前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[可视化准确性优化策略 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
...对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 本系列文章,主要是总结我对Android开发过程中内存优化的理解,很多东西都是平常的习惯和一些细节问题,重在剖析优化的原理,养成一种良好的代码习惯。 概述 既然谈优化,就绕不开Android三个内存相关的经典问题: OOM 内存泄漏 频繁GC卡顿 导致这三个问题的原因: OOM App在启动时会从系统分配一个默认的堆内存,同时拥有一个堆内存最大值(可以动态申请这个大小),这个Max Heap Size的大小,决定了软件运行时可以申请的最大运行内存。App软件内存分配是个不断创建和GC回收的过程,就像一个水池拥有注入和排出水的通道,当注入过快,排出不足时,水池满了溢出,Out of Memory,即我们常说的OOM。 内存泄漏 当我们在代码中创建对象,会申请内存空间,同时包含一个对象的引用,当我们长时间不使用该引用时,JVM GC操作时会根据这个引用去释放内存。但是,对象的回收可能有点差错,如果这个对象A被另一个线程B所引用,当我们不再使用A,可A却处于B的hold状态,那么我们每次创建的A都得不到回收,这个时候就会发生内存泄漏了。 频繁GC卡顿 上面说了,App的堆内存有最大值,是有限的,那么如果我们频繁的创建,当运行内存不断上升,为了维持App的运行,GC回收也会频繁操作,软件运行资源有些,必然导致卡顿问题。 JAVA的GC机制,非常的复杂和精辟,不可一言概论之,在看过许多blog之后,给出一点自己的总结。 简述JVM GC 我们都知道Java语言非常的方便,不像C语言,申请和释放内存都是自己操作,java有虚拟机帮忙。Android 的每个应用程序都会使用一个专有的Dalvik虚拟机实例来运行,即使内存泄漏也只是kill当前App. Java虚拟机有一套完整的GC方案,只是简单理解的话就是,它维持着一个对象关系树,当开始GC操作时,它会从GC Roots开始扫描整个Object Tree,当发现某个无法从Tree中引用到的对象时,便将其回收。 GC Roots分类举例: Class类 Alive Thread 线程stack上的对象,如方法或者局部变量 JNI活动对象 System Class Loader Java中的引用关系 java中有四种对象引用关系,分别是:强引用StrongRefernce、软引用SoftReference、弱引用WeakReference、虚引用PhantomReference,这四种引用关系分别对应的效果: StrongRefernce 通过new创建的对象,如Object obj = new Object();,强引用不会被垃圾回收器回收和销毁,即是OOM,所以这也容易造成我们接下来会分析的《非静态内部类持有对象导致的内存泄漏问题》 SoftReference 软引用可以被垃圾回收器回收,但它的生命周期要强于弱引用,但GC回收发生时,只有在内存空间不足时才会回收它 WeakReference 弱引用的生命周期短,可以被GC回收,但GC回收发生时,扫描到弱引用便会被垃圾回收和销毁掉 PhantomReference 虚引用任何时候都可以被GC回收,它不会影响对象的垃圾回收机制,它只有一个构造函数,因此只能配合ReferenceQueue一起使用,用于记录对象回收的过程 PhantomReference(T referent, ReferenceQueue<? super T> q) 关于ReferenceQueue 他的作用主要用于记录引用是否被回收,除了强引用其他的引用方式得构造函数中都包含了ReferenceQueue参数。当调用引用的get()方法返回null时,我们的对象不一定已经回收掉了,可能正在进入回收流程中,而当对象被确认回收后,它的引用会被添加到ReferenceQueue中。 Felix obj = new Felix();ReferenceQueue<Felix> rQueue = new ReferenceQueue<Felix>();WeakReference<Felix> weakR = new WeakReference<Felix>(obj,rQueue); 总结 看完Android引用和回收机制,我们对于代码中内存问题的原因也有一定认识,当时现实中内存泄漏或者溢出的问题,总是不经意间,在我之后一些列的文章中,会对不同场景的代码问题进行分析和解决,一起来关注吧! 本篇文章为转载内容。原文链接:https://blog.csdn.net/sslinp/article/details/84787843。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-10-10 11:39:05
262
转载
Mahout
...模型构建失败时的应对策略 3.1 数据清洗与预处理 在我们开始构建推荐模型之前,我们需要对原始数据进行一些基本的清理和预处理操作。这些操作包括去除重复记录、填充缺失值、处理异常值等。下面是一个简单的例子,展示了如何使用Mahout进行数据清洗: java // 创建一个MapReduce任务来读取数据 Job job = new Job(); job.setJarByClass(Mahout.class); job.setMapperClass(CSVInputFormat.class); job.setReducerClass(CSVOutputFormat.class); // 设置输入路径和输出路径 FileInputFormat.addInputPath(job, new Path("input.csv")); FileOutputFormat.setOutputPath(job, new Path("output.csv")); // 运行任务 boolean success = job.waitForCompletion(true); if (success) { System.out.println("Data cleaning and preprocessing complete!"); } else { System.out.println("Data cleaning and preprocessing failed."); } 在这个例子中,我们使用了CSVInputFormat和CSVOutputFormat这两个类来进行数据清洗和预处理。