前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[Apache Hive数据类型匹配错误修...]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
c++
...中,类是一种自定义的数据类型,它封装了数据(称为成员变量或属性)和操作这些数据的函数(称为成员函数或方法)。下面是一个简单的“矩形”类的定义: cpp // 定义Rectangle类 class Rectangle { public: // 成员变量(属性) double length; double width; // 成员函数(方法) // 构造函数 Rectangle(double l, double w) : length(l), width(w) {} // 计算面积的方法 double getArea() { return length width; } }; 在这段代码中,“Rectangle”就是一个类,其包含两个公开的成员变量length和width,以及一个构造函数和一个计算面积的成员函数getArea()。构造函数用于初始化对象时设置矩形的长和宽。 3. 创建类的实例 从抽象到具体 定义好类之后,我们就可以创建该类的实例,也就是通常所说的对象。这就像从图纸上构建一个真实的矩形: cpp int main() { // 创建一个Rectangle类的对象 Rectangle myRect(5.0, 4.0); // 使用对象调用成员函数 double area = myRect.getArea(); std::cout << "The area of the rectangle is: " << area << std::endl; return 0; } 在这个例子中,myRect就是Rectangle类的一个实例,拥有长度5.0和宽度4.0的属性。通过.getArea()我们就能获取这个矩形的面积。 4. 类中的访问控制与封装 C++支持对类成员的访问权限进行控制,主要分为public、private和protected三种。比方说,在上面的例子中,我们把成员变量和成员函数都设置成了“public”,这就意味着它们完全对外开放,任何人在类的外部都能直接访问到这些内容,就像你去超市货架上拿东西一样方便。然而在实际开发中,我们往往需要隐藏内部实现细节,仅对外提供接口,这时就可以将数据成员设为private: cpp class Rectangle { private: double length; double width; public: // ... }; 此时,尽管外部无法直接访问length和width,但可以通过公共成员函数来间接操作。 5. 探讨 深入理解类的作用 类的引入极大地丰富了C++的表达力,使代码更易于维护和复用。通过定义类,我们可以将现实世界的实体抽象成软件模型,每个对象都是类的具象表现,有着自己的状态和行为。同时,通过封装,我们保证了数据的安全性,使得代码更加健壮。 总结来说,理解和掌握在C++中定义和使用类是提升面向对象编程能力的关键一步。实践出真知,不断地尝试编写并调试各类场景下的类,将有助于深化你对此的理解,并助你在C++的编程之路上越走越远!
2023-01-30 11:25:06
846
灵动之光
Saiku
在数据分析的世界中,日期格式的处理与转换不仅仅局限于Saiku这一工具。事实上,许多其他流行的数据分析和商业智能软件如Tableau、Power BI和Excel等也都提供了强大的日期格式自定义功能。例如,Excel中的“TEXT”函数可以将日期格式转换为用户所需的任何样式,而Tableau则允许用户在数据源或工作表级别调整日期格式以满足不同可视化需求。 近期,随着大数据和实时分析需求的增长,正确处理日期时间格式的重要性愈发凸显。2021年,Apache Druid宣布对其日期时间处理引擎进行了重大升级,大幅提升了对复杂日期格式的支持以及跨时区查询性能,这充分体现了业界对于精确日期时间管理的高度重视。 此外,在进行跨国或跨地区数据分析时,还需考虑国际日期格式差异及各地区的日期习惯。例如,美国通常使用“MM/dd/yyyy”,而在欧洲许多国家则倾向于“dd/MM/yyyy”。因此,掌握并灵活应用各种工具进行日期格式转换,是现代数据分析师必备的重要技能之一。 深入理解日期格式的标准化和规范化不仅有助于提高数据分析效率,还能有效避免因日期误解而导致的重大决策失误。对于企业而言,建立统一的日期格式标准并确保其在各类系统和工具中的一致性,已成为提升数据治理水平的关键一环。
2023-08-28 23:56:56
67
柳暗花明又一村-t
Struts2
...-控制器)框架,基于Apache软件基金会管理。在Struts2架构中,它通过拦截器栈对用户请求进行解析、分发和处理,并将请求映射到相应的Action类的方法上执行业务逻辑,然后根据Action方法返回的结果字符串决定下一步的视图跳转或其他操作。 Action , 在Struts2框架中,Action是一个核心概念,通常表现为一个实现了特定接口或继承了预定义基类(如ActionSupport)的Java类。Action负责接收并处理用户的HTTP请求,执行相应的业务逻辑,并返回一个字符串结果,该结果指示框架如何进一步响应,例如跳转至哪个页面或者渲染哪个视图资源。 结果映射(Result Mapping) , 在Struts2框架中,结果映射是指配置文件(如struts.xml)中预先定义好的一种规则,用于指定当Action方法返回特定字符串时,应该如何进行后续处理,比如转发至某个JSP页面、重定向到其他URL或是调用某个插件进行输出等。如果Action方法返回null或空字符串且未明确配置对应的结果映射,则Struts2会尝试查找并应用默认的结果映射进行处理。
2023-10-30 09:31:04
94
清风徐来
Go Iris
表单数据提交失败——探索Go Iris中的那些坑 嘿,大家好!今天我们要聊的是一个让很多开发者头疼的问题——表单数据提交失败。这不仅是一个技术问题,更是一次与代码的斗智斗勇之旅。我将通过这次经历来分享一些实用的解决方案和技巧,希望能帮助你在Go Iris框架中解决这个常见问题。 1. 初识Go Iris 首先,让我们简单回顾一下Go Iris。Go Iris是一个用Go语言写的Web框架,它给了开发者一套简单又强大的工具,让你能轻松搞定高性能的网站。不过,就像任何其他框架一样,它也有自己的特性和陷阱。今天,我们就聚焦于表单数据提交失败这个问题。 2. 数据提交失败的原因分析 在开始之前,我们先要了解数据提交失败可能的原因。通常,这类问题可以归结为以下几点: - 前端表单配置错误:比如表单字段名不匹配、缺少必要的字段等。 - 后端验证逻辑错误:如忘记添加验证规则、验证规则设置不当等。 - 编码问题:比如表单编码类型(Content-Type)设置错误。 接下来,我们将逐一排查这些问题,并给出相应的解决方案。 3. 前端表单配置错误 示例1:表单字段名不匹配 假设我们在前端表单中定义了一个名为username的输入框,但在后端接收时却命名为user_name。