前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[Element-UI表格组件行点击事件处...]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
...存映射情况,缺页异常处理程序首先在swap cache中寻找目标页(符合address_space以及偏移量的物理页),如果找到,则直接返回地址;如果没有找到,则判断该页是否在交换区 (swap area),如果在,则执行一个换入操作;如果上述两种情况都不满足,处理程序将分配新的物理页面,并把它插入到page cache中。进程最终将更新进程页表。 注:对于映射普通文件情况(非共享映射),缺页异常处理程序首先会在page cache中根据address_space以及数据偏移量寻找相应的页面。如果没有找到,则说明文件数据还没有读入内存,处理程序会从磁盘读入相应的页面,并返回相应地址,同时,进程页表也会更新. (5) 所有进程在映射同一个共享内存区域时,情况都一样,在建立线性地址与物理地址之间的映射之后,不论进程各自的返回地址如何,实际访问的必然是同一个共享内存区域对应的物理页面。 四 总结 1.对于mmap的内存映射,是将物理内存映射到进程的虚拟地址空间中去,那么进程对文件的访问就相当于直接对内存的访问,从而加快了读写操作的效率。在这里,remap_pfn_range函数是一次性的建立页表,而nopage函数是根据page fault产生的进程虚拟地址去找到内核相对应的逻辑地址,再通过这个逻辑地址去找到page。完成映射过程。remap_pfn_range不能对常规内存映射,只能对保留的内存与物理内存之外的进行映射。 2.在这里,要分清几个地址,一个是物理地址,这个很简单,就是物理内存的实际地址。第二个是内核虚拟地址,即内核可以直接访问的地址,如kmalloc,vmalloc等内核函数返回的地址,kmalloc返回的地址也称为内核逻辑地址。内核虚拟地址与实际的物理地址只有一个偏移量。第三个是进程虚拟地址,这个地址处于用户空间。而对于mmap函数映射的是物理地址到进程虚拟地址,而不是把物理地址映射到内核虚拟地址。而ioremap函数是将物理地址映射为内核虚拟地址。 3.用户空间的进程调用mmap函数,首先进行必要的处理,生成vma结构体,然后调用remap_pfn_range函数建立页表。而用户空间的mmap函数返回的是映射到进程地址空间的首地址。所以mmap函数与remap_pfn_range函数是不同的,前者只是生成mmap,而建立页表通过remap_pfn_range函数来完成。 本篇文章为转载内容。原文链接:https://blog.csdn.net/wh8_2011/article/details/52373213。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-20 22:49:12
464
转载
转载文章
...全、可靠的计算和数据处理能力,让计算和人工智能成为普惠科技。阿里云服务着制造、金融、政务、交通、医疗、电信、能源等众多领域的领军企业,包括中国联通、12306、中石化、中石油、飞利浦、华大基因等大型企业客户,以及微博、知乎、锤子科技等明星互联网公司。在天猫双11全球狂欢节、12306春运购票等极富挑战的应用场景中,阿里云保持着良好的运行纪录 阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本 猿辅导、中泰证券、小米、媛福达、Soul和当贝,这些我们耳熟能详的APP或企业中,阿里云给他们提供了性能强大、安全、稳定的云产品与服务。 计算,容器,存储,网络与CDN,安全、中间件、数据库、大数据计算、人工智能与机器学习、媒体服务、企业服务与云通信、物联网、开发工具、迁移与运维管理和专有云等方面,阿里云都做的很不错。 2.2 证件照生成背景 传统做法:通常是人工进行P图,不仅费时费力,而且效果也很难保障,容易有瑕疵。 机器学习做法:通常利用边缘检测算法进行人物轮廓提取。 深度学习做法:通常使用分割算法进行人物分割。例如U-Net网络。 2.3 图像分割算法 《BiHand: Recovering Hand Mesh with Multi-stage Bisected Hourglass Networks》里的SeedNet网络是很经典的网络,它把分割任务转变成多个任务。作者的思想是:尽可能的通过多任务学习收拢语义,这样或许会分割的更好或姿态估计的更好。其实这个模型就是多阶段学习网络的一部分,作者想通过中间监督来提高网络的性能。 我提取bihand网络中的SeedNet与训练权重,进行分割结果展示如下 我是用的模型不是全程的,是第一阶段的。为了可视化出最好的效果,我把第一阶段也就是SeedNet网络的输出分别采用不同的方式可视化。 从左边数第一张图为原图,第二张图为sigmoid后利用plt.imshow(colored_mask, cmap=‘jet’)进行彩色映射。第三张图为网络输出的张量经过sigmoid后,二色分割图,阀闸值0.5。第四张为网络的直接输出,利用直接产生的张量图进行颜色映射。第五张为使用sigmoid处理张量后进行的颜色映射。第六张为使用sigmoid处理张量后进行0,1分割掩码映射。使用原模型和网络需要添加很多代码。下面为修改后的的代码: 下面为修改后的net_seedd代码: Copyright (c) Lixin YANG. All Rights Reserved.r"""Networks for heatmap estimation from RGB images using Hourglass Network"Stacked Hourglass Networks for Human Pose Estimation", Alejandro Newell, Kaiyu Yang, Jia Deng, ECCV 2016"""import numpy as npimport torchimport torch.nn as nnimport torch.nn.functional as Ffrom skimage import io,transform,utilfrom termcolor import colored, cprintfrom bihand.models.bases.bottleneck import BottleneckBlockfrom bihand.models.bases.hourglass import HourglassBisectedimport bihand.utils.func as funcimport matplotlib.pyplot as pltfrom bihand.utils import miscimport matplotlib.cm as cmdef color_mask(output_ok): 颜色映射cmap = plt.cm.get_cmap('jet') 将张量转换为numpy数组mask_array = output_ok.detach().numpy() 创建彩色图像cmap = cm.get_cmap('jet')colored_mask = cmap(mask_array)return colored_mask 可视化 plt.imshow(colored_mask, cmap='jet') plt.axis('off') plt.show()def two_color(mask_tensor): 将张量转换为numpy数组mask_array = mask_tensor.detach().numpy() 将0到1之间的值转换为二值化掩码threshold = 0.5 阈值,大于阈值的为白色,小于等于阈值的为黑色binary_mask = np.where(mask_array > threshold, 1, 0)return binary_mask 可视化 plt.imshow(binary_mask, cmap='gray') plt.axis('off') plt.show()class SeedNet(nn.Module):def __init__(self,nstacks=2,nblocks=1,njoints=21,block=BottleneckBlock,):super(SeedNet, self).__init__()self.njoints = njointsself.nstacks = nstacksself.in_planes = 64self.conv1 = nn.Conv2d(3, self.in_planes, kernel_size=7, stride=2, padding=3, bias=True)self.bn1 = nn.BatchNorm2d(self.in_planes)self.relu = nn.ReLU(inplace=True)self.maxpool = nn.MaxPool2d(2, stride=2)self.layer1 = self._make_residual(block, nblocks, self.in_planes, 2self.in_planes) current self.in_planes is 64 2 = 128self.layer2 = self._make_residual(block, nblocks, self.in_planes, 2self.in_planes) current self.in_planes is 128 2 = 256self.layer3 = self._make_residual(block, nblocks, self.in_planes, self.in_planes)ch = self.in_planes 256hg2b, res1, res2, fc1, _fc1, fc2, _fc2= [],[],[],[],[],[],[]hm, _hm, mask, _mask = [], [], [], []for i in range(nstacks): 2hg2b.append(HourglassBisected(block, nblocks, ch, depth=4))res1.append(self._make_residual(block, nblocks, ch, ch))res2.append(self._make_residual(block, nblocks, ch, ch))fc1.append(self._make_fc(ch, ch))fc2.append(self._make_fc(ch, ch))hm.append(nn.Conv2d(ch, njoints, kernel_size=1, bias=True))mask.append(nn.Conv2d(ch, 1, kernel_size=1, bias=True))if i < nstacks-1:_fc1.append(nn.Conv2d(ch, ch, kernel_size=1, bias=False))_fc2.append(nn.Conv2d(ch, ch, kernel_size=1, bias=False))_hm.append(nn.Conv2d(njoints, ch, kernel_size=1, bias=False))_mask.append(nn.Conv2d(1, ch, kernel_size=1, bias=False))self.hg2b = nn.ModuleList(hg2b) hgs: hourglass stackself.res1 = nn.ModuleList(res1)self.fc1 = nn.ModuleList(fc1)self._fc1 = nn.ModuleList(_fc1)self.res2 = nn.ModuleList(res2)self.fc2 = nn.ModuleList(fc2)self._fc2 = nn.ModuleList(_fc2)self.hm = nn.ModuleList(hm)self._hm = nn.ModuleList(_hm)self.mask = nn.ModuleList(mask)self._mask = nn.ModuleList(_mask)def _make_fc(self, in_planes, out_planes):bn = nn.BatchNorm2d(in_planes)conv = nn.Conv2d(in_planes, out_planes, kernel_size=1, bias=False)return nn.Sequential(conv, bn, self.relu)def _make_residual(self, block, nblocks, in_planes, out_planes):layers = []layers.append( block( in_planes, out_planes) )self.in_planes = out_planesfor i in range(1, nblocks):layers.append(block( self.in_planes, out_planes))return nn.Sequential(layers)def forward(self, x):l_hm, l_mask, l_enc = [], [], []x = self.conv1(x) x: (N,64,128,128)x = self.bn1(x)x = self.relu(x)x = self.layer1(x)x = self.maxpool(x) x: (N,128,64,64)x = self.layer2(x)x = self.layer3(x)for i in range(self.nstacks): 2y_1, y_2, _ = self.hg2b[i](x)y_1 = self.res1[i](y_1)y_1 = self.fc1[i](y_1)est_hm = self.hm[i](y_1)l_hm.append(est_hm)y_2 = self.res2[i](y_2)y_2 = self.fc2[i](y_2)est_mask = self.mask[i](y_2)l_mask.append(est_mask)if i < self.nstacks-1:_fc1 = self._fc1[i](y_1)_hm = self._hm[i](est_hm)_fc2 = self._fc2[i](y_2)_mask = self._mask[i](est_mask)x = x + _fc1 + _fc2 + _hm + _maskl_enc.append(x)else:l_enc.append(x + y_1 + y_2)assert len(l_hm) == self.nstacksreturn l_hm, l_mask, l_encif __name__ == '__main__':a = torch.randn(10, 3, 256, 256) SeedNetmodel = SeedNet() output1,output2,output3 = SeedNetmodel(a) print(output1,output2,output3)total_params = sum(p.numel() for p in SeedNetmodel.parameters())/1000000print("Total parameters: ", total_params)pretrained_weights_path = 'E:/bihand/released_checkpoints/ckp_seednet_all.pth.tar'img_rgb_path=r"E:\FreiHAND\training\rgb\00000153.jpg"img=io.imread(img_rgb_path)resized_img = transform.resize(img, (256, 256), anti_aliasing=True)img256=util.img_as_ubyte(resized_img)plt.imshow(resized_img)plt.axis('off') 关闭坐标轴plt.show()''' implicit HWC -> CHW, 255 -> 1 '''img1 = func.to_tensor(img256).float() 转换为张量并且进行标准化处理''' 0-mean, 1 std, [0,1] -> [-0.5, 0.5] '''img2 = func.normalize(img1, [0.5, 0.5, 0.5], [1, 1, 1])img3 = torch.unsqueeze(img2, 0)ok=img3print(img.shape)SeedNetmodel = SeedNet()misc.load_checkpoint(SeedNetmodel, pretrained_weights_path)加载权重output1, output2, output3 = SeedNetmodel(img3)mask_tensor = torch.rand(1, 64, 64)output=output2[1] 1,1,64,64output_1=output[0] 1,64,64output_ok=torch.sigmoid(output_1[0])output_real=output_1[0].detach().numpy()直接产生的张量图color_mask=color_mask(output_ok) 显示彩色分割图two_color=two_color(output_ok)显示黑白分割图see=output_ok.detach().numpy() 使用Matplotlib库显示分割掩码 plt.imshow(see, cmap='gray') plt.axis('off') plt.show() print(output1, output2, output3)images = [resized_img, color_mask, two_color,output_real,see,see]rows = 1cols = 4 创建子图并展示图像fig, axes = plt.subplots(1, 6, figsize=(30, 5)) 遍历图像列表,并在每个子图中显示图像for i, image in enumerate(images):ax = axes[i] if cols > 1 else axes 如果只有一列,则直接使用axesif i ==5:ax.imshow(image, cmap='gray')else:ax.imshow(image)ax.imshowax.axis('off') 调整子图之间的间距plt.subplots_adjust(wspace=0.1, hspace=0.1) 展示图像plt.show() 上述的代码文件是在bihand/models/net_seed.py中,全部代码链接在https://github.com/lixiny/bihand。 把bihand/models/net_seed.p中的代码修改为我提供的代码即可使用作者训练好的模型和进行各种可视化。(预训练模型根据作者代码提示下载) 3.调用阿里云API进行证件照生成实例 3.1 准备工作 1.找到接口 进入下面链接即可快速访问 link 2.购买试用包 3.查看APPcode 4.下载代码 5.参数说明 3.2 实验代码 !/usr/bin/python encoding: utf-8"""===========================证件照制作接口==========================="""import requestsimport jsonimport base64import hashlibclass Idphoto:def __init__(self, appcode, timeout=7):self.appcode = appcodeself.timeout = timeoutself.make_idphoto_url = 'https://idp2.market.alicloudapi.com/idphoto/make'self.headers = {'Authorization': 'APPCODE ' + appcode,}def get_md5_data(self, body):"""md5加密:param body_json::return:"""md5lib = hashlib.md5()md5lib.update(body.encode("utf-8"))body_md5 = md5lib.digest()body_md5 = base64.b64encode(body_md5)return body_md5def get_photo_base64(self, file_path):with open(file_path, 'rb') as fp:photo_base64 = base64.b64encode(fp.read())photo_base64 = photo_base64.decode('utf8')return photo_base64def aiseg_request(self, url, data, headers):resp = requests.post(url=url, data=data, headers=headers, timeout=self.timeout)res = {"status_code": resp.status_code}try:res["data"] = json.loads(resp.text)return resexcept Exception as e:print(e)def make_idphoto(self, file_path, bk, spec="2"):"""证件照制作接口:param file_path::param bk::param spec::return:"""photo_base64 = self.get_photo_base64(file_path)body_json = {"photo": photo_base64,"bk": bk,"with_photo_key": 1,"spec": spec,"type": "jpg"}body = json.dumps(body_json)body_md5 = self.get_md5_data(body=body)self.headers.update({'Content-MD5': body_md5})data = self.aiseg_request(url=self.make_idphoto_url, data=body, headers=self.headers)return dataif __name__ == "__main__":file_path = "图片地址"idphoto = Idphoto(appcode="你的appcode")d = idphoto.make_idphoto(file_path, "red", "2")print(d) 3.3 实验结果与分析 原图片 背景为红色生成的证件照 背景为蓝色生成的证件照 另外尝试了使用柴犬照片做实验,也生成了证件照 原图 背景为红色生成的证件照 参考(可供参考的链接和引用文献) 1.参考:BiHand: Recovering Hand Mesh with Multi-stage Bisected Hourglass Networks(BMVC2020) 论文链接:https://arxiv.org/pdf/2008.05079.pdf 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_37758063/article/details/131128967。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-11 23:36:51
131
转载
转载文章
...内容。 主流的嵌入式处理器家族有三个:arm ,intel_x86,MIPS。 arm主要面向手机、平板,功耗低 arm和x86的运算力、性能好,MIPS相对较弱 嵌入式常用的非易失存储包括:nor flash,nand flash,emmc nand flash:价低,速快,有坏块 nor flash:价高,速慢,无坏块 emmc:相当于nand 和 nor的结合,内置坏块管理系统;价高 USB四线接口简单介绍 开发电脑选择:核心越多越好,主频越高越好----->编译工程快 设置ubuntu系统ip的方法:右上角找到设置图标,选择network,点齿轮图标号,在ipv4下面设置地址192.168.1.x,子网掩码255.255.255.0,网关192.168.1.1(必须要使windows,ubuntu,开发板处于同一网段,能互相ping通) U盘连接到主机和UBUNTU相互转换:虚拟机右下角,右键连接or断开 shell常用指令 ls -a:显示所有目录,文件夹,隐藏文件/目录 ls -l:显示文件的权限、修改时间等 ls -al:上面两个结合 ls 目录:显示该目录下的文件 – cd /:进入linux根目录 cd ~:/home/jl – uname :查看系统信息 uname -a :查看全部系统信息 – cat 文件名:显示某文件内容 – sudo :临时切换root用户 sudo apt-get install 软件名 :装某软件 sudo su:直接切换root用户(少用) sudo su jl:切换回普通用户 – touch 文件名:创建文件 rm -r 目录/文件:删除文件/目录及它包含的所有内容 rm -f 文件:直接删除,无需确认 rm -i 文件:删除文件,会逐一询问是否删除 rmdir 目录:专门删除目录 mv :可以用来移动文件/目录,也可以用来重命名 – ifconfig:显示网络配置信息(lo:本地回环测试) ifconfig -a:显示所有网卡(上面只显示工作的,本条显示所有工作和未工作的) ifconfig eth0 up:打开eth0这个网卡 ifconfig eth0 down:关闭eth0这个网卡(0一般要sudo来执行) ifconfig eth0 你想设置的地址:重设eth0的ip地址 – 命令 --help:看看这个命令的帮助信息 reboot:重启 – sync:数据同步写入磁盘命令(一般来说,用户写的内容先保存在一个缓冲区,系统是隔一定时间像磁盘写入缓冲区内写入磁盘),用sync立刻写入 grep ”“ -i :搜索时忽略大小写 grep 默认是匹配字符, -w 选项默认匹配一个单词 例如我想匹配 “like”, 不加 -w 就会匹配到 “liker”, 加 -w 就不会匹配到 du 目录/文件 -sh : 查看某一文件/目录的大小,也可以到一个目录下du -sh,查看这个目录的大小 目录下使用du -sh 查看目录总的大小 du 文件名 -sh 查看指定文件的大小 df:检查linux服务器的文件系统磁盘空间占用情况,默认以kb为单位 gedit 文件:使用gedit软件打开一个文件(类似于windows下面的记事本) ps:查看您当前系统有哪些进程,ubuntu(多用户)下是ps -aux,嵌入式linux(单用户)下面是ps top:进程实时运行状态查询 file 文件名:查看文件类型 ubuntu的fs cd / :根目录,一切都是从根目录发散开来的 /bin:存放二进制可执行文件,比如一些命令 /boot:ubuntu的内核与启动文件 /cdrom:有光盘是存放光盘文件 /dev:存放设备驱动文件 /etc:存放配置文件,如账号和密码文件(加密后的) /home:系统默认的用户主文件夹 /lib:存放库文件 /lib64:存放库文件,. so时linux下面的动态库文件 /media:存放可插拔设备,如sd,u盘就是挂载到这个文件下面 /mnt:用户可使用的挂载点,和media类似,可以手动让可插拔设备挂载到/mnt /opt:可选的文件和程序存放目录,给第三方软件放置的目录 /proc:存放系统的运行信息,实在内存上的不是在flash上,如cat /proc/cpuinfo /root:系统管理员目录,root用户才能访问的文件 /sbin:和bin类似,存放一些二进制可执行文件,sbin下面一般是系统开机过程中所需要的命令 /srv:服务相关的目录,如网络服务 /sys:记录内核信息,是虚拟文件系统 /tmp:临时目录 /usr:不是user的缩写,而是UNIX Software Resource的缩写,存放系统用户有关的文件,占很大空间 /var:存放变化的文件,如日志文件 – 移植就是移植上面这些文件 磁盘管理 linux开发一定要选用FAT32格式的U盘或者SD卡 u盘在/dev中的名字是sd,要确定是哪个,拔了看少了哪个。