说得更直白点,CSVInputFormat就像是个数据搬运工,它的任务是从CSV文件里把我们需要的数据给拽出来;而CSVOutputFormat呢,则是个贴心的数据管家,它负责把我们已经清洗干净的数据,整整齐齐地打包好,再存进一个新的CSV文件里。 3.2 模型选择和参数调优 选择合适的推荐算法和参数设置是构建成功推荐模型的关键。Mahout提供了许多常用的推荐算法,如协同过滤、基于内容的推荐等。同时呢,它还带来了一整套给力的工具,专门帮我们微调模型的参数,让模型的表现力更上一层楼。 以下是一个简单的例子,展示了如何使用Mahout的ALS(Alternating Least Squares)算法来构建推荐模型: java // 创建一个新的推荐器 RecommenderSystem recommenderSystem = new RecommenderSystem(); // 使用 ALS 算法来构建推荐模型 Recommender alsRecommender = new MatrixFactorizationRecommender(new ItemBasedUserCF(alternatingLeastSquares(10), userItemRatings)); recommenderSystem.addRecommender(alsRecommender); // 进行参数调优 alsRecommender.setParameter(alsRecommender.getParameter(ALS.RANK), 50); // 尝试增加隐藏层维度 在这个例子中,我们首先创建了一个新的推荐器,并使用了ALS算法来构建推荐模型。然后,我们对模型的参数进行了调优,尝试增加了隐藏层的维度。 3.3 数据监控与故障恢复 最后,我们需要建立一套完善的数据监控体系,以便及时发现并修复数据模型构建失败的问题。Mahout这玩意儿,它帮我们找到了一个超简单的方法,就是利用Hadoop的Streaming API,能够实时地、像看直播一样掌握推荐系统的运行情况。 以下是一个简单的例子,展示了如何使用Mahout和Hadoop的Streaming API来实现实时监控: java // 创建一个MapReduce任务来监控数据 Job job = new Job(); job.setJarByClass(Mahout.class); job.setMapperClass(StreamingInputFormat.class); job.setReducerClass(StreamingOutputFormat.class); // 设置输入路径和输出路径 FileInputFormat.addInputPath(job, new Path("input.csv")); FileOutputFormat.setOutputPath(job, new Path("output.csv")); // 运行任务 boolean success = job.waitForCompletion(true); if (success) { System.out.println("Data monitoring and fault recovery complete!"); } else { System.out.println("Data monitoring and fault recovery failed."); } 在这个例子中,我们使用了StreamingInputFormat和StreamingOutputFormat这两个类来进行数据监控。换句话说,StreamingInputFormat这小家伙就像是个专门从CSV文件里搬运数据的勤快小工,而它的搭档StreamingOutputFormat呢,则负责把我们监控后的结果打包整理好,再稳稳当当地存放到新的CSV文件中去。 四、结论 本文介绍了推荐系统中最常见的问题之一——数据模型构建失败的原因,并提供了解决这个问题的一些策略,包括数据清洗与预处理、模型选择和参数调优以及数据监控与故障恢复。虽然这些问题确实让人头疼,不过别担心,只要我们巧妙地运用那个超给力的开源神器Mahout,就能让推荐系统的运行既稳如磐石又准得惊人,妥妥提升它的稳定性和准确性。
2023-01-30 16:29:18
122
风轻云淡-t
Mahout
... 迁移过程中的思考与策略 在处理这类问题时,我们不仅要关注具体API的变化,更要理解其背后的设计思想和优化目的。例如,新API可能简化了接口设计,提高了算法效率,或者更好地支持了分布式计算。所以,每次版本更新带来的API变动,其实都是我们好好瞅瞅、改进现有项目的好机会,这可不仅仅是个技术挑战那么简单。 总结来说,面对Mahout版本更新带来的旧版API弃用问题,我们需要保持敏锐的技术嗅觉,及时跟进官方文档和技术动态,适时对旧有代码进行重构和迁移。这样一来,我们不仅能巧妙地躲开API改版可能引发的各种运行故障,更能搭上新版Mahout这班快车,让我们的机器学习应用效果和用户体验蹭蹭往上涨。同时,这也是一个不断学习、不断提升的过程,让我们一起拥抱变化,走在技术进步的前沿。
2023-09-14 23:01:15
105
风中飘零
ZooKeeper
...eper节点负载均衡策略后,我们可以进一步关注该领域的一些最新发展动态与研究趋势。近年来,随着微服务和云原生架构的普及,对高效、灵活的分布式协调服务需求日益增强,而ZooKeeper作为其中的关键组件,其负载均衡策略也在持续优化升级。 例如,在Kubernetes等容器编排系统中,研究人员正尝试将ZooKeeper与Service Mesh结合,利用Istio等服务网格工具实现更智能的流量管理和节点负载均衡,以适应瞬息万变的应用场景和大规模集群环境。这种新的融合方案能够更好地处理网络延迟问题,通过精细化控制请求路由,显著提升系统的稳定性和性能表现。 此外,学术界也不断有新的研究成果涌现,比如改进的基于ZooKeeper的动态负载均衡算法,这类算法能实时响应系统负载变化,有效避免热点现象,提高资源利用率。同时,对于如何在大规模分布式系统中保障数据一致性与正确性的问题,一些学者提出借助Raft等一致性协议强化ZooKeeper的数据管理能力,从而在高并发场景下也能确保节点负载信息的准确更新与传播。 综上所述,随着技术的不断发展和应用场景的拓展,ZooKeeper节点负载均衡策略的研究与实践正逐步走向精细化、智能化。对于广大开发者而言,紧跟这些前沿动态,不仅有助于提升现有系统的性能与稳定性,更能为未来设计和构建更为复杂且高效的分布式系统奠定坚实基础。
2024-01-21 23:46:49
123
秋水共长天一色
Flink