这种情况会导致数据提交失败。我们需要确保前后端字段名称一致。 html Submit go // 后端处理 import ( "github.com/kataras/iris/v12" ) func submit(ctx iris.Context) { var form struct { Username string validate:"required" } if err := ctx.ReadForm(&form); err != nil { ctx.StatusCode(iris.StatusBadRequest) ctx.JSON(map[string]string{"error": "Invalid form data"}) return } // 处理表单数据... } 在这个例子中,我们需要确保name="username"与结构体中的字段名一致。 示例2:缺少必要字段 如果表单缺少了必要的字段,同样会导致数据提交失败。例如,如果我们需要email字段,但表单中没有包含它。 html Submit go // 后端处理 import ( "github.com/kataras/iris/v12" ) func submit(ctx iris.Context) { var form struct { Username string validate:"required" Email string validate:"required,email" } if err := ctx.ReadForm(&form); err != nil { ctx.StatusCode(iris.StatusBadRequest) ctx.JSON(map[string]string{"error": "Missing required fields"}) return } // 处理表单数据... } 在这个例子中,我们需要确保所有必要字段都存在于表单中,并且在后端正确地进行了验证。 4. 后端验证逻辑错误 示例3:忘记添加验证规则 有时候,我们可能会忘记给某个字段添加验证规则,导致数据提交失败。比如说,我们忘了给password字段加上最小长度的限制。 html Submit go // 后端处理 import ( "github.com/kataras/iris/v12" "github.com/asaskevich/govalidator" ) func submit(ctx iris.Context) { var form struct { Username string valid:"required" Password string valid:"required" } if _, err := govalidator.ValidateStruct(form); err != nil { ctx.StatusCode(iris.StatusBadRequest) ctx.JSON(map[string]string{"error": "Validation failed: " + err.Error()}) return } // 处理表单数据... } 在这个例子中,我们需要确保所有字段都有适当的验证规则,并且在后端正确地进行了验证。 示例4:验证规则设置不当 验证规则设置不当也会导致数据提交失败。比如,我们本来把minlen设成了6,但其实得要8位以上的密码才安全。 html Submit go // 后端处理 import ( "github.com/kataras/iris/v12" "github.com/asaskevich/govalidator" ) func submit(ctx iris.Context) { var form struct { Username string valid:"required" Password string valid:"minlen=8" } if _, err := govalidator.ValidateStruct(form); err != nil { ctx.StatusCode(iris.StatusBadRequest) ctx.JSON(map[string]string{"error": "Validation failed: " + err.Error()}) return } // 处理表单数据... } 在这个例子中,我们需要确保验证规则设置得当,并且在后端正确地进行了验证。 5. 编码问题 示例5:Content-Type 设置错误 如果表单的Content-Type设置错误,也会导致数据提交失败。例如,如果我们使用application/json而不是application/x-www-form-urlencoded。 html Submit go // 后端处理 import ( "github.com/kataras/iris/v12" ) func submit(ctx iris.Context) { var form struct { Username string validate:"required" Password string validate:"required" } if err := ctx.ReadJSON(&form); err != nil { ctx.StatusCode(iris.StatusBadRequest) ctx.JSON(map[string]string{"error": "Invalid JSON data"}) return } // 处理表单数据... } 在这个例子中,我们需要确保Content-Type设置正确,并且在后端正确地读取了数据。 6. 结论 通过以上几个示例,我们可以看到,解决表单数据提交失败的问题需要从多个角度进行排查。不管是前端的表单设置、后端的验证规则还是代码里的小毛病,咱们都得仔仔细细地检查和调整才行。希望这些示例能帮助你更好地理解和解决这个问题。如果你还有其他问题或者发现新的解决方案,欢迎在评论区交流! 最后,我想说的是,编程之路充满了挑战和乐趣。每一次解决问题的过程都是成长的机会。希望这篇文章能给你带来一些启发和帮助!
2025-03-04 16:13:10
51
岁月静好
Struts2
...要与时俱进。 近期,Apache Struts社区发布了Struts 2.5版本的重要更新,其中包含了对Interceptor异常处理机制的优化改进,允许开发者更加精细地控制异常流,并提供了更强大的全局异常配置选项。例如,新增了基于注解的异常处理方式,开发者可以直接在Action类的方法上声明预期处理的异常类型,进而映射到特定的结果视图,极大地提升了代码的可读性和维护性。 此外,针对近年来Web安全问题频发的情况,专家建议在设计Interceptor时应充分考虑安全性因素,如对输入参数进行严格过滤、防止恶意攻击等。一些第三方安全框架也提供了与Struts2集成的Interceptor实现,通过这些安全组件,开发者可以更高效地构建出健壮且安全的Web应用。 总之,掌握Struts2 Interceptor异常处理机制是Java Web开发人员的基本素养,而关注框架的最新动态并结合实际应用场景灵活运用,则有助于我们在应对复杂系统异常情况时更为得心应手,从而确保系统的稳定运行和用户数据的安全。
