前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[Nginx服务器反向代理API请求设置 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Element-UI
...可能有一些新的特性和API。 四、解决方案 知道了问题的原因之后,接下来就是寻找解决方案了。下面是一些可能的解决方案: 1. 检查数据源 首先,我们需要仔细检查一下我们的数据源是否正确。如果有任何错误,我们都需要及时修复。 2. 优化展开或收起逻辑 其次,我们也可以尝试优化我们的展开或收起逻辑。比如,我们可以在程序里加一个计数器,就像查户口似的,来确保每一个“爸爸节点”都乖乖地、准确无误地展开了。 3. 更新Element-UI版本 如果以上方法都无法解决问题,那么我们还可以尝试更新Element-UI的版本。新版本的Element-UI可能已经修复了一些旧版本存在的问题。 五、代码示例 为了更好地理解和解决这个问题,下面我们通过一个简单的例子来进行演示。 html :data="treeData" node-key="id" show-checkbox default-expand-all expand-on-click-node highlight-current @node-click="handleNodeClick" > 在这个例子中,我们定义了一个树形控件,并传入了一组数据作为数据源。然后呢,我们给node-click事件装上了“监听器”,就像派了个小侦探守在那儿。当用户心血来潮点到某个节点时,这位小侦探就立马行动,把那个被点中的节点信息给咱详细报告出来。 如果在运行这段代码时,你发现某些节点无法正常展开或收起,那么你就需要根据上述的方法来进行排查和解决。 六、结语 总的来说,使用Element-UI的树形控件时节点渲染错误或无法展开与收起,这可能是因为我们的代码实现存在问题,或者是Element-UI本身的一些限制导致的。但是,只要我们能像侦探一样,准确找到问题藏身之处,然后对症下药,采取合适的解决策略,那么这个问题肯定能被我们手到擒来,顺利解决掉。所以,让我们一起努力,让前端开发变得更简单、更高效吧!
2023-08-31 16:39:17
505
追梦人-t
Tesseract
...取关键信息,提高医疗服务效率。 综上所述,OCR技术的发展日新月异,其在改善图像识别性能、解决现实世界问题方面的价值日益凸显,值得广大开发者和技术爱好者持续关注与深入探讨。
2023-02-06 17:45:52
66
诗和远方-t
HTML
...L进行基础布局和功能设置是完全合法且普遍的做法。因为HTML是一种公开的标准,并不涉及版权保护,任何人都有权使用它来编写网页。 二、设计元素与版权 (3)然而,当我们讨论UI风格时,情况就变得复杂起来。虽然HTML这个语言本身不会惹上侵权这档子事儿,但你要是拿它的颜色搭配、版面设计、图标样式这些视觉效果去“创作”,就可能一脚踩进版权或设计专利的雷区了。 例如,如果你的网站采用了与另一家知名网站几乎相同的配色方案及图标设计: html 这样的设计可能触犯到版权法,因为它涉及到原创艺术作品的复制或模仿。 三、功能实现与专利权 (4)接下来,我们谈谈网站功能。同样,就像咱们用HTML、CSS、JavaScript这类技术来实现各种功能一样,如果这些功能本身就是大家常用的通用技术,或者说是业界都认可的标准部分,那压根儿就不用担心会有侵权这档子事儿。但是,如果某个功能特别新颖独特,人家还专门申请了专利保护,你要是没经过人家许可就直接照搬这个功能,那可是有侵权风险的。 比如,假设某个网站拥有独家的交互式滑块组件: javascript // 假设这是一个独特的交互式滑块组件的核心逻辑 let slider = document.getElementById('mySlider'); slider.addEventListener('input', function() { // 具有独特算法的处理过程 }); 即使你通过HTML和JavaScript重新实现了这一功能,如果该功能受到专利保护,依然存在侵权的可能性。 四、结论与建议 (5)综上所述,单纯使用HTML构建网站并不会带来侵权风险,但借鉴或抄袭其他网站的原创设计元素和受专利保护的独特功能则可能构成侵权。所以在创作的时候,咱们得重视并且摸清楚知识产权的那些规则,尽量做到全原创,要是确实碰到需要借鉴的部分,千万记住要先拿到授权或者许可,否则可就麻烦了。 同时,设计师和开发者应积极培养自己的创新能力,即便是在流行趋势的影响下,也要努力为用户提供具有独特体验的网站设计和功能实现,从而避免不必要的法律纠纷,也能让自己的作品更具竞争力和价值。 最后,面对类似的情况,及时咨询专业的法律顾问是最为稳妥的选择,既能保证自身权益不受侵害,又能维护互联网环境的公平与健康。
2023-08-26 15:59:53
503
春暖花开_
c++
...或数据以加快后续相同请求的响应速度。文中举例说明了如何在C++程序中使用静态局部变量作为缓存机制,通过在函数内部声明一个静态局部变量来保存昂贵计算的结果,从而避免每次函数调用时重复执行相同的计算过程,提高程序性能。
2023-08-05 23:30:09
446
秋水共长天一色
Spark
...溢出问题。 4. 云服务商提供的Spark服务优化方案:各大云服务商(如阿里云、AWS、Azure等)针对托管Spark服务提供了许多优化建议和解决方案,其中不乏针对内存管理的独特见解和实践经验。定期关注这些服务商的技术文档和公告,能够及时获取到前沿的Spark内存优化技术和策略。 通过以上延伸阅读,读者不仅可以跟踪Spark内存管理领域的最新进展,还能结合实践经验和理论知识,为解决Spark Executor内存溢出问题提供更为全面和深入的理解与解决方案。
2023-07-26 16:22:30
115
灵动之光
Groovy
