们可以采用异步更新或者懒加载的方式来耍个小聪明,处理缓存更新的问题。这样一来,就不会因为网络偶尔闹情绪、卡个壳什么的,引发可怕的雪崩效应了。 总结起来,面对MemCache中的缓存雪崩风险,我们需要理解其根源,运用多维度的防御策略,并结合实际业务场景灵活调整,才能确保我们的系统具备更高的可用性和韧性。在这个过程里,我们不断摸爬滚打,亲身实践、深刻反思,然后再一步步优化提升。这正是技术引人入胜之处,同样也是每一位开发者在成长道路上必经的重要挑战和修炼课题。
2023-12-27 23:36:59
88
蝶舞花间
Cassandra
...们还得面对不少细碎的问题,比如说怎么处理错误啊,怎么优化性能啊之类的。不过,相信有了这些基础,你已经可以开始动手尝试了! 希望这篇文章对你有所帮助,也欢迎你在实践过程中提出更多问题,我们一起探讨交流。
2025-02-27 15:51:14
68
凌波微步
转载文章
...内容。 项目中遇到的问题: 1.c开始学习中,创建一个二维数组都费劲,使用java的那种形式会出错。 多维数组:c中无论是几维数组只用一个中括号[]来表示。 //二维数组:int[,] array=new int[3,2];//初始化:int[,] arr = new int[2,3]{ {1,2,3},{4,5,6} }; 与java总类似的int[][]两个中括号的定义是交错数组,相当于一个一维数组的嵌入 //交错数组:后一个中括号中不能有值int[][] arr = new int[2][];//初始化int[][] arr = new int[2][]{new int{1,3,2},new int{4,5,6} }; 对于数组也可以使用循环赋值初始化。 2.项目中前端需要显示数据库中特定值考前的下拉菜单 使用sql语句: 将数据表中的的特定语句放在最前面:方式一:select from [dbo].[CTS_DUTIES] where [DUTIES_ID] ='特定值'union all select from [dbo].[CTS_DUTIES] where [DUTIES_ID] <>'特定值'方式二:select case when [DUTIES_ID] ='特定值' then 0 else 1 end flag, FROM [dbo].[CTS_DUTIES]ORDER BY flag asc 3.在一个下拉列表中选择的是一个树级菜单 使用的控件: 在ASPxDropDownEdit控件中嵌入一个TreeList控件。 <!--js程序--><script type="text/javascript">function ss() {var key = treeListUnit.GetFocusedNodeKey();Panel_call.PerformCallback(key);ASPxItem.HideDropDown();}</script><!--htmlbody中程序--><td><dx:ASPxCallbackPanel ID="ASPxCallbackPanel_call" ClientInstanceName="Panel_call" runat="server" Width="200px" OnCallback="ASPxCallbackPanel_call_Callback"><PanelCollection><dx:PanelContent><dx:ASPxDropDownEdit ID="dropdown_branch" Theme="Moderno" runat="server" Width="170px" EnableAnimation="False"ClientInstanceName="ASPxItem" OnPreRender="ASPxDropDownEdit2_PreRender"><DropDownWindowTemplate><div style="height: 300px; width: 270px; overflow: auto"><dx:ASPxTreeList ID="ASPxTreeList1" runat="server" AutoGenerateColumns="False" Theme="Aqua"ClientInstanceName="treeListUnit"KeyFieldName="MenuId" ParentFieldName="UpperMenuId"><SettingsText LoadingPanelText="正在加载..." /><Styles><AlternatingNode Enabled="True" CssClass="GridViewAlBgColor" /><Header HorizontalAlign="Center" /><%--d8d8d8--%><FocusedNode BackColor="d8d8d8" ForeColor="teal"></FocusedNode></Styles><Columns><dx:TreeListTextColumn Caption="组织架构名称" FieldName="MenuName" VisibleIndex="0"><CellStyle HorizontalAlign="Left"></CellStyle><EditFormSettings VisibleIndex="0" Visible="True" /></dx:TreeListTextColumn></Columns><SettingsLoadingPanel