...团队接力赛,怎样快速准确地把棒子传给队友,这就是个技术活儿!这时,Flink的异步I/O操作就显得尤为重要了。 二、异步I/O操作的基本概念 首先,我们需要了解什么是异步I/O操作。通俗点讲,异步I/O就像是你给朋友发了个消息询问一件事,但不立马等他回复,而是先去做别的事情。等你的朋友回了消息,你再去瞧瞧答案。这样一来,CPU就像那个忙碌的你,不会傻傻地干等着响应,而是高效利用时间,等数据准备好了再接手处理。这样就可以充分利用CPU的时间,提高系统的吞吐量。 三、异步I/O操作的需求 那么,为什么需要异步I/O操作呢? 在Flink做流数据处理时,很多时候需要与外部系统进行交互,比如数据库、Redis、Hive、HBase等等存储系统。这个时候,咱们得留意一下,不同系统之间的通信延迟会不会把整个Flink作业给“拖后腿”,影响到整体处理速度和实时性表现。 如果系统间通信的延迟很大,那么Flink作业的执行效率就会大大降低。为了改善这种情况,我们就需要引入异步I/O操作。 四、Flink实现异步I/O操作的方法 接下来,我们来看看如何在Flink中实现异步I/O操作。 首先,我们需要实现一个Flink的异步IO操作,也就是一个实现了AsyncFunction接口的类。在我们的实现中,我们可以模拟一个异步客户端,比如说一个数据库客户端。 java import scala.concurrent.Future; import ExecutionContext.Implicits.global; public class DatabaseClient { public Future query() { return Future.successful(System.currentTimeMillis() / 1000); } } 在这个例子中,我们使用了Scala的Future来模拟异步操作。当我们调用query方法时,其实并不会立即返回结果,而是会返回一个Future对象。这个Future对象表示了一个异步任务,当异步任务完成后,就会将结果传递给我们。 五、在DataStream上应用异步I/O操作 有了异步IO操作之后,我们还需要在DataStream上应用它。 java StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); env.setParallelism(1); DataStream input = env.socketTextStream("localhost", 9999); DataStream output = input.map(new AsyncMapFunction() { @Override public void map(String value, Collector out) throws Exception { long result = databaseClient.query().get(); out.collect(result); } @Override public Future asyncInvoke(String value, ResultFuture resultFuture) { Future future = databaseClient.query(); future.whenComplete((result, error) -> { if (error != null) { resultFuture.completeExceptionally(error); } else { resultFuture.complete(result); } }); return null; } }); output.print(); env.execute("Socket Consumer"); 在这个例子中,我们创建了一个DataStream,然后在这个DataStream上应用了一个异步Map函数。这个异步Map函数就像是个勤劳的小助手,每当它收到任何一项输入数据时,就会立刻派出一个小小的异步查询小分队,火速前往数据库进行查找工作。当数据库给出回应,这个超给力的异步Map函数就会像勤劳的小蜜蜂一样,把结果一个个收集起来,接着马不停蹄地去处理下一条待输入的数据。 六、总结 总的来说,Flink的异步I/O操作可以帮助我们在处理大量外部系统交互时,减少系统间的通信延迟,提高系统的吞吐量和实时性。当然啦,异步I/O这东西也不是十全十美的,它也有一些小瑕疵。比如说,开发起来可没那么容易,你得亲自上阵去管那些异步任务的状态,一个不小心就可能让你头疼。再者呢,用了异步操作,系统整体的复杂程度也会噌噌往上涨,这就给咱们带来了一定的挑战性。不过,考虑到其带来的好处,我认为异步I/O操作是非常值得推广和使用的。 附:这是部分HTML格式的文本,请注意核对
2024-01-09 14:13:25
493
幽谷听泉-t
MyBatis
...户体验。 解决方法:优化索引设计,比如适当减少索引字段的数量,或者对索引进行分区。另外,也可以考虑在应用层缓存搜索结果,减少数据库负担。 4. 总结与展望 通过上述内容,我们了解了如何在MyBatis项目中正确配置全文搜索功能,并探讨了一些实际操作中可能遇到的问题及解决策略。全文搜索这东西挺强大的,但你得小心翼翼地设置才行。要是设置得好,不仅能让人用起来更爽,还能让整个应用变得更全能、更灵活。 当然,这只是全文搜索配置的一个起点。随着业务越做越大,技术也越来越先进,我们可以试试更多高大上的功能,比如支持多种语言,还能处理同义词啥的。希望本文能对你有所帮助,如果有任何疑问或想法,欢迎随时交流讨论! --- 希望这篇文章能够帮助到你,如果有任何具体的需求或者想了解更多细节,随时告诉我!
2024-11-06 15:45:32
136
岁月如歌
转载文章
..., 一款轻量级的滚动优化库,用于提供平滑、流畅的滚动体验,尤其是在移动设备上。它封装了浏览器的滚动API,提供了诸如防抖、渐进增强等功能,帮助开发者处理复杂的滚动场景,减少资源消耗,提升用户体验。 Intersection Observer API , HTML5的一个新特性,用于观察两个DOM节点是否发生了交集(即一个节点是否在另一个节点的可视区域内)。在滚动优化中,这个API可以用来检测元素是否进入或离开视口,从而触发相应的处理,如动态加载内容、调整布局等,实现滚动性能优化。 Model-View-ViewModel (MVVM) , 一种软件设计模式,用于描述应用程序模型(数据)与用户界面之间的关系。在Vue.js中,MVVM将数据(model)与视图(view)解耦,通过ViewModel作为桥梁,当数据变化时,视图会自动更新,反之亦然,提高了开发的简洁性和可维护性。 动态渲染 , 在前端开发中,指根据数据的变化实时更新页面内容的过程。在Vue.js中,通过模板语法和数据绑定,当数据(如 item.name )发生变化时,对应的视图部分会被重新渲染,显示最新的数据值,这种机制被称为动态渲染。
2024-05-06 12:38:02
624
转载
RocketMQ