...rocessing API")标准的支持。例如,在Java 17中,开发者可以利用注解处理器实现更高级别的类型检查、代码生成以及元数据驱动的框架集成。 近期,Google的Dagger 2项目就展示了注解处理器在依赖注入领域的强大威力,它能够在编译时自动处理并生成依赖关系代码,极大地提高了开发效率和代码可读性。此外,Square公司的Wire库通过注解处理器实现了高效的协议缓冲区编解码,进一步验证了注解处理器在提高运行时性能方面的潜力。 另一方面,学术界也在深入研究如何优化和扩展注解处理器的能力。在一项名为“Annotation Processing for Incremental and Modular Java Compilers”的研究中,研究人员探讨了如何让注解处理器更好地适应模块化和增量编译环境,以降低大型项目的构建时间。 综上所述,无论是在业界的最佳实践中,还是在学术研究的前沿探索中,注解处理器都在不断刷新我们对其功能和价值的认知。对于热衷于提升开发效率、追求代码优雅和简洁的开发者而言,深入理解和掌握注解处理器的应用无疑是一条值得投入时间和精力的道路。而Groovy作为JVM上的灵活语言,其注解处理器机制为我们提供了一个良好的起点,帮助我们在实际项目中发挥出注解处理器的巨大能量。
2024-03-18 11:15:36
491
飞鸟与鱼
Apache Atlas
...可以通过Atlas API完成: java import org.apache.atlas.AtlasClient; import org.apache.atlas.model.instance.AtlasEntity; public class DataModel { public static void main(String[] args) { AtlasClient client = new AtlasClient("http://localhost:8080", "admin", "admin"); // 创建数据实体 AtlasEntity entity = new AtlasEntity(); entity.setLabel("Person"); entity.setName("John Doe"); entity.setProperties(new HashMap() { { put("age", "30"); put("job", "Engineer"); } }); // 提交实体到Atlas try { client.submitEntity(entity); System.out.println("Data model created successfully."); } catch (Exception e) { System.err.println("Failed to create data model: " + e.getMessage()); } } } 2. 追踪数据血缘 追踪数据的血缘关系对于了解数据流动路径至关重要。以下是如何使用Atlas API查询数据血缘的例子: java import org.apache.atlas.AtlasClient; import org.apache.atlas.model.instance.AtlasEntity; public class DataLineage { public static void main(String[] args) { AtlasClient client = new AtlasClient("http://localhost:8080", "admin", "admin"); // 查询数据血缘 List lineage = client.getLineage("Person"); if (!lineage.isEmpty()) { System.out.println("Data lineage found:"); for (AtlasEntity entity : lineage) { System.out.println(entity.getName() + " - " + entity.getTypeName()); } } else { System.out.println("No data lineage found."); } } } 四、实际应用案例 在一家大型金融公司中,Apache Atlas被用于构建一个全面的数据目录,帮助管理层理解其庞大的数据资产。嘿,兄弟!你听过这样的事儿没?公司现在用上了个超级厉害的工具,能自动找到并记录各种数据。这玩意儿一出马,更新数据目录就像给手机换壁纸一样快!而且啊,它还能保证所有的数据都按照咱们最新的业务需求来分类,就像给书架上的书重新排了队,每本书都有了它自己的位置。这样一来,我们找东西就方便多了,工作效率嗖嗖地往上涨!嘿,兄弟!你知道吗?我们团队现在用了一种超级厉害的工具,叫做“数据血缘分析”。这玩意儿就像是侦探破案一样,能帮我们快速找到问题数据的源头,不用再像以前那样在数据海洋里慢慢摸索了。这样一来,我们排查故障的时间大大缩短了,数据治理的工作效率就像坐上了火箭,嗖嗖地往上升。简直不要太爽! 五、结论 Apache Atlas为企业提供了一个强大、灵活的数据目录解决方案,不仅能够高效地管理元数据,还能通过数据血缘分析和安全合规支持,帮助企业实现数据驱动的决策。通过本文提供的代码示例和实际应用案例,我们可以看到Apache Atlas在现代数据管理实践中的价值。随着数据战略的不断演进,Apache Atlas将继续扮演关键角色,推动数据治理体系向更加智能化、自动化的方向发展。
2024-08-27 15:39:01
70
柳暗花明又一村
MemCache
...越多地应用于现代缓存服务中,它假设并发访问一般情况下不会发生冲突,仅在更新数据时检查是否发生并发修改,从而降低锁带来的性能开销。 此外,云原生时代的容器化与微服务架构也对缓存系统的并发控制提出了新的挑战。Kubernetes等容器编排平台上的应用实例可能随时扩缩容,这要求缓存服务不仅要处理好内部的多线程同步问题,还要适应外部动态环境的变化。因此,诸如具有更强一致性保证的CRDT(Conflict-free Replicated Data Types)数据结构的研究与应用也在不断推进,旨在提供一种更为灵活且能应对网络分区的分布式锁方案。 综上所述,理解并妥善处理Memcache乃至更多现代缓存系统中的锁机制冲突,是构建高性能、高可用分布式系统的基石,而紧跟技术发展趋势,关注相关领域的最新研究成果与实践案例,将有助于我们在实际工作中更好地解决此类问题。