Text="正在加载..." /><Settings SuppressOuterGridLines="True" GridLines="Horizontal" /><SettingsBehavior AllowFocusedNode="True" AutoExpandAllNodes="true" ExpandCollapseAction="NodeDblClick" /><ClientSideEvents NodeDblClick="function(s, e) {ss();}" /><Border BorderStyle="Solid" /></dx:ASPxTreeList></div><div><dx:ASPxHiddenField ID="ASPxHiddenField_orgname" ClientInstanceName="hid_orgname" runat="server"></dx:ASPxHiddenField></div></DropDownWindowTemplate></dx:ASPxDropDownEdit></dx:PanelContent></PanelCollection></dx:ASPxCallbackPanel></td> HiddenField的作用是将数据库中的ID放置在隐藏域,在文本框中显示名称。 //treelist的获取与绑定DataTable dt = comm.SELECT_DATA(string.Format("select from POWER_CONSTRUC_TPERSON where SERIAL_ID='{0}'", edit.Split(',')[0])).Tables[0];ASPxTreeList treeList = (ASPxTreeList)dropdown_branch.FindControl("ASPxTreeList1");treeList.DataSource = org_manager.GetZT_ORGANIZATION();treeList.DataBind();//隐藏域获取以及绑定ASPxHiddenField hidden_org = (ASPxHiddenField)dropdown_branch.FindControl("ASPxHiddenField_orgname");//单位信息hidden_orgperson.UNIT_CODE = hidden_org.Get("hidden_org").ToString(); 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_43357889/article/details/103888475。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-20 18:50:13
307
转载
Mahout
...们手中的大宝藏,它为解决大规模数据集上的协同过滤难题提供了各种实用又强大的武器。比如,其中就有专门用来计算用户之间相似度的神奇小工具!本文将深入浅出地探讨如何在Mahout中实现这一关键功能,并辅以实例代码帮助大家理解和实践。 二、理解用户相似度 在推荐系统中,用户相似度是用来衡量两个用户在兴趣偏好上有多接近的一种量化方式。想象一下这个场景,假如你发现你的朋友A跟你的“口味”超级合拍,无论是电影还是音乐,你们都喜欢同一挂的。这时候,你心里可能会暗戳戳地觉得,哇塞,我和A简直就是“灵魂伙伴”,相似度爆棚!于是乎,你可能就会自然而然地猜想,那些我还没来得及尝试、但非常喜欢的东西,A说不定也超感兴趣呢!这就是用户相似度在推荐系统中的应用逻辑。 三、Mahout中的用户相似度计算 1. 数据准备 在Mahout中,用户-物品交互数据通常表示为一个稀疏向量,每一维度代表一个物品,值则表示用户对此物品的喜爱程度(如评分)。首先,我们需要将原始数据转换为此格式: java // 假设有一个用户ID为123的用户对物品的评分数据 DataModel model = new FileDataModel(new File("ratings.dat")); // 这里的ratings.dat文件应包含每行格式如:'userId itemId rating' 2. 用户相似度计算 Mahout提供多种用户相似度计算方法,例如皮尔逊相关系数(PearsonCorrelationSimilarity)和余弦相似度(CosineSimilarity)。以下是一个使用皮尔逊相关系数计算用户相似度的例子: java // 创建Pearson相似度计算器 UserSimilarity similarity = new PearsonCorrelationSimilarity(model); // 使用GenericUserBasedRecommender类进行相似度计算 UserNeighborhood neighborhood = new NearestNUserNeighborhood(10, similarity, model); Recommender recommender = new GenericUserBasedRecommender(model, neighborhood, similarity); // 计算用户123与其他用户的相似度 List similarUsers = recommender.mostSimilarItems(123, 10); 这段代码首先创建了一个Pearson相关系数相似度计算器,然后定义了邻域模型(这里选择最近的10个用户),最后通过mostSimilarItems方法找到与用户123最相似的其他用户。 