2023-03-08 09:54:25
159
风中飘零
Hadoop
一、引言 在当今大数据时代,图像数据已经成为信息海洋中不可或缺的一部分,无论是社交网络上的图片分享,还是医疗影像分析,都对处理能力提出了极高的要求。你知道吗,这时候Hadoop就像个超级能干的小伙伴,它那分布式的大脑和海量的存储空间,简直就是处理那些数据海洋的救星,让我们的工作变得又快又顺溜,轻松应对那些看似没完没了的数据挑战。让我们一起深入了解一下如何利用Hadoop来处理大量图像数据。 二、Hadoop简介 Hadoop,源自Apache项目,是一个用于处理大规模数据集的并行计算框架。它由两个核心组件——Hadoop Distributed File System (HDFS) 和 MapReduce 构成。HDFS就像个超级能吃的硬盘大胃王,不管数据量多大,都能嗖嗖嗖地读写,而且就算有点小闪失,它也能自我修复,超级可靠。而MapReduce这家伙,就是那种能把大任务拆成一小块一小块的,然后召集一堆电脑小分队,一块儿并肩作战,最后把所有答案汇总起来的聪明工头。 三、Hadoop与图像数据处理 1. 数据采集与存储 首先,我们需要将大量的图像数据上传到HDFS。你可以轻松地用一个酷酷的命令,就像在玩电脑游戏一样,输入"hadoop fs -put",就能把东西上传到Hadoop里头,操作简单得跟复制粘贴似的!例如: shell hadoop fs -put /local/images/ /user/hadoop/images/ 这里,/local/images/是本地文件夹,/user/hadoop/images/是HDFS中的目标目录。 2. 图像预处理 在处理图像数据前,可能需要进行一些预处理,如压缩、格式转换等。Hadoop的Pig或Hive可以方便地编写SQL-like查询来操作这些数据,如下所示: sql A = LOAD '/user/hadoop/images' USING PigStorage(':'); B = FILTER A BY size(A) > 1000; // 过滤出大于1MB的图像 STORE B INTO '/user/hadoop/preprocessed'; 3. 特征提取与分析 使用Hadoop的MapReduce,我们可以并行计算每个图像的特征,如颜色直方图、纹理特征等。以下是一个简单的MapReduce任务示例: java public class ImageFeatureMapper extends Mapper { @Override protected void map(LongWritable key, Text value, Context context) { // 图像处理逻辑,生成特征值 int[] feature = processImage(value.toString()); context.write(new Text(featureToString(feature)), new IntWritable(1)); } } public class ImageFeatureReducer extends Reducer { @Override protected void reduce(Text key, Iterable values, Context context) { int sum = 0; for (IntWritable val : values) { sum += val.get(); } context.write(key, new IntWritable(sum)); } } 4. 结果聚合与可视化 最后,我们将所有图像的特征值汇总,进行统计分析,甚至可以进一步使用Hadoop的Mahout库进行聚类或分类。例如,计算平均颜色直方图: java final ReduceTask reducer = job.getReducer(); reducer.setNumReduceTasks(1); 然后,用Matplotlib这样的可视化库,将结果呈现出来,便于理解和解读。 四、总结与展望 Hadoop凭借其出色的性能和易用性,为我们处理大量图像数据提供了有力支持。你知道吗,随着深度学习这家伙越来越火,Hadoop这老伙计可能得找个新拍档,比如Spark,才能一起搞定那些高难度的图片数据分析任务,毕竟单打独斗有点力不从心了。不过呢,Hadoop这家伙绝对是咱们面对海量数据时的首选英雄,特别是在刚开始那会儿,简直就是数据难题的救星,让咱们在信息的汪洋大海里也能轻松应对,游得畅快。
2024-04-03 10:56:59
439
时光倒流
Impala
一、引言 在大数据处理领域,Impala无疑是一颗璀璨的新星。这个项目可是Apache基金会亲儿子,开源的!它那高性能的SQL查询功能可厉害了,让数据分析师们的工作效率蹭蹭往上涨,简直像是给他们装上了翅膀,飞速前进啊!不过,虽然Impala这家伙功能确实够硬核,但对不少用户来讲,怎样才能把数据又快又好地搬进去、搬出来,还真是个挺让人头疼的问题呢。本文将详细介绍Impala的数据导入和导出技巧。 二、Impala数据导入与导出的基本步骤 1. 数据导入 首先,我们需要准备一份CSV文件或者其他支持的文件类型。然后,我们可以使用以下命令将其导入到Impala中: sql CREATE TABLE my_table (my_column string); LOAD DATA LOCAL INPATH '/path/to/my_file.csv' INTO TABLE my_table; 这个命令会创建一个新的表my_table,并将/path/to/my_file.csv中的内容加载到这个表中。 2. 数据导出 要从Impala中导出数据,我们可以使用以下命令: sql COPY my_table TO '/path/to/my_file.csv' WITH CREDENTIALS 'impala_user:my_password'; 这个命令会将my_table中的所有数据导出到/path/to/my_file.csv中。 三、提高数据导入与导出效率的方法 1. 使用HDFS压缩文件 如果你的数据文件很大,你可以考虑在上传到Impala之前对其进行压缩。这可以显著减少传输时间,并降低对网络带宽的需求。 bash hadoop fs -copyFromLocal -f /path/to/my_large_file.csv /tmp/ hadoop fs -distcp /tmp/my_large_file.csv /user/hive/warehouse/my_database.db/my_large_file.csv.gz 然后,你可以在Impala中使用以下命令来加载这个压缩文件: sql CREATE TABLE my_table (my_column string); LOAD DATA LOCAL INPATH '/user/hive/warehouse/my_database.db/my_large_file.csv.gz' INTO TABLE my_table; 2. 利用Impala的分区功能 如果可能的话,你可以考虑使用Impala的分区功能。这样一来,你就可以把那个超大的表格拆分成几个小块儿,这样就能嗖嗖地提升数据导入导出的速度啦! sql CREATE TABLE my_table ( my_column string, year int, month int, day int) PARTITIONED BY (year, month, day); INSERT OVERWRITE TABLE my_table PARTITION(year=2021, month=5, day=3) SELECT FROM my_old_table; 四、结论 通过上述方法,你应该能够更有效地进行Impala数据的导入和导出。甭管你是刚入门的小白,还是身经百战的老司机,只要肯花点时间学一学、练一练,这些技巧你都能轻轻松松拿下。记住,技术不是目的,而是手段。真正的价值在于如何利用这些工具来解决问题,提升工作效率。