2024-01-06 22:54:25
79
岁月如歌-t
转载文章
...,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 详解Centos7升级python 2.7至Python 3.7 龙行 个人随笔 2019-6-6 3451 0评论 centos7版本默认安装的是python2.7,对于强迫症的我来说,忍受不了啊. 注意下,应为很多的依赖包基本命令什么的都是基于python2的,比如yum。所以旧版本不要删了,新旧可以共存 1.安装编译环境包(防止出现安装错误)yum install gcc-c++ gcc make cmake zlib-devel bzip2-devel openssl-devel ncurse-devel libffi-devel -y 2.在线下载Python3.7源码包进入tmp目录 cd /tmp 下载python3.7.3 wget https://www.python.org/ftp/python/3.7.3/Python-3.7.3.tar.xz 3.解压并配置解压 tar Jxvf Python-3.7.3.tar.xz 进入python3.7.3目录 cd Python-3.7.3 创建目录 mkdir -p /usr/local/python3 配置(指定安装目录) ./configure --prefix=/usr/local/python3 --enable-optimizations 4. 编译及安装make && make install 5.更换系统默认Python版本 1).备份原系统旧版本pythonmv /usr/bin/python /usr/bin/python.bak mkdir /usr/bin/pip mv /usr/bin/pip /usr/bin/pip.bak 2).配置环境变量:创建新版本Python和pip的软链接ln -s /usr/local/python3/bin/python3.7 /usr/bin/python ln -s /usr/local/python3/bin/pip3 /usr/bin/pip 3).查看Python版本python -V 6.修改yum功能 因为yum的功能依赖Pyhon2,现在更改默认Python版本后会导致yum无法正常工作,所以进行以下3处修复 第1处:vim /usr/bin/yum 把最顶部的 改成:! /usr/bin/python2.7 第2处: vim /usr/libexec/urlgrabber-ext-down 把最顶部的 改成:! /usr/bin/python2.7 /usr/sbin/firewalld /usr/bin/firewall-cmd 这两个也改下 评论一下 赞助站长 赞助站长X 版权申明:此文如未标注转载均为本站原创,自由转载请表明出处《龙行博客》。 本文网址:https://www.liaotaoo.cn/243.html 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_39974223/article/details/110081791。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-23 10:44:41
284
转载
Go-Spring
...,但作为一个强大的微服务框架,Go-Spring能够帮助我们更好地组织项目结构,从而避免这类基础命名错误的发生。下面,我们将借助Go-Spring框架,展示一个正确定义主函数的示例: go // 首先,在main包下创建一个符合规范的main函数 package main import "github.com/go-spring/spring-core" func main() { // 这里是Go-Spring应用启动的地方 spring.Run(func(ctx spring.Context) { // 在这里注入你的业务逻辑 ctx.Bean(new(MyService)) }) } type MyService struct {} func (s MyService) Init() { println("Hello, World! This is from Go-Spring.") } 在这个例子中,我们遵循Go语言规范定义了main函数,并利用Go-Spring来启动我们的应用。这样一来,可不光是保证了程序稳稳妥妥地跑起来,更关键的是,咱们还能亲眼见证Go-Spring框架是如何手把手教我们玩转服务注册、依赖注入这些高大上的功能哒! 四、解疑答惑 从错误到理解 面对"undefined: mainmain"这样的错误,我们需要理解的是Go语言对程序入口的要求,而非Go-Spring的功能。在真正动手开发的时候,用Go-Spring这个框架,那可是能帮我们把项目搭得既清爽又模块化,这样一来,就能有效避免那种因为命名乱七八糟引发的低级错误啦。用这种方式,我们就能把更多的注意力留给处理业务核心问题,而不是在基础的编程语法错误里团团转,浪费大好时光了! 五、总结 尽管"undefined: mainmain"这个错误看起来很棘手,但实际上它只是我们对Go语言规范理解不够深入的一个表现。在用Go-Spring干活儿的时候,我们格外看重代码书写规矩和项目架构的巧妙布局,这样一来,就能更好地把这类问题出现的可能性降到最低。所以,无论是学Go语言还是捣鼓Go-Spring框架,咱都得时刻瞪大眼睛瞅着每个小细节,拿出那股子严谨劲儿,这样咱们才能在编程这片江湖里玩得风生水起,尽情享受编程带来的乐趣哇!在未来的日子里,让我们一起携手Go-Spring,共同攻克更多编程挑战吧!