就是哪个 /dev/sdb表示U盘,/dev/sdb1表示U盘的第一个分区,一般U盘 sd卡只有一个分区 df:显示linux系统的磁盘占用情况 在一个目录里使用du -sh:查看这个目录里面所有内容所占用的资源 du 文件名 -sh:一般用来看单个文件/目录的大小 du -h --max-depth=n:显示n级目录的大小 – 磁盘的挂载与取消挂载: mount 和 umount sudo mount /dev/sdb1 /media/jl/udisk sudo umount /media/jl/u盘名 (-f 强制取消挂载),如果u盘正在使用,如被另一个终端打开,那么该指令无效 mount挂载后中文显示乱码的解决方法 sudo mount -o iocharset=utf8 /dev/sdb1 udisk – 磁盘的分区和格式化 sudo fdisk -l /dev/sdb 查看所有分区信息(–help查看别的用法) sudo fdisk /dev/sdb1 ----> m ( 进入帮助 ) ----> d 删除该分区 ----> wq 保存并退出 mkfs -t vfat /dev/sdb1 mkfs -t vfat /dev/sdb2 mkfs -t vfat /dev/sdb3 给分区1,2,3分别格式化,完成后能在图形界面看见三个u盘图标 格式化u盘之前一定要先卸载u盘已经挂载的系统。 – 压缩和解压缩 linux下常用的压缩扩展名: .tar .tar.bz2 .tar.gz 后两个linux常用 windows下面用7zip软件 右键选中文件,选择7zip,添加到压缩包,压缩格式选择tar,仅存储 生成tar文件,这里只是打包,没有压缩 右键上面的tar文件,选择7zip,添加到压缩包,压缩格式选择bzip2,确定 生成.tar.bz2文件,把它放到ubuntu解压 ubuntu也支持解压.tar和.zip,但后面两个常用 – ubuntu下面的压缩工具时gzip 压缩文件 gzip 文件名:压缩文件,变成 原文件名.gz,原来的文件就不见了 解压缩文件 gzip -d .gz:还原 文件 gzip -r 目录:递归,将该目录里的各个文件压缩,不提供打包服务 – bzip2工具负责压缩和解压缩.bz2格式的压缩包 bzip2 -z 文件名,压缩成 文件名.bz2 bzip2 -d 文件名.bz2,解压缩成 文件名 bzip2不能压缩/解压缩 目录 – 打包工具 tar 常用参数 -f:使用归档文件(必须要在所有选项后面) -c:创建一个新归档 -x:从归档中解出文件 -j:使用bzip2压缩格式 -z:使用gzip压缩格式 -v:打印出命令执行过程 如以bzip2格式压缩,打包 tar -vcjf 目录名.tar.bz2 目录名 如将上面的压缩包解包 tar -vxjf 目录名.tar.bz2 – 其他压缩工具 rar工具 sudo apt-get install rar(用dhcp连不上阿里云的镜像) rar a test.rar test 把test压缩成test.rar rar x test.rar 把test.rar解压缩成test – zip工具 压缩 zip -rv test.zip test 解压缩 unzip test.zip – ubuntu的用户和用户组 linux是多用户的os,不同的用户有不同的权限,可以查看和操作不同的文件 有三种用户 1、初次用户 2、root用户 3、普通用户 root用户可以创建普通用户 linux用户记录在/etc/passwd这个文件内 linux用户密码记录在/etc/shadow这个文件内,不是以明文记录的 每个用户都有一个id,叫做UID – linux用户组 为了方便管理,将用户进行分组,每个用户可以属于多个组 可以设置非本组人员不能访问一些文件 用户和用户组的存在就是为了控制文件的访问权限的 每个用户组都有一个ID,叫做GID 用户组信息存储在/etc/group中 passwd 用户名:修改该用户的密码 – ubuntu文件权限 ls -al 文件名 如以b开头: -brwx - rwx - rwx -:b表示 块文件,设备文件里面可供存储的周边设备 以d开头是目录 以b是块设备文件 以-开头是普通文件 以 l 开头表示软连接文件 以c开头是设备文件里的串行端口设备 -rwx - rwx - rwx -:用户权限,用户组内其他成员,其它组用户 数字 1 表示链接数,包括软链接和硬链接 第三列 jl 表示文件的拥有者 第四列 jl 表示文件的用户组 第五列 3517 表示这个文件的大小,单位是字节 ls -l 显示的文件大小单位是字节 ls -lh 现实的文件大小单位是 M / G 第六七八列是最近修改时间 最后一列是文件名 – 修改文件权限命令 chmod 777 文件名 修改文件所属用户 sudo chown root 文件 修改文件用户组 sudo chown .root 文件 同时修改文件用户和用户组 sudo chown jl.jl 文件 修改目录的用户/用户组 sudo chown -r jl.jl 目录( root.root ) – linux连接文件 1、硬连接 2、符号连接(软连接) linux有两种连接文件,软连接/符号连接,硬连接 符号连接类似于windows下面的快捷方式 硬连接通过文件系统的inode连接来产生新文件名,而不是产生新文件 inode:记录文件属性,一个文件对应一个inode, inode相当于文件ID 查找文件要先找到inode,然后才能读到文件内容 – ln 命令用于创建连接文件 ln 【选项】源文件 目标文件 不加选项就是默认创建硬连接 -s 创建软连接 -f 强制创建连接文件,如果目标存在,就先删掉目标文件,再创建连接文件 – 硬连接:多个文件都指向同一个inode 具有向inode的多个文件互为硬连接文件,创建硬连接相当于文件实体多了入口 只有删除了源文件、和它所有的硬连接文件,晚间实体才会被删除 可以给文件创建硬连接来防止文件误删除 改了源文件还是硬连接文件,另一个文件的数据都会被改变 硬连接不能跨文件系统(另一个格式的u盘中的文件) 硬连接不能连接到目录 出于以上原因,硬连接不常用 ls -li:此时第一列显示的就是每个文件的inode – 软连接/符号连接 类似windows下面的快捷方式 使用较多 软连接相当于串联里一个独立的文件,该文件会让数据读取指向它连接的文件 ln -s 源文件 目标文件 特点: 可以连接到目录 可以跨文件系统 删除源文件,软连接文件也打不开了 软连接文件通过 “ -> ” 来指示具体的连接文件(ls -l) 创建软连接的时候,源文件一定要使用绝对路径给出,(硬连接无此要求) 软连接文件直接用cp复制到别的目录下,软连接文件就会变成实体文件,就算你把源文件删掉,该文件还是有效 正确的复制、移动软连接的用法是:cp -d 如果不用绝对路径,cp -d 软连接文件到别的目录,该软连接文件就会变红,失效 如果用了绝对路径,cp -d 软连接文件到别的目录,该软连接文件还是有效的,还是软连接文件 不用绝对路径,一拷贝就会出问题 – 软连接一个目录,也是可以用cp -d复制到其他位置的 – gedit 是基于图形界面的 vim有三种模式: 1、一般模式:默认模式,用vim打开一个文件就自动进入这个模式 2、编辑模式:按 i,a等进入,按esc回到一般模式 3、命令行/底行模式:在一般模式下输入:/ ?可进入命令行模式 ,按esc回到一般模式 一般模式下,dd删除光标所在的一整行; ndd,删除掉光标所在行和下面的一共n行 点 . 重复上一个操作 yy复制光标所在行 小p复制到光标下一行 大p复制到光标上一行n nyy复制光标所在往下n行 设置vim里的tab是四个空格:在/etc/vim/vimrc里面添加:set ts=4 设置vim中显示行号:在上面那个文件里添加:set nu – vscode是编辑器 gcc能编译汇编,c,cpp 电脑上的ubuntu自带的gcc用来编译x86架构的程序,而嵌入式设备的code要用针对于该芯片架构如arm的gcc编译器,又叫做交叉编译器(在一种架构的电脑上编译成另一种架构的代码) gcc -c 源文件:只编译不链接,编译成.o文件 -o 输出文件名( 默认名是 .out ) -O 对程序进行优化编译,这样产生的可执行文件执行效率更高 -O2:比-O幅度更大的优化,但编译速度会很慢 -v:显示编译的过程 gcc main.c 输出main.out的可执行文件 预处理 --> 编译 --> 汇编 --> 链接 – makefile里第一个目标默认是终极目标 其他目标的顺序可以变 makefile中的变量都是字符串 变量的引用方法 : $ ( 变量名 ) – Makefile中执行shell命令默认会把命令本身打印出来 如果在shell命令前加 @ ,那么shell’命令本身就不会被打印 – 赋值符:= 变量的有效值取决于他最后一次被赋值的值 : = 赋值时右边的值只是用前面已经定义好的,不会使用后面的 ?= 如果左边的前面没有被赋值,那么在这里赋值,佛则就用前面的赋值 + = 左边前面已经复制了一些字串,在这里添加右边的内容,用空格隔开 – 模式规则 % . o : % . c %在这里意思是通配符,只能用于模式规则 依赖中 % 的内容取决于目标 % 的内容 – CFLAGS:指定头文件的位置 LDFLAGS:用于优化参数,指定库文件的位置 LIBS:告诉链接器要链接哪些库文件 VPATH:特殊变量,指定源文件的位置,冒号隔开,按序查找源文件 vpath:关键字,三种模式,指定、清除 – 自动化变量 $ @ 规则中的目标集合 $ % 当目标是函数库的时候,表示规则中的目标成员名 $ < 依赖文件集合中的第一个文件,如果依赖文件是以 % 定义的,那么 $ < 就是符合模式的一系列文件的集合 $ ? 所有比目标新的依赖文件的集合,以空格分开 $ ^ 所有依赖文件的集合,用空格分开,如果有重复的依赖文件,只保留一次 $ + 和 $ ^ 类似,但有多少重复文件都会保留 $ 表明目标模式中 % 及其以前的部分 如果目标是 test/a.test.c,目标模式是 a.%.c,那么 $ 就表示 test/a.test – 常用的是 $@ , $< , $^ – Makefile的伪目标 不生成目标文件,只是执行它下面的命令 如果被错认为是文件,由于伪目标一般没有依赖,那么目标就被认为是最新的,那么它下面的命令就不会执行 。 如果目录下有同名文件,伪目标错认为是该文件,由于没有依赖,伪目标下面的指令不会被执行 伪目标声明方法 .PHONY : clean 那么就算目录下有伪目标同名文件,伪目标也同样会执行 – 条件判断 ifeq ifneq ifdef ifndef – makefile函数使用 shell脚本 类似于windoes的批处理文件 将连续执行的命令写成一个文件 shell脚本可以提供数组,循环,条件判断等功能 开头必须是:!/bin/bash 表示使用bash 脚本的扩展名:.sh – 交互式shell 有输入有输出 输入:read 第三行 name在这里作为变量,read输入这个变量 下一行使用这个变量直接是 $name,不用像 Makefile 里面那样子加括号 read -p “读取前你想打印的内容” 变量1 变量2 变量3… – 数值计算 第五行等于号两边不能有空格 右边计算的时候是 $( ( ) ),注意要两个括号 – test 测试命令 文件状态查询,字符、数字比较 && cmd1 && cmd2 当cmd1执行完并且正确,那么cmd2也执行 当cmd2执行完并且错误,那么cmd2不执行 || cmd1 || cmd2 当cmd1执行完并且正确,那么cmd2不执行 当cmd2执行完并且错误,那么cmd2也执行 查看一个文件是否存在 – 测试两个字符串是否相等 ==两边必须要有空格,如果不加空格,test这句就一直是对的。 – 中括号判断符 [ ] 作用和test类似 里面只能输入 == 或者 != 四个箭头所指必须用空格隔开 而且如果变量是字符串的话,一定要加双引号 – 默认变量 $0——shell脚本本身的命令 $——最后一个参数的标号(1,2,3,4…) $@——表示 $1 , $2 , $3 … $1 $2 $3 – shell 脚本的条件判断 if [ 条件判断 ];then //do something fi 红点处都要加空格 exit 0——表示退出 – if 条件判断;then //do something elif 条件判断;them //do something else //do something fi 红线处要加空格 – case 语句 case $var in “第一个变量的内容”) //do something ;; “第二个变量的内容”) // do something ;; . . . “第n个变量的内容”) //do something ;; esac 不能用 “”,否则就不是通配符的意思,而是表示字符 – shell 脚本函数 function fname(){ //函数代码段 } 其中function可以写也可以不写 调用函数的时候不要加括号 shell 脚本函数传参方式 – shell 循环 while[条件] //括号内的状态是判断式 do //循环代码段 done – until [条件] do //循环代码段 done – for循环,使用该循环可以知道有循环次数 for var con1 con2 con3 … … do //循环代码段 done – for 循环数值处理 for((初始值;限制值;执行步长)) do //循环代码段 done – 红点处必须要加空格!! loop 环 – – 注意变量有的地方用了 $ ,有的地方不需要 $ 这里的赋值号两边都不用加 空格 $(())数值运算 本篇文章为转载内容。原文链接:https://blog.csdn.net/engineer0/article/details/107965908。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-23 17:18:30
79
转载
转载文章
...阿里云ET则非常擅长处理这类超复杂、大规模、实时性要求高的“非人”问题。 饿了么是中国最大的在线外卖和即时配送平台,日订单量900万单、180万骑手、100万家餐饮店,既是史无前例的计算存储挑战,又是人无我有的战略发展机遇。饿了么携手阿里云人工智能团队,通过海量数据训练优化全球最大实时智能调度系统。在基础架构层,云计算解决弹性支撑业务量波动的基础生存问题,在数据智能层,利用大数据训练核心调度算法、提升餐饮店的商业价值,才是业务决胜的“技术神器”。 在针对大数据资源的“专家+机器”运营分析中,不断发现新的特征: 1) 区域差异性:饿了么与阿里云联合研发小组测试中发现有2个配送站点出现严重超时问题。后来才知道:2个站点均在成都,当地人民喜欢早、中餐一起吃,高峰从11点就开始了。习惯了北上广节奏的ET到成都就懵了。据阿里云人工智能专家闵万里分析:“不存在一套通用的算法可以适配所有站点,所以我们需要让ET自己学习或者向人类运营专家请教当地的风土人情、饮食习惯”。除此之外,饿了么覆盖的餐厅不仅有高大上的连锁店,还有大街小巷的各类难以琢磨的特色小吃,难度是其他智能调度业务的数倍。 2) 复杂路径规划:吃一口热饭有多难?送餐路径规划比驾车出行路径规划难度更高,要考虑“骑士”地图熟悉程度、天气状况、拼单效率、送餐顺序、时间对客户满意度影响、送达写字楼电梯等待时间等各种实际情况,究竟ET是如何实现智能派单并确保效率最优的呢?简单来说,ET会将配送站新接订单插入到每个骑手已有的任务中,重新规划一轮最短配送路径,对比哪个骑手新增时间最短。为了能够准确预估新增时间,ET需要知道全国100万家餐厅的出餐速度、超过180万骑手各自的骑行速度、每个顾客坐电梯下楼取餐的时间。一般来说,餐厅出餐等待时间占到了整个送餐时间的三分之一。ET要想提高骑手效率,必须准确预估出餐时间以减少骑手等待,但又不能让餐等人,最后饭凉了。饿了么旗下蜂鸟配送“准时达”服务单均配送时长缩短至30分钟以内。 3) 天气特殊影响:天气等环境因素对送餐响应时间影响显著,要想计算骑手的送餐路程时间,ET需要知道每个骑手在不同区域、不同天气下的送餐速度。如果北京雾霾,ET能看见吗?双方研发团队为ET内置了恶劣天气的算法模型。通常情况下,每逢恶劣天气,外卖订单将出现大涨,对应的餐厅出餐速度和骑手骑行速度都将受到影响,这些ET都会考虑在内。如果顾客在下雪天点个火锅呢?ET也知道,将自动识别其为大单,锁定某一个骑手专门完成配送。 4) 餐饮营销顾问:饿了么整体业务涉及C端(消费者)、B端(餐饮商户)、D端(物流配送)、BD端(地推营销),以往区域业务开拓考核新店数量,现在会重点关注餐饮外卖“健康度”,对于营业额忽高忽低、在线排名变化的餐饮店,都需要BD专家根据大数据帮助餐饮店经营者找出原因并给出解决建议,避免新店外卖刚开始就淹没在区域竞争中,销量平平的新店会离开平台,通过机器学习把餐饮运营专家的经验、以及人看不到的隐含规律固化下来,以数据决策来发现餐饮店经营问题、产品差异定位,让餐饮商户尝到甜头,才愿意继续经营。举个例子,饿了么员工都喜欢楼下一家鸡排店的午餐,但大数据发现这家店的外卖营收并不如实体店那么火爆,9元“鸡排+酸梅汁”是所有人都喜欢的爆款产品,可为什么同样菜品遭遇“线下火、线上冷”呢?数据预警后,BD顾问指出线上外卖鸡排产品没有写明“含免费酸梅汁一杯”的关键促销内容,导致大多数外卖消费者订一份鸡排一杯酸梅汁,却收到一份鸡排两杯酸梅汁,体验自然不好。 饿了么是数据驱动、智能算法调度的自动化生活服务平台,通过O2O数据的在线实时分析,与阿里云人工智能团队不断改进算法,以“全局最优”取代“局部最优”,保证平台上所有餐饮商户都能享受到数据智能的科技红利。 “上云用数”的外部价值诸多,从饿了么内部反馈来看,上云不仅没有让运维团队失去价值,反而带来了“云原生应用”(Cloud Native Application)、“云上多活”、“CDN云端压测”、“安全风控一体化”等创新路径与方案,通过敏捷基础设施(IaaS)、微服务架构(PaaS和SaaS)、持续交付管理、DevOps等云最佳实践,摆脱“人肉”支撑的种种困境,进而实现更快的上线速度、细致的故障探测和发现、故障时能自动隔离、故障时能够自动恢复、方便的水平扩容。饿了么CTO张雪峰先生说:“互联网平台型组织,业务量涨数倍,企业人数稳定降低,才是技术驱动的正确商业模式。” 在不久的将来,你每天订餐、出行、娱乐、工作留下的大数据,会“驯养”出无处不在、无所不能的智能机器人管家,家庭助理帮你点菜,无人机为你送餐,聊天机器人接受你的投诉……当然这个无比美妙的“未来世界”背后,皆有阿里云的数据智能母体“ET”。 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_34126557/article/details/90592502。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-31 14:48:26
343
转载
转载文章
...据。 第6课:通过预处理数据准备建模。 第7课:使用重采样方法进行算法评估。 第8课:算法评估指标。 第9课:现场检查算法。 第10课:模型比较和选择。 第11课:通过算法调整提高准确性。 第12课:利用集合预测提高准确性。 第13课:完成并保存模型。 第14课:Hello World端到端项目。 每节课可能需要您60秒钟或最多30分钟。花点时间按照自己的进度完成课程。提出问题,甚至在以下评论中发布结果。 这些课程希望您能开始学习并做事。我会给您提示,但每节课的重点是迫使您学习从哪里寻求有关Python平台的帮助(提示,我直接在此博客上获得了所有答案,请使用搜索特征)。 在早期课程中,我确实提供了更多帮助,因为我希望您树立一些信心和惯性。 挂在那里,不要放弃! 第1课:下载并安装Python和SciPy 您必须先访问平台才能开始使用Python进行机器学习。 今天的课程很简单,您必须在计算机上下载并安装Python 3.6平台。 访问Python主页并下载适用于您的操作系统(Linux,OS X或Windows)的Python。在计算机上安装Python。您可能需要使用特定于平台的软件包管理器,例如OS X上的macports或RedHat Linux上的yum。 您还需要安装SciPy平台和scikit-learn库。我建议使用与安装Python相同的方法。 您可以使用Anaconda一次安装所有内容(更加容易)。推荐给初学者。 通过在命令行中键入“ python”来首次启动Python。 使用以下代码检查所有您需要的版本: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Python version import sys print('Python: {}'.format(sys.version)) scipy import scipy print('scipy: {}'.format(scipy.__version__)) numpy import numpy print('numpy: {}'.format(numpy.__version__)) matplotlib import matplotlib print('matplotlib: {}'.format(matplotlib.__version__)) pandas import pandas print('pandas: {}'.format(pandas.__version__)) scikit-learn import sklearn print('sklearn: {}'.format(sklearn.__version__)) 如果有任何错误,请停止。现在该修复它们了。 需要帮忙?请参阅本教程: 如何使用Anaconda设置用于机器学习和深度学习的Python环境 第2课:深入了解Python,NumPy,Matplotlib和Pandas。 您需要能够读写基本的Python脚本。 作为开发人员,您可以很快选择新的编程语言。Python区分大小写,使用哈希(#)进行注释,并使用空格指示代码块(空格很重要)。 今天的任务是在Python交互环境中练习Python编程语言的基本语法和重要的SciPy数据结构。 练习作业,在Python中使用列表和流程控制。 练习使用NumPy数组。 练习在Matplotlib中创建简单图。 练习使用Pandas Series和DataFrames。 例如,以下是创建Pandas DataFrame的简单示例。 1 2 3 4 5 6 7 8 dataframe import numpy import pandas myarray = numpy.array([[1, 2, 3], [4, 5, 6]]) rownames = ['a', 'b'] colnames = ['one', 'two', 'three'] mydataframe = pandas.DataFrame(myarray, index=rownames, columns=colnames) print(mydataframe) 第3课:从CSV加载数据 机器学习算法需要数据。您可以从CSV文件加载自己的数据,但是当您开始使用Python进行机器学习时,应该在标准机器学习数据集上进行练习。 今天课程的任务是让您轻松地将数据加载到Python中并查找和加载标准的机器学习数据集。 您可以在UCI机器学习存储库上下载和练习许多CSV格式的出色标准机器学习数据集。 练习使用标准库中的CSV.reader()将CSV文件加载到Python 中。 练习使用NumPy和numpy.loadtxt()函数加载CSV文件。 练习使用Pandas和pandas.read_csv()函数加载CSV文件。 为了让您入门,下面是一个片段,该片段将直接从UCI机器学习存储库中使用Pandas来加载Pima Indians糖尿病数据集。 1 2 3 4 5 6 Load CSV using Pandas from URL import pandas url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] data = pandas.read_csv(url, names=names) print(data.shape) 到现在为止做得很好!等一下 到目前为止有什么问题吗?在评论中提问。 第4课:使用描述性统计数据理解数据 将数据加载到Python之后,您需要能够理解它。 您越了解数据,可以构建的模型就越精确。了解数据的第一步是使用描述性统计数据。 今天,您的课程是学习如何使用描述性统计信息来理解您的数据。我建议使用Pandas DataFrame上提供的帮助程序功能。 使用head()函数了解您的数据以查看前几行。 使用shape属性查看数据的维度。 使用dtypes属性查看每个属性的数据类型。 使用describe()函数查看数据的分布。 使用corr()函数计算变量之间的成对相关性。 以下示例加载了皮马印第安人糖尿病发病数据集,并总结了每个属性的分布。 1 2 3 4 5 6 7 Statistical Summary import pandas url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] data = pandas.read_csv(url, names=names) description = data.describe() print(description) 试试看! 第5课:通过可视化了解数据 从昨天的课程继续,您必须花一些时间更好地了解您的数据。 增进对数据理解的第二种方法是使用数据可视化技术(例如,绘图)。 今天,您的课程是学习如何在Python中使用绘图来单独理解属性及其相互作用。再次,我建议使用Pandas DataFrame上提供的帮助程序功能。 使用hist()函数创建每个属性的直方图。 使用plot(kind ='box')函数创建每个属性的箱须图。 使用pandas.scatter_matrix()函数创建所有属性的成对散点图。 例如,下面的代码片段将加载糖尿病数据集并创建数据集的散点图矩阵。 1 2 3 4 5 6 7 8 9 Scatter Plot Matrix import matplotlib.pyplot as plt import pandas from pandas.plotting import scatter_matrix url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] data = pandas.read_csv(url, names=names) scatter_matrix(data) plt.show() 样本散点图矩阵 第6课:通过预处理数据准备建模 您的原始数据可能未设置为最佳建模形式。 有时您需要对数据进行预处理,以便最好地将问题的固有结构呈现给建模算法。在今天的课程中,您将使用scikit-learn提供的预处理功能。 scikit-learn库提供了两个用于转换数据的标准习语。每种变换在不同的情况下都非常有用:拟合和多重变换以及组合的拟合与变换。 您可以使用多种技术来准备数据以进行建模。例如,尝试以下一些方法 使用比例和中心选项将数值数据标准化(例如,平均值为0,标准偏差为1)。 使用范围选项将数值数据标准化(例如,范围为0-1)。 探索更高级的功能工程,例如Binarizing。 例如,下面的代码段加载了Pima Indians糖尿病发病数据集,计算了标准化数据所需的参数,然后创建了输入数据的标准化副本。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Standardize data (0 mean, 1 stdev) from sklearn.preprocessing import StandardScaler import pandas import numpy url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = pandas.read_csv(url, names=names) array = dataframe.values separate array into input and output components X = array[:,0:8] Y = array[:,8] scaler = StandardScaler().fit(X) rescaledX = scaler.transform(X) summarize transformed data numpy.set_printoptions(precision=3) print(rescaledX[0:5,:]) 第7课:使用重采样方法进行算法评估 用于训练机器学习算法的数据集称为训练数据集。用于训练算法的数据集不能用于为您提供有关新数据的模型准确性的可靠估计。