2023-10-21 15:37:24
511
梦幻星空-t
Datax
在大数据领域,Datax作为阿里云开源的数据同步工具,因其高效稳定的数据迁移能力广受业界认可。然而,在实际运维过程中,类似“读取HDFS文件时NameNode联系不上”的问题并非孤立事件。随着分布式存储和计算技术的不断发展,如何确保关键服务如NameNode的高可用性成为大数据从业者关注的重点。 近期,Apache Hadoop社区发布了最新的3.3.x版本,对HDFS的稳定性及容错性进行了显著提升,包括改进NameNode的故障切换机制、优化网络通信协议等,从而降低此类连接失败的风险。此外,对于复杂网络环境下的防火墙策略配置,有专家建议采用SDN(Software-Defined Networking)技术进行智能管理,以自动适应不同服务间的端口需求,避免因人为误配导致的服务中断。 同时,针对大规模数据迁移场景下的挑战,业内研究者正积极探索基于容器化和Kubernetes编排技术的新一代数据同步解决方案,旨在通过灵活调度和资源优化进一步提高Datax等工具的性能表现和容错能力。这些前沿动态和实践经验为我们解决类似Datax与HDFS交互中出现的问题提供了新的思路和方法论,值得广大技术人员深入学习和借鉴。
2023-02-22 13:53:57
551
初心未变-t
Hadoop
...的分布式计算框架,由Apache基金会开发,主要用于处理和存储海量数据。在大数据领域中,Hadoop通过其核心组件HDFS(Hadoop Distributed File System)提供高容错性、高扩展性的分布式文件系统,以及MapReduce编程模型进行大规模数据处理。 HDFS (Hadoop Distributed File System) , 作为Hadoop的核心组件之一,HDFS是一种设计用于在商用硬件集群上运行的应用程序的数据存储系统。它将大文件分割成多个块,并将这些块分布在整个集群的节点上,从而实现数据的分布式存储与访问,提供高容错性和高吞吐量的数据服务。 差异备份 , 差异备份是数据备份策略的一种,只针对自上次完全备份或增量备份以来发生改变的数据进行备份,而不是备份所有数据。在Hadoop环境中,可以使用如Hadoop DistCp等工具来执行差异备份操作,以减少备份所需的时间和存储空间,提高备份效率。 Hadoop DistCp , DistCp是Hadoop提供的一个工具,全称为Distributed Copy,用于在Hadoop集群内部或跨集群之间高效地复制大量数据。该工具能够并行地从源目录复制数据到目标目录,并支持各种复制策略,包括完全备份和差异备份,以满足不同的数据迁移和备份需求。 点对点恢复 , 在Hadoop中,点对点恢复是指直接从原始数据存储位置进行数据恢复的过程,无需经过其他中间环节。例如,使用Hadoop fsck工具检查并修复HDFS中的数据错误,一旦发现损坏或丢失的块,可以直接从其他副本节点获取数据进行恢复,适用于单个节点故障情况下的快速恢复。
2023-09-08 08:01:47
400
时光倒流-t
Dubbo
...并处理,然后返回响应数据。 5. 客户端接收到响应数据后,整个服务调用链路结束。 三、服务调用链路断裂原因分析 当 Dubbo 服务调用链路发生断裂时,通常可能是以下几个原因导致的: 1. 网络中断 例如服务器故障、网络波动等。 2. 服务不可用 提供者服务未正常运行,或者服务注册到注册中心失败。 3. 调用超时 例如客户端设置的调用超时时间过短,或者提供者处理时间过长。 4. 编码错误 例如序列化/反序列化错误,或者其他逻辑错误。 四、案例分析 Dubbo 服务调用链路断裂实践 接下来,我们将通过一个具体的 Dubbo 实现示例,看看如何解决服务调用链路断裂的问题。 java // 创建 Dubbo 配置对象 Configuration config = new Configuration(); config.setApplication("application"); config.setRegistry("zookeeper://localhost:2181"); config.setProtocol("dubbo"); // 创建消费者配置 ReferenceConfig consumerConfig = new ReferenceConfig<>(); consumerConfig.setInterface(HelloService.class); consumerConfig.setVersion("1.0.0"); consumerConfig.setUrl(config.toString()); // 获取 HelloService 实例 HelloService helloService = consumerConfig.get(); // 使用实例调用服务 String response = helloService.sayHello("world"); System.out.println(response); // 输出 "Hello world" 五、故障排查与解决方案 当 Dubbo 服务调用链路发生断裂时,我们可以采取以下措施进行排查和修复: 1. 查看日志 通过查看 Dubbo 相关的日志,可以帮助我们了解服务调用链路的具体情况,如异常信息、执行顺序等。 2. 使用调试工具 例如 JVisualVM 或 Visual Studio Code,可以实时监控服务的运行状态,帮助我们找到可能存在的问题。 3. 手动复现问题 如果无法自动复现问题,可以尝试手动模拟相关环境和条件,以获取更准确的信息。 4. 优化服务配置 针对已知问题,可以调整 Dubbo 配置,如增大调用超时时间、优化服务启动方式等。 六、结论 在实际使用 Dubbo 的过程中,服务调用链路断裂是常见的问题。通过实实在在地深挖问题的根源,再结合实际场景中的典型案例动手实践一下,咱们就能更接地气、更透彻地理解 Dubbo 是怎么运作的。这样一来,碰到服务调用链路断掉的问题时,咱就能轻松应对,把它给妥妥地解决了。希望本文能够对你有所帮助,期待你的留言和分享!