2024-03-23 11:30:21
417
秋水共长天一色
SeaTunnel
...供更高性能的数据集成服务。同时,社区开发者和企业用户也可以从这些实际项目和技术迭代中汲取经验,共同推动大数据处理工具的发展与创新。
2023-05-13 15:00:12
79
灵动之光
Redis
...,随着云原生技术和微服务架构的普及,Redis凭借其高性能、低延迟和丰富的数据结构特性,在缓存、会话存储、消息队列等领域展现出了强大的优势。 例如,在2023年初,某知名电商公司在进行系统性能瓶颈排查时发现,通过合理运用Redis的数据类型并结合其事务功能,成功解决了高并发场景下商品库存同步一致性的问题。他们将商品库存信息存储为Redis Hash,并利用WATCH/MULTI/EXEC命令构建了一种乐观锁机制,有效防止了并发修改导致的数据不一致情况。 此外,Redis 7.0版本引入了多线程IO处理能力,以及改进的Stream数据类型,使得Redis在实时数据分析和流处理场景下的表现更为出色。开发团队可以通过深入了解这些新特性和最佳实践,避免因操作不当引发的“命令不支持当前数据类型或状态”错误,同时提升系统的整体性能和稳定性。 另外,对于Redis实例的状态管理,诸如集群模式下的主从切换、读写分离策略以及过期键的删除策略等高级主题,也是值得广大开发者持续关注和研究的方向。了解并掌握这些知识,有助于我们设计出更加高效且健壮的应用架构,充分发挥Redis这一强大工具的潜力。
2024-03-12 11:22:48
175
追梦人
Hive
...,为企业的产品优化和服务改进提供精准的数据支撑。 总之,随着大数据技术的不断演进和业务场景的日趋复杂,深入理解和熟练运用Hive窗口函数已经成为现代数据分析师不可或缺的重要技能。持续关注相关领域的最新发展动态和技术研究,将有助于我们更好地挖掘窗口函数的潜力,解决实际工作中的各种挑战。
2023-10-19 10:52:50
472
醉卧沙场
转载文章
...,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 由于运行在 Node.js 之上的 Webpack 是单线程模型的,所以Webpack 需要处理的事情需要一件一件的做,不能多件事一起做。 我们需要Webpack 能同一时间处理多个任务,发挥多核 CPU 电脑的威力,HappyPack 就能让 Webpack 做到这点,它把任务分解给多个子进程去并发的执行,子进程处理完后再把结果发送给主进程。 由于 JavaScript 是单线程模型,要想发挥多核 CPU 的能力,只能通过多进程去实现,而无法通过多线程实现。 提示:由于HappyPack 对file-loader、url-loader 支持的不友好,所以不建议对该loader使用。 安装 HappyPack npm i -D happypack 运行机制 HappyPack_Workflow.png 使用 HappyPack 修改你的webpack.config.js 文件 const HappyPack = require('happypack');const os = require('os');const happyThreadPool = HappyPack.ThreadPool({ size: os.cpus().length });module.exports = {module: {rules: [{test: /\.js$/,//把对.js 的文件处理交给id为happyBabel 的HappyPack 的实例执行loader: 'happypack/loader?id=happyBabel',//排除node_modules 目录下的文件exclude: /node_modules/},]},plugins: [new HappyPack({//用id来标识 happypack处理那里类文件id: 'happyBabel',//如何处理 用法和loader 的配置一样loaders: [{loader: 'babel-loader?cacheDirectory=true',}],//共享进程池threadPool: happyThreadPool,//允许 HappyPack 输出日志verbose: true,})]} 在 Loader 配置中,所有文件的处理都交给了 happypack/loader 去处理,使用紧跟其后的 querystring ?id=babel 去告诉 happypack/loader 去选择哪个 HappyPack 实例去处理文件。 在 Plugin 配置中,新增了两个 HappyPack 实例分别用于告诉 happypack/loader 去如何处理 .js 和 .css 文件。选项中的 id 属性的值和上面 querystring 中的 ?id=babel 相对应,选项中的 loaders 属性和 Loader 配置中一样。 HappyPack 参数 id: String 用唯一的标识符 id 来代表当前的 HappyPack 是用来处理一类特定的文件. loaders: Array 用法和 webpack Loader 配置中一样. threads: Number 代表开启几个子进程去处理这一类型的文件,默认是3个,类型必须是整数。 verbose: Boolean 是否允许 HappyPack 输出日志,默认是 true。 threadPool: HappyThreadPool 代表共享进程池,即多个 HappyPack 实例都使用同一个共享进程池中的子进程去处理任务,以防止资源占用过多。 verboseWhenProfiling: Boolean 开启webpack --profile ,仍然希望HappyPack产生输出。 debug: Boolean 启用debug 用于故障排查。默认 false。 https://www.jianshu.com/p/b9bf995f3712 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_42265852/article/details/96104507。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-08-07 15:02:47