...一实时交易中的实践与优化》 随着电商平台如蚂蚁集团的双十一购物节临近,消息中间件如RocketMQ在处理海量实时交易中起到了关键作用。在2021年的双十一期间,RocketMQ展现出了其强大的消息投递保证能力,确保了交易信息的即时传递和处理,避免了系统瓶颈和数据丢失。 蚂蚁集团利用RocketMQ的顺序消息特性,确保了用户的支付请求按照发送顺序被处理,保证了交易的公平性和准确性。同时,其高可用性和重试策略在应对高峰期的网络波动和消费者宕机时,保证了交易数据的一致性。此外,通过精细化的消费者组管理和分区策略,RocketMQ能够有效地平衡系统负载,提升整体性能。 然而,双十一期间的挑战并未止步于此。蚂蚁集团还对RocketMQ进行了针对性的优化,如优化消息确认机制,降低确认响应时间,以及对重试策略进行动态调整,以适应瞬息万变的业务流量。这种实时的优化和调整,进一步提升了系统的鲁棒性和灵活性。 通过深入分析蚂蚁集团双十一的实践案例,我们可以看到RocketMQ在实际生产环境中的高效运行和持续优化的重要性。这不仅为其他企业提供了学习和借鉴的范例,也展示了消息队列技术在现代分布式系统中的核心地位。未来,随着技术的发展和业务需求的不断变化,我们期待RocketMQ和其他消息中间件在提供可靠消息传递的同时,继续探索新的性能和效率边界。
2024-06-08 10:36:42
92
寂静森林
转载文章
...对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 java的问题: 1.性能:java的内存管理似乎比较自动化,但其实性能不是特别好。尤其是new对象的时候没有节制。在java中,有些对象构造成本很低,有些 很高。特别在UI编程的时候,大多数的UI对象其构建成本都比较高昂。如果在开发过程中没有节约意识,肯定会导致JVM不停的GC,系统表现很卡的样子, 当然,彻底的当掉可能还不会,但基本上工作已经是非常的缓慢的了。 2;引用:JAVA中其实在大量的使用对象引用,对象引用可以减少内存占用,不去构建不必要的对象。但事实上,多数程序员对引用的理解不是很到位,结果导致过多不必要的对象构建,虚耗内存。代码可读性也不佳,编写的时候尤其觉的疲惫。 3;面向对象:java是面向对象的语言,但是它有基础类型,这些基础类型不是面向对象的,不能当作引用传递。一般来说,这些基础类型可以用来表示 一个对象的状态。java中的对象一定要包含状态,没有状态的对象其实是不存在的,没有状态的东西不是对象,而是一个行为集合。但是java中没有一个明 确的结构来表达这个情况,所以只能写一个类来表示,同时将这个类的构造定义成私有的,防止被别人构建。这个时候的类的作用等同与命名空间。java在面向 对象的支持方面其实是很残缺的,缺乏很多必要的支持,比如虚函数,多重继承,友元。这种残缺,导致设计困难,所以java的系统都十分的罗嗦。 4:复杂:java越来越复杂了。注解,泛型,枚举,特性很多。 5:不可变:java支持不可变,但是大多数人并不了解这个主题。不可变系统其实比较容易实现,同时也不容易出错。但是java是基于引用的系统,不可变会导致大量的内存问题。JVM缺乏尾递归优化,这其实也是一个问题。 转自:http://my.oschina.net/clarkhill/blog/59546 转载于:https://www.cnblogs.com/yangh2016/p/5762333.html 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_30561425/article/details/95164045。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-21 23:48:35
276
转载
Apache Solr
...分片Facet统计不准确的探讨与解决方案 01 引言 当我们谈论大规模数据检索时,Apache Solr作为一款强大的企业级搜索平台,其在分布式环境下的高效查询和处理能力令人印象深刻。不过,在实际操作里头,特别是在处理facet(分面)统计这事儿的时候,我们可能会时不时地碰到一个棘手的问题——跨多个分片进行数据聚合时的准确性难题。这篇文章会深入地“解剖”这个现象,配上一些实实在在的代码实例和实战技巧,让你我都能轻松理解并搞定这个问题。 02 Facet统计与分布式Solr架构 Apache Solr在设计之初就考虑了分布式索引的需求,采用Shard(分片)机制将大型索引分布在网络中的不同节点上。Facet功能则允许用户对搜索结果进行分类统计,如按类别、品牌或其他字段进行频数计数。在分布式系统这个大家庭里,每个分片就像独立的小组成员,它们各自进行facet统计的工作,然后把结果一股脑儿汇总到协调节点那里。不过呢,这样操作有时就可能会让统计数据不太准,出现点儿小差错。 03 分布式环境下facet统计的问题详解 想象一下这样的场景:假设我们有一个电商网站的商品索引分布在多个Solr分片上,想要根据商品类别进行facet统计。当你发现某一类商品正好像是被均匀撒豆子或者随机抽奖似的分散在各个不同的分片上时,那么仅仅看单个分片的facet统计数据,可能就无法准确把握全局的商品总数啦。这是因为每个分片只会算它自己那部分的结果,就像各自拥有一个小算盘在敲打,没法看到全局的数据全貌。这就像是一个团队各干各的,没有形成合力,所以就出现了“跨分片facet统计不准确”的问题,就像是大家拼凑出来的报告,由于信息不完整,难免出现偏差。 java // 示例:在分布式环境下,错误的facet统计请求方式 SolrQuery query = new SolrQuery(":"); query.setFacet(true); query.addFacetField("productCategory_s"); solrClient.query("collection1", query); // 此处默认为分布式查询,但facet统计未指定全局聚合 04 理解并解决问题 为了确保facet统计在分布式环境中的准确性,Solr提供了facet.method=enum参数来实现全局唯一计数。这种方法就像个超级小能手,它会在每个分片上麻利地生成一整套facet结果集合,然后在那个协调节点的大本营里,把所有这些结果汇拢到一起,这样一来,就能巧妙地避免了重复计算的问题啦。 java // 示例:修正后的facet统计请求,启用enum方法以保证跨分片统计准确 SolrQuery query = new SolrQuery(":"); query.setFacet(true); query.setFacetMethod(FacetParams.FACET_METHOD_ENUM); query.addFacetField("productCategory_s"); solrClient.query("collection1", query); 不过,需要注意的是,facet.method=enum虽然能保证准确性,但会增加网络传输和内存消耗,对于大数据量的facet统计可能会造成性能瓶颈。