前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[分布式系统架构优化 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Dubbo
近期,随着微服务架构的普及,Dubbo作为一款经典的Java RPC框架再次受到广泛关注。特别是在云原生时代,Dubbo不仅在阿里巴巴集团内部持续迭代更新,还积极拥抱Kubernetes等现代容器化平台,推出了Dubbo 3.x版本,大幅提升了分布式系统的性能与可扩展性。这一系列改进让Dubbo在面对高并发、大规模服务治理时表现出色,尤其是在电商、金融等行业中得到了广泛应用。 例如,在刚刚结束的双十一购物节期间,某头部电商平台利用Dubbo实现了全链路压测与动态扩容,确保了亿级用户的访问请求能够稳定高效地被处理。该平台的技术团队表示,通过引入Dubbo的负载均衡算法优化以及服务熔断机制,他们在高峰期成功将请求延迟降低了30%以上,极大地提升了用户体验。此外,Dubbo与Spring Cloud的深度融合也为开发者提供了更加统一的微服务治理方案,使得不同技术栈的应用程序能够无缝协作。 然而,尽管Dubbo具备诸多优势,但在实际部署过程中仍需注意潜在风险。比如,部分企业在迁移至新版本时遇到了兼容性挑战,特别是对于老旧代码库而言,如何平衡创新与稳定性始终是一个难题。对此,业内专家建议,企业应优先评估现有系统的依赖关系,制定详细的升级计划,并借助Dubbo提供的灰度发布功能逐步推进改造工作,从而降低整体改造成本。 展望未来,随着Service Mesh概念的兴起,Dubbo也在积极探索与Istio等服务网格框架的合作模式,试图构建更为灵活且智能的服务管理体系。可以预见的是,Dubbo将在更广泛的业务场景下发挥重要作用,为企业数字化转型注入新的活力。与此同时,我们也期待Dubbo社区能够继续倾听用户需求,不断完善产品功能,共同推动开源生态的发展壮大。
2025-03-20 16:29:46
63
雪落无痕
转载文章
...程序员、高级程序员、架构师、技术经理、技术总监之间有什么区别吗?他们的工作职责又是什么? 小编带大家了解一下,不同等级的程序员之间到底有什么差别。 程序员 程序员,英文名coder/programmer,大家常自嘲叫码农的阶段。这个角色职责是把需求或产品实现为用户可用的软件产品。 此职位为执行级别。另外因为经验较少,一般需要求助别人,或与别人一起完(ban)成(zhuan)一个任务。 此阶段大概要经历3年,程序员的职责如下: 1、对项目经理负责,负责软件项目的详细设计、编码和内部测试的组织实施。 2、协助项目经理和相关人员同客户进行沟通,保持良好的客户关系。 3、参与需求调研、项目可行性分析、技术可行性分析和需求分析。 4、熟悉并熟练掌握交付软件部开发的软件项目的相关软件技术。 5、负责向项目经理及时反馈软件开发中的情况,并根据实际情况提出改进建议。 6、负责对业务领域内的技术发展动态进行分析研究。 高级程序员 高级程序员学名,工程师。 到了这个level,英文名可改叫做 engineer 或 developer。此时你的功力开始增强,这与你平时的积累努力是分不开的,祝贺你~ 此时的你不仅可以完成任务,开始注重代码的质量,能够写出工业级的代码。你的经验可胜任模块级的系统设计,承担完成较为复杂的技术,能有效的自我管理,有帮助别人快速解决问题(trouble shooting)的能力。 此阶段你需要经历到7、8年左右的体验,中间要经历一段深刻自我历练的过程。 有时给人致命一击其实是心里的小蟊贼。一般人在5年前后遇到一个门槛,碰到天花板+彷徨期,或者你打心眼里不在喜欢编程,可尝试转为其它角色,如产品经理,售前售后支持等岗位,也不失为好选择。 当我们熬过这段儿,就会“山随平野尽,江入大荒流“,渐入佳境矣。 高级程序员定义软件功能、做开发计划推进和管理。可以带几个个帮手把产品规划的功能实现,你是团队中的”大手“,遇到难题也是你亲自攻艰克难。 所以,一个高级程序员,他的职责很清晰: 1、负责产品核心复杂功能的方案设计、编码实现 2、负责疑难BUG分析诊断、攻关解决 架构师 到了架构师级别,想必你已经学会降龙十八掌,可登堂入世,成为一位准(lao)专(you)家(tiao)。 我们大喊声:“单打独斗,老衲谁也不惧!“,遂开始领导一众技术高手,指点武功,来设计和完成一个系统,大多是分布式,高并发的系统架构平台。 架构师的任务是为公司产品的业务问题提供高质量技术解决方案,主要着眼于系统的"技术实现" 。 