950
转载
Spark
...转换为字符串类型,并设置 watermark 为 1 秒。这就意味着,如果我们收到的数据上面的时间戳已经超过1秒了,那这个数据就会被我们当作是迟到了的小淘气,然后选择性地忽略掉它。 三、 Event Time 的处理方式及应用场景 Event Time 是 Spark Structured Streaming 中的另一种时间概念,它是根据事件的实际发生时间来确定的。这就意味着,就算大家在同一秒咔嚓一下按下发送键,由于网络这个大迷宫里可能会有延迟、堵车等各种状况,不同信息到达目的地的顺序可能会乱套,处理起来自然也就可能前后颠倒了。 在处理延迟数据时, Event Time 可能是一个更好的选择,因为它可以根据事件的实际发生时间来确定数据的处理顺序,从而避免丢失数据。比如,你正在处理电子邮件的时候,Event Time这个功能就相当于你的超级小助手,它能确保你按照邮件发送的时间顺序,逐一、有序地处理这些邮件,就像排队一样井然有序。 以下是使用 Event Time 处理延迟数据的一个简单示例: python from pyspark.sql import SparkSession spark = SparkSession.builder.appName("Structured Streaming").getOrCreate() data_stream = spark \ .readStream \ .format("kafka") \ .option("kafka.bootstrap.servers", "localhost:9092") \ .option("subscribe", "my-topic") \ .load() \ .selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)") query = data_stream \ .writeStream \ .format("console") \ .outputMode("append") \ .start() query.awaitTermination() 在这个示例中,我们从 kafka 主题读取数据,并设置 watermark 为 1 分钟。这就意味着,如果我们超过一分钟没收到任何新消息,那我们就会觉得这个topic已经没啥动静了,到那时咱就可以结束查询啦。 四、 结论 在 Spark Structured Streaming 中, Processing Time 和 Event Time 是两种不同的时间概念,它们分别适用于处理实时数据和处理延迟数据。理解这两种时间概念以及如何在实际场景中使用它们是非常重要的。希望这篇文章能够帮助你更好地理解和使用 Spark Structured Streaming。
2023-11-30 14:06:21
106
夜色朦胧-t
Material UI
...在未来版本中能更好地服务于开发者。 此外,React社区也在不断繁荣发展,新的工具和技术层出不穷。例如,Next.js框架结合Material UI为构建Server-side Rendering(SSR)应用提供了丰富的解决方案,而Remix则在提升Web应用性能和开发体验方面取得了显著进展。深入研究这些技术如何与Material UI协同工作,无疑将帮助你解锁更多高效构建现代Web界面的可能性。 同时,关注Material-UI官方文档和GitHub仓库的更新动态是持续提升开发技能的关键。最近,Material-UI团队正致力于优化MUI X(一套针对更复杂场景如数据表格、日期选择器等功能的增强组件库)以提供更完善的解决方案,并已推出Material-UI v5,对核心库进行了一系列改进和优化,包括但不限于更好的Tree-shaking支持、升级至 emotion 作为默认样式引擎等,进一步提升了开发效率和应用性能。 总之,在掌握了Material UI的基本使用之后,紧跟行业趋势、了解相关技术和最佳实践,将会助力你创造出更为出色、符合当下用户期待的Web应用程序。
2023-12-19 10:31:30
242
风轻云淡
转载文章
...,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 首先我们需要问一个问题是:为什么两个类不能互相包含头文件? 所谓互相包含头文件,我举一个例子:我实现了两个类:图层类CLayer和符号类CSymbol,它们的大致关系是图层里包含有符号,符号里定义一个相关图层指针,具体请参考如下代码(注:以下代码仅供说明问题,不作为类设计参考,所以不适宜以此讨论类的设计,编译环境为Microsoft Visual C++ 2005,,Windows XP + sp2,以下同): //Layer.h // 图层类 pragma once include "Symbol.h" class CLayer { public: CLayer(void); virtual ~CLayer(void); void CreateNewSymbol(); private: CSymbol m_pSymbol; // 该图层相关的符号指针 }; // Symbol.h // 符号类 pragma once include "Layer.h" class CSymbol { public: CSymbol(void); virtual ~CSymbol(void); public: CLayer m_pRelLayer; // 符号对应的相关图层 }; // TestUnix.cpp : 定义控制台应用程序的入口点。 // include "stdafx.h" include "Layer.h" include "Symbol.h" void main( void ) { CLayer MyLayer; } 现在开始编译,编译出错,现在让我们分析一下编译出错信息(我发现分析编译信息对加深程序的编译过程的理解非常有好处)。 首先我们明确:编译器在编译文件时,遇到#include "x.h"时,就打开x.h文件进行编译,这相当于把x.h文件的内容放在include "x.h"处。 