2023-06-08 11:39:45
490
晚秋落叶-t
Go Gin
...其中最常见的一种就是数据库插入异常。这种异常情况,可能是因为数据有重复啦、字段类型对不上茬儿,或者干脆就是网络连接闹了小脾气,这些原因都有可能导致这个问题出现。在这篇文章里,咱们打算手把手带你通过一个实际的场景案例,来摸清楚怎么用Go Gin框架巧妙地应对这种类型的异常情况,让你学得轻松又有趣。 二、案例分析 假设我们正在开发一个在线商店系统,用户可以在这个系统中注册账户并进行购物。在这个过程中,我们需要将用户的信息插入到数据库中。如果用户输入的数据有偏差,或者数据库连接闹起了小情绪,我们得赶紧把这些意外状况给捉住,然后给用户回个既友好又贴心的错误提示。 三、代码示例 首先,我们需要引入必要的包: go import ( "fmt" "github.com/gin-gonic/gin" ) 然后,我们可以定义一个路由来处理用户的注册请求: go func register(c gin.Context) { var user User if err := c.ShouldBindJSON(&user); err != nil { c.JSON(http.StatusBadRequest, gin.H{"error": err.Error()}) return } // 这里省略了数据库操作的具体代码 } 在这个函数中,我们首先使用ShouldBindJSON方法解析用户提交的JSON数据。这个方法会检查数据是否符合我们的结构体,并且可以自动处理一些常见的错误,比如字段不存在、字段类型不匹配等。 如果解析成功,那么我们就可以继续执行数据库操作。否则,我们就直接返回一个HTTP 400响应,告诉用户数据无效。 四、结论 通过以上的内容,我们已经了解了如何使用Go Gin框架来处理数据库插入异常。虽然这只是个小小例子,不过它可真能帮咱摸透异常处理那些最基本的道理和关键技术点。 在实际开发中,我们可能还需要处理更多复杂的异常情况,比如并发冲突、事务回滚等。为了更好地对付这些难题,我们得时刻保持学习新技能、掌握新工具的热情,而且啊,咱还得持续地给我们的代码“动手术”,让它更加精炼高效。只有这样,我们才能写出高质量、高效率的程序,为用户提供更好的服务。
2023-05-17 12:57:54
470
人生如戏-t
Lua
...们日常编程中用来存储数据的table,而是一种特殊的元表结构,它为Lua中的原始数据类型提供了扩展功能的能力。当你打算对一个table动手做点什么操作的时候,Lua这个小机灵鬼会先翻一翻这个table的metatable(可以理解为table的“使用说明书”),瞧瞧里面有没有针对这种操作的一些特殊处理手段。 (2.1)示例一: lua -- 创建一个空metatable local mt = {} mt.__add = function (t1, t2) return "Tables cannot be added, but I'm here!" end -- 为一个table关联上metatable local t = {} setmetatable(t, mt) -- 测试metatable的效果 print(t + t) -- 输出:"Tables cannot be added, but I'm here!" 在这个例子中,我们创建了一个metatable并为其定义了__add元方法,然后将其关联到一个普通table上。当我们试图将两个table相加时,由于metatable的存在,实际执行的是自定义的__add方法,而非默认的行为。 3. Metatable与Table的区别 (3.1) 内在差异 虽然metatables和tables都是Lua中的数据结构,但两者的用途截然不同。就像我们这次讨论的主题说的那样,“metatable可不就是个普通table”,这句话的重点在于,metatables并不直接存东西,它更像是个幕后操控者,专门用来定制或者调整其他table的行为规矩。 (3.2) 示例二: lua -- 创建一个带有metatable的table local t = {x = 10} local mt = { __index = function(table, key) if key == "y" then return 20 end end } setmetatable(t, mt) -- 访问不存在的键 print(t.y) -- 输出:20 这段代码展示了metatable如何控制table的索引访问。当你在table t里头翻来找去都找不到那个叫y的键时,Lua这家伙可机灵了,它会跑到metatable这个“幕后大佬”那里,去找一个叫__index的秘密武器来取值。这就相当于给你展示了metatable虽然不是table本身,但却能偷偷摸摸地改变table行为的一个鲜活例子。 4. 结语 所以,下一次当你听到有人说“metatableisnotatable”,你应该明白这其中蕴含的深意。Metatables在Lua的世界里,就像是给开发者们打造的一把神奇万能钥匙。它深藏功与名,低调而强大,灵活得不得了,堪称实现面向对象功能的秘密武器。正是因为有了metatables的存在,Lua才能如此游刃有余地应对各种复杂的定制需求场景,让开发者们的工作如虎添翼,轻松搞定!理解并掌握metatables的使用,就如同解锁Lua世界的一把金钥匙,助你在Lua编程的道路上更加游刃有余。下次再面对复杂的Lua对象操作问题时,不妨思考一下:“我是否可以通过metatable来巧妙地解决这个问题呢?”
2023-03-14 23:59:50
92
林中小径
RabbitMQ
...a Connect是Apache Kafka项目中用于构建可扩展且可靠的数据流管道的关键工具,它也支持基于内容的路由策略,并通过自定义SinkConnector和SourceConnector实现了数据从不同系统间的精准迁移与同步。2022年发布的Confluent Platform新版本中,增强了对多条件复杂路由的支持,允许用户根据消息主题、键值甚至特定字段内容来动态选择目标系统。 此外,AWS Simple Queue Service (SQS) 近期也推出了高级消息路由功能,用户可以设置详细的路由规则以决定消息流向哪个队列或主题,这对于大规模分布式系统的复杂事件处理具有重大意义。 深入探究,消息中间件的设计哲学和基于内容的路由规则实际上是对“发布-订阅”模式的一种深化和优化。这种模式不仅体现在软件工程领域,其思想还可追溯到信息论、传播学等领域,体现了信息传递的高度定向性和智能化趋势。 总之,紧跟技术潮流,持续关注消息中间件领域的最新发展,尤其是关于基于内容的路由规则在实际场景的应用和优化,对于提升现代分布式系统性能及构建高可用、松耦合的服务体系至关重要。
2023-04-29 10:51:33
142
笑傲江湖-t
Flink