3. 深入思考 值得注意的是,选择何种相似度计算方法很大程度上取决于具体的应用场景和数据特性。比如,假如评分数据分布得比较均匀,那皮尔逊相关系数就是个挺不错的选择。但如果评分数据少得可怜,这时候余弦相似度可能就更显神通了。因为它压根不在乎具体的评分数值大小,只关心相对的偏好方向,所以在这种极端稀疏的情况下,效果可能会更好。 四、总结与探讨 Mahout为我们搭建推荐系统的用户相似度计算提供了有力支持。不过,在实际操作的时候,咱们得灵活应变,根据实际情况对参数进行微调,优化那个算法。有时候,为了更上一层楼的推荐效果,咱可能还需要把用户的社交关系、时间因素等其他信息一并考虑进去,让推荐结果更加精准、接地气儿。在我们一路摸索的过程中,可别光依赖冷冰冰的算法分析,更得把咱们用户的感受和体验揣摩透彻,这样才能够实实在在打造出符合每个人个性化需求的推荐系统,让大家用起来觉得贴心又满意。 总的来说,利用Mahout实现用户相似度计算并不复杂,关键在于理解不同相似度计算方法背后的数学原理以及它们在实际业务中的适用性。实践中,我们要善于运用这些工具,同时保持开放思维,不断迭代和优化我们的推荐策略。
2023-02-13 08:05:07
87
百转千回
转载文章
...dio 2021.3版本的发布,Kotlin迎来了1.6.0版本更新,其中对数组API进行了优化和增强,例如引入了新的构造函数以及改进了与Java平台互操作时的性能表现。 在实际项目中,Google推荐开发者优先使用原生类型数组以提升性能,尤其是在处理大量数据或高性能要求的应用场景。例如,在游戏开发中,通过Kotlin的IntArray优化图形渲染的数据结构可以有效减少内存分配和GC压力,从而提升整体流畅度。 此外,对于多维数组的处理,Kotlin提供了一种更为灵活且易于理解的解构声明语法,允许开发者更直观地访问和操作多级嵌套数组中的元素。同时,结合Kotlin的高阶函数如map、filter等,可以在不引入额外复杂度的情况下对数组进行复杂的变换操作。 深入研究Kotlin官方文档和社区论坛,你会发现更多有关数组的最佳实践案例,包括如何结合协程进行异步数组操作,以及如何利用Kotlin的扩展函数简化数组操作代码。而在机器学习或大数据处理领域,利用Kotlin的Numpy-like库koma可以实现类似Python Numpy对多维数组的强大支持,这对于科学计算和数据分析尤为重要。 总之,掌握Kotlin数组的各种特性并适时关注其最新进展,能够帮助开发者在日常编码工作中更加游刃有余,提高应用程序的运行效率和代码可读性。
2023-03-31 12:34:25
66
转载
转载文章
...景障碍物的碰撞检测等问题展开了深入交流,这些实战经验对于进一步完善本文所描述的射击游戏Demo中子弹碰撞与销毁逻辑提供了宝贵参考。 综上所述,以上延伸阅读资源均为 Unity 游戏开发领域的最新研究与实践经验,不仅有助于深化理解本文提及的游戏设计与实现要点,还能帮助读者紧跟行业前沿趋势,为实际项目开发提供有力支持。
2024-03-11 12:57:03
768
转载
ClickHouse
...House 21.3版本中,新增了一系列性能调优选项,并增强了对分布式查询的并行处理能力,使得大规模集群环境下的查询响应速度得到进一步提升。此外,官方团队更加重视监控运维体系建设,不仅强化了与Prometheus等主流监控工具的集成,还推出了更全面详尽的系统指标和告警机制,为用户提供了更为便捷高效的运维管理方案。 值得关注的是,随着云原生技术的发展,ClickHouse也开始探索与Kubernetes等容器编排平台的深度融合,以便在云环境下实现更高水平的资源弹性伸缩与自动化运维。这无疑将为各类企业应对未来复杂多变的数据挑战提供更强大的支持。 综上所述,从紧跟ClickHouse最新发展动态,到借鉴行业内外的成功实践经验,都将是我们在实际操作中更好地配置和管理ClickHouse数据中心的重要参考依据。持续关注和学习这些前沿知识,有助于不断提升我们的大数据处理与分析能力,从而在瞬息万变的数字化浪潮中抢占先机,赋能企业高效稳健地发展。
2023-07-29 22:23:54
509
翡翠梦境
转载文章
...我们深入探讨和研究的问题。通过回顾像《第六计》这样的经典影视作品,不仅可以领略到艺术表现手法的魅力,更可以激发我们在现实中面对危机时思考更为周全、深邃的战略布局与决策智慧。
2023-05-10 09:20:27
618
转载
Kibana
...Kibana 8.0版本,带来了全新的用户体验、增强的数据可视化功能以及更强大的机器学习集成。 例如,新版本引入了Canvas工作区,让用户能够以更加直观和灵活的方式混合文本、图像和动态数据,构建出专业级的报告和故事板。此外,时间序列分析也得到了显著提升,用户现在可以更便捷地对大规模时序数据进行深度挖掘,揭示隐藏的趋势和异常情况。 对于希望进一步探索Kibana应用实践的企业而言,一些知名企业在实际业务中运用Kibana的成功案例值得研究。如某大型电商企业通过搭建基于Kibana的实时监控系统,实现了对其海量交易数据的实时洞察与故障预警,有效提升了运维效率与服务质量。 同时,也有越来越多的开发者和数据科学家投入到Kibana插件生态建设中,开发出一系列创新工具和扩展功能,以满足不同行业和场景下的定制化需求。这些前沿发展不仅展示了Kibana作为开源数据可视化平台的强大生命力,也为广大用户提供了更为广阔的应用前景和想象空间。因此,在掌握了基础操作之后,持续关注并深入学习Kibana的最新特性和最佳实践,无疑将有助于我们在数据驱动决策的时代浪潮中保持领先优势。