编译信息告诉我们:它是先编译TestUnix.cpp文件的,那么接着它应该编译stdafx.h,接着是Layer.h,如果编译Layer.h,那么会编译Symbol.h,但是编译Symbol.h又应该编译Layer.h啊,这岂不是陷入一个死循环? 呵呵,如果没有预编译指令,是会这样的,实际上在编译Symbol.h,再去编译Layer.h,Layer.h头上的那个pragma once就会告诉编译器:老兄,这个你已经编译过了,就不要再浪费力气编译了!那么编译器得到这个信息就会不再编译Layer.h而转回到编译Symbol.h的余下内容。 当编译到CLayer m_pRelLayer;这一行编译器就会迷惑了:CLayer是什么东西呢?我怎么没见过呢?那么它就得给出一条出错信息,告诉你CLayer没经定义就用了呢? 在TestUnix.cpp中include "Layer.h"这句算是宣告编译结束(呵呵,简单一句弯弯绕绕不断),下面轮到include "Symbol.h",由于预编译指令的阻挡,Symbol.h实际上没有得到编译,接着再去编译TestUnix.cpp的余下内容。 当然上面仅仅是我的一些推论,还没得到完全证实,不过我们可以稍微测试一下,假如在TestUnix.cpp将include "Layer.h"和include "Symbol.h"互换一下位置,那么会不会先提示CSymbol类没有定义呢?实际上是这样的。当然这个也不能完全证实我的推论。 照这样看,两个类的互相包含头文件肯定出错,那么如何解决这种情况呢?一种办法是在A类中包含B类的头文件,在B类中前置盛明A类,不过注意的是B类使用A类变量必须通过指针来进行,具体见拙文:类互相包含的办法。 为何不能前置声明只能通过指针来使用?通过分析这个实际上我们可以得出前置声明和包含头文件的区别。 我们把CLayer类的代码改动一下,再看下面的代码: // 图层类 //Layer.h pragma once //include "Symbol.h" class CSymbol; class CLayer { public: CLayer(void); virtual ~CLayer(void); // void SetSymbol(CSymbol pNewSymbol); void CreateNewSymbol(); private: CSymbol m_pSymbol; // 该图层相关的符号 // CSymbol m_Symbol; }; // Layer.cpp include "StdAfx.h" include "Layer.h" CLayer::CLayer(void) { m_pSymbol = NULL; } CLayer::~CLayer(void) { if(m_pSymbol!=NULL) { delete m_pSymbol; m_pSymbol=NULL; } } void CLayer::CreateNewSymbol() { } 然后编译,出现一个编译警告:>f:\mytest\mytest\src\testunix\layer.cpp(16) : warning C4150: 删除指向不完整“CSymbol”类型的指针;没有调用析构函数 1> f:\mytest\mytest\src\testunix\layer.h(9) : 参见“CSymbol”的声明 看到这个警告,我想你一定悟到了什么。下面我说说我的结论: 类的前置声明和包含头文件的区别在于类的前置声明是告诉编译器有这种类型,但是它没有告诉编译器这种类型的大小、成员函数和数据成员,而包含头文件则是完全告诉了编译器这种类型到底是怎样的(包括大小和成员)。 这下我们也明白了为何前置声明只能使用指针来进行,因为指针大小在编译器是确定的。上面正因为前置声明不能提供析构函数信息,所以编译器提醒我们:“CSymbol”类型的指针是没有调用析构函数。 如何解决这个问题呢? 在Layer.cpp加上include "Symbol.h"就可以消除这个警告。 本篇文章为转载内容。原文链接:https://blog.csdn.net/suxinpingtao51/article/details/37765457。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-01-02 13:45:40
570
转载
SeaTunnel
...也能提供超棒的支持和服务,让大家用起来得心应手,毫无压力。 2. 使用SeaTunnel处理流式数据 2.1 流式数据源接入 首先,我们来看如何使用SeaTunnel从Kafka获取流式数据。以下是一个配置示例: yaml source: type: kafka09 bootstrapServers: "localhost:9092" topic: "your-topic" groupId: "sea_tunnel_group" 上述代码片段定义了一个Kafka数据源,SeaTunnel会以消费者的身份订阅指定主题并持续读取流式数据。 2.2 数据处理与转换 SeaTunnel支持多种数据转换操作,例如清洗、过滤、聚合等。以下是一个简单的字段筛选和转换示例: yaml transform: - type: select fields: ["field1", "field2"] - type: expression script: "field3 = field1 + field2" 这段配置表示仅选择field1和field2字段,并进行一个简单的字段运算,生成新的field3。 2.3 数据写入目标系统 处理后的数据可以被发送到任意目标系统,比如另一个Kafka主题或HDFS: yaml sink: type: kafka09 bootstrapServers: "localhost:9092" topic: "output-topic" 或者 yaml sink: type: hdfs path: "hdfs://namenode:8020/output/path" 3. 实现 ExactlyOnce 语义 ExactlyOnce 语义是指在分布式系统中,每条消息只被精确地处理一次,即使在故障恢复后也是如此。在SeaTunnel这个工具里头,我们能够实现这个目标,靠的是把Flink或者其他那些支持“ExactlyOnce”这种严谨语义的计算引擎,与具有事务处理功能的数据源和目标巧妙地搭配起来。