在处理大数据时,Apache Flink 是一个非常强大的工具。它提供了实时流处理的强大功能,可以轻松地处理大规模数据流。然而,在实际用Flink搞开发的时候,咱们免不了会碰到各种稀奇古怪的问题,其中之一就有这么个“状态后端初始化错误”的小插曲。这篇文章将深入讨论这个问题的原因以及如何解决。 一、什么是Flink的状态后端? Flink 的状态后端是用来存储和管理任务状态的组件。它能够在运行过程中保存关键信息,就像个贴心小秘书一样记下重要笔记。当任务突然中断需要重新启动,或者出现故障需要恢复时,它就能迅速把这些之前记录的信息调出来,让一切回归正轨,就像什么都没发生过一样。Flink 提供了多种状态后端选项,包括 RocksDB、Kafka 状态后端等。 二、状态后端初始化错误的原因 1. 状态后端配置不正确 如果我们在配置 Flink 作业时指定了错误的状态后端类型或者配置参数,那么就会导致状态后端初始化失败。比如说,如果我们选定了 Kafka 来存储状态信息,却忘了给它配上正确的 ZooKeeper 设置,这时候就可能会闹出点小差错来。 java StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); env.setStateBackend(new KafkaStateBackend("localhost:2181")); 在这个例子中,由于没有提供 ZooKeeper 配置,所以状态后端初始化会失败。 2. 状态后端资源不足 如果我们的服务器内存或磁盘空间不足,那么也可能导致状态后端初始化失败。这是因为状态后端需要在服务器上占用一定的资源来存储和管理任务状态。 三、如何解决状态后端初始化错误? 1. 检查并修正状态后端配置 首先,我们需要检查我们的 Flink 作业配置是否正确。具体来说,我们需要确保我们指定了正确的状态后端类型和参数。同时,我们也需要确保我们的服务器有足够的资源来支持状态后端。 2. 增加服务器资源 如果我们的服务器资源不足,那么我们可以考虑增加服务器资源来解决这个问题。简单来说,我们可以通过给服务器“硬件”升级换代,调整服务器的内部设置,让它运行得更加流畅,这两种方法就能有效地提升服务器的整体性能。就像是给电脑换个更强悍的“心脏”和更聪明的“大脑”,让它的表现力蹭蹭上涨。 3. 使用其他状态后端 最后,如果以上方法都无法解决问题,那么我们可以考虑更换状态后端。Flink 提供了多种状态后端选项,每种后端都有其优点和缺点。我们需要根据我们的需求和环境选择最适合的状态后端。 总结: 在使用 Flink 处理大数据时,我们可能会遇到各种各样的问题,其中包括状态后端初始化错误。本文深入讨论了这个错误的原因以及如何解决。通过这篇内容的学习,我们真心期待能帮到大家伙儿,让大家更能透彻地理解 Flink 遇到的问题,并且妥妥地解决它们。
2023-03-27 19:36:30
481
飞鸟与鱼-t
Tomcat
数据源连接泄漏 , 在Java Web应用中,数据源是一种管理数据库连接的机制,它允许应用程序复用已建立的数据库连接,从而提高性能。数据源连接泄漏是指由于程序设计错误或资源管理不当,导致从数据源获取的数据库连接在使用完毕后未能正确关闭并归还给数据源,使得这些未关闭的连接持续占用系统资源,无法被其他请求重用,进而引发系统资源耗尽、性能下降甚至服务崩溃的问题。 Tomcat , Apache Tomcat是一个开源免费的Servlet和JSP容器,它是实现Java EE(现称Jakarta EE)Web应用程序服务器功能的一个轻量级解决方案。在本文语境中,Tomcat是承载Java Web应用运行的服务端环境,其内部配置的数据源用于与数据库进行交互。 JVisualVM , JVisualVM是Oracle公司提供的一个Java开发工具,集成了多个监视、故障排查和分析工具,可用于监控Java应用程序的运行状态,包括CPU、内存、线程、类加载等详细信息。在本文中,开发者可以利用JVisualVM实时监测Tomcat应用服务器的内存消耗情况,以便发现和解决由数据源连接泄漏导致的资源浪费问题。
2023-06-08 17:13:33
243
落叶归根-t
转载文章
...可以直接与服务器进行数据交换,而无需刷新页面。在本文中,它被用来实现GET和POST两种HTTP方法的请求操作,如初始化请求、设置请求头信息、发送请求以及监听并处理服务器返回的响应结果。 AJAX (Asynchronous JavaScript and XML) , AJAX是一种创建快速动态网页的技术,它利用了JavaScript在后台与服务器交换数据的能力,更新部分网页内容而无须重新加载整个页面。虽然名字中包含XML,但在实际应用中,JSON格式的数据更为常见。本文中通过XMLHttpRequest对象实现的GET和POST请求,正是AJAX技术的具体应用实例,使得前后端可以异步通信,提高用户体验。 Content-Type , Content-Type是HTTP协议中的一种消息头,用于定义发送到服务器或从服务器接收到的数据类型和格式。在本文中,当使用POST方法发送请求时,必须设置Content-Type为\ application/x-www-form-urlencoded\ ,以告知服务器请求体内容的编码方式(这里是表单URL编码),这样服务器才能正确解析客户端提交的数据。对于处理不同类型的请求,比如上传文件或发送JSON数据,Content-Type值也会相应变化。
2024-02-05 12:22:04
486
转载
Shell
...的世界里,变量是存储数据的重要工具,它们可以保存文本、数值等各种类型的数据。在编写Shell脚本时,每个变量都有自己的小名儿。就像每个人都有自己的名字一样,你可以随时给这些变量“朋友”分配一个值,或者在脚本运行的过程中,只要叫出它们的名字,就能获取到它们当前的数值啦。如果试图访问一个未定义的变量,Shell通常会返回一个空字符串或触发错误。 2. 初级方法 测试变量是否为空 首先,我们可以尝试直接引用变量并检查其值是否为空来判断变量是否已定义。不过呢,这种方法并不是百分百合心意,因为就算你定义了变量这个小家伙,可要是从始至终都没给它喂过值,那在系统眼里,它就相当于个“空壳子”啦。 bash 定义一个变量,但不赋值 my_var= 检查变量是否为空 if [ -z "$my_var" ]; then echo "Variable 'my_var' is either undefined or empty." else echo "Variable 'my_var' is defined and has a value." fi 然而,这个方法并不能区分变量是否真的未定义还是仅仅被赋予了空值。所以,这就引出了更精确的方法。 3. 高级技巧 使用declare命令 在Shell中,declare命令可以用来查看和操作变量,其中包括检查变量是否已定义的功能。如果你想查看某个特定变量的具体信息,我们可以灵活运用那个 -v 参数。比方说,你敲入命令带上 -v 选项去查询一个变量,要是这个变量还没被定义过,系统就会俏皮地蹦出一条错误提示告诉你:“嘿,这个变量我还不认识呢!” bash 尝试查询一个可能未定义的变量 if declare -v my_maybe_undefined_var > /dev/null; then echo "Variable 'my_maybe_undefined_var' is defined." else echo "Variable 'my_maybe_undefined_var' is not defined." fi 这个方法的优点在于,无论变量值是否为空,只要它已被声明,都会认为是已定义。 4. 更进一步 使用set命令 另一种方式是使用set命令配合管道与grep命令查找变量名是否存在。尽管这种方法略显复杂,但在某些场景下也十分有用: bash 使用set命令输出所有环境变量列表,然后通过grep搜索特定变量名 if set | grep -q "^my_special_var="; then echo "Variable 'my_special_var' is defined." else echo "Variable 'my_special_var' is not defined." fi 这里,-q选项使得grep命令在匹配成功时不打印任何内容,仅根据匹配结果返回退出状态。如果找到匹配项(即变量已定义),则返回0,否则返回非零值。 结语 在Shell编程中,理解并熟练掌握如何判断变量是否已定义是一项基本且重要的技能。不同的方法适用于不同的情境,有时我们需要根据实际需求灵活运用。整个探索过程的核心,就是我们对Shell编程逻辑那股子钻劲儿和死磕精神,一边不断加深理解,一边持续优化实践,铆足了劲儿,下定决心一路通关到底。希望本文能帮助你更好地驾驭Shell变量,让每一次与Shell的对话都充满智慧与乐趣!