因此,在设计系统时,需结合业务需求权衡统计精确性与响应速度之间的关系。 05 探讨与优化策略 面对facet统计的挑战,除了使用正确的配置参数外,还可以从以下几个方面进一步优化: - 预聚合:针对频繁查询的facet字段,可定期进行预计算并将统计结果存储在索引中,减轻实时统计的压力。 - 合理分片:在构建索引时,依据facet字段的分布特性调整分片策略,尽量使相同或相似facet值的商品集中在同一分片上,降低跨分片统计的需求。 - 硬件与集群扩容:提升网络带宽和服务器资源,或者适当增加Solr集群规模,分散facet统计压力。 06 结语 Apache Solr的强大之处在于其高度可定制化和扩展性,面对跨分片facet统计这类复杂问题,我们既需要深入理解原理,也要灵活运用各种工具和技术手段。只有通过持续的动手实践和不断改进优化,才能确保在数据统计绝对精准无误的同时,在分散各地的分布式环境下也能实现飞速高效的检索目标。在这个过程中,不断探索、思考与改进,正是技术人员面对技术挑战的乐趣所在。
2023-11-04 13:51:42
377
断桥残雪
Superset
...SQL Lab的安全策略来保护敏感数据,并优化元数据库管理机制,使得大规模企业级部署更为稳健可靠。 此外,针对现代数据分析工作中实时性要求的提高,Superset也正在积极整合流处理平台,如Kafka、Flink等,以实现对实时数据流的可视化分析。这意味着,在不久的将来,用户可能可以直接在Superset中配置实时数据源,进一步丰富其在业务监控、风险预警等方面的应用场景。 综上所述,掌握Superset数据源管理的基础操作只是第一步,持续关注该领域的技术动态和发展趋势,将有助于我们更好地利用这一强大工具,挖掘数据背后的深层价值,赋能企业决策与创新。
2023-06-10 10:49:30
76
寂静森林
Python
...进行精确的数据分析和可视化。这不仅提高了工作效率,还使得复杂问题的解决变得更加直观和高效。 此外,Python在医疗健康领域的应用也引起了广泛关注。近期,一篇发表在《自然》杂志上的研究指出,Python被用于开发一种新型的人工智能算法,该算法能够通过分析患者的基因数据,预测疾病风险和治疗效果。这种方法不仅大大提高了诊断的准确性,还为个性化医疗提供了新的可能性。通过Python的强大数据分析能力,研究人员可以更有效地处理大规模的医疗数据,从而加速新药的研发和临床试验。 与此同时,Python在教育领域的应用也越来越受到重视。例如,哈佛大学的一门在线课程“CS50”就使用Python作为主要教学语言,帮助学生掌握编程基础和算法思维。这门课程不仅吸引了全球数百万学生,还推动了编程教育的普及和发展。通过Python的学习,学生们能够更好地理解和解决现实世界中的问题,培养创新思维和解决问题的能力。 这些最新的应用实例不仅展示了Python在各领域的强大潜力,也体现了编程教育的重要性。无论是在科研、医疗还是教育领域,Python都发挥着不可替代的作用,为各行各业带来了前所未有的机遇。
2024-11-19 15:38:42
113
凌波微步
Kibana
...时候,Kibana的可视化功能就显得尤为重要。然而,在实际操作时,咱们可能会遇到这么个状况:明明咱把数据都准确无误地输进去了,可到制作图表那一步,却发现显示出来的数据竟然对不上号,不太靠谱。那么,这到底是什么鬼情况呢?本文决定一探究竟,深入骨髓地剖析一番,并且贴心地为你准备了应对之策! 2. 数据源的问题 首先,我们需要明确一点,数据源的问题是导致Kibana可视化功能显示不准确的主要原因之一。这是因为Kibana这家伙得先从数据源那里拿到数据,然后按照咱们用户的设定,精心捯饬一番,最后才能生成那些图表给我们看。要是数据源头本身就出了岔子,比如缺胳膊少腿的数据、乱七八糟的错误数据啥的,那甭管Kibana有多牛,最后得出的结果肯定也会跟着歪楼。 代码示例: javascript var data = [ { 'name': 'John', 'age': 30, 'country': 'USA' }, { 'name': 'Anna', 'age': null, 'country': 'Canada' }, { 'name': 'Peter', 'age': 35, 'country': 'Australia' } ]; var filteredData = data.filter(function(item) { return item.age !== null; }); console.log(filteredData); 在这个示例中,我们先定义了一个包含三个对象的数据数组。然后,我们使用filter()函数过滤出年龄非null的对象。最后,我们打印出过滤后的结果。可以看出,由于Anna的数据中年龄字段为空,因此在最后的输出中被过滤掉了。 3. 用户设置的问题 其次,用户在创建图表时的选择和设置也会影响最终的结果。比如,如果我们选错数据类型,或者胡乱设置了参数,那生成的图表就可能会“跑偏”,出现不准确的情况。 代码示例: javascript var chart = new Chart(ctx, { type: 'bar', data: { labels: ['Red', 'Blue', 'Yellow', 'Green', 'Purple', 'Orange'], datasets: [{ label: ' of Votes', data: [12, 19, 3, 5, 2, 3], backgroundColor: [ 'rgba(255, 99, 132, 0.2)', 'rgba(54, 162, 235, 0.2)', 'rgba(255, 206, 86, 0.2)', 'rgba(75, 192, 192, 0.2)', 'rgba(153, 102, 255, 0.2)', 'rgba(255, 159, 64, 0.2)' ], borderColor: [ 'rgba(255, 99, 132, 1)', 'rgba(54, 162, 235, 1)', 'rgba(255, 206, 86, 1)', 'rgba(75, 192, 192, 1)', 'rgba(153, 102, 255, 1)', 'rgba(255, 159, 64, 1)' ], borderWidth: 1 }] }, options: { scales: { yAxes: [{ ticks: { beginAtZero: true } }] } } }); 在这个示例中,我们使用了Chart.js库来创建一个条形图。