这是一个大问题,因为创建模型的整个思路是对新数据进行预测。 您可以使用称为重采样方法的统计方法将训练数据集划分为子集,一些方法用于训练模型,而另一些则被保留,并用于估计看不见的数据的模型准确性。 今天课程的目标是练习使用scikit-learn中可用的不同重采样方法,例如: 将数据集分为训练集和测试集。 使用k倍交叉验证来估计算法的准确性。 使用留一法交叉验证来估计算法的准确性。 下面的代码段使用scikit-learn通过10倍交叉验证来评估Pima Indians糖尿病发作的Logistic回归算法的准确性。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Evaluate using Cross Validation from pandas import read_csv from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.linear_model import LogisticRegression url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] kfold = KFold(n_splits=10, random_state=7) model = LogisticRegression(solver='liblinear') results = cross_val_score(model, X, Y, cv=kfold) print("Accuracy: %.3f%% (%.3f%%)") % (results.mean()100.0, results.std()100.0) 您获得了什么精度?在评论中让我知道。 您是否意识到这是中间点?做得好! 第8课:算法评估指标 您可以使用许多不同的指标来评估数据集上机器学习算法的技能。 您可以通过cross_validation.cross_val_score()函数在scikit-learn中指定用于测试工具的度量,默认值可用于回归和分类问题。今天课程的目标是练习使用scikit-learn软件包中可用的不同算法性能指标。 在分类问题上练习使用“准确性”和“ LogLoss”度量。 练习生成混淆矩阵和分类报告。 在回归问题上练习使用RMSE和RSquared指标。 下面的代码段演示了根据Pima Indians糖尿病发病数据计算LogLoss指标。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Cross Validation Classification LogLoss from pandas import read_csv from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.linear_model import LogisticRegression url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] kfold = KFold(n_splits=10, random_state=7) model = LogisticRegression(solver='liblinear') scoring = 'neg_log_loss' results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring) print("Logloss: %.3f (%.3f)") % (results.mean(), results.std()) 您得到了什么日志损失?在评论中让我知道。 第9课:抽查算法 您可能无法事先知道哪种算法对您的数据效果最好。 您必须使用反复试验的过程来发现它。我称之为现场检查算法。scikit-learn库提供了许多机器学习算法和工具的接口,以比较这些算法的估计准确性。 在本课程中,您必须练习抽查不同的机器学习算法。 对数据集进行抽查线性算法(例如线性回归,逻辑回归和线性判别分析)。 抽查数据集上的一些非线性算法(例如KNN,SVM和CART)。 抽查数据集上一些复杂的集成算法(例如随机森林和随机梯度增强)。 例如,下面的代码片段对Boston House Price数据集上的K最近邻居算法进行了抽查。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 KNN Regression from pandas import read_csv from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.neighbors import KNeighborsRegressor url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/housing.data" names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV'] dataframe = read_csv(url, delim_whitespace=True, names=names) array = dataframe.values X = array[:,0:13] Y = array[:,13] kfold = KFold(n_splits=10, random_state=7) model = KNeighborsRegressor() scoring = 'neg_mean_squared_error' results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring) print(results.mean()) 您得到的平方误差是什么意思?在评论中让我知道。 第10课:模型比较和选择 既然您知道了如何在数据集中检查机器学习算法,那么您需要知道如何比较不同算法的估计性能并选择最佳模型。 在今天的课程中,您将练习比较Python和scikit-learn中的机器学习算法的准确性。 在数据集上相互比较线性算法。 在数据集上相互比较非线性算法。 相互比较同一算法的不同配置。 创建比较算法的结果图。 下面的示例在皮马印第安人发病的糖尿病数据集中将Logistic回归和线性判别分析进行了比较。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Compare Algorithms from pandas import read_csv from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.linear_model import LogisticRegression from sklearn.discriminant_analysis import LinearDiscriminantAnalysis load dataset url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] prepare models models = [] models.append(('LR', LogisticRegression(solver='liblinear'))) models.append(('LDA', LinearDiscriminantAnalysis())) evaluate each model in turn results = [] names = [] scoring = 'accuracy' for name, model in models: kfold = KFold(n_splits=10, random_state=7) cv_results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring) results.append(cv_results) names.append(name) msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std()) print(msg) 哪种算法效果更好?你能做得更好吗?在评论中让我知道。 第11课:通过算法调整提高准确性 一旦找到一种或两种在数据集上表现良好的算法,您可能希望提高这些模型的性能。 提高算法性能的一种方法是将其参数调整为特定的数据集。 scikit-learn库提供了两种方法来搜索机器学习算法的参数组合。在今天的课程中,您的目标是练习每个。 使用您指定的网格搜索来调整算法的参数。 使用随机搜索调整算法的参数。 下面使用的代码段是一个示例,该示例使用网格搜索在Pima Indians糖尿病发病数据集上的Ridge回归算法。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Grid Search for Algorithm Tuning from pandas import read_csv import numpy from sklearn.linear_model import Ridge from sklearn.model_selection import GridSearchCV url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] alphas = numpy.array([1,0.1,0.01,0.001,0.0001,0]) param_grid = dict(alpha=alphas) model = Ridge() grid = GridSearchCV(estimator=model, param_grid=param_grid, cv=3) grid.fit(X, Y) print(grid.best_score_) print(grid.best_estimator_.alpha) 哪些参数取得最佳效果?你能做得更好吗?在评论中让我知道。 第12课:利用集合预测提高准确性 您可以提高模型性能的另一种方法是组合来自多个模型的预测。 一些模型提供了内置的此功能,例如用于装袋的随机森林和用于增强的随机梯度增强。可以使用另一种称为投票的合奏将来自多个不同模型的预测组合在一起。 在今天的课程中,您将练习使用合奏方法。 使用随机森林和多余树木算法练习装袋。 使用梯度增强机和AdaBoost算法练习增强合奏。 通过将来自多个模型的预测组合在一起来练习投票合奏。 下面的代码段演示了如何在Pima Indians糖尿病发病数据集上使用随机森林算法(袋装决策树集合)。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Random Forest Classification from pandas import read_csv from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.ensemble import RandomForestClassifier url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] num_trees = 100 max_features = 3 kfold = KFold(n_splits=10, random_state=7) model = RandomForestClassifier(n_estimators=num_trees, max_features=max_features) results = cross_val_score(model, X, Y, cv=kfold) print(results.mean()) 你能设计出更好的合奏吗?在评论中让我知道。 第13课:完成并保存模型 找到有关机器学习问题的良好模型后,您需要完成该模型。 在今天的课程中,您将练习与完成模型有关的任务。 练习使用模型对新数据(在训练和测试过程中看不到的数据)进行预测。 练习将经过训练的模型保存到文件中,然后再次加载。 例如,下面的代码片段显示了如何创建Logistic回归模型,将其保存到文件中,之后再加载它以及对看不见的数据进行预测。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 Save Model Using Pickle from pandas import read_csv from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression import pickle url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(url, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] test_size = 0.33 seed = 7 X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=test_size, random_state=seed) Fit the model on 33% model = LogisticRegression(solver='liblinear') model.fit(X_train, Y_train) save the model to disk filename = 'finalized_model.sav' pickle.dump(model, open(filename, 'wb')) some time later... load the model from disk loaded_model = pickle.load(open(filename, 'rb')) result = loaded_model.score(X_test, Y_test) print(result) 第14课:Hello World端到端项目 您现在知道如何完成预测建模机器学习问题的每个任务。 在今天的课程中,您需要练习将各个部分组合在一起,并通过端到端的标准机器学习数据集进行操作。 端到端遍历虹膜数据集(机器学习的世界) 这包括以下步骤: 使用描述性统计数据和可视化了解您的数据。 预处理数据以最好地揭示问题的结构。 使用您自己的测试工具抽查多种算法。 使用算法参数调整来改善结果。 使用集成方法改善结果。 最终确定模型以备将来使用。 慢慢进行,并记录结果。 您使用什么型号?您得到了什么结果?在评论中让我知道。 结束! (看你走了多远) 你做到了。做得好! 花一点时间,回头看看你已经走了多远。 您最初对机器学习感兴趣,并强烈希望能够使用Python练习和应用机器学习。 您可能是第一次下载,安装并启动Python,并开始熟悉该语言的语法。 在许多课程中,您逐渐地,稳定地学习了预测建模机器学习项目的标准任务如何映射到Python平台上。 基于常见机器学习任务的配方,您使用Python端到端解决了第一个机器学习问题。 使用标准模板,您所收集的食谱和经验现在可以自行解决新的和不同的预测建模机器学习问题。 不要轻描淡写,您在短时间内就取得了长足的进步。 这只是您使用Python进行机器学习的起点。继续练习和发展自己的技能。 喜欢点下关注,你的关注是我写作的最大支持 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_37337849/article/details/104016531。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-11 10:04:06
92
转载
转载文章
...-bpp 32 -quiet& alias X1=startx -- :1 -bpp 32 -quiet& alias X2=startx -- :2 -bpp 32 -quiet& alias X3=startx -- :3 -bpp 32 -quiet& alias X4=startx -- :4 -bpp 32 -quiet& alias X5=startx -- :5 -bpp 32 -quiet& 其中32是显示器的色彩深度,你应该根据自己的实际情况设置。 之后运行 bash 使改变生效,以后只要依次运行X,X1,X2,X3,X4,X5就可以启动6个X-Windows了。 二十.装了rpm的postgresql之后启动 /etc/init.d/postgresql start 是不能启动postgresql的tcp/ip连接支持的,所以打开/etc/init.d/postgresql这个文件把 su -l postgres -s /bin/sh -c "/usr/bin/pg_ctl -D $PGDATA -p /usr/bin/postmaster start > /dev/null 2>&1" < /dev/null 改为: su -l postgres -s /bin/sh -c "/usr/bin/pg_ctl -o -o -F -i -w -D $PGDATA -p /usr/bin/postmaster start > /dev/null 2>&1" < /dev/null 这样就可以启动数据库的tcp/ip链接了 二十一.如何将man转存为文本文件 以ls的man为例 man ls |col -b >ls.txt 将info变成文本,以make为例 info make -o make.txt -s 二十二.如何在文本模式下发送2进制文件 首先检查系统有没有uuencode 和 uudecode如果没有从光盘上装 rpm -ivh sharutils-x.xx.x-x.rpm 假设要发送的文件是vpopmail-5.2.1.tar.gz执行 uuencode -m vpopmail-5.2.1.tar.gz vpopmail.tar.gz>encodefile 说明: uuenode是编码命令,-m是使用mime64编码,vpopmail-5.2.1.tar.gz是要编码的文件,vpopmail.tar.gz是如果解码后得到的文件名,encodefile是编码后的文件名。 执行上述命令之后就可以通过mail命令发送编码后的文件了 mail chenlf@chinalinuxpub.com<encodefile 好了,现在我来接收邮件 在控制台上输入mail命令: mail Mail version 8.1 6/6/93. Type ? for help. "/var/spool/mail/chenlf": 2 messages 2 new >N 1 chenlf@ns1.catv.net Mon Jun 10 16:44 17/363 N 2 root@ns2.catv.net Mon Jun 10 16:45 6091/371145 & 2 Message 2: From root@ns2.catv.net Mon Jun 10 16:45:28 2002 Date: Mon, 10 Jun 2002 16:44:51 +0800 From: root <root@ns2.catv.net> To: chenlf@chinalinuxpub.com begin-base64 644 vpopmai.tar.gz H4sIABr15TwAA+w9a2PbNpL7NfwVqNPbWIlFPSzbiR2n9SuxE7/OcuLNtdmU EiGLMUWqfFhWt7u//eYBgKRE2U7iTa+3VndjiQQGg5nBYDAYDC6H4XDgeH51 yW7ajdpf/h2fer1VX1lagr/1+spyq/BXff5SX2mtNBZXmovN5l/qjWZrqfEX sfRvwWbik8aJEwnxl7ifDofXlLvp/Z/0c1nk/8uN/777NuqNen251ZrB/+XF pcUG8r/ZbC0vL9ZXoPwi/O8von73qEx//sP5bwHHxanT8aUIe2IrDBIZJLFl 7QVJFFovpZOkkYxFL4yEFhVLCKhk1W2xG45E1wnEnohlIsJAiksvSlLHF24I JQORhKIjRdKXYhh5Ayca6xcAD8DQm4HT7XuB/EGcSXgbPErEyAkSrNp3LqVw grGoyaRbGzpxPHJFGssotq0Gtw6l9gTgJbixode9EOlQDMaTmEjE/AerydVc rAY4jJzIFY7vC3wL2DgJvJIxIjFwkm6fWkfw1KoAIti/EgkWc3A6YRp05ReB aeXAQH34GoXOwAvOVUnoEnwRYRqJeJAMgczRpYzEyEv6YQoUH8oACltLtjjD Rr1YOCJ2BkPgJop1IuJu5A0TYh9xIdQwfrCWTdt9pMKvaZg4j5jT3PgojC5+ sFZswM0LAJzvSyhGXQSCOmLoO9DtEOAicBCD2qUT1agAg44BSd+1niIEzVPs ................. ................. ................. & s 2 encodefile "encode" [New file] & q 然后进行解码 uudecode encodefile ls encodefile vpopmai.tar.gz tar zxvf vpopmail.tar.gz OK了 二十三.将 man page 转成 HTML 格式 使用 man2html 这个指令,就可以将 man page 转成 HTML 格式了。用法是: man2html filename > htmlfile.html 二十四.如何在gnome和kde之间切换。 如果你是以图形登录方式登录linux,那么点击登录界面上的session(任务)即可以选择gnome和kde。如果你是以文本方式登录,那执行switchdesk gnome或switchdesk kde,然后再startx就可以进入gnome或kde。 25...tar,.tar.gz,.bz2,.tar.bz2,.bz,.gz是什么文件,如何解开他们? 他们都是文件(压缩)包。 .tar:把文件打包,不压缩:tar cvf .tar dirName 解开:tar xvf .tar .tar.gz:把文件打包并压缩:tar czvf .tar.gz dirName 解开:tar xzvf .tar.gz .bz2:解开:bzip2 -d .bz2 .bz:解开:bzip -d .bz .gz:解开:gzip -d .gz 26.linux下如何解开.zip,.rar压缩文件? rh8下有一个图形界面的软件file-roller可以做这件事。令外可以用unzip .zip解开zip文件,unrar .rar解开rar文件,不过unrar一般系统不自带,要到网上下载。 27.linux下如何浏览.iso光盘镜像文件? a.建一个目录,如:mkdir a b.把iso文件挂载到该目录上:mount -o loop xxxx.iso a 现在目录a里的内容就是iso文件里的内容了。 28.linux下如何配置网络? 用netconfig。“IP address:”就是要配置的IP地址,“Netmask:”子网掩码,“Default gateway (IP):”网关,“Primary nameserver:”DNS服务器IP。 29.如何让鼠标支持滚轮? 在配置鼠标时,选择微软的鼠标,并正确选择端口如ps2,usb等 30.如何让控制台支持中文显示? 安装zhcon。zhcon需要libimm_server.so和libpth.so.13这两个库支持。一般的中文输入法应该都有libimm_server.so。libpth.so.13出自pth-1.3.x。把这两个文件放到/usr/lib下就行了。 31.如何配置grub? 修改/boot/grub/grub.conf文件。其中 “default=n”(n是个数字)是grub引导菜单默认被选中的项,n从0开始,0表示第一项,1表示第二项,依此类推。 “timeout=x”(x是一个数)是超时时间,单位是妙。也就是引导菜单显示后,如果x秒内用户不进行选择,那么grub将启动默认项。 “splashimage =xxxxxx”,这是引导菜单的背景图,先不理他。 其它常用项我用下面的例子来说明: title Red Hat 8.0 root (hd1,6) kernel /boot/vmlinuz-2.4.18-14 ro root=/dev/hdb7 initrd /boot/initrd-2.4.18-14.img 其中"Red Hat 8.0"是在启动菜单列表里显示的名字 root (hdx,y)用来指定你的boot分区位置,如果你没有分boot分区(本例就没分boot分区),那就指向根分区就行了,hdx是linux所在硬盘,hd0是第一块硬盘,hd1是第二块,依此类推。y是分区位置,从0开始,也就是等于分区号减一,比如你要指向的分区是hdx7,那么y就是6,如果是hdx1,那y就是0。注意root后面要有一个空格。 kernel /boot/vmlinuz-2.4.18-14,其中"/boot/vmlinuz-2.4.18-14"是你要用的内核路径,如果你编译了心内核,把它改成你的新内核的路径就行了。 ro就不用管,写上不会有错。 root=/dev/hdxx指定根分区,本例是hdb7,所以root=/dev/hdb7 initrd xxxxxxxxxxxxx这行不要也行,目前我还不清楚它是做什么用的。 上面是linux的,下面是windows的 title windows 98 rootnoverify (hd0,0) chainloader +1 title xxxxxxx不用解释了,上面有解释。 rootnoverify (hdx,y)用来指定windows所在分区,x,y跟上面一样,注意rootnoverify后有空格。 chainloader +1照抄就行,注意空格。 本篇文章为转载内容。原文链接:https://blog.csdn.net/gudulyn/article/details/764890。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-10-27 09:27:49
255
转载
转载文章