就像是玩拼图一样,把这些组件严丝合缝地对接起来,确保数据的精准无误传输。 例如,在与Apache Flink整合时,SeaTunnel可以利用Flink的Checkpoint机制来保证状态一致性及ExactlyOnce语义。同时,SeaTunnel还有个很厉害的功能,就是针对那些支持事务处理的数据源,比如更新到Kafka 0.11及以上版本的,还有目标端如Kafka、能进行事务写入的HDFS,它都能联手计算引擎,确保从头到尾,数据“零丢失零重复”的精准传输,真正做到端到端的ExactlyOnce保证。就像一个超级快递员,确保你的每一份重要数据都能安全无误地送达目的地。 在配置中,开启Flink Checkpoint功能,确保在处理过程中遇到故障时可以从检查点恢复并继续处理,避免数据丢失或重复: yaml engine: type: flink checkpoint: interval: 60s mode: exactly_once 总结来说,借助SeaTunnel灵活强大的流式数据处理能力,结合支持ExactlyOnce语义的计算引擎和其他组件,我们完全可以在实际业务场景中实现高可靠、无重复的数据处理流程。在这一路的“探险”中,我们可不只是见识到了SeaTunnel那实实在在的实用性以及它强大的威力,更是亲身感受到了它给开发者们带来的那种省心省力、安心靠谱的舒爽体验。而随着技术和需求的不断演进,SeaTunnel也将在未来持续优化和完善,为广大用户提供更优质的服务。
2023-05-22 10:28:27
114
夜色朦胧
Golang
...Go的并发特性来优化服务性能与稳定性,再次验证了Go语言在处理高并发、网络密集型任务时的优势。 例如,在2022年的一项技术分享中,Google详细介绍了如何借助Go的channel机制设计微服务间的高效通信协议,通过减少不必要的锁竞争和数据复制,显著提升了系统的整体吞吐量。同时,sync.WaitGroup的应用也在大规模并行计算场景下得到体现,如在Kubernetes等容器编排系统中,WaitGroup用于确保所有Pod成功启动或结束任务后再进行下一步操作,从而保障了集群的稳定运行。 此外,学术界对Go的并发模型也有深度研究,《Communicating Sequential Processes》一书中的理论基础为Go的设计提供了灵感,其channel设计理念源自CSP(Communicating Sequential Processes)理论,强调通过通信共享内存而非通过共享内存进行通信,这一原则有效降低了并发编程的复杂度,减少了竞态条件的发生。 因此,无论是在实时应用开发、云原生架构设计还是学术研究领域,深入理解并掌握Go语言的并发特性和同步手段都显得至关重要,它们不仅有助于开发者应对日益复杂的并发挑战,更能在未来软件工程实践中发挥关键作用。
2023-01-15 09:10:13
587
海阔天空-t
Flink
...继续执行。 2.2 设置重试机制 除了使用冗余节点外,我们还可以设置重试机制来提高任务的可靠性。如果某个任务不小心挂了,甭管因为啥原因,我们完全可以让Flink小哥施展它的“无限循环”大法,反复尝试这个任务,直到它顺利过关,圆满达成目标。例如,我们可以使用ExecutionConfig.setRetryStrategy()方法设置重试策略。如果设置的重试次数超过指定值,则放弃尝试。 2.3 使用 checkpoint机制 checkpoint是Flink提供的一种机制,用于定期保存任务的状态。当你重启任务时,可以像游戏存档那样,从上次顺利完成的地方接着来,这样一来,就不容易丢失重要的数据啦。例如,我们可以使用ExecutionConfig.enableCheckpointing()方法启用checkpoint机制,并设置checkpoint间隔时间为一段时间。这样,Flink就像个贴心的小秘书,每隔一会儿就会自动保存一下任务的进度,确保在关键时刻能够迅速恢复状态,一切照常进行。 2.4 监控与报警 最后,我们还需要设置有效的监控与报警机制,及时发现并处理故障。比如,我们能够用像Prometheus这样的神器,实时盯着Flink集群的动静,一旦发现有啥不对劲的地方,立马就给相关小伙伴发警报,确保问题及时得到处理。 3. 示例代码 下面我们将通过一个简单的Flink任务示例,演示如何使用上述方法提高任务的可靠性。 java // 创建一个新的ExecutionConfig对象,并设置重试策略 ExecutionConfig executionConfig = new ExecutionConfig(); executionConfig.setRetryStrategy(new DefaultRetryStrategy(1, 0)); // 创建一个新的JobGraph对象,并添加新的ParallelSourceFunction实例 JobGraph jobGraph = new JobGraph("MyJob"); jobGraph.setExecutionConfig(executionConfig); SourceFunction sourceFunction = new SourceFunction() { @Override public void run(SourceContext ctx) throws Exception { // 模拟生产数据 for (int i = 0; i < 10; i++) { Thread.sleep(1000); ctx.collect(String.valueOf(i)); } } @Override public void cancel() {} }; DataStream inputStream = env.addSource(sourceFunction); // 对数据进行处理,并打印结果 DataStream outputStream = inputStream.map(new MapFunction() { @Override public Integer map(String value) throws Exception { return Integer.parseInt(value); } }); outputStream.print(); // 提交JobGraph到Flink集群 env.execute(jobGraph); 在上述代码中,我们首先创建了一个新的ExecutionConfig对象,并设置了重试策略为最多重试一次,且不等待前一次重试的结果。