瞧见没,咱在捣鼓图表的时候,特意把数据类型设置成了柱状图(bar),不过呢,关于x轴和y轴的数据类型,咱们还没来得及给它们“定个位”嘞。如果我们的数据本质上是些点,也就是x轴和y轴的数据都是实打实的数字,那这个图表可就画得有点儿怪异了,让人看着感觉不太对劲。 4. 解决方案 对于以上提到的问题,我们可以采取以下几种解决方案: - 对于数据源的问题,我们需要确保数据源的质量。如果可能的话,我们应该直接从原始数据源获取数据,而不是通过中间层。此外,我们还需要定期检查和更新数据源,以保证数据的准确性。 - 对于用户设置的问题,我们需要更加谨慎地选择和设置参数。在动手画图表之前,咱们得先花点时间,像读小说那样把每个参数的含义和能接受的数值范围都摸透了,可别因为理解岔了,一不小心就把参数给设定错了。此外,我们还可以尝试使用默认参数,看看是否能得到满意的结果。 - 如果上述两种方法都无法解决问题,那么可能是Kibana本身存在bug。此时,我们应该尽快联系Kibana的开发者或者社区,寻求帮助。 总结 总的来说,Kibana的可视化功能创建图表时数据不准确的问题是由多种原因引起的。只有当我们像侦探一样,把这些问题抽丝剥茧,摸清它们的来龙去脉和核心本质,再对症下药地采取相应措施,才能真正让这个问题得到解决,从此不再是麻烦制造者。
2023-04-16 20:30:19
292
秋水共长天一色-t
转载文章
...时,采取了积极的挽留策略,包括提升待遇、改善工作环境以及调整晋升机制等。 例如,某互联网巨头在2022年针对数名高级工程师的离职意向,不仅提供了极具竞争力的薪资涨幅,还承诺优化项目分配,以减少不必要的加班压力,并为他们规划了更明确的职业发展路径。此举既体现了公司对人才价值的高度认同,也反映出在快速迭代的技术领域,留住核心人才对企业长期发展的重要性。 与此同时,也有专家指出,面对领导挽留,员工在做决策时需全面考虑自身职业规划、新工作机会的成长空间以及当前公司内部的发展潜力。《哈佛商业评论》最近的一篇文章就深入探讨了“离职与挽留的艺术”,强调个人与组织之间的动态匹配关系,提倡建立开放、诚实且富有建设性的离职对话机制。 此外,根据LinkedIn发布的年度职场趋势报告,全球范围内,越来越多的企业开始注重企业文化建设和员工关怀,以期降低离职率,特别是在软件开发这类高流动率行业中,公司正不断探索更加人性化、激励导向的管理模式,从而有效应对人才竞争激烈的市场环境。 综上所述,在职场抉择的关键时刻,无论是企业通过各种手段挽留人才,还是员工权衡利弊后做出去留决定,都应关注到行业发展趋势、个人成长需求以及组织变革的深层次动因。在这个过程中,企业和员工双方共同塑造着职场生态的未来走向。
2023-04-02 14:22:56
134
转载
转载文章
...对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 18.准入控制器 Admission Controller准入控制器作为把手kubernetes系统安全的最后一道关卡,对已知且有权限用户的操作合规性验证是缺一不可的! 1.什么是准入控制器? 准入控制器(Admission Controller)位于API Server中,在对象被持久化之前,准入控制器拦截对API Server的请求,一般用来做身份验证和授权。 其中包含两个特殊的控制器钩子: MutatingAdmissionWebhook和ValidatingAdmissionWebhook 1.变更(Mutating)准入控制 工作逻辑为修改请求的对象 2.验证(Validating)准入控制 工作逻辑为验证请求的对象 以上两类控制器可以分而治之,也能合作运行 2.为什么我们需要它? 就像我在上一章节提到的那样,准入控制器的引入可以很好的帮助我们运维人员,站在一个集群管理者的角度,去“限定”和规划集群资源的合理利用策略和期望状态。 同时,很多kubernetes的高级功能,也是基于准入控制器之上进行建设的。 3.常用的准入控制器 1.AlwaysPullImages 总是拉取远端镜像; 好处:可以避免本地系统处于非安全状态时,被别人恶意篡改了本地的容器镜像 2.LimitRanger 此准入控制器将确保所有资源请求不会超过namespace级别的LimitRange(定义Pod级别的资源限额,如cpu、mem) 3.ResourceQuota 此准入控制器负责集群的计算资源配额,并确保用户不违反命名空间的ResourceQuota对象中列举的任何约束(定义名称空间级别的配额,如pod数量) 4.PodSecurityPolicy 此准入控制器用于创建和修改pod,并根据请求的安全上下文和可用的Pod安全策略确定是否应该允许它。 4.如何开启准入控制器 在kubernetes环境中,你可以使用kube-apiserver命令结合enable-admission-plugins的flag,后面需要跟上以逗号分割的准入控制器清单,如下所示: kube-apiserver --enable-admission-plugins=NamespaceLifecycle,LimitRanger … 5.如何关闭准入控制器 同理,你可以使用flag:disable-admission-plugins,来关闭不想要的准入控制器,如下所示: kube-apiserver --disable-admission-plugins=PodNodeSelector,AlwaysDeny … 6.实战:控制器的使用 1.LimitRanger 1)首先,编辑limitrange-demo.yaml文件,我们定义了一个cpu的准入控制器。 其中定义了默认值、最小值和最大值等。 apiVersion: v1kind: LimitRangemetadata:name: cpu-limit-rangenamespace: mynsspec:limits:- default: 默认上限cpu: 1000mdefaultRequest:cpu: 1000mmin:cpu: 500mmax:cpu: 2000mmaxLimitRequestRatio: 定义最大值是最小值的几倍,当前为4倍cpu: 4type: Container 2)apply -f之后,我们可以通过get命令来查看LimitRange的配置详情 [root@centos-1 dingqishi] kubectl get LimitRange cpu-limit-range -n mynsNAME CREATED ATcpu-limit-range 2021-10-10T07:38:29Z[root@centos-1 dingqishi] kubectl describe LimitRange cpu-limit-range -n mynsName: cpu-limit-rangeNamespace: mynsType Resource Min Max Default Request Default Limit Max Limit/Request Ratio---- -------- --- --- --------------- ------------- -----------------------Container cpu 500m 2 1 1 4 2.ResourceQuota 1)同理,编辑配置文件resoucequota-demo.yaml,并apply; 其中,我们定义了myns名称空间下的资源配额。 