... ~= 应用打包(build) + 应用分发(ship) + 应用运行/资源隔离(run)。 build-ship-run 的内容都被定义到了OCI规范中,因此也可以这么定义容器: 容器(container) == OCI规范 OCI规范包含两部分,镜像规范与运行时规范。简要的说,要实现一个OCI的规范,需要能够下载镜像并解压镜像到文件系统上组成成一个文件目录结构,运行时工具能够理解这个目录结构并基于此目录结构管理(创建/启动/停止/删除)进程。 容器(container)的技术构成就是实现OCI规范的技术集合。 对于不同的操作系统(Linux/Windows),OCI规范的实现技术不同,当前docker的实现,支持Windows与Linux与MacOS操作系统。当前使用最广的是Linux系统,OCI的实现,在Linux上组成容器的主要技术: chroot: 通过分层文件系统堆叠出容器进程的rootfs,然后通过chroot设置容器进程的根文件系统为堆叠出的rootfs。 cgroups: 通过cgroups技术隔离容器进程的cpu/内存资源。 namesapce: 通过pid, uts, mount, network, user namesapce 分别隔离容器进程的进程ID,时间,文件系统挂载,网络,用户资源。 网络虚拟化: 容器进程被放置到独立的网络命名空间,通过Linux网络虚拟化veth, macvlan, bridge等技术连接主机网络与容器虚拟网络。 存储驱动: 本地文件系统,使用容器镜像分层文件堆叠的各种实现驱动,当前推荐的是overlay2。 广义的容器还包含容器编排,即当下很火热的Kubernetes。Kubernetes为了把控容器调度的生态,发布了CRI规范,通过CRI规范解耦Kubelet与容器,只要实现了CRI接口,都可以与Kubelet交互,从而被Kubernetes调度。OCI规范的容器实现与CRI标准接口对接的实现是CRI-O。 容器与虚拟机差异对比 容器与虚拟机的差异可以总结为2点:应用打包与分发的差异,应用资源隔离的差异。当然,导致这两点差异的根基是容器是以应用为中心来设计的,而虚拟化是以资源为中心来设计的,本文对比容器与虚拟机的差异,更多的是站在应用视角来对比。 从3个方面对比差异:资源隔离,应用打包与分发,延伸的日志/监控/DFX差异。 1.资源隔离 隔离机制差异 容器 虚拟化 mem/cpu cgroup, 使用时候设定 require 与 limit 值 QEMU, KVM network Linux网络虚拟化技术(veth,tap,bridge,macvlan,ipvlan), 跨虚拟机或出公网访问:SNAT/DNAT, service转发:iptables/ipvs, SR-IOV Linux网络虚拟化技术(veth,tap,bridge,macvlan,ipvlan), QEMU, SR-IOV storage 本地存储: 容器存储驱动 本地存储:virtio-blk 差异引入问题与实践建议 应用程序未适配 cgroup 的内存隔离导致问题: 典型的是 JVM 虚拟机,在 JVM 启动时候会根据系统内存自动设置 MaxHeapSize 值,通常是系统内存的1/4,但是 JVM 并未考虑 cgroup 场景,读系统内存时候任然读取主机的内存来设置 MaxHeapSize,这样会导致内存超过 cgroup 限制从而导致进程被 kill 。问题详细阐述与解决建议参考Java inside docker: What you must know to not FAIL。 多次网络虚拟化问题: 如果在虚拟机内使用容器,会多一层网络虚拟化,并加入了SNAT/DNAT技术, iptables/ipvs技术,对网络吞吐量与时延都有影响(具体依赖容器网络方案),对问题定位复杂度变高,同时还需要注意网络内核参数调优。 典型的网络调优参数有:转发表大小 /proc/sys/net/netfilter/nf_conntrack_max 使用iptables 作为service转发实现的时候,在转发规则较多的时候,iptables更新由于需要全量更新导致非常耗时,建议使用ipvs。详细参考[华为云在 K8S 大规模场景下的 Service 性能优化实践](https://zhuanlan.zhihu.com/p/37230013)。 容器IP地址频繁变化不固定,周边系统需要协调适配,包括基于IP地址的白名单或防火墙控制策略需要调整,CMDB记录的应用IP地址需要适配动态IP或者使用服务名替代IP地址。 存储驱动带来的性能损耗: 容器本地文件系统是通过联合文件系统方式堆叠出来的,当前主推与默认提供的是overlay2驱动,这种模式应用写本地文件系统文件或修改已有文件,使用Copy-On-Write方式,也就是会先拷贝源文件到可写层然后修改,如果这种操作非常频繁,建议使用 volume 方式。 2.应用打包与分发 应用打包/分发/调度差异 容器 虚拟化 打包 打包既部署 一般不会把应用程序与虚拟机打包在一起,通过部署系统部署应用 分发 使用镜像仓库存储与分发 使用文件存储 调度运行 使用K8S亲和/反亲和调度策略 使用部署系统的调度能力 差异引入问题与实践建议 部署提前到构建阶段,应用需要支持动态配置与静态程序分离;如果在传统部署脚本中依赖外部动态配置,这部分需要做一些调整。 打包格式发生变化,制作容器镜像需要注意安全/效率因素,可参考Dockerfile最佳实践 容器镜像存储与分发是按layer来组织的,镜像在传输过程中放篡改的方式是传统软件包有差异。 3.监控/日志/DFX 差异 容器 虚拟化 监控 cpu/mem的资源上限是cgroup定义的;containerd/shim/docker-daemon等进程的监控 传统进程监控 日志采集 stdout/stderr日志采集方式变化;日志持久化需要挂载到volume;进程会被随机调度到其他节点导致日志需要实时采集否则分散很难定位 传统日志采集 问题定位 进程down之后自动拉起会导致问题定位现场丢失;无法停止进程来定位问题因为停止即删除实例 传统问题定位手段 差异引入问题实践与建议 使用成熟的监控工具,运行在docker中的应用使用cadvisor+prometheus实现采集与警报,cadvisor中预置了常用的监控指标项 对于docker管理进程(containerd/shim/docker-daemon)也需要一并监控 使用成熟的日志采集工具,如果已有日志采集Agent,则可以考虑将日志文件挂载到volume后由Agent采集;需要注意的是stderr/stdout输出也要一并采集 如果希望容器内应用进程退出后保留现场定位问题,则可以将Pod的restartPolicy设置为never,进程退出后进程文件都还保留着(/var/lib/docker/containers)。但是这么做的话需要进程没有及时恢复,会影响业务,需要自己实现进程重拉起。 团队配合 与周边的开发团队、架构团队、测试团队、运维团队评审并交流方案,与周边团队达成一致。 落地策略与注意事项 逐步演进过程中网络互通 根据当前已经存在的基础实施情况,选择容器化落地策略。通常使用逐步演进的方式,由于容器化引入了独立的网络namespace导致容器与传统虚拟机进程网络隔离,逐步演进过程中如何打通隔离的网络是最大的挑战。 分两种场景讨论: 不同服务集群之间使用VIP模式互通: 这种模式相对简单,基于VIP做灰度发布。 不同服务集群之间使用微服务点对点模式互通(SpringCloud/ServiceComb/Dubbo都是这一类): 这种模式相对复杂,在逐步容器化过程中,要求容器网络与传统虚拟机网络能够互通(难点是在虚拟机进程内能够直接访问到容器网络的IP地址),当前解决这个问题有几种方法。 自建Kubernetes场景,可使用开源的kube-router,kube-router 使用BGP协议实现容器网络与传统虚拟机网络之间互通,要求网络交换机支持BGP协议。 使用云厂商托管Kubernetes场景,选择云厂商提供的VPC-Router互通的网络插件,如阿里云的Terway网络插件, 华为云的Underlay网络模式。 选择物理机还是虚拟机 选择物理机运行容器还是虚拟机运行容器,需要结合基础设施与业务隔离性要求综合考虑。分两种场景:自建IDC、租用公有云。 自建IDC: 理想情况是使用物理机组成一个大集群,根据业务诉求,对资源保障与安全性要求高的应用,使用MicorVM方式隔离;普通应用使用LXC方式隔离。所有物理机在一个大集群内,方便削峰填谷提升资源利用率。 租用公有云:当前公有云厂家提供的裸金属服务价格较贵且只能包周期,使用裸金属性价比并不高,使用虚拟机更合适。 集群规模与划分 选择集群时候,是多个应用共用一个大集群,还是按应用分组分成多个小集群呢?我们把节点规模数量>=1000的定义为大集群,节点数<1000的定义为小集群。 大集群的优点是资源池共享容器,方便资源调度(削峰填谷);缺点是随着节点数量与负载数量的增多,会引入管理性能问题(需要量化): DNS 解析表变大,增加/删除 Service 或 增加/删除 Endpoint 导致DNS表刷新慢 K8S Service 转发表变大,导致工作负载增加/删除刷新iptables/ipvs记录变慢 etcd 存储空间变大,如果加上ConfigMap,可能导致 etcd 访问时延增加 小集群的优点是不会有管理性能问题,缺点是会导致资源碎片化,不容易共享。共享分两种情况: 应用之间削峰填谷:目前无法实现 计算任务与应用之间削峰填谷:由于计算任务是短时任务,可以通过上层的任务调度软件,在多个集群之间分发计算任务,从而达到集群之间资源共享的目的。 选择集群规模的时候,可以参考上述分析,结合实际情况选择适合的集群划分。 Helm? Helm是为了解决K8S管理对象散碎的问题,在K8S中并没有"应用"的概念,只有一个个散的对象(Deployment, ConfigMap, Service, etc),而一个"应用"是多个对象组合起来的,且这些对象之间还可能存在一定的版本配套关系。 Helm 通过将K8S多个对象打包为一个包并标注版本号形成一个"应用",通过 Helm 管理进程部署/升级这个"应用"。这种方式解决了一些问题(应用分发更方便)同时也引入了一些问题(引入Helm增加应用发布/管理复杂度、在K8S修改了对象后如何同步到Helm)。对于是否需要使用Helm,建议如下: 在自运维模式下不使用Helm: 自运维模式下,很多场景是开发团队交付一个运行包,运维团队负责部署与配置下发,内部通过兼容性或软件包与配置版本配套清单、管理软件包与配置的配套关系。 在交付软件包模式下使用Helm: 交付软件包模式下,Helm 这种把散碎组件组装为一个应用的模式比较适合,使用Helm实现软件包分发/部署/升级场比较简单。 Reference DOCKER vs LXC vs VIRTUAL MACHINES Cgroup与LXC简介 Introducing Container Runtime Interface (CRI) in Kubernetes frakti rkt appc-spec OCI 和 runc:容器标准化和 docker Linux 容器技术史话:从 chroot 到未来 Linux Namespace和Cgroup Java inside docker: What you must know to not FAIL QEMU,KVM及QEMU-KVM介绍 kvm libvirt qemu实践系列(一)-kvm介绍 KVM 介绍(4):I/O 设备直接分配和 SR-IOV [KVM PCI/PCIe Pass-Through SR-IOV] prometheus-book 到底什么是Unikernel? The Rise and Fall of the Operating System The Design and Implementation of the Anykernel and Rump Kernels UniKernel Unikernel:从不入门到入门 OSv 京东如何打造K8s全球最大集群支撑万亿电商交易 Cloud Native App Hub 更多云最佳实践 https://best.practices.cloud 本篇文章为转载内容。原文链接:https://blog.csdn.net/sinat_33155975/article/details/118013855。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-17 15:03:28
225
转载
转载文章
...对内部信息进行采集、处理、存储、传输和应用,实现企业资源优化配置,提升运营效率,增强竞争力的过程。在本文中,企业信息化是软件开发者就业的热门领域之一。 通信领域 , 涉及信息传递与交换技术的行业,包括但不限于电信服务、网络通信、无线通信、数据通信等子领域。在本文背景下,通信领域因门槛高、薪水高等特点吸引了大量软件开发者参与相关技术研发与项目实施,成为开发者主要从业方向之一。 系统集成 , 是指将不同功能、不同品牌或供应商的硬件设备、软件系统以及网络设备等按照一定的架构标准和规范,进行整合、协调和优化,形成一个统一、高效、稳定运行的信息系统解决方案的过程。在本文中,系统集成作为软件开发的重要组成部分,是部分开发者从事的工作内容之一。 高级程序员 , 在软件开发行业中,具备较深厚的专业技能、丰富的项目经验和较高技术水平的编程人员。他们不仅能够独立完成复杂模块的设计与编码工作,还能在项目中起到技术引领与指导作用,对项目的整体质量和进度有直接影响,通常其薪资待遇高于普通程序员。 技术总监(CTO) , Chief Technology Officer 的缩写,是企业中负责技术方向决策、技术团队管理、技术研发规划与实施的关键角色。技术总监需要具有深厚的技术背景、前瞻性的战略眼光以及出色的组织协调能力,确保企业的技术发展方向与业务需求保持一致,并通过技术创新推动企业发展。在本文中,技术总监的角色由于其综合能力和职责要求,在软件行业内占据重要地位,但人数相对较少。
2023-12-24 09:01:26
286
转载
转载文章
... 此时我们要做相应的处理,虚引用指向的值,是无法直接get()获取的 虚引用使用场景 一般情况(其它情况暂时没什么用),虚引用指向堆外内存(直接被操作系统管理的内存),JVM无法对其回收 当虚引用对象被回收时,JVM的垃圾回收无法自动回收堆外内存, 但是此时,虚引用对象被回收,会将其放在队列中 操作人员,看到队列中有对象被回收,就进行相应操作,回收堆内存 如何回收堆外内存 C和C++有函数可以用 java现在也提供了Unsafe类可以操作堆外内存,具体请参考上一篇博客,总之,JDK1.8只能通过反射来用,JDK1.9以上可以通过new Unsafe对象来用 Unsafe类的方法有: copyMemory():直接访问内存 allocateMemory():直接分配内存,这就必须手动回收内存了 freeMemory():回收内存 下面是一个虚引用例子,自己看吧,懂得自然懂,现在看不懂的,先收藏或者保存上,以后回来看 / 一个对象是否有虚引用的存在,完全不会对其生存时间构成影响, 也无法通过虚引用来获取一个对象的实例。 为一个对象设置虚引用关联的唯一目的就是能在这个对象被收集器回收时收到一个系统通知。 虚引用和弱引用对关联对象的回收都不会产生影响,如果只有虚引用活着弱引用关联着对象, 那么这个对象就会被回收。它们的不同之处在于弱引用的get方法,虚引用的get方法始终返回null, 弱引用可以使用ReferenceQueue,虚引用必须配合ReferenceQueue使用。 jdk中直接内存的回收就用到虚引用,由于jvm自动内存管理的范围是堆内存, 而直接内存是在堆内存之外(其实是内存映射文件,自行去理解虚拟内存空间的相关概念), 所以直接内存的分配和回收都是有Unsafe类去操作,java在申请一块直接内存之后, 会在堆内存分配一个对象保存这个堆外内存的引用, 这个对象被垃圾收集器管理,一旦这个对象被回收, 相应的用户线程会收到通知并对直接内存进行清理工作。 事实上,虚引用有一个很重要的用途就是用来做堆外内存的释放, DirectByteBuffer就是通过虚引用来实现堆外内存的释放的。/import java.lang.ref.PhantomReference;import java.lang.ref.Reference;import java.lang.ref.ReferenceQueue;import java.util.LinkedList;import java.util.List;public class T04_PhantomReference {private static final List<Object> LIST = new LinkedList<>();private static final ReferenceQueue<M> QUEUE = new ReferenceQueue<>();public static void main(String[] args) {PhantomReference<M> phantomReference = new PhantomReference<>(new M(), QUEUE);new Thread(() -> {while (true) {LIST.add(new byte[1024 1024]);try {Thread.sleep(1000);} catch (InterruptedException e) {e.printStackTrace();Thread.currentThread().interrupt();}System.out.println(phantomReference.get());} }).start();new Thread(() -> {while (true) {Reference<? extends M> poll = QUEUE.poll();if (poll != null) {System.out.println("--- 虚引用对象被jvm回收了 ---- " + poll);} }}).start();try {Thread.sleep(500);} catch (InterruptedException e) {e.printStackTrace();} }} 2、容器 1、发展历史(一定要了解) map容器你需要了解的历史 JDK早期,java提供了Vector和Hashtable两个容器,这两个容器,很多操作都加了锁Synchronized,对于某些不需要用锁的情况下,就显得十分影响性能,所以现在基本没人用这两个容器,但是面试经常问这两个容器里面的数据结构等内容 后来,出现了HashMap,此容器完全不加锁,是用的最多的容器 但是完全不加锁未免不完善,所以java提供了如下方式,将HashMap变为加锁的 //通过Collections.synchronizedMap(HashMap)方法,将其变为加锁Map集合,其中泛型随意,UUID只是举例。static Map<UUID, UUID> m = Collections.synchronizedMap(new HashMap<UUID, UUID>()); 通过阅读源码发现,上面方法将HashMap变为加锁,也是使用Synchronized,只是锁的内容更细,但并不比HashTable效率高多少 所以衍生除了新的容器ConcurrentHashMap ConcurrentHashMap 此容器,插入效率不如上面的,因为它做了各种判断和CAS,但是差距不是特别大 读取效率很高,100个线程同时访问,每个线程读取一百万次实测 Hashtable 39s ,SynchronizedHashMap 38s ,ConcurrentHashMap 1.7s 前两个将近40秒,ConcurrentHashMap只需要不到2s,由此可见此容器读取效率极高 2、为什么推荐使用Queue来做高并发 为什么推荐Queue(队列) Queue接口提供了很多针对多线程非常友好的API(offer ,peek和poll,其中BlockingQueue还添加了put和take可以阻塞),可以说专门为多线程高并发而创造的接口,所以一般我们使用Queue而不用List 以下代码分别使用链表LinkList和ConcurrentQueue,对比一下速度 LinkList用了5s多,ConcurrentQueue几乎瞬间完成 Concurrent接口就是专为多线程设计,多线程设计要多考虑Queue(高并发用)的使用,少使用List / 有N张火车票,每张票都有一个编号 同时有10个窗口对外售票 请写一个模拟程序 分析下面的程序可能会产生哪些问题? 重复销售?超量销售? 使用Vector或者Collections.synchronizedXXX 分析一下,这样能解决问题吗? 就算操作A和B都是同步的,但A和B组成的复合操作也未必是同步的,仍然需要自己进行同步 就像这个程序,判断size和进行remove必须是一整个的原子操作 @author 马士兵/import java.util.LinkedList;import java.util.List;import java.util.concurrent.TimeUnit;public class TicketSeller3 {static List<String> tickets = new LinkedList<>();static {for(int i=0; i<1000; i++) tickets.add("票 编号:" + i);}public static void main(String[] args) {for(int i=0; i<10; i++) {new Thread(()->{while(true) {synchronized(tickets) {if(tickets.size() <= 0) break;try {TimeUnit.MILLISECONDS.sleep(10);} catch (InterruptedException e) {e.printStackTrace();}System.out.println("销售了--" + tickets.remove(0));} }}).start();} }} 队列 import java.util.Queue;import java.util.concurrent.ConcurrentLinkedQueue;public class TicketSeller4 {static Queue<String> tickets = new ConcurrentLinkedQueue<>();static {for(int i=0; i<1000; i++) tickets.add("票 编号:" + i);}public static void main(String[] args) {for(int i=0; i<10; i++) {new Thread(()->{while(true) {String s = tickets.poll();if(s == null) break;else System.out.println("销售了--" + s);} }).start();} }} 3、多线程常用容器 1、ConcurrentHashMap(无序)和ConcurrentSkipListMap(有序,链表,使用跳表数据结构,让查询更快) 跳表:http://blog.csdn.net/sunxianghuang/article/details/52221913 import java.util.;import java.util.concurrent.ConcurrentHashMap;import java.util.concurrent.ConcurrentSkipListMap;import java.util.concurrent.CountDownLatch;public class T01_ConcurrentMap {public static void main(String[] args) {Map<String, String> map = new ConcurrentHashMap<>();//Map<String, String> map = new ConcurrentSkipListMap<>(); //高并发并且排序//Map<String, String> map = new Hashtable<>();//Map<String, String> map = new HashMap<>(); //Collections.synchronizedXXX//TreeMapRandom r = new Random();Thread[] ths = new Thread[100];CountDownLatch latch = new CountDownLatch(ths.length);long start = System.currentTimeMillis();for(int i=0; i<ths.length; i++) {ths[i] = new Thread(()->{for(int j=0; j<10000; j++) map.put("a" + r.nextInt(100000), "a" + r.nextInt(100000));latch.countDown();});}Arrays.asList(ths).forEach(t->t.start());try {latch.await();} catch (InterruptedException e) {e.printStackTrace();}long end = System.currentTimeMillis();System.out.println(end - start);System.out.println(map.size());} } 2、CopyOnWriteList(写时复制)和CopyOnWriteSet 适用于,高并发是,读的多,写的少的情况 当我们写的时候,将容器复制,让写线程去复制的线程写(写的时候加锁) 而读线程依旧去读旧的(读的时候不加锁) 当写完,将对象指向复制后的已经写完的容器,原来容器销毁 大大提高读的效率 / 写时复制容器 copy on write 多线程环境下,写时效率低,读时效率高 适合写少读多的环境 @author 马士兵/import java.util.ArrayList;import java.util.Arrays;import java.util.List;import java.util.Random;import java.util.Vector;import java.util.concurrent.CopyOnWriteArrayList;public class T02_CopyOnWriteList {public static void main(String[] args) {List<String> lists = //new ArrayList<>(); //这个会出并发问题!//new Vector();new CopyOnWriteArrayList<>();Random r = new Random();Thread[] ths = new Thread[100];for(int i=0; i<ths.length; i++) {Runnable task = new Runnable() {@Overridepublic void run() {for(int i=0; i<1000; i++) lists.add("a" + r.nextInt(10000));} };ths[i] = new Thread(task);}runAndComputeTime(ths);System.out.println(lists.size());}static void runAndComputeTime(Thread[] ths) {long s1 = System.currentTimeMillis();Arrays.asList(ths).forEach(t->t.start());Arrays.asList(ths).forEach(t->{try {t.join();} catch (InterruptedException e) {e.printStackTrace();} });long s2 = System.currentTimeMillis();System.out.println(s2 - s1);} } 3、synchronizedList和ConcurrentLinkedQueue package com.mashibing.juc.c_025;import java.util.ArrayList;import java.util.Collections;import java.util.List;import java.util.Queue;import java.util.concurrent.ConcurrentLinkedQueue;public class T04_ConcurrentQueue {public static void main(String[] args) {List<String> strsList = new ArrayList<>();List<String> strsSync = Collections.synchronizedList(strsList);//加锁ListQueue<String> strs = new ConcurrentLinkedQueue<>();//Concurrent链表队列,就是读快for(int i=0; i<10; i++) {strs.offer("a" + i); //add添加,但是不同点是,此方法会返回一个布尔值}System.out.println(strs);System.out.println(strs.size());System.out.println(strs.poll());//取出,取完后将元素去除System.out.println(strs.size());System.out.println(strs.peek());//取出,但是不会将元素从队列删除System.out.println(strs.size());//双端队列Deque} } 4、LinkedBlockingQueue 链表阻塞队列(无界链表,可以一直装东西,直到内存满(其实,也不是无限,其长度Integer.MaxValue就是上限,毕竟最大就这么大)) 主要体现在put和take方法,put添加的时候,如果队列满了,就阻塞当前线程,直到队列有空位,继续插入。