2023-08-20 14:56:06
336
岁月静好
Tornado
...ado 6.0及以上版本里,咱们能够超级顺滑地把AsyncIO的异步编程语法融入进去,这样一来,不仅让代码读起来更加通俗易懂,而且极大地简化了程序结构,变得更加清爽利落。 3. 利用AsyncIO优化Tornado网络I/O 虽然Tornado内置了异步HTTP客户端,但在某些复杂场景下,利用AsyncIO的aiohttp库或其他第三方异步库可能会带来额外的性能提升。 示例2:使用aiohttp替代Tornado HTTPClient实现异步HTTP请求: python import aiohttp import tornado.web import asyncio class AsyncHttpHandler(tornado.web.RequestHandler): async def get(self): async with aiohttp.ClientSession() as session: async with session.get('https://api.example.com/data') as response: data = await response.json() self.write(data) def make_app(): return tornado.web.Application([ (r"/fetch_data", AsyncHttpHandler), ]) if __name__ == "__main__": app = make_app() app.listen(8888) loop = asyncio.get_event_loop() tornado.platform.asyncio.AsyncIOMainLoop().install() tornado.ioloop.IOLoop.current().start() 这里我们在Tornado中引入了aiohttp库来发起异步HTTP请求。注意,为了整合AsyncIO到Tornado事件循环,我们需要安装并启动tornado.platform.asyncio.AsyncIOMainLoop。 4. 思考与讨论 结合AsyncIO优化Tornado性能的过程中,我们不仅获得了更丰富、更灵活的异步编程工具箱,而且能更好地利用操作系统级别的异步I/O机制,从而提高资源利用率和系统吞吐量。当然,具体采用何种方式优化取决于实际应用场景和需求。 总的来说,Tornado与AsyncIO的联姻,无疑为Python高性能Web服务的开发注入了新的活力。在未来的发展旅程上,我们热切期盼能看到更多新鲜、酷炫的创新和突破,让Python异步编程变得更加给力,用起来更顺手,实力也更强大。就像是给它插上翅膀,飞得更高更快,让编程小伙伴们都能轻松愉快地驾驭这门技术,享受前所未有的高效与便捷。
2023-10-30 22:07:28
139
烟雨江南
转载文章
...让管理者清楚地知道,问题可能出在什么地方,从而确定出可供选择的行动方案。 流程图有时也称作输入-输出图。该图直观地描述一个工作过程的具体步骤。流程图对准确了解事情是如何进行的,以及决定应如何改进过程极有帮助。这一方法可以用于整个企业,以便直观地跟踪和图解企业的运作方式。 流程图使用一些标准符号代表某些类型的动作,如决策用菱形框表示,具体活动用方框表示。但比这些符号规定更重要的,是必须清楚地描述工作过程的顺序。流程图也可用于设计改进工作过程,具体做法是先画出事情应该怎么做,再将其与实际情况进行比较。 可以通过图标库 选择流程图绘制 UX设计 Freedgo Design提供一系列UX设计的制作,可以实现IOS,安卓,以及一系列页面设计的效果制图,下面简单说明:IOS android material Bootstrap 手机应用 网站应用 平面图 Freedgo Design可以绘制平面图包括建筑平面表,房屋平面表,房屋效果图设计,在图例中提供了家庭、办公、厨房、卫生间等等图例,具体可以登录在线制图网站,查看 图例 网络架构图 Freedgo Design 可以绘制各种网络拓扑图,和机架图。 云架构 Freedgo Design 提供了各类云架构的系统架构图、系统部署图,包括AWS架构,阿里云架构、腾讯云架构、IBM、ORACLE、Azure和Google云等等。AWS 阿里云架构 腾讯云架构 IBM架构 ORACLE架构 Azure架构 GOOGLE架构 工程 Freedgo Design 提供在线基本电气图设计、在线电气逻辑图设计、在线电路原理图设计、在线接线图设计 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_39605997/article/details/109976987。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-03 21:03:06
105
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
bg %jobnumber
- 将挂起的作业置于后台继续运行。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"