apiVersion: v1kind: ResourceQuotametadata:name: quota-examplenamespace: mynsspec:hard:pods: "5"requests.cpu: "1"requests.memory: 1Gilimits.cpu: "2"limits.memory: 2Gicount/deployments.apps: "2"count/deployments.extensions: "2"persistentvolumeclaims: "2" 2)此时,也可以查看到ResourceQuota的相关配置,是否生效 [root@centos-1 dingqishi] kubectl get ResourceQuota -n mynsNAME CREATED ATquota-example 2021-10-10T08:23:54Z[root@centos-1 dingqishi] kubectl describe ResourceQuota quota-example -n mynsName: quota-exampleNamespace: mynsResource Used Hard-------- ---- ----count/deployments.apps 0 2count/deployments.extensions 0 2limits.cpu 0 2limits.memory 0 2Gipersistentvolumeclaims 0 2pods 0 5requests.cpu 0 1requests.memory 0 1Gi 大家可以将生效后的控制器,结合相关pod自行测试资源配额的申请、限制和使用的情况 本篇文章为转载内容。原文链接:https://blog.csdn.net/flq18210105507/article/details/120845744。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-25 10:44:03
336
转载
SpringCloud
...el等组件进行了多项优化升级,强化了服务注册、配置管理以及流量控制等功能,有助于进一步解决类似的服务匹配问题,并提升系统的稳定性和容错能力。 与此同时,随着云原生理念的普及和发展,Istio、Linkerd等服务网格技术也为企业提供了更为精细化的服务治理方案。它们能够实现服务间通信的自动化、可视化管理,通过统一的控制平面进行流量路由、熔断限流等操作,从而有效防止因服务版本更新或实例状态异常导致的服务调用失败。 此外,对于服务消费者的依赖管理和版本控制,业界推崇的持续集成/持续部署(CI/CD)实践也给出了答案。通过GitOps等现代DevOps方法论,确保消费者应用在拉取服务提供者新版本时,能够自动化的完成依赖更新与验证,减少人工介入带来的错误风险。 综上所述,面对服务提供者与消费者匹配异常这类问题,除了掌握基础原理与排查手段外,关注并引入先进的微服务治理工具和技术实践,将更有利于构建健壮、高效的分布式系统。
2023-02-03 17:24:44
129
春暖花开
RabbitMQ
...息中间件组件,其性能优化与运维管理越来越受到业界关注。近期一篇发表在InfoQ的技术文章《深入剖析RabbitMQ性能调优策略》中,作者详细解读了如何从内存、网络、磁盘I/O等多个维度优化RabbitMQ,从而提升整体系统性能,降低故障发生概率。 综上所述,面对RabbitMQ服务器磁盘空间不足等现实问题,无论是采取自动化运维手段进行资源扩展,还是引入更先进的数据管理和备份策略,都是我们在构建和维护高可靠、高性能分布式系统过程中不可或缺的一环。持续跟进最新的技术发展与最佳实践,将有助于我们在实际工作中更好地应对挑战,保障业务的平稳运行。
2024-03-17 10:39:10
171
繁华落尽-t
Apache Atlas
...实体的错误排查与解决策略后,对于进一步提升元数据管理效率和保障数据治理效果具有重要意义。近期,随着大数据和云计算技术的快速发展,企业对元数据管理的需求愈发迫切,Apache Atlas作为一款先进的开源元数据管理系统,在国内外众多大型项目中得到了广泛应用。 延伸阅读一则关于Apache Atlas实际应用的新闻:2022年,某全球知名电商巨头宣布在其数据湖建设中全面采用Apache Atlas进行元数据管理,以应对日益复杂的数据环境带来的挑战。该项目负责人表示,通过有效利用Atlas的REST API接口,不仅成功实现了各类数据实体的自动化创建、管理和追踪,还极大地提升了数据发现的效率和准确性,同时降低了由于权限混乱或实体关联性问题引发的风险。 此外,Apache社区在持续优化Atlas的功能特性,最近发布的Atlas 2.3版本强化了对Kafka、Hive等大数据组件的支持,并增强了API的安全性和易用性,使得开发者能够更加便捷地处理实体创建过程中的各类问题,有力推动了企业在数字化转型过程中的元数据治理实践。 因此,对于正在使用或计划采用Apache Atlas的企业和开发者而言,紧跟官方更新动态,深入研究和掌握其REST API的使用技巧及错误排查方法,无疑将为企业的数据资产管理带来更大的价值。同时,结合业界最佳实践和实时案例分析,有助于不断提升自身的数据治理能力,确保在瞬息万变的技术浪潮中保持竞争力。
2023-06-25 23:23:07
562
彩虹之上
MemCache