take方法取的时候,如果没有值,就阻塞,等有值了,立马去取 import java.util.Random;import java.util.concurrent.BlockingQueue;import java.util.concurrent.LinkedBlockingQueue;import java.util.concurrent.TimeUnit;public class T05_LinkedBlockingQueue {static BlockingQueue<String> strs = new LinkedBlockingQueue<>();static Random r = new Random();public static void main(String[] args) {new Thread(() -> {for (int i = 0; i < 100; i++) {try {strs.put("a" + i); //如果满了,当前线程就会等待(实现阻塞),等多会有空位,将值插入TimeUnit.MILLISECONDS.sleep(r.nextInt(1000));} catch (InterruptedException e) {e.printStackTrace();} }}, "p1").start();for (int i = 0; i < 5; i++) {new Thread(() -> {for (;;) {try {System.out.println(Thread.currentThread().getName() + " take -" + strs.take()); //取内容,如果空了,当前线程就会等待(实现阻塞)} catch (InterruptedException e) {e.printStackTrace();} }}, "c" + i).start();} }} 5、ArrayBlockingQueue 有界阻塞队列(因为Array需要指定长度) import java.util.Random;import java.util.concurrent.ArrayBlockingQueue;import java.util.concurrent.BlockingQueue;import java.util.concurrent.TimeUnit;public class T06_ArrayBlockingQueue {static BlockingQueue<String> strs = new ArrayBlockingQueue<>(10);static Random r = new Random();public static void main(String[] args) throws InterruptedException {for (int i = 0; i < 10; i++) {strs.put("a" + i);}//strs.put("aaa"); //满了就会等待,程序阻塞//strs.add("aaa");//strs.offer("aaa");strs.offer("aaa", 1, TimeUnit.SECONDS);System.out.println(strs);} } 6、特殊的阻塞队列1:DelayQueue 延时队列(按时间进行调度,就是隔多长时间运行,谁隔的少,谁先) 以下例子中,我们添加线程到队列顺序为t12345,正常情况下,会按照顺序运行,但是这里有了延时时间,也就是时间越短,越先执行 步骤很简单,拿到延时队列 指定构造方法 继承 implements Delayed 重写 compareTo和getDelay import java.util.Calendar;import java.util.Random;import java.util.concurrent.BlockingQueue;import java.util.concurrent.DelayQueue;import java.util.concurrent.Delayed;import java.util.concurrent.TimeUnit;public class T07_DelayQueue {static BlockingQueue<MyTask> tasks = new DelayQueue<>();static Random r = new Random();static class MyTask implements Delayed {String name;long runningTime;MyTask(String name, long rt) {this.name = name;this.runningTime = rt;}@Overridepublic int compareTo(Delayed o) {if(this.getDelay(TimeUnit.MILLISECONDS) < o.getDelay(TimeUnit.MILLISECONDS))return -1;else if(this.getDelay(TimeUnit.MILLISECONDS) > o.getDelay(TimeUnit.MILLISECONDS)) return 1;else return 0;}@Overridepublic long getDelay(TimeUnit unit) {return unit.convert(runningTime - System.currentTimeMillis(), TimeUnit.MILLISECONDS);}@Overridepublic String toString() {return name + " " + runningTime;} }public static void main(String[] args) throws InterruptedException {long now = System.currentTimeMillis();MyTask t1 = new MyTask("t1", now + 1000);MyTask t2 = new MyTask("t2", now + 2000);MyTask t3 = new MyTask("t3", now + 1500);MyTask t4 = new MyTask("t4", now + 2500);MyTask t5 = new MyTask("t5", now + 500);tasks.put(t1);tasks.put(t2);tasks.put(t3);tasks.put(t4);tasks.put(t5);System.out.println(tasks);for(int i=0; i<5; i++) {System.out.println(tasks.take());//获取的是toString方法返回值} }} 7、特殊的阻塞队列2:PriorityQueque 优先队列(二叉树算法,就是排序) import java.util.PriorityQueue;public class T07_01_PriorityQueque {public static void main(String[] args) {PriorityQueue<String> q = new PriorityQueue<>();q.add("c");q.add("e");q.add("a");q.add("d");q.add("z");for (int i = 0; i < 5; i++) {System.out.println(q.poll());} }} 8、特殊的阻塞队列3:SynchronusQueue 同步队列(线程池用处非常大) 此队列容量为0,当插入元素时,必须同时有个线程往外取 就是说,当你往这个队列里面插入一个元素,它就拿着这个元素站着(阻塞),直到有个取元素的线程来,它就把元素交给它 就是用来同步数据的,也就是线程间交互数据用的一个特殊队列 package com.mashibing.juc.c_025;import java.util.concurrent.BlockingQueue;import java.util.concurrent.SynchronousQueue;public class T08_SynchronusQueue { //容量为0public static void main(String[] args) throws InterruptedException {BlockingQueue<String> strs = new SynchronousQueue<>();new Thread(()->{//这个线程就是消费者,来取值try {System.out.println(strs.take());//和同步队列要值} catch (InterruptedException e) {e.printStackTrace();} }).start();strs.put("aaa"); //阻塞等待消费者消费,就拿着aaa站着,等线程来取//strs.put("bbb");//strs.add("aaa");System.out.println(strs.size());} } 9、特殊的阻塞队列4:TransferQueue 传递队列 此队列加入了一个方法transfer()用来向队列添加元素 但是和put()方法不同的是,put添加完元素就走了 而这个方法,添加完自己就阻塞了,直到有人将这个元素取走,它才继续工作(省去我们手动阻塞) import java.util.concurrent.LinkedTransferQueue;public class T09_TransferQueue {public static void main(String[] args) throws InterruptedException {LinkedTransferQueue<String> strs = new LinkedTransferQueue<>();new Thread(() -> {try {System.out.println(strs.take());} catch (InterruptedException e) {e.printStackTrace();} }).start();strs.transfer("aaa");//放东西到队列,同时阻塞等待消费者线程,取走元素//strs.put("aaa");//如果用put就和普通队列一样,放完东西就走了/new Thread(() -> {try {System.out.println(strs.take());} catch (InterruptedException e) {e.printStackTrace();} }).start();/} } 3、线程池 线程池 由于单独创建线程,十分影响效率,而且无法对线程集中管理,一旦疏落,可能线程无限执行,浪费资源 线程池就是一个存储线程的游泳池,而每个线程就是池子里面的赛道 池子里的线程不执行任何任务,只是提供一个资源 而谁提交了任务,比如我想来游泳,那么池子就给你一个赛道,让你游泳 比如它想练憋气,那么给它一个赛道练憋气 当他们用完,走了,那么后面其它人再过来继续用 这就是线程池,始终只有这几个线程,不做实现,而是借用这几个线程的用户,自己掌控用这些线程资源做什么(提交任务给线程,线程空闲就帮他们完成任务) 线程池的两种类型(两类,不是两个) ThreadPoolExecutor(简称TPE) ForkJoinPool(分解汇总任务(将任务细化,最后汇总结果),少量线程执行多个任务(子任务,TPE做不到先执行子任务),CPU密集型) Executors(注意这后面有s) 它可以说是线程池工厂类,我们一般通过它创建线程池,并且它为我们封装了线程 1、常用类 Executor ExecutorService 扩展了execute方法,具有一个返回值 规定了异步执行机制,提供了一些执行器方法,比如shutdown()关闭等 但是它不知道执行器中的线程何时执行完 Callable 对Runnable进行了扩展,实现Callable的调用,可以有返回值,表示线程的状态 但是无法返回线程执行结果 Future 获得未来线程执行结果 由此,我们可以得知线程池基本的一个使用步骤 其中service.submit():为异步提交,也就是说,主线程该干嘛干嘛,我是异步执行的,和同步不一样(当前线程执行完,主线程才能继续执行,叫同步) futuer.get():获取结果集结果,此时因为异步,主线程执行到这里,结果集可能还没封装好,所以此时如果没有值,就阻塞,直到结果集出来 public static void main(String[] args) throws ExecutionException, InterruptedException {Callable<String> c = new Callable() {@Overridepublic String call() throws Exception {return "Hello Callable";} };ExecutorService service = Executors.newCachedThreadPool();Future<String> future = service.submit(c); //异步System.out.println(future.get());//阻塞service.shutdown();} 2、FutureTask 可充当任务的结果集 上面我们介绍Future是用来得到任务的执行结果的 而FutureTask,可以当做一个任务用,并且返回任务的结果,也就是可以跑线程,然后还可以得到线程结果 public static void main(String[] args) throws InterruptedException, ExecutionException {FutureTask<Integer> task = new FutureTask<>(()->{TimeUnit.MILLISECONDS.sleep(500);return 1000;}); //new Callable () { Integer call();}new Thread(task).start();System.out.println(task.get()); //阻塞} 3、CompletableFuture 非常灵活的任务结果集 一个非常灵活的结果集 他可以将很多执行不同任务的线程的结果进行汇总 比如一个网站,它可以启动多个线程去各大电商网站,比如淘宝,京东,收集某些或某一个商品的价格 最后,将获取的数据进行整合封装 最终,客户就可以通过此网站,获取某类商品在各网站的价格信息 / 假设你能够提供一个服务 这个服务查询各大电商网站同一类产品的价格并汇总展示 @author 马士兵 http://mashibing.com/import java.io.IOException;import java.util.Random;import java.util.concurrent.CompletableFuture;import java.util.concurrent.ExecutionException;import java.util.concurrent.TimeUnit;public class T06_01_CompletableFuture {public static void main(String[] args) throws ExecutionException, InterruptedException {long start, end;/start = System.currentTimeMillis();priceOfTM();priceOfTB();priceOfJD();end = System.currentTimeMillis();System.out.println("use serial method call! " + (end - start));/start = System.currentTimeMillis();CompletableFuture<Double> futureTM = CompletableFuture.supplyAsync(()->priceOfTM());CompletableFuture<Double> futureTB = CompletableFuture.supplyAsync(()->priceOfTB());CompletableFuture<Double> futureJD = CompletableFuture.supplyAsync(()->priceOfJD());CompletableFuture.allOf(futureTM, futureTB, futureJD).join();//当所有结果集都获取到,才汇总阻塞CompletableFuture.supplyAsync(()->priceOfTM()).thenApply(String::valueOf).thenApply(str-> "price " + str).thenAccept(System.out::println);end = System.currentTimeMillis();System.out.println("use completable future! " + (end - start));try {System.in.read();} catch (IOException e) {e.printStackTrace();} }private static double priceOfTM() {delay();return 1.00;}private static double priceOfTB() {delay();return 2.00;}private static double priceOfJD() {delay();return 3.00;}/private static double priceOfAmazon() {delay();throw new RuntimeException("product not exist!");}/private static void delay() {int time = new Random().nextInt(500);try {TimeUnit.MILLISECONDS.sleep(time);} catch (InterruptedException e) {e.printStackTrace();}System.out.printf("After %s sleep!\n", time);} } 4、TPE型线程池1:ThreadPoolExecutor 原理及其参数 线程池由两个集合组成,一个集合存储线程,一个集合存储任务 存储线程:可以规定大小,最多可以有多少个,以及指定核心线程数量(不会被回收) 任务队列:存储任务 细节:初始线程池没有线程,当有一个任务来,线程池起一个线程,又有一个任务来,再起一个线程,直到达到核心线程数量 核心线程数量达到时,新来的任务将存储到任务队列中等待核心线程处理完成,直到任务队列也满了 当任务队列满了,此时再次启动一个线程(非核心线程,一旦空闲,达到指定时间将会消失),直到达到线程最大数量 当线程容器和任务容器都满了,又来了线程,将会执行拒绝策略 上面的细节涉及的所有步骤内容,均由创建线程池的参数执行 下面是ThreadPoolExecutor构造方法参数的源码注释 / 用给定的初始值,创建一个新的线程池 @param corePoolSize 核心线程数量 @param maximumPoolSize 最大线程数量 @param keepAliveTime 当线程数大于核心线程数量时,空闲的线程可生存的时间 @param unit 时间单位 @param workQueue 任务队列,只能包含由execute提交的Runnable任务 @param threadFactory 工厂,用于创建线程给线程池调度的工厂,可以自定义 @param handler 拒绝策略(可以自定义,JDK默认提供4种),当线程边界和队列容量已经满了,新来线程被阻塞时使用的处理程序/public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,BlockingQueue<Runnable> workQueue,ThreadFactory threadFactory,RejectedExecutionHandler handler) JDK提供的4种拒绝策略,不常用,一般都是自己定义拒绝策略 Abort:抛异常 Discard:扔掉,不抛异常 DiscardOldest:扔掉排队时间最久的(将队列中排队时间最久的扔掉,然后让新来的进来) CallerRuns:调用者处理任务(谁通过execute方法提交任务,谁处理) ThreadPoolExecutor继承关系 继承关系:ThreadPoolExecutor->AbstractExectorService类->ExectorService接口->Exector接口 Executors(注意这后面有s) 它可以说是线程池工厂类,我们一般通过它创建线程池,并且它为我们封装了线程 看看下面创建线程池,哪里用到了它 使用实例 import java.io.IOException;import java.util.concurrent.;public class T05_00_HelloThreadPool {static class Task implements Runnable {private int i;public Task(int i) {this.i = i;}@Overridepublic void run() {System.out.println(Thread.currentThread().getName() + " Task " + i);try {System.in.read();} catch (IOException e) {e.printStackTrace();} }@Overridepublic String toString() {return "Task{" +"i=" + i +'}';} }public static void main(String[] args) {ThreadPoolExecutor tpe = new ThreadPoolExecutor(2, 4,60, TimeUnit.SECONDS,new ArrayBlockingQueue<Runnable>(4),Executors.defaultThreadFactory(),new ThreadPoolExecutor.CallerRunsPolicy());//创建线程池,核心2个,最大4个,空闲线程存活时间60s,任务队列容量4,使用默认线程工程,创建线程。拒绝策略是JDK提供的for (int i = 0; i < 8; i++) {tpe.execute(new Task(i));//供提交8次任务}System.out.println(tpe.getQueue());//查看任务队列tpe.execute(new Task(100));//提交新的任务System.out.println(tpe.getQueue());tpe.shutdown();//关闭线程池} } 5、TPE型线程池2:SingleThreadPool 单例线程池(只有一个线程) 为什么有单例线程池 有任务队列,有线程池管理机制 Executors(注意这后面有s) 它可以说是线程池工厂类,我们一般通过它创建线程池,并且它为我们封装了线程 看看下面哪里用到了它 /创建单例线程池,扔5个任务进去,查看输出结果,看看有几个线程执行任务/import java.util.concurrent.ExecutorService;import java.util.concurrent.Executors;public class T07_SingleThreadPool {public static void main(String[] args) {ExecutorService service = Executors.newSingleThreadExecutor();for(int i=0; i<5; i++) {final int j = i;service.execute(()->{System.out.println(j + " " + Thread.currentThread().getName());});} }} 6、TPE型线程池3:CachedPool 缓存,存储线程池 此线程池没有核心线程,来一个任务启动一个线程(最多Integer.MaxValue,不会放在任务队列,因为任务队列容量为0),每个线程空闲后,只能活60s 实例 import java.util.concurrent.ExecutorService;import java.util.concurrent.Executors;public class T07_SingleThreadPool {public static void main(String[] args) {ExecutorService service = Executors.newSingleThreadExecutor();//通过Executors获取池子for(int i=0; i<5; i++) {final int j = i;service.execute(()->{//提交任务System.out.println(j + " " + Thread.currentThread().getName());});}service.shutdown();} } 7、TPE型线程池4:FixedThreadPool 固定线程池 此线次池,用于创建一个固定线程数量的线程池,不会回收 实例 import java.util.ArrayList;import java.util.List;import java.util.concurrent.Callable;import java.util.concurrent.ExecutionException;import java.util.concurrent.ExecutorService;import java.util.concurrent.Executors;import java.util.concurrent.Future;public class T09_FixedThreadPool {public static void main(String[] args) throws InterruptedException, ExecutionException {//并发执行long start = System.currentTimeMillis();getPrime(1, 200000); long end = System.currentTimeMillis();System.out.println(end - start);//输出并发执行耗费时间final int cpuCoreNum = 4;//并行执行ExecutorService service = Executors.newFixedThreadPool(cpuCoreNum);MyTask t1 = new MyTask(1, 80000); //1-5 5-10 10-15 15-20MyTask t2 = new MyTask(80001, 130000);MyTask t3 = new MyTask(130001, 170000);MyTask t4 = new MyTask(170001, 200000);Future<List<Integer>> f1 = service.submit(t1);Future<List<Integer>> f2 = service.submit(t2);Future<List<Integer>> f3 = service.submit(t3);Future<List<Integer>> f4 = service.submit(t4);start = System.currentTimeMillis();f1.get();f2.get();f3.get();f4.get();end = System.currentTimeMillis();System.out.println(end - start);//输出并行耗费时间}static class MyTask implements Callable<List<Integer>> {int startPos, endPos;MyTask(int s, int e) {this.startPos = s;this.endPos = e;}@Overridepublic List<Integer> call() throws Exception {List<Integer> r = getPrime(startPos, endPos);return r;} }static boolean isPrime(int num) {for(int i=2; i<=num/2; i++) {if(num % i == 0) return false;}return true;}static List<Integer> getPrime(int start, int end) {List<Integer> results = new ArrayList<>();for(int i=start; i<=end; i++) {if(isPrime(i)) results.add(i);}return results;} } 