然后,我们动手捣鼓出了一个崭新的“JobGraph”小玩意儿,并且把它绑定到了我们刚新鲜出炉的“ExecutionConfig”配置上。接下来,我们添加了一个新的ParallelSourceFunction实例,模拟生产数据。然后,我们对数据进行了处理,并打印了结果。最后,我们提交了整个JobGraph到Flink集群。 通过上述代码,我们可以看到,我们不仅启用了Flink的重试机制,还设置了 checkpoint机制,从而提高了我们的任务的可靠性。另外,我们还能随心所欲地增加更多的监控和警报系统,就像是给系统的平稳运行请了个24小时贴身保镖,随时保驾护航。
2023-09-18 16:21:05
414
雪域高原-t
转载文章
...,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 数据库三大范式 无规矩不成方圆, Java有很多的规范,设计模式有7大原则,数据库同样也有它的规范,按照规范来设计维护数据库是程序员必备的素质, 目前关系数据库有六种范式:第一范式(1NF)、第二范式(2NF)、第三范式(3NF)、巴斯-科德范式(BCNF)、第四范式(4NF)和 第五范式(5NF,又称“完美范式")。 这篇文章只介绍三大范式,三大范式是设计数据库表结构的规则约束,但是在实际中允许局部变通。比如为了快速查询到关联数据可能会允许冗余字段的存在。 前置知识: 1.部分函数依赖: 设X,Y是关系R的两个属性集合,存在X→Y,若X’是X的真子集,存在X’→Y,则称Y部分函数依赖于X。 例如:通过AB能得出C,通过A也能得出C,通过B也能得出C,那么说C部分依赖于AB。 2.完全函数依赖 设X,Y是关系R的两个属性集合,X’是X的真子集,存在X→Y,但对每一个X’都有X’!→Y,则称Y完全函数依赖于X。 例如:通过AB能得出C,但是AB单独得不出C,那么说C完全依赖于AB. 3.传递函数依赖 设X,Y,Z是关系R中互不相同的属性集合,存在X→Y(Y !→X),Y→Z,则称Z传递函数依赖于X。 例如:通过A得到B,通过B得到C,但是C得不到B,B得不到A,那么成C传递依赖于A 第一范式:数据库表中的每一列都不可以再拆分,也就是原子性 例如: 这张表中 “部门岗位“ ”应该拆分成两个字段:==》 “部门名称”、“岗位”。 这样才能专门针对“部门名称”或“岗位”进行查询。 第二范式:在满足第一范式基础上(原子性),要求 非主键 都和 主键 完整相关, 而不能是依赖于主键的一部分 (主要针对联合主键而言)| 消除非主键对主键的部分依赖 例如下表: 使用“订单编号”和“产品编号”作为联合主键。此时 “产品价格”、“产品数量” 都和联合主键整体相关,但“订单金额”和“下单时间” 只和联合主键中的“订单编号”相关,和“产品编号”无关。所以只关联了主键中的部分字段,不满足第二范式。 把“订单金额”和“下单时间”移到订单表才 符合第二范式 第三范式: 在第二范式的基础上,非主键列只依赖于主键,不依赖于其他非主键。 就是说表中的非主键字段和主键字段直接相关,不允许间接相关。 例如: 表中的“部门名称”和“员工编号”的关系应该是是 “员工编号”→“部门编号” →“部门名称”, 而这张表中不是直接相关。此时会带来下列问题: 数据冗余:“部门名称”多次重复出现。 插入异常:组建一个新部门时没有员工信息,也就无法单独插入部门 信息。就算强行插入部门信息,员工表中没 有员工信息的记录同样是 非法记录。 删除异常:删除员工信息会连带删除部门信息导致部门信息意外丢失。 更新异常:哪怕只修改一个部门的名称也要更新多条员工记录。 正确的做法应该是:把上表拆分成两张表,以外键形式关联 “部门编号”和“员工编号”是直接相关的。 第二范式的另一种表述方式是:两张表要通过外键关联,不保存冗余字段。例如:不能在“员工表”中存储“部门名称”。 “部门编号”和“员工编号”是直接相关的。 第二范式的另一种表述方式是:两张表要通过外键关联,不保存冗余字段。例如:不能在“员工表”中存储“部门名称”。 学会变通:有时候为了快速查询到关联数据可能会允许冗余字段的存在。例如在员工表中存储部门名称虽然违背第三范式,但是免去了对部门表的关联查询。 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_45204159/article/details/115282254。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-25 18:48:38
165
转载
Ruby
...供了更完善的事务管理API与并发策略选项,如Pessimistic Locking(悲观锁)、Optimistic Locking with Versioning(带版本控制的乐观锁)以及利用数据库原生功能实现的高级并发控制机制。这些新特性不仅有助于解决本文提及的基础并发写入问题,还能应对更加复杂的应用场景。 对于深入研究并发编程原理和技术的读者,推荐参考Herb Sutter的《The Art of Multiprocessor Programming》一书,它从理论到实践详细解析了多线程环境下的并发控制策略。同时,关注ACM Transactions on Database Systems等顶级学术期刊,可以获取更多关于数据库并发控制领域最新的研究成果和技术动态。 综上所述,无论是关注实时的技术发展动态,还是研读经典的计算机科学著作,都能帮助我们更好地理解和应对Ruby及其他语言在并发写入数据库问题上的挑战,以确保系统的稳定性和数据一致性。
2023-06-25 17:55:39
51
林中小径-t
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
chown user:group file.txt
- 改变文件的所有者和组。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"