...在分布式环境中的部署策略 首先,我们需要理解MemCache在分布式环境下的工作原理。MemCache这东西吧,本身并不具备跨节点数据一致性的功能,也就是说,每个节点都是个自给自足的小缓存个体,它们之间没有那种自动化同步数据的机制。所以,当我们在实际动手部署的时候,得想办法让这些工作量分散开,就像大家分担家务一样。这里我们可以用个很巧妙的方法,就叫“一致性哈希”,这个算法就像一个超级智能的分配器,能帮我们精准地判断每一份数据应该放在哪个小仓库(节点)里头,这样一来,所有的东西都能各归其位,整整齐齐。 python from pymemcache.client.hash import ConsistentHashRing nodes = [('node1', 11211), ('node2', 11211), ('node3', 11211)] ring = ConsistentHashRing(nodes) 使用一致性哈希决定key对应的节点 node, _ = ring.get_node('your_key') 2. 数据的分布式存储 上述的一致性哈希算法能够保证当新增或减少节点时,对已存在的大部分键值对的映射关系影响较小,从而实现数据的均衡分布。此外,咱们得牢牢记住一个大原则:如果有那么些关系紧密的数据兄弟,最好让它们挤在同一台MemCache服务器上,这样可以有效避免因为跨节点访问而产生的网络开销,懂我意思吧? 3. 同步更新问题及其解决思路 MemCache本身不具备数据同步功能,因此在分布式环境下进行数据更新时,需要通过应用层逻辑来保障一致性。常见的一种做法是“先更新数据库,再清除相关缓存”。 python 假设我们有一个更新用户信息的方法 def update_user_info(user_id, new_info): 先更新数据库 db.update_user(user_id, new_info) 清除MemCache中相关的缓存数据 memcached_client.delete(f'user_{user_id}') 另一种策略是引入消息队列,例如使用Redis Pub/Sub或者RabbitMQ等中间件,当数据库发生变更时,发布一条消息通知所有MemCache节点删除对应的缓存项。 4. MemCache节点的维护与监控 为了保证MemCache集群的稳定运行,我们需要定期对各个节点进行健康检查和性能监控,及时发现并处理可能出现的内存溢出、节点失效等问题。可以通过编写运维脚本定期检查,或者接入诸如Prometheus+Grafana这样的监控工具进行可视化管理。 bash 示例:简单的shell脚本检查MemCache节点状态 for node in $(cat memcache_nodes.txt); do echo "Checking ${node}..." telnet $node 11211 <<< stats | grep -q 'STAT bytes 0' if [ $? -eq 0 ]; then echo "${node} is down or not responding." else echo "${node} is up and running." fi done 总的来说,要在分布式环境中有效管理和维护多个MemCache节点,并实现数据的分布式存储与同步更新,不仅需要合理设计数据分布策略,还需要在应用层面对数据一致性进行把控,同时配合完善的节点监控和运维体系,才能确保整个缓存系统的高效稳定运行。在整个探险历程中,咱们得时刻动脑筋、动手尝试、灵活应变、优化咱的计划,这绝对是一个挑战多多、趣味盎然的过程,让人乐在其中。
2023-11-14 17:08:32
70
凌波微步
转载文章
...服务器后,深入理解和优化数据库性能以及安全策略成为运维工作的关键。近日,MySQL官方发布了8.0.28版本,引入了更多性能改进和新特性,例如增强的窗口函数支持、InnoDB存储引擎的优化以及对JSON字段类型更深度的支持。对于已经部署MySQL的用户来说,了解这些新特性并适时升级有助于提升数据库性能和用户体验。 另外,在保障数据库安全方面,近期信息安全领域有专家提醒应重视MySQL权限管理和日志审计。通过细化访问控制列表(ACL),确保每个用户仅能访问其完成工作所需的最低权限数据;同时启用并合理配置MySQL的错误日志、通用查询日志和慢查询日志,可有效监控潜在的安全威胁和性能瓶颈。 此外,针对Linux系统下MySQL的资源管理与高可用性设置,可以参考《MySQL High Availability》一书,作者Jay Janssen和Baron Schwartz从实战角度详细解读了如何运用复制、集群及容灾技术实现MySQL服务的高可用和故障切换。 综上所述,MySQL的持续学习和最佳实践探索是每一位数据库管理员的重要任务,时刻关注官方更新动态、加强安全意识,并深入了解高级配置技巧,才能让Linux环境下运行的MySQL发挥出最大效能,为企业业务稳定高效运转提供坚实基础。
2023-05-24 19:00:46
119
转载
转载文章
...其中对数组操作进行了优化,引入了Span等新特性以提高内存管理和性能。例如,《.NET 5.0中的数组与内存管理优化》一文详细解读了这些改进,并提供实例说明如何在实际开发中运用以提升效率。 其次,在Web开发领域,动态数据加载和前端用户体验优化始终是热门话题。《前端性能优化:动态构建下拉菜单的最佳实践》一文介绍了现代Web开发中,利用Vue.js、React或Angular等框架构建高性能、响应式下拉菜单的具体策略和技术细节。 再者,对于数据库查询优化,SQL Server 2019引入的新功能,比如窗口函数和索引视图,使得复杂查询排序更加高效。一篇名为《SQL Server 2019新特性助力下拉列表动态排序》的文章探讨了如何借助这些新特性,更好地满足类似“特定值优先显示”的需求。 此外,对于ASP.NET Core下的UI组件集成,微软官方文档和社区博客提供了大量实用教程和案例,如《ASP.NET Core MVC 中嵌套控件的高级用法》,通过解析此类文章,开发者能深入了解如何在实际项目中灵活组合各种控件以满足复杂的业务逻辑展示要求。
2023-06-20 18:50:13
308
转载
Mahout
...有效提升了推荐系统的准确性和覆盖率。 此外,随着大数据和人工智能技术的发展,业界也开始关注更加精细化、个性化的推荐策略。例如,Netflix采用矩阵分解结合实时行为数据,实现了对用户即时兴趣的精准捕捉,并在此基础上进行相似用户的动态聚类,大大提高了其个性化推荐服务的质量。 同时,在实践层面,阿里巴巴集团近期公开分享了他们在电商推荐场景中优化用户相似度计算的经验。他们发现将用户的社会关系网络、购买行为序列以及商品属性特征等多元信息融合进相似度计算模型,能显著提升推荐效果并带来更好的用户体验。 综上所述,用户相似度计算作为推荐系统的核心技术之一,其理论与实践都在不断演进与发展。除了Mahout等传统工具箱之外,现代推荐系统更需要我们紧跟学术前沿,把握行业动态,灵活运用深度学习、图神经网络等先进手段,以适应愈发复杂多变的用户需求和行为模式。
2023-02-13 08:05:07
88
百转千回
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
renice priority_level -p pid
- 更改已运行进程的优先级。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"