8、TPE型线程池5:ScheduledPool 预定,延时线程池 根据延时时间(隔多长时间后运行),排序,哪个线程先执行,用户只需要指定核心线程数量 此线程池返回的池对象,和提交任务方法都不一样,比较涉及到时间 import java.util.Random;import java.util.concurrent.Executors;import java.util.concurrent.ScheduledExecutorService;import java.util.concurrent.TimeUnit;public class T10_ScheduledPool {public static void main(String[] args) {ScheduledExecutorService service = Executors.newScheduledThreadPool(4);service.scheduleAtFixedRate(()->{//提交延时任务try {TimeUnit.MILLISECONDS.sleep(new Random().nextInt(1000));} catch (InterruptedException e) {e.printStackTrace();}System.out.println(Thread.currentThread().getName());}, 0, 500, TimeUnit.MILLISECONDS);//指定延时时间和单位,第一个任务延时0毫秒,之后的任务,延时500毫秒} } 9、手写拒绝策略小例子 import java.util.concurrent.;public class T14_MyRejectedHandler {public static void main(String[] args) {ExecutorService service = new ThreadPoolExecutor(4, 4,0, TimeUnit.SECONDS, new ArrayBlockingQueue<>(6),Executors.defaultThreadFactory(),new MyHandler());//将手写拒绝策略传入}static class MyHandler implements RejectedExecutionHandler {//1、继承RejectedExecutionHandler@Overridepublic void rejectedExecution(Runnable r, ThreadPoolExecutor executor) {//2、重写方法//log("r rejected")//伪代码,表示通过log4j.log()报一下日志,拒绝的时间,线程名//save r kafka mysql redis//可以尝试保存队列//try 3 times //可以尝试几次,比如3次,重新去抢队列,3次还不行就丢弃if(executor.getQueue().size() < 10000) {//尝试条件,如果size>10000了,就执行拒绝策略//try put again();//如果小于10000,尝试将其放到队列中} }} } 10、ForkJoinPool线程池1:ForkJoinPool 前面我们讲过线程分为两大类,TPE和FJP ForkJoinPool(分解汇总任务(将任务细化,最后汇总结果),少量线程执行多个任务(子任务,TPE做不到先执行子任务),CPU密集型) 适合将大任务切分成多个小任务运行 两个方法,fork():分子任务,将子任务分配到线程池中 join():当前任务的计算结果,如果有子任务,等子任务结果返回后再汇总 下面实例实现,一百万个随机数求和,由两种方法实现,一种ForkJoinPool分任务并行,一种使用单线程做 import java.io.IOException;import java.util.Arrays;import java.util.Random;import java.util.concurrent.ForkJoinPool;import java.util.concurrent.RecursiveAction;import java.util.concurrent.RecursiveTask;public class T12_ForkJoinPool {//1000000个随机数求和static int[] nums = new int[1000000];//一堆数static final int MAX_NUM = 50000;//分任务时,每个任务的操作量不能多于50000个,否则就继续细分static Random r = new Random();//使用随机数将数组初始化static {for(int i=0; i<nums.length; i++) {nums[i] = r.nextInt(100);}System.out.println("---" + Arrays.stream(nums).sum()); //stream api 单线程就这么做,一个一个加}//分任务,需要继承,可以继承RecursiveAction(不需要返回值,一般用在不需要返回值的场景)或//RecursiveTask(需要返回值,我们用这个,因为我们需要最后获取求和结果)两个更好实现的类,//他俩继承与ForkJoinTaskstatic class AddTaskRet extends RecursiveTask<Long> {private static final long serialVersionUID = 1L;int start, end;AddTaskRet(int s, int e) {start = s;end = e;}@Overrideprotected Long compute() {if(end-start <= MAX_NUM) {//如果任务操作数小于规定的最大操作数,就进行运算,long sum = 0L;for(int i=start; i<end; i++) sum += nums[i];return sum;//返回结果} //如果分配的操作数大于规定,就继续细分(简单的重中点分,两半)int middle = start + (end-start)/2;//获取中间值AddTaskRet subTask1 = new AddTaskRet(start, middle);//传入起始值和中间值,表示一个子任务AddTaskRet subTask2 = new AddTaskRet(middle, end);//中间值和结尾值,表示一个子任务subTask1.fork();//分任务subTask2.fork();//分任务return subTask1.join() + subTask2.join();//最后返回结果汇总} }public static void main(String[] args) throws IOException {/ForkJoinPool fjp = new ForkJoinPool();AddTask task = new AddTask(0, nums.length);fjp.execute(task);/ForkJoinPool fjp = new ForkJoinPool();//创建线程池AddTaskRet task = new AddTaskRet(0, nums.length);//创建任务fjp.execute(task);//传入任务long result = task.join();//返回汇总结果System.out.println(result);//System.in.read();} } 11、ForkJoinPool线程池2:WorkStealingPool 任务偷取线程池 原来的线程池,都是有一个任务队列,而这个不同,它给每个线程都分配了一个任务队列 当某一个线程的任务队列没有任务,并且自己空闲,它就去其它线程的任务队列中偷任务,所以叫任务偷取线程池 细节:当线程自己从自己的任务队列拿任务时,不需要加锁,但是偷任务时,因为有两个线程,可能发生同步问题,需要加锁 此线程继承FJP 实例 import java.io.IOException;import java.util.concurrent.ExecutorService;import java.util.concurrent.Executors;import java.util.concurrent.TimeUnit;public class T11_WorkStealingPool {public static void main(String[] args) throws IOException {ExecutorService service = Executors.newWorkStealingPool();System.out.println(Runtime.getRuntime().availableProcessors());service.execute(new R(1000));service.execute(new R(2000));service.execute(new R(2000));service.execute(new R(2000)); //daemonservice.execute(new R(2000));//由于产生的是精灵线程(守护线程、后台线程),主线程不阻塞的话,看不到输出System.in.read(); }static class R implements Runnable {int time;R(int t) {this.time = t;}@Overridepublic void run() {try {TimeUnit.MILLISECONDS.sleep(time);} catch (InterruptedException e) {e.printStackTrace();}System.out.println(time + " " + Thread.currentThread().getName());} }} 12、流式API:ParallelStreamAPI 不懂的请参考:https://blog.csdn.net/grd_java/article/details/110265219 实例 import java.util.ArrayList;import java.util.List;import java.util.Random;public class T13_ParallelStreamAPI {public static void main(String[] args) {List<Integer> nums = new ArrayList<>();Random r = new Random();for(int i=0; i<10000; i++) nums.add(1000000 + r.nextInt(1000000));//System.out.println(nums);long start = System.currentTimeMillis();nums.forEach(v->isPrime(v));long end = System.currentTimeMillis();System.out.println(end - start);//使用parallel stream apistart = System.currentTimeMillis();nums.parallelStream().forEach(T13_ParallelStreamAPI::isPrime);//并行流,将任务切分成子任务执行end = System.currentTimeMillis();System.out.println(end - start);}static boolean isPrime(int num) {for(int i=2; i<=num/2; i++) {if(num % i == 0) return false;}return true;} } 13、总结 总结 Callable相当于一Runnable但是它有返回值 Future:存储执行完产生的结果 FutureTask 相当于Future+Runnable,既可以执行任务,又能获取任务执行的Future结果 CompletableFuture 可以多任务异步,并对多任务控制,整合任务结果,细化完美,比如可以一个任务完成就可以整合结果,也可以所有任务完成才整合结果 4、ThreadPoolExecutor源码解析 依然只讲重点,实际还需要大家按照上篇博客中看源码的方式来看 1、常用变量的解释 // 1. ctl,可以看做一个int类型的数字,高3位表示线程池状态,低29位表示worker数量private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));// 2. COUNT_BITS,Integer.SIZE为32,所以COUNT_BITS为29private static final int COUNT_BITS = Integer.SIZE - 3;// 3. CAPACITY,线程池允许的最大线程数。1左移29位,然后减1,即为 2^29 - 1private static final int CAPACITY = (1 << COUNT_BITS) - 1;// runState is stored in the high-order bits// 4. 线程池有5种状态,按大小排序如下:RUNNING < SHUTDOWN < STOP < TIDYING < TERMINATEDprivate static final int RUNNING = -1 << COUNT_BITS;private static final int SHUTDOWN = 0 << COUNT_BITS;private static final int STOP = 1 << COUNT_BITS;private static final int TIDYING = 2 << COUNT_BITS;private static final int TERMINATED = 3 << COUNT_BITS;// Packing and unpacking ctl// 5. runStateOf(),获取线程池状态,通过按位与操作,低29位将全部变成0private static int runStateOf(int c) { return c & ~CAPACITY; }// 6. workerCountOf(),获取线程池worker数量,通过按位与操作,高3位将全部变成0private static int workerCountOf(int c) { return c & CAPACITY; }// 7. ctlOf(),根据线程池状态和线程池worker数量,生成ctl值private static int ctlOf(int rs, int wc) { return rs | wc; }/ Bit field accessors that don't require unpacking ctl. These depend on the bit layout and on workerCount being never negative./// 8. runStateLessThan(),线程池状态小于xxprivate static boolean runStateLessThan(int c, int s) {return c < s;}// 9. runStateAtLeast(),线程池状态大于等于xxprivate static boolean runStateAtLeast(int c, int s) {return c >= s;} 2、构造方法 public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,BlockingQueue<Runnable> workQueue,ThreadFactory threadFactory,RejectedExecutionHandler handler) {// 基本类型参数校验if (corePoolSize < 0 ||maximumPoolSize <= 0 ||maximumPoolSize < corePoolSize ||keepAliveTime < 0)throw new IllegalArgumentException();// 空指针校验if (workQueue == null || threadFactory == null || handler == null)throw new NullPointerException();this.corePoolSize = corePoolSize;this.maximumPoolSize = maximumPoolSize;this.workQueue = workQueue;// 根据传入参数unit和keepAliveTime,将存活时间转换为纳秒存到变量keepAliveTime 中this.keepAliveTime = unit.toNanos(keepAliveTime);this.threadFactory = threadFactory;this.handler = handler;} 3、提交执行task的过程 public void execute(Runnable command) {if (command == null)throw new NullPointerException();/ Proceed in 3 steps: 1. If fewer than corePoolSize threads are running, try to start a new thread with the given command as its first task. The call to addWorker atomically checks runState and workerCount, and so prevents false alarms that would add threads when it shouldn't, by returning false. 2. If a task can be successfully queued, then we still need to double-check whether we should have added a thread (because existing ones died since last checking) or that the pool shut down since entry into this method. So we recheck state and if necessary roll back the enqueuing if stopped, or start a new thread if there are none. 3. If we cannot queue task, then we try to add a new thread. If it fails, we know we are shut down or saturated and so reject the task./int c = ctl.get();// worker数量比核心线程数小,直接创建worker执行任务if (workerCountOf(c) < corePoolSize) {if (addWorker(command, true))return;c = ctl.get();}// worker数量超过核心线程数,任务直接进入队列if (isRunning(c) && workQueue.offer(command)) {int recheck = ctl.get();// 线程池状态不是RUNNING状态,说明执行过shutdown命令,需要对新加入的任务执行reject()操作。// 这儿为什么需要recheck,是因为任务入队列前后,线程池的状态可能会发生变化。if (! isRunning(recheck) && remove(command))reject(command);// 这儿为什么需要判断0值,主要是在线程池构造方法中,核心线程数允许为0else if (workerCountOf(recheck) == 0)addWorker(null, false);}// 如果线程池不是运行状态,或者任务进入队列失败,则尝试创建worker执行任务。// 这儿有3点需要注意:// 1. 线程池不是运行状态时,addWorker内部会判断线程池状态// 2. addWorker第2个参数表示是否创建核心线程// 3. addWorker返回false,则说明任务执行失败,需要执行reject操作else if (!addWorker(command, false))reject(command);} 4、addworker源码解析 private boolean addWorker(Runnable firstTask, boolean core) {retry:// 外层自旋for (;;) {int c = ctl.get();int rs = runStateOf(c);// 这个条件写得比较难懂,我对其进行了调整,和下面的条件等价// (rs > SHUTDOWN) || // (rs == SHUTDOWN && firstTask != null) || // (rs == SHUTDOWN && workQueue.isEmpty())// 1. 线程池状态大于SHUTDOWN时,直接返回false// 2. 线程池状态等于SHUTDOWN,且firstTask不为null,直接返回false// 3. 线程池状态等于SHUTDOWN,且队列为空,直接返回false// Check if queue empty only if necessary.if (rs >= SHUTDOWN &&! (rs == SHUTDOWN &&firstTask == null &&! workQueue.isEmpty()))return false;// 内层自旋for (;;) {int wc = workerCountOf(c);// worker数量超过容量,直接返回falseif (wc >= CAPACITY ||wc >= (core ? corePoolSize : maximumPoolSize))return false;// 使用CAS的方式增加worker数量。// 若增加成功,则直接跳出外层循环进入到第二部分if (compareAndIncrementWorkerCount(c))break retry;c = ctl.get(); // Re-read ctl// 线程池状态发生变化,对外层循环进行自旋if (runStateOf(c) != rs)continue retry;// 其他情况,直接内层循环进行自旋即可// else CAS failed due to workerCount change; retry inner loop} }boolean workerStarted = false;boolean workerAdded = false;Worker w = null;try {w = new Worker(firstTask);final Thread t = w.thread;if (t != null) {final ReentrantLock mainLock = this.mainLock;// worker的添加必须是串行的,因此需要加锁mainLock.lock();try {// Recheck while holding lock.// Back out on ThreadFactory failure or if// shut down before lock acquired.// 这儿需要重新检查线程池状态int rs = runStateOf(ctl.get());if (rs < SHUTDOWN ||(rs == SHUTDOWN && firstTask == null)) {// worker已经调用过了start()方法,则不再创建workerif (t.isAlive()) // precheck that t is startablethrow new IllegalThreadStateException();// worker创建并添加到workers成功workers.add(w);// 更新largestPoolSize变量int s = workers.size();if (s > largestPoolSize)largestPoolSize = s;workerAdded = true;} } finally {mainLock.unlock();}// 启动worker线程if (workerAdded) {t.start();workerStarted = true;} }} finally {// worker线程启动失败,说明线程池状态发生了变化(关闭操作被执行),需要进行shutdown相关操作if (! workerStarted)addWorkerFailed(w);}return workerStarted;} 5、线程池worker任务单元 private final class Workerextends AbstractQueuedSynchronizerimplements Runnable{/ This class will never be serialized, but we provide a serialVersionUID to suppress a javac warning./private static final long serialVersionUID = 6138294804551838833L;/ Thread this worker is running in. Null if factory fails. /final Thread thread;/ Initial task to run. Possibly null. /Runnable firstTask;/ Per-thread task counter /volatile long completedTasks;/ Creates with given first task and thread from ThreadFactory. @param firstTask the first task (null if none)/Worker(Runnable firstTask) {setState(-1); // inhibit interrupts until runWorkerthis.firstTask = firstTask;// 这儿是Worker的关键所在,使用了线程工厂创建了一个线程。传入的参数为当前workerthis.thread = getThreadFactory().newThread(this);}/ Delegates main run loop to outer runWorker /public void run() {runWorker(this);}// 省略代码...} 6、核心线程执行逻辑-runworker final void runWorker(Worker w) {Thread wt = Thread.currentThread();Runnable task = w.firstTask;w.firstTask = null;// 调用unlock()是为了让外部可以中断w.unlock(); // allow interrupts// 这个变量用于判断是否进入过自旋(while循环)boolean completedAbruptly = true;try {// 这儿是自旋// 1. 如果firstTask不为null,则执行firstTask;// 2. 如果firstTask为null,则调用getTask()从队列获取任务。// 3. 阻塞队列的特性就是:当队列为空时,当前线程会被阻塞等待while (task != null || (task = getTask()) != null) {// 这儿对worker进行加锁,是为了达到下面的目的// 1. 降低锁范围,提升性能// 2. 保证每个worker执行的任务是串行的w.lock();// If pool is stopping, ensure thread is interrupted;// if not, ensure thread is not interrupted. This// requires a recheck in second case to deal with// shutdownNow race while clearing interrupt// 如果线程池正在停止,则对当前线程进行中断操作if ((runStateAtLeast(ctl.get(), STOP) ||(Thread.interrupted() &&runStateAtLeast(ctl.get(), STOP))) &&!wt.isInterrupted())wt.interrupt();// 执行任务,且在执行前后通过beforeExecute()和afterExecute()来扩展其功能。// 这两个方法在当前类里面为空实现。try {beforeExecute(wt, task);Throwable thrown = null;try {task.run();} catch (RuntimeException x) {thrown = x; throw x;} catch (Error x) {thrown = x; throw x;} catch (Throwable x) {thrown = x; throw new Error(x);} finally {afterExecute(task, thrown);} } finally {// 帮助gctask = null;// 已完成任务数加一 w.completedTasks++;w.unlock();} }completedAbruptly = false;} finally {// 自旋操作被退出,说明线程池正在结束processWorkerExit(w, completedAbruptly);} } 本篇文章为转载内容。原文链接:https://blog.csdn.net/grd_java/article/details/113116244。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-21 16:19:45