2023-07-08 20:17:42
34
繁华落尽
Go-Spring
...效处理SQL查询语法错误的同时,近期数据库开发领域的一些新进展和技术动态也值得关注。例如,Google最近发布了其开源的Cloud Spanner SQL语法验证工具的更新版本,它能够实时检测SQL查询语句的语法正确性,这对于预防和解决“Invalid syntax in SQL query”问题提供了更为先进和便捷的解决方案。 此外,随着ORM技术(如Hibernate、TypeORM等)的持续演进,开发者现在可以利用更强大的类型安全查询构建功能来避免常见的SQL语法错误。这些ORM库不仅支持预编译SQL以减少语法错误,还引入了领域特定语言(DSL)设计,允许程序员通过编写接近于业务逻辑的代码来生成正确的SQL查询,进一步降低了出错概率。 同时,在软件工程实践方面,越来越多的团队开始采用静态代码分析工具进行SQL注入漏洞检查和SQL语法校验,确保应用程序在部署前就能发现并修复潜在的SQL查询问题。这与Go-Spring提倡的严谨编程习惯相辅相成,共同为提升微服务架构下的数据库操作安全性与效率保驾护航。 综上所述,紧跟数据库技术发展趋势,结合使用先进的工具与框架,以及强化代码审查和质量保证流程,无疑能帮助我们在应对“Invalid syntax in SQL query”的挑战时更加游刃有余。
2023-07-20 11:25:54
454
时光倒流
Flink
一、引言 在大数据处理领域,Apache Flink是一个广泛使用的实时流处理框架。然而,在实际用起来的时候,我们免不了会遇到一些状况,比如Flink这小家伙的算子执行可能会闹点儿小脾气,出点异常什么的。这些问题可能源于数据的不一致性、系统的稳定性或者代码的错误等。今天,咱们就来好好唠唠Flink算子执行时为啥会出岔子,以及面对这些问题咱们该使出哪些应对大招。 二、Flink算子执行异常的原因 1. 数据不一致性 数据不一致性可能是导致Flink算子执行异常的一个重要原因。比如,如果我们对数据动了些手脚,但是这些操作没有完全落实到位,那么就可能让数据变得乱七八糟,前后对不上号。在这种情况下,我们得动手瞧瞧咱们的代码,保证所有操作都乖乖地按预期完成! 2. 系统稳定性 系统稳定性也是导致Flink算子执行异常的一个原因。如果我们的系统不稳定,那么就可能导致Flink算子无法正常地执行。在这种情况下,我们需要优化我们的系统,提高其稳定性。 3. 代码错误 代码错误是导致Flink算子执行异常的一个常见原因。比如,假如我们编的代码里有语法bug,那很可能让Flink运算器没法好好干活儿,执行起来就会出岔子。在这种情况下,我们需要仔细检查我们的代码,确保其没有错误。 三、如何处理Flink算子执行异常? 1. 检查数据 首先,我们需要检查我们的数据。我们需要确保我们的数据是正确的,并且是符合我们的预期的。我们可以使用Flink的调试工具来进行数据检查。 java DataStream data = env.addSource(new StringSource()); data.print(); 在这个例子中,我们添加了一个字符串源,并将其输出到控制台。这样,我们就可以看到我们的数据是否正确。 2. 优化系统 其次,我们需要优化我们的系统。我们需要确保我们的系统稳定,并且能够正常地运行Flink算子。我们可以使用Flink的监控工具来监控我们的系统。 java env.getExecutionEnvironment().enableSysoutLogging(); 在这个例子中,我们开启了Flink的sysout日志,这样我们就可以通过查看日志来监控我们的系统。 3. 修复代码 最后,我们需要修复我们的代码。我们需要找出我们的代码中的错误,并且修复它们。我们可以使用Flink的调试工具来调试我们的代码。 java DataStream> result = env.fromElements(1, 2, 3) .keyBy(0) .sum(1); result.print(); 在这个例子中,我们创建了一个包含三个元素的数据集,并对其进行分组和求和操作。然后,我们将结果输出到控制台。如果我们在代码中犯了错误,那么Flink就会抛出一个异常。 四、总结 总的来说,Flink算子执行异常是一个常见的问题。然而,只要我们掌握了正确的处理方法,就能够有效地解决这个问题。因此,我们应该多学习,多实践,不断提高我们的技能和能力。只有这样,我们才能在大数据处理领域取得成功。
2023-11-05 13:47:13
462
繁华落尽-t
ZooKeeper
...应用程序协调服务,由Apache软件基金会开发。它提供了一种高效且可靠的分布式数据一致性解决方案,能够实现诸如数据同步、服务注册与发现、分布式锁、队列等功能。在文章中,客户端无法从ZooKeeper服务器获取状态信息,导致系统运作受阻。 服务发现 , 服务发现是分布式系统中的一个重要概念,指的是系统中的服务能够自动地、动态地发现彼此的存在,并建立网络连接进行通信。在使用ZooKeeper的情况下,服务发现是指客户端通过查询ZooKeeper服务器上的数据节点(znode)来找到其他服务实例的地址和端口等信息。 状态同步 , 在分布式系统中,状态同步是指多个节点间的数据保持一致的过程。在ZooKeeper中,状态同步确保了所有参与的客户端和服务端都能获得并维护同一份全局状态视图。当文中提到客户端无法获取服务器的状态信息时,意味着客户端没有及时或正确地更新其本地状态至与ZooKeeper服务器上存储的全局状态一致。
2023-07-01 22:19:14
161
蝶舞花间-t
Flink
一、引言 在大数据处理的世界里,Apache Flink以其实时处理的强大能力赢得了众多开发者的心。不过,当我们尝试把Flink这个小家伙搬到Kubernetes这个大家庭时,可能会碰到一些小插曲。比如说,可能会出现Flink在Kubernetes的Pod里闹脾气,死活不肯启动的情况。这篇文章将和你一起深入挖掘这个问题的源头,手把手地提供一些实用的解决妙招,让你在Flink的征途上走得更稳更快,一路畅行无阻。 二、Flink on Kubernetes背景 1.1 Kubernetes简介 Kubernetes(简称K8s)是Google开源的一个容器编排平台,它简化了应用的部署、扩展和管理。Flink on Kubernetes利用Kubernetes的资源调度功能,可以让我们更好地管理和部署Flink集群。 1.2 Flink on Kubernetes架构 Flink on Kubernetes通过Flink Operator来自动部署和管理Flink Job和TaskManager。每个TaskManager都会在自己的“小天地”——单独的一个Pod里辛勤工作,而JobManager则扮演着整个集群的“大管家”,负责掌控全局。 三、Flink on KubernetesPod启动失败原因 2.1 配置错误 配置文件(如flink-conf.yaml)中的关键参数可能不正确,比如JobManager地址、网络配置、资源请求等。例如,如果你的JobManager地址设置错误,可能导致Pod无法连接到集群: yaml jobmanager.rpc.address: flink-jobmanager-service:6123 2.2 资源不足 如果Pod请求的资源(如CPU、内存)小于实际需要,或者Kubernetes集群资源不足,也会导致Pod无法启动。 yaml resources: requests: cpu: "2" memory: "4Gi" limits: cpu: "2" memory: "4Gi" 2.3 网络问题 如果Flink集群内部网络配置不正确,或者外部访问受限,也可能引发Pod无法启动。 2.4 容器镜像问题 使用的Flink镜像版本过旧或者损坏,也可能导致启动失败。确保你使用的镜像是最新的,并且可以从官方仓库获取。 四、解决策略与实例 3.1 检查和修复配置 逐行检查配置文件,确保所有参数都正确无误。例如,检查JobManager的网络端口是否被其他服务占用: bash kubectl get pods -n flink | grep jobmanager 3.2 调整资源需求 根据你的应用需求调整Pod的资源请求和限制,确保有足够的资源运行: yaml resources: requests: cpu: "4" memory: "8Gi" limits: cpu: "4" memory: "8Gi" 3.3 确保网络畅通 检查Kubernetes的网络策略,或者为Flink的Pod开启正确的网络模式,如hostNetwork: yaml spec: containers: - name: taskmanager networkMode: host 3.4 更新镜像 如果镜像有问题,可以尝试更新到最新版,或者从官方Docker Hub拉取: bash docker pull flink:latest 五、总结与后续实践 Flink on KubernetesPod无法启动的问题往往需要我们从多个角度去排查和解决。记住,耐心和细致是解决问题的关键。在遇到问题时,不要急于求成,一步步分析,找出问题的根源。同时呢,不断学习和掌握最新的顶尖操作方法,就能让你的Flink部署跑得更稳更快,效果杠杠的。 希望这篇文章能帮助你解决Flink on Kubernetes的启动问题,祝你在大数据处理的道路上越走越远!
2024-02-27 11:00:14
539
诗和远方-t
NodeJS
...用GraphQL进行数据查询? 作为一名前端开发者,我们常常会遇到这样的情况:我们需要从后端获取一些数据,并将其展示给用户。这就涉及到一个重要的概念——数据查询。在这篇文章里,咱们将一起探索如何用NodeJS这个强大的工具来查询数据,特别是会深入了解到GraphQL的奇妙用法。 首先,我们需要了解什么是GraphQL。 GraphQL,你知道吧,就好比是一种神奇的语言工具,它允许你的应用宝宝精准点餐,只获取你真正需要的数据。就像在餐厅里,你不会把整个厨房都端上桌,而是告诉服务员你想要哪几道菜。同样道理,GraphQL也不会一股脑儿把整个数据库扔给你,而仅仅返回你请求的那一部分数据。这种方式可以减少网络带宽的消耗,提高应用程序的性能。嘿,你知道吗?GraphQL有个很赞的特点,那就是它支持类型安全查询。这就像是个严格的安检员,会仔细核对客户端要求的数据,确保它们都符合预先设定的类型标准,这样一来,数据交换的安全性和准确性就更有保障啦! 接下来,我们将学习如何在NodeJS中使用GraphQL。为了做到这一点,我们需要安装两个包:graphql和express-graphql。我们可以使用npm来安装这两个包: css npm install graphql express-graphql 然后,我们可以创建一个简单的Express应用,来处理GraphQL查询。以下是一个基本的示例: javascript const express = require('express'); const { graphqlHTTP } = require('express-graphql'); const app = express(); app.use('/graphql', graphqlHTTP({ schema: require('./schema.js'), graphiql: true, })); app.listen(3000, () => { console.log('Server is running on port 3000'); }); 在这个示例中,我们创建了一个新的Express应用,并定义了一个路由/graphql,该路由将使用graphqlHTTP中间件来处理GraphQL查询。咱们还需要搞个名叫schema.js的文件,这个文件里头装着我们整个GraphQL模式的“秘籍”。此外,我们还启用了GraphiQL UI,这是一个交互式GraphQL查询工具。 让我们看看这个schema.js文件的内容: typescript const { gql } = require('graphql'); const typeDefs = gql type Query { users: [User] user(id: ID!): User } type User { id: ID! name: String! email: String! } ; module.exports = typeDefs; 在这个文件中,我们定义了两种类型的查询:users和user。users查询将返回所有的用户,而user查询则返回特定的用户。我们还定义了两种类型的实体:User。User实体具有id、name和email三个字段。 现在,我们可以在浏览器中打开http://localhost:3000/graphql,并尝试执行一些查询。例如,我们可以使用以下查询来获取所有用户的列表: json { users { id name email } } 如果我们想要获取特定用户的信息,我们可以使用以下查询: json { user(id:"1") { id name email } } 以上就是如何使用NodeJS进行数据查询的方法。用上GraphQL,咱们就能更溜地获取和管理数据啦,而且更能给用户带来超赞的体验!如果你还没有尝试过GraphQL,我强烈建议你去试一试!
2023-06-06 09:02:21
55
红尘漫步-t
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
netcat -l -p port_number
- 启动监听特定端口的简单服务器。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"