328
转载
转载文章
...容。 文章目录 一、处理不信任的SSL证书的网站 二、cookie 三、session 一、处理不信任的SSL证书的网站 SSL证书 数字证书的一种 SSL服务器证书 遵守SSL协议 具有服务器身份验证和数据传输加密功能 在爬虫时可能会遇到这样的报错(SSLError)这说明我们要爬取的网站没有SSL证书 处理:res = requests.get(url,verify=False) 二、cookie 通过记录用户信息来确定身份 1 模拟登陆 人人网保持登陆状态import requestsurl = 'http://www.renren.com/976686556/profile' 个人主界面headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.128 Safari/537.36','Cookie':'anonymid=knvqe21amc6ghy; depovince=ZGQT; _r01_=1; taihe_bi\_sdk_uid=c2bd353cea6830a73eb74760fbc9fd5c; taihe_bi_sdk_session=9a91c\62f18e74ee26c3145bb49b4eb9e; ick_login=286c45d0-e571-4fb7-918a-46a9706\18110; first_login_flag=1; ln_uact=17315371375; ln_hurl=http://head.xiao\nei.com/photos/0/0/men_main.gif; wp_fold=0; jebecookies=ee811760-7bc0-43a9-\883c-0d041cb1baf0|||||; _de=A4C6B1A20CD5F525F9DA27654C2D2FDA; p=f5239823cd0af743a5f015652568b6036; t=42783075a815b6cef9f651ca18ff5c166; societyguester=42783075a815b6cef9f651ca18ff5c166; id=976686556; xnsid=f72459d7; ver=7.0; loginfrom=null'}res = requests.get(url,headers=headers) res 响应对象 html = res.textwith open('rr.html','w',encoding='utf-8') as file_obj:file_obj.write(res.text) 2 反反爬机制 12306查票import requests import json json.loads -- json类型的str -> python类型的字典def query():headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.128 Safari/537.36','Cookie':'_uab_collina=159490169403897938828076; JSESSIONID=090F384AC50BE0F1AFA3892BE3F6DBE9; _jc_save_wfdc_flag=dc; _jc_save_fromStation=%u957F%u6C99%2CCSQ; _jc_save_toStation=%u5317%u4EAC%2CBJP; RAIL_DEVICEID=bbXqzYOPTc-SPgujxnGkCBr9t3sq0JQoMSYUdg-FxjyQ5IkfcPCNoreXmBAIh2HSrM9Z9awDR5onIQwy4EZ8pAhaGXWYBAH6etIlFc4dyxLudz525GAcRgVX5HLIxOE1orODUNSb9wvTBAJptPms1z5Pz5K6FXES; RAIL_EXPIRATION=1619479086609; _jc_save_toDate=2021-04-23; BIGipServerpool_passport=182714890.50215.0000; route=6f50b51faa11b987e576cdb301e545c4; _jc_save_fromDate=2021-04-26; BIGipServerportal=3067347210.16671.0000; BIGipServerotn=1725497610.50210.0000'}response = requests.get('https://kyfw.12306.cn/otn/leftTicket/query?leftTicketDTO.train_date=2021-\04-26&leftTicketDTO.from_station=CSQ&leftTicketDTO.to_station=BJP&purpose_codes=ADULT',headers=headers) print(response.content.decode('utf-8'))return response.json()['data']['result']for i in query(): print(i)tem_list = i.split('|') 定义一个标记 给每个数据做个标记 j = 0 技术特别 for n in tem_list: print(j,n) j += 1 通过以上的测试我们知道了 列出是下标索引为3的数据 软卧是下标索引为23的数据if tem_list[23] != '无' and tem_list[23] != '':print(tem_list[3],'有票',tem_list[23])else:print(tem_list[3],'无票') 三、session Session与cookie功能效果相同。Session与Cookie的区别在于Session是记录在服务端的,而Cookie是记录在客户端的。 由于cookie 是存在用户端,而且它本身存储的尺寸大小也有限,最关键是用户可以是可见的,并可以随意的修改,很不安全。那如何又要安全,又可以方便的全局读取信息呢?于是,这个时候,一种新的存储会话机制:session 诞生了 突破12306验证码import requestsreq = requests.session() 保持会话def login(): 笔记本 win7 python3.6 获取验证码图片pic_response = req.get('https://kyfw.12306.cn/passport/captcha/captcha-image?login_site=E&module=login&rand=sjrand')codeImage = pic_response.contentfn = open('code2.png','wb')fn.write(codeImage)fn.close() 从验证码图片的左上角 (0,0)codeStr = input('请输入验证码坐标:')headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.128 Safari/537.36'}data = {'answer': codeStr,'rand': 'sjrand','login_site': 'E'}response = req.post('https://kyfw.12306.cn/passport/captcha/captcha-check',data=data,headers=headers)print(response.text)login() base64伪加密 根本不算是一种加密算法 只不过它的数据看上去更像密文而已 64个字符来表示任意的二进制数据的方法 使用 A-Z A-Z 0 - 9 + / 这64个字符进行加密 import base64url = '9j/4AAQSkZJRgABAgAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAC+ASUDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+ivPNS1bUJdPlW2XWIJZ550EExgZ4mwMplZDkA5IIJwGA7Vd8P63d2Wi39zqC3k32C3VmR9gYkKSQPmJyeMZxQB21FcPqV14igvb/Vfs2qWlklsh8qKS1fGzeWbDk9iOnpU+r6tqVsohtdYij2W48w3GiT3DuxGdweJ0QcEcAcEHnsADsaK4Xwrq2p3un6fBd6zHIk1oqjydGuIpQxQYbzndkyPUrg0zXZdR0fxLpVqmq65c2k9rdTTpbpC8i+W0IDAbMkASNkAEnjAoA72iuH1C6iNlpk1tr11d2lxcPula7WDpE+FLoF24YDIIyCMYzxXKXOoapB4f1W4k1PUY5LfT7qaOctcxqZlVygjJkZWA25ywGRt4OTgA9jorh/Eev3507xBFb3OnWwtN0S75mWU/u1bcMdPvcfSpdS8RahBZ6lEtxYNLHps1zHNZuWKMm0DIOR/F+lKTsrl04OpNQW7djs6K8t/te+WGCAXOvLM9zsuws0MsxHkGUeWfuKMEE+2e9Ra/4hktvDVguma1qkEt+gWOC9MJdkZjmV5D90EHAO4AYHTBrneJik3Y9eOSVZTjBSXvPz89dL9vu7Hq9FeZaHrl5LqmnaWNcvCsjeWn76yuOFUthim5uQOp596ojxbq41DUzFqFrK90lwDAWZfsQh+VW64GRljgZJFH1mNr2BZHWcnFSW1+vd+Wmz+63VHrMjFY2YKWIGQoxk+3NUrqVUjYsu7A3BfUjkVgeFb3UvPvtLvr2C9Sxt7dormNWzKHDHcxLHJwo596xfiDqSwaTArPKJXmTaYi6nggt8oIz8oPBNbwlzK55mIoOhUdNu+33NXX4Mt/8JpYzR7por+AKoacfZ2YRZB+Vio47Nn3HNXbXXNN1PcLK8hnZQCyo43KPcdRXjuqanNeK+ZZUF2TNIo67XbagOGBPyhVPXp0rUj1S5j0TUrqS4k+1OywJKpJJCcL7/fZqowO91LxFYaeXSWR3lQZZIo2YqM98A449cVVk8Q2K6bHe3Mn2SNwSq3GFY/hz9a83nkEkkcCfbrm1UF2BXyQ0mRgnoT35OT0qCWaUab9ghIjiuLgmUqcg8/d98KOfpQB3sPimwmtYZZC2+WLzMQqZBGM/wARUHHcdualh1SzvmZbWfzSv3sKR3rgI9UuRdvdvetEZAULIqlWCgY657l+nrXWaVc3ctmDdEbyckAbcjPynHrg/rQB6boMirotvyxJD8844c/gOv4/hVRPEVjd6zPp0LO0sEZZnH3Cd2Co9SCOfSqcInl8JxwW832eSQMDKFyVBY5I98dD2rn7qODTby2vEnS1gt42iKtwHDHPJJ65596ANiXxboonngnujbyI+1xco0YDYBGN3HTBGPXNRyeJdGZlRdStXdyAqLICWPbAHWvPLbVXO+8Muo28t07TF4gJUYMePlw2MDA6DpV3Rr4rDeXzM0zvIQrmMKxVRjGAB33du9AHS6h4n0q1n8s3HmygldsKGQ59OOh4z+FZkXjbT3jSacTW/wAwU74CVDDsTjBP/wBevN9SvRLeAhMRISqLIVPJ5JOdwJ65OByabYXKxwlHgt5M/wALsAfqOP60AfUekyxzaNYyxOHje3jZWHRgVGDVysvw1j/hFdHwu0fYYcKDnHyDjNalABRRRQAUUUUAFFFFABRRRQByNx4PuL3UfNu7yJrX7XLcLEIEbYGXA++rBie5wMcY7kw6b4V1GLTtStLiLTok1CdFliXbKnkAYcYEUalmGRgrgZzk4xXXedJ/z7S/mv8A8VR50n/PtL+a/wDxVAHGj4a6KSUfSdEMTNcKSNLgDBH5jIIT7yfdHYjrk1pnT9fjlSdDp80r2EdtOGkeNRIpYllAU8Hd09q3/Ok/59pfzX/4qjzpP+faX81/+KoA5/SNL1q2u9JW9WyFtYWT25aCZ2Z2xGASpUD+A9+9XrvSp5/Fml6qrRiC0tLqB1JO4tI0JUgYxj922ee461pedJ/z7S/mv/xVHnSf8+0v5r/8VQBla3pd5dyWL6cbeJoJpHk8wsuQ0bqSCvO7LA5rmb7wZr8unaxb29/ZFtRsZrRlmUYJdSAxcJv4yepI56V3fnSf8+0v5r/8VR50n/PtL+a//FUAZWueH7XUdJ1GKCztftV1Gw8x4xkuQACTjPQDn2pus+Hob3R762sIbW1urm3aATeUBhWxkHHY4rX86T/n2l/Nf/iqPOk/59pfzX/4qk1dWZdObpzU47rU51/CVvDqNtLYQW1ta28E2Io02l5nUIGOO23d+dV7jwlNc+GNG00tClzaNbCeVSQSkZ+YKcdeTjIrqvOk/wCfaX81/wDiqPOk/wCfaX81/wDiqj2MNTqWYYhcr5tV/wAH/NnJQ+ELyDxVZXqXIawtHZ182YvIxKFcbdoA5J5yah03wjq9nqtvcT3NhNbQm82whGyPOOQCf4h69Mds12fnSf8APtL+a/8AxVHnSf8APtL+a/8AxVT7CH9f15FvNMQ1Z22tt6/j7zOa0TQ7rSjqN1f/AGGA3KwQpBZ58uNI8gDLAZJ3elZfiawXUrZoiSY3HVT1H1rtpnkkiZRbS5Puv+NZlxYTzD/j2J5H3mX/ABrSMVFWRyV60q83Unvp+CseTX+gM7B44oRMpGxnj3bQOg68VB/YlwulxW4lAlSTzd23ILbt3T616lPoFzIDtgAPbLD/ABqtJ4Yum6Qgf8DFUZHmT6XeTE+felVA5EMQQfmc/wA6guNFUwRoNyomSNp9Qe/4mvTv+EUve0Sf99imy+Er98Yjj6c/MBQB5SugF8geaQn3O4jwM5A+gNdNp4nhtBHM43nh1AI5Hf8AU/rXTyeCb9nJSKMDPAMgJpw8IauhwhTABVT5mODnj9T+dAGjpKeZ4ft8HB+fBPTO49RVDVrJJImQxhlPUEcVuabpd7Z6bFbSQ5dM5KsMckn196WTS7yUfNB6/wAYoA8ru9Btt+UtRG2OfKJXP1xiqNppLQac8RZxI6kH5yQMnPAr1G48M3kwOIVz7uBVVvB98RgRx/8AfYoA8duNDbeMlmPYjC/ypBowQYdJAeD949K9bbwNftn91Fn/AK6Co5PAuqSDBSEkYAJk6D0oA7Xwynl+FNHQfw2MI/8AHBWrVDTUms9LtLV7eQtDCkZKlcZCgcc+1WfOk/59pfzX/wCKoAmoqHzpP+faX81/+Ko86T/n2l/Nf/iqAJqKh86T/n2l/Nf/AIqjzpP+faX81/8AiqAJqKh86T/n2l/Nf/iqPOk/59pfzX/4qgCaiofOk/59pfzX/wCKooAmooooAKKKQmgBaKge7hj6yDPoDSR3SSkhT04qeeOw7MsUUgpaoQUUUUAFFFI2QOKAForwP4jeN9UOvTw6fqlzbW0J8kfZp2jyR1PBGc/4VxWi/EPxbpV9DdSazf3MLOV23Nwzo3Q4w2fUduOTx1oA+saK53wd4rtvFujC+hGyRTtljz909iPYjnv3HY10VABRRRQAUUUx84OM5oAfRXByfEjTYpCpulJBwVMTZHtgd6if4l6axwL1UPtC+f5UuZGXt6fWR6DRXnZ+Itht41Nh/wBu7f8AxNIfiNYAD/iaH/wHb/4mlzoPb0+6PRaK83PxIsDwdTP4QN/8TV/QvGNjqutQWkN/LLJIWwhVwD8pPcYppp7Aq0G7Jnc0U1TzWV4jne305GSV48yhSyOVOMHuKmpNQi5djVamvRXGJc3uxNks7DHBNyefzp87X7W8kf2q6gd1IEm8kLx168muT67HsXyM7CiuV+13O8RCeXKqOVkLAgADJPv15560/wC0XRAzPL/32ar65HsTY6eiuXa6uQP9fN1/vmo2vLjn/SJhyf4zR9cj2Cx1lFce95dBM/apv+/hqq1/eY/4/LgH/rof8aPrkewWO6ooorsEFFFFAFO9vVtIixySBnviuan1ma4k2F5RnGwqowc5OQM89scV095bieAr0I5Fca9ssMzbsjewQFjwF69PQA8ew9CMcdeUk7G1NJli3uHkcZLfN2ZSp/I/5xitKKQxyhh171jpKz7XQIuY1Kq0h+XLZ3DOMrtJPTPA6dBy3ivxffWBCWsiWqkcyrh/mPHJ4Xb3BOOo4GCTlHc0kj16GVZVBB59M1LXmHw38S3t2L23vZonERUo4UDPYgkdcfJ15+b349LikEi7h+R7Gu2Er6M52rElFHeitCQpkhIjJHUDOPWmTXVvbDM88cQ9ZHC/zqomt6ZM/lw6javIeAqyqST7c0XA+XtfZXnMkpBBk3EAZGM8gf54zisGK9jhsYrebDItxgeylTn9cflXQePbWXRtXvbSaXLRyFVOMFk7Eg8YI6e2M1wLPLeS7lGfm4XI/wAikI9U8BeLp/Ct8ZZpM2TkKYhycbjux74249xX0jZXkV9axXMDiSGVA6OOjKRwa+KQbuCymW5QhsDYZHwCCeSB346n698V7H8EfHbKX8OX8qKhctaO5wQxOWQ/U8j3yO4oQz3yimI249R0zT6YBTT06ZpTSH7poE2fO2sJdXviDWktoZXP2qQ74oyxU+Y2DxyOh/Oqk1peOy7tIuBkESFYWyfcHPXGce+K6XRGzJrl1yRLcdAMk/ebgDknnoOTXP6lrD3GqT2cI2tkqWMuxowDhs5XOBhskEkAHOOK87nk27HLg8NOVO8dtShcWV5FLhdMvDg4ObdhnpTF0/Uf4tOuwM9oWNTprt9d6msNtO0xVFTfEWfJGRk84xk9eQeOakGo6tc3xNpfbpZlKiDziSoZQwIBPJxgDn+L64Oad7BLKJN3dyfRdLa4nla+sZl2qNiSKybm9vXgdPeu48AWUFl47kjiAVjp0jOgbIB8yPHB5Hf8+9cTomuXdzqxt7rUoTA7Om15g2whgcj164BGc54yAcd94OkJ+J2owAKkUFgVRAOmWjP+R29Kzpxn9YUm9CvqqwyjFx1vueoDrXP+L5zbaZbOHK/6SozjP8LV0AFZXiG/s9P09JL2NZInlEYVgDkkE9/oa68ar4eavbQ7KfxI5C58RLPHHGHEMirtZkfBar9hcyzQ7JJmbCgIwKZz61zc+p2Ty7RYpHH5hXzXJKEdsEf1IqKS3ihVJorpoRngLna3484r4j29aNTWR6XsVa5uaNr8N5rUmnPG8NxzmJ1wCR3B+g5BA/Hmum8nJwBwK8+8L28c/iyzl2O94okM7qNysfmG/PYY2ge5rsH8U2NvBGtwHN0XaNoIBuIIYqT1AxlfrgivocPVvD3ziqxSehf8jPaoZLXJOBWmi74UkZChIyVPUZrO1DUrWwjZpJEGwgFiwCrlgOSSB3zjO44OFY8V1cl9UZWKUltjIIqjJBz/AJNcr4h+Jlpaq0ENuLiUqMbZnjUNkYI+67jkZ+5xnqKk8LzS+OIp7jX7TBXDRQK7LGFJODtAABGDgkkkEj+E0nTajdlRjfVnslFFFeuZBRRRQAjDI5rm9eswZBKCyAnJZTgqfUHBwffFdKaq3luLiB04yw4NY1o3iVB2ZxCRMq/vpFhRmMis0Y2qRzu6lQByRzjnHJGKnlgtL5lhkgimztOHTgZyxwWBVuBjqeMnsaV4WttTi3qDglU+TP3sA49B0JP+yOvSi3nUlJRLG9uSWEezAIYfKM4AACYABzn071wXszpepd07T4rUTacIl8kr5qIOFIzygH+yduDjpgdq2YHkRuGJI65/jH+NULZA80cjtloSRlWyp3Dhc56YIIzgnANWZLiKGVF5dz90Yyfy7fX9a1jKzuZtGtG+9QfWud8deJx4S8NvqQTfIXEUY/2iCf6VtWJmZC8qqpbkAHPHuemfz+przj4+Bz8PoPLzu+3x9P8Ackrui7oweh57B8XLPUp4otX0GS44AkmDrMzHjJCsBjPXGeK04IfCHiASB7K+0uaZig8yN4uD3A5jA+teXaTrlpotgZYY/NvHzncOnPr1xUMvjDV7yXEl28UZP3YTs/XqadkI9Y1/4f3Op6NBFbXv9o20HyWzO+2aOMY+QSfdkAwcA7cZwGAAFcRbeC/K1BLKa9hs5sj9xODE5JOON3Dcg/dJHuap2WvajH5UqXlyWVsrIf3jofZvvL9RzXY2XjK7ghaz1+xGoWWNsiSKCyYIwPm4bAzw/JPO89CAa198Mvtfheazjwb2NN9u7Z4cZwOwAPTnI5rxG2up7G73xjBVsFCe4I9+vT8q9102LT9UDSeDPEU+lXse4vYFsxoc/Putn+7gsFyuAD0ya8w8ceGNestWudR1OxRBO3mSXFsGaBnPVs9VJJAwQOSe1JMD3f4TfEKPxXpzWF3Iw1OzRQ/mMuZl6bhzkkcA8f3T3r0wHIr4r8J+Ibnwr4kstVi3FY2xKg4EkZOGX39u2dp7V9kabeQ39lFdW8gkglQPG46Mp5B/LFUMummN90080x8bD9KBS2Z4docfn+HtQxtzJcMMuAVHydSGIBGD0PB6VzsFuBqV3PbST3G9miWKREVWmI34bBBIznjAxng+u5oE4TQpQSMfalzn0IwSK5TUJtRulaG5ljEJYlVRVLe3OMivJjNKbRGExnsKNr6FsaVd2t/Fv05XBjZ1cxKfNZxk71AIUDDcAHHfrmpLHT7qe+hlSNH+xrs8tmZmKiMKR5fIG4kEDPc+tYralespV5mlVFOCQDjgjOD9a0tO0sXsdtN9tcfaQ5uQh5K5zgDHPXng/XoTtdJXOyOY1KiujWtfDRi1Q3R81FR2mYtdM2Q2QPl2g5yRnJP3D1zmu18GL/xdbWj0xZ4wfrF/n8a5Dw6iR3k8bSzFSocGRjggnr19c5+orsfBJH/CztbA7WoA+mUqaM+aa06nLia860oOfRnqArh/irpUur+F7WCGRY5EvVkBJx0Rx1/Gu471yPxGuPs3h+2kJuABdqD9ni3t9x+3+ecDkkA9OLU3Qlyb2NqTSmmzwe6i8Q6XlQ8+wdGxuB/Hn+dXNKi12+1P7NPdLA8KrI6zyBOCcKDjoSfl69a2/t+qSSRiLTZtpwUEsBByc9R6dD3xvB+bGKvtNNbmGC80iLaTskcCMLsLEbSzAKuMZUHAYnGRwq+XRw14/vkr+h1zrdEdn4S8MWek6W32ae4hvmO6SXfuIODgYOVI+Ynpz17CoNGj0dvELQP9qj1WSR3kZ2UEvktnGOAcE47dBVGDxTHbKbay097med38ydZBa+aqgfOpIyQVU5I4+XOeRUFhosNjqNncrdwRXspLhvPLK5ZAzYbuMeoU85xgrVzpyglZXRzPVnpVzbia2ELyuEYFWZSVYjHZl5U9ORXhfjrSZdD1mK0hkC2MkbmKeUk+QMtuRQx7fzPU173tV05wQwwecg1yHi3wbP4hlg8mWEIgYMZuSdxXtt6YBP1A+o6paJWRMXrqeFWdlcXd5KNIAlaXar3TDepUdcc4Y/N93p0GR0PpHgTwrfNavqD6jeRSOo8u43KRITgtkYIYcA57556V22keAtF00l3gN1I3DG4bcp4Axs+7jgdRkeprqFjUdBxUSjOb12Lc0tieiiivTMAooooAKQjIxS0UAc14ksBMqyYGxv8AWZAIwPUHrxXLrcm3vX+0COFYQA0rNg/KSUI25UDAPHDdW44r0DVFdrGQRJvkONo9Dnr+HX8K5C28DyS3wnvZQcNuzjp7KOgxj8+e9cNSk+fQ6ITXLqRWl1dXxEemB1twFXfIqnpgZUYyenc10lhoYiPmzySFyuG+c5PuT/nitKysLeyjCQoBgYJPJNW8CtoUEviIlUvohkaLGAqKqqAFAHYDoK5f4ieGJfFfhZrG3l2XEcqzRA8BmAIwfwY11dBGa6DI+Kte8PXOlXbW93BNbyKfmDKQCcf5x7fjWPHZkS5VgVHYDJr7a1PQNM1dAt/ZxTgfd3oDj6VhRfDTwxDL5i6cmc98/wAqAPAPAngy/wBZ1eB/JdYI2Du5H5Y9K98k8FWN5YrBdW6yBQQCRyPoa6iz061sIRDbQRxRgcKq4FW8UgPnfxd8Ib+yuV1DRJpC0RV0CZEilemMc8dsciuf034i+JPDcgsdftmv7VcIXfiRQMD72Oen8XPuK+pJYkkXDgEHiuU8Q+BdM12Flnt0MhGA4HPtRYDxk+GvBvjqBrnw9cLYXpG57ULtXA2/ejzwOcbkOASeteg/DTV5tFSPwdrMgTU7dS1sWbK3EWTjYepxz8pCkDHBwTXnviH4OanpMkmoaPM2+D97GIyRICvPy47/AORzXL6Lqurxa9p/iPUnvbyGylRJZ0l/eRKD9193ABB+h3Ebic4QH16ar3rmOzmcc7UY8ewNWGGRWbr8xt/DupTKSrR2srA+hCE05LRiaT0Pn7U9Qs9Ds7a1gzc3EqGTKH5CQxQnJ5xlSB9M98nCn8QXt1lV8qLjosYJ/M5/nV29/sxtO03F15t7JB5bh0+S1Uyu2c4yScg8DueoPC2tjo0LsJdVtSgQgHypXyx+qcD6V5PsYp3sepBYPBUYOcbt9zdtnNnbxJfWrSzqgMkieWozjITlu2QD+faktdSsNRjuJIRtkiZVIMak5bjcTkjqf0P1OLe3ELx3L/2zbyTTKUziUYXuPuc9vyFZj2VobdFg1giUxkSNtkbLE5P8AzzmqjRi9zy5Vabk7M9E0Z4ZY/KMSRhgCMZAY44GcYB4rV8Bvv8AitrRH3fs0g/J48f1rgfCMZ0mWcpP9qhk2/OqMpY+jA9ecflXf/Di6ifxtfRoP3k1q88jf8DTA/I0UqkFVUE7syqK8os9ZFef/F7VINI8Nabc3IkMB1FY3MbAEAxS88j9RgjqCCBXoAryv4/7B4Dsi6qf+JlHjdyAfKl7d/px9a9Rq6sbJnNz67Fc6UJf7XW9ecyTbRbiaUDqqiNxlMBh1yMZIyMGoLuSO1uLe3uZprjYFMjSfIiYwVl2JuKnIYHcgLKoOTg14pGWtpEkhOyVDvDhuQwPBVh3yMjH4muj0/xRqF4IdGvL2LyjPkXd35r7OP7mdpzyfmXOTyR2xdNo0UkdrqmoxQgvb30drCbSOFdswlaIDuoKhlbIPA+YbuB0xn22l6rq2mC/1ETjTynnxX1xGZ5JGKgsOPlOcclwx6gZYFRc8JWnhu7kvri5v/7QvJh5QySrtudlzjbhVIA7cbh6V3EkEjiJBYW8pt2BE8KNbGT5CMbMn5SNvz7jkYHOQKjbcowvCV7fWQXTrXVJbQ6dlmlgt3eBwyNkyAsFYEgYYAkeuOa9CtfH0FlFIviIR2gV5FjuolZoZQrYz04OMHglfmHzZOBwF1p1nbxfZIJYbeNJGgimASYpI25sDCjGXyDuOOmcAnFC3fVYLL7XOWtbyU+XHHGNxZwpL7lK5RgcFWHI+UEHjCW2hLR79aXVveQrNazxzQsMq8bhlP4irHevnDTvE9z4blfUYc2kb4S5Eb+XG8iqMMo2kEt1xzzu4GTXVQfHhEikN1oFwSrcMhKgjseVP9KadxWPZ6KKK6iAooooAKKKKAA0mBS0UAFFFFABRRRQAUUUUAFFFFABRRRQBHJCki4ZQR7141490X/hB9aXxZpaRva3UoivrJuFlznkfzOe9e01zvjLwoni7w/NpbXX2YyMrCXy9+0g+mRnjI696QHRGud8b3jWPg7U5I4nllkhMMaIMlmf5Rge2c/hXRVFPbw3MRjmjV0PYimTJXTR8nXehas4JXSb8HqcQNWcdF1lODp16v8AvQkfzr61Ogaaf+Xc/wDfbf40x/D2nMm1Y2T3DZP65rD2COiniasaapztJLuj5FjS9JdVRwUYq/H3T71NBE8citM5bHRQc5/OvqSPwNosDSNbwmFpTukMSopc+pwvNSnwhpxx8844x95f8Kl4dPQmdadrU0o+iPm+HxQ9lBHFb2iEqP8AWZG5vc59K7P4S60lx4+YzRrC9xZPFGFXG5gVbHHH3UP5V6yfBenM2WknbHTJXj9K0bDQrLT3DxKzyDgPIckD+VKlhYU5cy3OT2dRyTm7mivJzXK/EHS9J1jw/DY6xCJYZLkeWN5Vlk2PgrjqwG7jBzzkEZrrK5zxp4V/4S/R4dP+2/ZPLuFn3+VvzhWGMbhj73XPat583K+Xc6Fa+p85eI/hJqmnebdaFJ/almScw4xcJyeMdHA4yV5PPyjFefIwhmw6vuT5cZ+6Rx/P/Ir610n4f6lpvyy+JDdIPul7PDg/72/kfX86Z4i+E+jeKIy2ovtu+Nt5BEEl46buSHHGPmBIHAIrODqbSQ2l0PlhmlgjWWOSSFiuCeccg8K3XBB+nuc11Ok+Pr/SrgLHbQ3MMMewC4IOwA9VI+5wegP5kA16Gf2axxjxZgZyR/Z2fw/1vSnn9m9ZCzSeKQzEADGm7QMY7eZWjgmCkQReL9G1+1065EzaWbSQST22UiVUXONr4KEYYfKACQWypHI5bW/FEV032PS4PtSmSSKK5bfsfeeeAep/3sYJG3HJ7GH9nJoOV8WZPqdPP9Ja0I/gGqv8/iIPD5gmaH7GwV3BJGT52cYJ4BB561Hs2PmPE7u7u7x4zeCU+SfJQSDChlByuG75K5GCecHjGZreZIoFvbG4Rj92S3lYw7uP7ybNx4/HGa9hPwCnZog3izEcRJSNNO2hcnPA83A5A7dh7Yav7PFuokH/AAkCFX7GwIx+Uoq+W2wrnttFFFWSeYfHfVtR0bwJa3GmX11ZTvqCRmW2maNipjkOMqQcZA/KvnQeOvF//Q1a5/4MJf8A4qvf/wBoj/kntmB1/tOP/wBFS18xJjcN2duRnFJj6G9/wnXi/wD6GrXP/BhL/wDFUjeOvF/H/FVa5/4MJf8A4qsJsbm2525OM009RSGjof8AhOfF2P8Akatc/wDBhL/8VT4vHHi4tg+Kdb/8GEv/AMVXO0qkq3BwaCjqH8b+LPMwPFGtcf8AT/L/APFVA3jnxd5hx4p1vH/YQl/+KrC88liSOTTCckmkDOotfGvi1uW8Ua0frfy//FV9nV8LWwCwF8j0xmvumqRDCiiimIKKjllSJMs6r9TXHeKPF+o6Pq2nWmn2MM8Fykkss0jMDEI8F/lOOzLjJGSwHHGSwHa0lYur+IodH0y5v54ZmitkLyKoG7A6/wBM+n6V57rvxmtbfSft2mmKdHQNEPPjjLHOCMMd/wD4775pNAesyyxwrukkVF7ljgVy+pfEfwppF2tteaxEJi2wpGrOVPuFBIHv0rxrRdT1f4oXk1veeITYRqM+VCGVdgBJZn5zwD8ucHHbqNHxP4L8I+HfCF1YaW7XWuzqoiu5SS3yupby1XjHGMgcBuWx1Bnt2tSyRWaNG7IxkAypx2NYC3d2MD7XMQOpMhrd10Zso/8ArqP5GuOleY6pHbxuYo2jJLAjG7jjnqcZ4FbR2O/DRUoal0ancySvAl5MZEBDjzDkZ6fzH5VR1/Vr6y0m7lS8nXy4WKt55UlsYxnPHPT3rM2Sx6zI9vARIPmwZMqq7eOegyc/p14FVNQ1CK50bUotTjMkQtnkfauMKq549cdiM4PfNNNJo7ZYdct10PNpvGXiO20/Y2v6s06qxd/tshw+7kZDdgoH/Aq9T8G6nrEul3Md5qV1cNHOYopmnZiwVI1Jzn+9u/HPvXP+GPD+nWumWmtarKkdxJGG2tthQLkbQTwW6L1JHPTueui1zQxsih1OxG1dqIlxHxjoAM9Pp+VXJHJGMY6yRF4v16903wubqK+ukmlkjVCkrAglwx79Nu78q4jXPEXiKKH7KNY1GKe1EKyOl24Lny2GOD1yMn6itXXvEGlyPDdXFws0BTNlZYba5/56PtPflQGyu3cTntyETXPirWI7m3huFE12rZVSUVcYY7uTwAOvPPWtIpKLuVDlvsey6Tdaj/ZVmZ724kl8tfMYyHJOPr9a6vW8nTigkkjEh2Fo5CjAEEcEEEH6c+nNcjK5trKR0j3si/KoJyfyBP5An2PSuv1n/j0T/roP5Gud2ukc+MVrNeZxWla1e6fqh0LVb2drhy0lrO8pIuEz79GHcDIGeMAqo6IXVwf+W8v/AH0aytZ0dNZ08Qecbe4jdZba5UAtBKPusM9epBHcEjvUGha0+o20tvdLFFq1o/lXcCtwG7OuedjdVJ+nBBqtDhN77RcY/wBfJ/32aPtM/wDz3k/77NVQW3gO5Vc8dCT169vT39advUsdrA45xnPWiwyY3dxjiaU/8CNNa+mjyzXDLH6mQk/lTCM46c1Tnkjhzt/eSKOFGBzjPXoMgfmaVgNQXM5GRPIR6hzinC4nHJnkx6ljXPaLqEz6hd2NwEA/11sV6Mn3WXoOVO0nk8v1IxjI+J2qHS/CkbC6uLXzrpYvNt5vKYfI7Y3YPB2+lJger0UUVkM8j/aK/wCSf2H/AGFY/wD0VLXiOj/DHxdrthBfWGlF7SZd0cjzRpvGcZAZgf0r6Y+JGg23iHQ7K0uoWliS9Eu0MQAfLkAJwQT97+WeM1m6FapodglnIrC3DFUEbEBB2B5HToMdhnvUSlYasfOWs/DrxXoFs1xqOkSJCuS0kbrKFABJJ2EkDAPJ4/SuYI59+/tX2fex2txat9njknkJyg8w4Q9jyenHoa+ZvFnw9vdCle4sg91YEEpJwSMZyCB6DOeBgAngCpjIq3U4kYzzSnAPymnxW8s8yQwxSSSvwqINxb6AVtad4Q1rU1aSOyeOJc5aU7cH06Z/SrdhGDRX0Svwh8HXWi26i11KKcIN9zBKWZzjqVIYDPsvFeZ+PfhvN4SRr20uTcWDSbVEibZIwckBuxwByeD7VKkmUjgq++K+B/8APFffFWiZCHpWde6gI5BDEw8zq3PQVot0x6mvKPFPiOHRfFz2F1df2fdMDJbS3PMF5E5zglQfLZW3LkjkDP8AEKqO5D2OgTWpofFjadfTWojuEBs1Dnz2YAlsjpjg8nb0xWB8Vb8WPh+HULUyC6jkWINEWyqsyucgEAqTEoweeevY07uS8utRtLw2ubmNSqSwMjhlYdAQSSOfbvxVO81O9t8/abS9RR1dgkaj1OZHUelacqJcr7I7jTtah/sOw3qIZBbR7oghTYdoyNp5XHPB5+tY9y3hq1me9Ol6ek5JZpltk3EnrzjOTWFpcV9rEYlgityjAuhS5+0MwBwRtiG3Oev7ytbVfDX9kabZ6gbh5dRluIIbaRod0UDSyKgYplR/Fj+JhuGDgGjRE3kZdromnXev2thZaRBb62y3F8PLYRG2jJVAXK8ncGyMgkZIwO/oPh/wRpeiyfaHT7XfcZuZxubjGOpPIwOSSfp0rH8KXzv8UfFenXEiEW9rZiyQRgYi2sz4IHI3vk5JPI9K9A71m9zRGXr/APx4J/11H8jXC63eG0WLa5RXJyBnc2OcDj0BrutfGdPUf9NB/I1yl3YW16U86LzPLIIxkfy6j2PHtWkNj1cFJRjqefR+JLiHUWll2KCPKYW2IpCBjOPU9D7/AJCumimjvNHSXR5I5WONzn7/AD1zg59Bjjp19eI1iy8jUr6BAUiDs27ajKf4gPmXOcEcZ6+3NUtB1u60jXjOimW1lx5iKn8HHOMZz6nnoeTiuudK6TR6NV8rTS0LGt3lzpmpRsEFxdNklZI12uQcBuB1zk47YyTS3niTVJraJjOLe1uXBKxYQSDp8uDvHzAg9/QnNehzWmn6mtrd3ENpd25woMyK+S2MFcg87toxx174ArN8R+Gf7WlTyYcJDGreWMojcMAAR6cZBAGB15NSptaM5qnvyd9jlby58zRLjVIIk8xJXF0sJ8sx4XAbIAC5YZwODvI68i14Yu2XWomtWP2edFjAePO7ggk4xj2HI4Iye+r4S8OzRW99HeFZIZwVkXafnY43EqRg45B7c47YGhF4Vt9Ib7TZmeVUlDsu0SMy98EYJ+Yb/rnrnBUp30IpQUNGdRkDGAR/Dnt7j/Pr2rf8Si9/s1GsPs5lWUEpPuCuNp43DO05xzhuh45yMCM+YoOTgqCN/DY7ZBxjr3FP+KXixfB3hD+0RAZp5JhBbrxtEhRyC3IO0bTnHP8AOueWjRxYvoZU3iy306ZLfW4ZNKdvl86U74WJz92VflUHB5k2njgVyHiKz/4RnU7fxX4fFvJp1w+JsvtTcxwSH7I5xgngPtbIV3B5fw/8Wora3Eeu6fJczSlFe8YhmeMEh8gj6gAZHzHpyTYvfFngN7V5dE/tPS7y5wj28KJHC42sB50ZJiZDkE5DcfjQ2cVj1mwvodTsIr2BCYpE4Zm2lPmO4N02kN1HOCCCOCKSbXLW2uWtERp51O0pEFAGMZy2cDG7ocHg4z38Y0fxF/ZUE8E8SXFhKiO0+l3DR79gxJJ5TdXxs3KCnyjdgqWNemeG/EvhHVYre3sryGGbC+Xbzx+XJyueA33u/IznPX1Exm1crLeRAzSTJFj544AcEEY4wN5wSeVK/lUN3I8AVlQeWpBbC5w2Qeg4HJ654PuasrbXuplit41pZE/u/IVWkmI4LbmBAU4IwASQAc9qo65pV1pOmTalpF5IZLOJpXtbgh0mRQSVBxuRsZ2kEDPUYPDAz0k+x+IdH1A3zOksjW2TtKmN1AUKV45kER+hqL4vwTP4Mgmt22yW19FMpyBjhkzz7vVPWbme38PwalCkc8izRXotwNgIV93GeAFxyw9M85q78Sdc0y4+H84inhn+2GNooySpYCQNnb1wCBn0B96TYmew0UUVkM5fxxaR32nafbSxtJFJfIGAI4+V/m59Dg/h0PSsm4tNSvI7uMW0EkDgYeQMuR2G056c9hzjrkYtfE2/TT/DtrJIyqr3gQlmAA/dyHv16YxXIaXrcV1YmOQXSwwnCLaO8PHOMFWTOcdB6j8c5XuZyim3c7G2iurbTFsElBuzku8EfCDOcbTkL1wAfqM4OMXW47fTdAmubi7Q5LSO6naFcA9BnAAKtkDPT2NXDZ28awusmoMwIPzXs+AO+75zn0x6n8a8l+JnisTzy6TZr5bFh9pdQFY7eAGI6nv+WOME5O7djWMEtibwQLDXG1eOwVLd5Loyyog/ePH8pB5HCkg/LyAfqM99Y2EOnXiLFaQJF5ZlmnlwJFjAPDd8fKOSAMHp1NeA+HLma01hfJd1aQEDaSDwQeMEYPccjmvfNLu7tT9slaGeeSAQGRnMbqN5Y4YZXA3cDZk4GWNXbUmatsaSatDBEk1hcW6W7sys24KQcklgpyCSc5475yc1B4x0KLxHoDx37SzxqgIijC8OP+Wg4zuAJ7kcHIPNXHGlC1Mh0uWAxyjLyQCYyjOSwEZZu/cDHoASafNDbaktndSBU8gq6RbJFZCMHjcFI/75HAGRSdkEOdK71PmzxR4Kv/DYFxkT2jEYmUYKk/3h/Ijg+2cD7QYkLkV85/EjxDp9tFe2QjEjTRPGtuQdxJB/ecjG1eCCM8gY7lfo2tIO6Kfoc14zv9dsNE87QrBryXePNEeDIseCSyKfvHIXjuCcc188+LLC81UL4hvbTUoLeEiOW9mt2kLENt5GcDDHHzMuQRgHGK+q8Vz3jnRP+Ei8D6zpSwedLPav5Me7bmVRuj5/3wv9eKsRi/CWeS7+H2nT+but/wB4kCfKSqK5XDEAZOVY5wOG9s1T+Nek/wBo/DPUXWNpJbRkukUdtrAMT/wAtWJ+zvqX2jwZf6e8xeS0vWIQnOxHVSPzYPXpviLThq3h/UNNLiMXdtJb7yPu71K5/WmB5f8AAHUPtXg2aBwP9FvXVBnOAwDZ/NmrtPiCCvg/ULiM4ktEF7H7tCwlUfmn6145+z9fCDVtXsHcq7pHIqHttJDcf8CWvbfFN3p9t4fu5dUliisREyTtI3GDwR6nOcYHcjHNMk5q2Bt/jrBcmP5L3QXhDqOrLMrEn8No/KvSwa8w+Gt43ia/t9VBMkWk6eNOknYAie5cRPLtOc4TYozj5vM4JAyfUKTGjL14ZsY+QP3o6/Q1zTj5TzkHt2NdLr3/AB4p/wBdR/I1zLyIhClhvOSBnritYao9LDfwzkvGdlaRwjUWnkhuNyhShAU+hPQ9AwznuK8+LwOWieaVDIMkbAAxxgncecHjB579a7zxsGVLWQFljG8bjlQpOOT/AJ7etef2Gny6nq8EceEiY/PgHk7sHnGcYPfsG6fdrtpv3LnqrSkjXtfFGoaLFBpiMbjyZDLJtxu2AH5eRxzznHPODmtM/Ea5WKZoNMWOKNW/10j79/Ixkj5jwPzFZN7CkFtfl1ZfL1Bba1wMBUUYyOOOGBJHXOcZrNMUF+qSmNfOQ7g/que/vwfxHTmmoRkrmcI8+q3Oy0L4gWTL5dzbSRAMS8hJbGSfr/PvXbWd9bahAs9tOs0YOQynp9eBzXjTWJR/MVzkHryrHnoTnP8AXoDnrXZeDtIvor5L4CNLR927gAvxjkD3GaidJJXuXPDpRbkzvc7hkEFawvj9PDbeBbCSe2WdP7UjGxiR/wAspeRjv9c1vDPBCj65rS8caHpGv6LDba3AJrWK4EwUysgDBWGcqQTwTxXHNao8bF9D4/0/SdZ8T38i2FlPdzMxaRkHCk/3mPA/E16jo/wIklt1l1nVDFMT80NsA23npuPX8vzr1jTFW2iaC0iggsI8JbxRQ7BGBkNnnB+YHsO/Xqbckvl7eHeRh97aCPbP48fjQo3OK9tWeP3fwetbO8jbSdYuIpIvmHmqku49sLxwSGBDZ69+lZeqeHtZ03SotNt0SdhIW/sy6iSRIQwyfKZslQcMQQ2cCQdY2ZvX7N1jjScQRxLKzgSGQSFsO2MHJyDkkc8cjA4zj+LmtZtNMk0gh1OIbrdy20kjDbC3TnaCOu0gMAStDjbyGmnsZfhW/sNP0+0lbxFd6RPHEDdWOqA+QZMbfkMmBtypwEfnGOMGtmL4keHdQnutN/tC0aXDIrJIWRwSFUcqCzNk8KGAxye9ZCXsupaZBqV2vlo+IJHkwMMHG5dpB2E45X2GGYfPXP65oHhlFg+22tujSMdrIrgYwAR8uDgfLjr9Bmleyuyo05TklFXZ1OrI0c0MV1ArBsCJUQHzAcK3GOQBzxjIAOARzx7aFYadqj6nq8BueNzWx5UdwScHcGI7YGCwyQeKuiXkNlObHTr3UfsfSO0ursLFMCeRgjbGeQevOCOMim6vf2Omlr3XZVvtTV3UadD/AKuMbQcOTjaBkr/e4xwBUKalszavhatB8tRWPqOiiikc55P+0FuHgKxZc5GpxnIHT91LXmngvXdO+yrb3euXlhOsexi8RmQMCcFdpyvbquOOp616b+0AwXwHY7gCDqcYOf8ArlL7GvnRJ0+VW3bV+6vp+tRJ9DWNJTR6T4m8eyWFu1to+ry3kzN81y8GxFXGPlVmZs9PQDPfIx5rJM9xI0szs7sdzM5yST1NWw1pK67ygwMYAx/UfzqaPTraZWeK4jLKCRGu8n9Aw/Ws9DRUrbGarGORZY22yIQyt6H1r0DSPGVyLaOSS2MaE4WcFiokB+6oBwcnB7da5aTw1crDGUeOaSXiKOCWKVifQhX3A/8AAas2kuveErhljE1tLKmJIXiIBGO4lXafyNUmRUpOSPYNJ8R2wtgPtFuIwoOIgz87iDjuT/s4yOCQMjNDxh49t9JtHitXjmupAQiK2SPdvTnt/Pt5prPi2+1S3Ft9jsoCq5Z7O2QO3QklxkqT324HtXMiJ2RmIPy9flP6fpQ9TOFLl3Kmp3d3fXst3dyvLLMdzOec/wD6q+7q+Fbk+WgKEkj7wP8AhX3VWiE9wpG6UtFMR5lq/h3WfB3iS/8AFnhOzW+hv1LalpIba0jjJEsTd2yT8uCTuOOSNuPqfx6sbOOa2fw3q66nEQslrMFRUPcFwWI7/wAPavZcCk2r6D8qAPjHTtf1s+M7zU/DkAs7+9kk22tvH5hIZtxVVYNzkDt9B2rv7H4Z+OvH95Fd+KtQns7HO/bdMfMUHdwkIwEOVGeF4OeelfR+AOwpcU7isZmg6JZeHdGtdI06Py7W1j2ICck85LE+pJJPuTWnRgelFIZl69/x4p1/1g6A+hryHV764uNZnR4zmM/6NIDgxtjpxjjcpzn1HX+H1TxddrZaMsrFf9aAAzYBOD35/kfpXi80bCSa5SNnSWVpPmUOG3ElhwAcEcbuCS2M4ANduHVo8zPYy+F4XsdZfu2rWlvYLGBcXOCXK5WIAKWI6E8MB269RTNJ8N2WhyGVnWSXhY5GULtHXjOeevP1985dxr81hYJHgyTxAoJTE+OABuyAQSck4yOCcmsieRnAnuIZ7sEkmQy8J0H/ACz6DIJ5P41UYykmnsdjhPlcVsP8fmWS9APEMaKQwwQwJ6n06tz7VQ0HR5bnUreJIMIrjcE5CoAMknsfkwD7V2mo6LZ3K6RaTqd7koOrF41UsQTycenPetzTdHtNMRktIBEGO5myWJxzyTzx2Huap1FGIvaQhG63GQaNp9tc/aYbWOOVh1UcfgOgPHUetaC4QYAx6c1Xur61so91zcxQBuQCwGecfjz/ACpljqVrfxmazuY51xyUbP49sD8KwtJ6s5m5PVlxR/eA/Cug8QyxRWMQlmji3yhFMjABmIOAPf6Z+lYBboQAfp0p3xQ0u71bwbNDZLA06M0ipNAsu/EbjaoYHDHOARzWUt1Y4MX0sc5NqFsmqvaWWp2xm3nzmmuP3lsxKqsQTqCWyRnuQDneM8P4g1e7u7uS2nmkMVvIy4ZslmBI3HAAz16YGOgxXk41ONngeS2XfGMNIAOSDkNjoGPQnkH0zzWtD4u8s+XLbKYhgII2I8tMcLg8nAAHXPuetehl2Io0qjlVR5WKp1JxSgzv9I1n+x2upnl2RNbu2TjG5VLJweM5AH0Y+tQWya34wmlu7aMtZrKUaeVtiODjrkkgAxg7FzkN2H3vPtR8Ry6jGLaOIRRscsWPLY/kM8/1r0r4c+KLV7EaRcSwwXCtutyZMefk/j83I4z/ACrzuIMeoxdXDxvb+r2NsvoSUeSoyWLR/FOgW+o3cd1p7wShZJ7bLFcpgiRdwHzDABBwrDg9qyNYxq1vFcaZbTSW8ckpeQDhjlc4P8XzbuRx6Y5r02WeBdkEhVvNyioFLZ45yOSAB1JwAO4ry/X/ABbaG6FzaXymCB8W0UOAFOBluOg/qB2zXgZTja+NhKFZW63tp6HrKawlWNWGtjn8Yx3z0/p+tMvda2M5PlzXqbUE7FTsUKABuIPYgcYK7Md8DD1K/S8uWk86fbIxyg4Gf8n/ADmqCRyXc6W9uju7thIlG4sx6AAdycCvWpUOR7nTmearFw5IxskfeVFFFaniHJ/EHwWfHWgwaYNR+weVdLceZ5AlzhXXbjcP7+c57V5v/wAM5jv4pH4adj/2rXulFKyGpNbHhf8AwzkgbK+KSPrYZ/8AalPH7O5Gf+Kq/wDKf/8AbK9xopciK9pJdTxUfAKdYREPF8gQHIUWOAD9PMp6fAe6ifdF4uMZ9U04KfzEma9noo5EP2s+54u3wEkdiX8UK5bqX0/cT+JlNMP7PqkHHiXBPcWPP/oyva6KOVB7SXc8Nl/Z181Cp8Vde50/JH/kWvcqKKaViG7hRRRTEFFFFABRRRQAUUUUAZHiHQk8QWEVq8oj8uUSglN4yAR0yP71ctD8MQl59ol1ffxtKLahQFwRgDccda9AorRVZqPKnodFPFVqceWDsvkeen4WW/niZdQVJByHW2+bOAOfm5HGMVai+G9vb3a3UN9sk2bGTyMxt6kjdn1713FFNVppWuU8bXe8vyOXfwpdmEGPVIkuQxxKLTIK7cYK789cHqKoX3gnWLuxlhi8SrazShVaSKyOABvztBk+UncvIOfl9+O3orOUnJ3ZH1mr3POL74VyXhtydefMMXlBnhcscksTlZF/iZj6Y2jtk6WgfD1NCinA1WW5lm275JIlHTOMYPuepNdrRWjrTatcPrNW1rmJ/wAI/wDNk3Of+2f/ANetG+s/tsCx+Zsw27OM54Ix+tWqKzcmzOdSU/iPG/FPwBtPEGuTalaa5/Z/n/PLELPzAXPVh864z/PmsX/hmf8A6m7/AMpv/wBtr36ii7IPAR+zOR08Xf8AlN/+21Mn7OEsUiyx+MWWZSGWQaedykdCD5vB4Fe8UUnqFzx7UvgnqWqMZJ/FtuJnh8mWZdGQSSDuS3mZBI4JGMjg1hn9mjJz/wAJdz/2Df8A7bXvtFKKUVZDbbPAh+zRg5/4S7P103/7bXceDvhBpHhBRPHP9r1HnN3LDgrkYwgydoxnuTyeccV6LRVXEFFFFIAttCQAsiQotwsxujAwSy0JzgD/2QoK'img_data = base64.b64decode(url) 返回的是二进制数据print(type(img_data))fn = open('code.png','wb')fn.write(img_data)fn.close()'''我们打开了一个有base64加密的图片数据''' 本篇文章为转载内容。原文链接:https://blog.csdn.net/httpsssss/article/details/116136614。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-01 12:40:55
563
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
mv oldfile newfile
- 文件重命名或移动。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"