架构师的主要分类: 可能每条产品线都设置了架构师,也可能多条生产品线的的后端是由一个架构师设计的平台提供,所以架构师也是有所不同的,其分类如下: 软件架构师 信息架构师 网站架构师 其主要职责如下: 1、需求分析:“知彼”有时比“知已”还重要。管理市场,产品等的需求,确立关键需求。坚持技术上的优秀与需求的愿景统一,提升技术负债意识,提供技术选项,风险预判,工期等解决方案。 2、架构设计:在产品功能中抽取中非功能的需求,由关键需求变成概念型架构。列出功能树,分层治之,如用户界面层、系统交互层,数据管理层。达成高扩展,高可用,高性能,高安全,易运维,易部署,易接入等能力。 3、功能设计与实现:对架构设计的底层代码级别实现。如公共核心类,接口实现,应用发现规则、接口变更等。 技术经理 人生就是不断上升的过程,你已经到达经理的层次了。如今的你,需要不断提高领导力,需要定期召开团队会议讨论问题。 首先我们要更加自信,在工作中显示自己的功力,给讲话增添力量。如:“本次项目虽然有很大的困难,我们也需苦战到底。当然示先垂范,身先士卒,方能成功!” 技术经理有时候也可能叫系统分析员,一些小公司可能会整个公司或者部门有一个技术经理。技术经理承担的角色主要是系统分析、架构搭建、系统构建、代 码走查等工作,如果说项目经理是总统,那么技术经理就是总理。当然不是所有公司都是这样的,有些公司项目经理是不管技术团队的,只做需求、进度和同客户沟 通,那么这个时候的项目经理就好像工厂里的跟单人员了,这种情况在外包公司比较多。对于技术经理来说,着重于技术方面,你需要知道某种功能用哪些技术合 适,需要知道某项功能需要多长的开发时间等。同时,技术经理也应该承担提高团队整体技术水平的工作。 你需要和大家站在一起,因为人们也都有解决问题的能力,更需要有以下的能力与责任: 1、任务管理:开发工作量评估、定立开发流程、分配和追踪开发任务 2、质量管理:代码review、开发风险判断/报告/协调解决 3、效率提升:代码底层研发和培训、最佳代码实践规范总结与推广、自动化生产工具、自动化部署工具 4、技术能力提升:招聘面试、试题主拟、新人指导、项目复盘与改进 技术总监 如果一个研发团队超过20人,有多条产品线或业务量很大,这时已经有多个技术经理在负责每个业务,这时需要一位技术总监。 主要职责: 1、组建平台研发部,与架构师共建软件公共平台,方便各条产品业务线研发。 2、通过技术平台、通过高一层的职权,管理和协调公司各个部门与本部门各条线。现在每个产品线都应该有合格的技术经理和高级程序员。 结语:我们相信,每个人都能成为IT大神。现在开始,找个师兄带你入门,让你的学习之路不再迷茫。 这里推荐我们的前端学习交流圈:784783012,里面都是学习前端的从最基础的HTML+CSS+JS【炫酷特效,游戏,插件封装,设计模式】到移动端HTML5的项目实战的学习资料都有整理,送给每一位前端小伙伴。 最新技术,与企业需求同步。好友都在里面学习交流,每天都会有大牛定时讲解前端技术! 点击:前端技术分享 本篇文章为转载内容。原文链接:https://blog.csdn.net/webDk/article/details/88917912。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-05-10 13:13:48
755
转载
MemCache
...,随着云计算和微服务架构的普及,越来越多的企业开始将MemCache作为其技术栈的一部分。然而,除了服务连接超时这样的常见问题外,MemCache还面临着其他挑战。例如,在大规模分布式系统中,如何保证数据的一致性和可靠性成为了一个重要的课题。近期,某知名电商平台在大促期间遭遇了MemCache集群崩溃的情况,导致部分订单数据丢失,给公司带来了巨大的经济损失。事后调查显示,问题的根本原因在于MemCache的主从同步机制未能及时应对突发流量,加上监控系统的滞后,未能第一时间发现问题并采取措施。 针对这一事件,业内专家提出了几点改进建议。首先,应该引入更先进的分布式一致性协议,如Paxos或Raft算法,确保在节点故障时数据不会丢失。其次,加强监控系统的实时性,利用Prometheus等工具对MemCache的各项指标进行持续跟踪,一旦发现异常立即触发报警。此外,还可以考虑采用多活架构,即在同一地区部署多个MemCache集群,当某个集群出现问题时,能够迅速切换到备用集群,从而最大限度地降低业务中断的风险。 与此同时,开源社区也在不断推进MemCache的功能完善。例如,最新的MemCache版本已经支持动态扩容,这意味着企业在高峰期可以通过快速增加节点来应对流量激增。同时,新的插件机制也让开发者可以根据自身需求定制化功能,比如添加额外的安全认证层或者优化数据压缩算法。 总之,MemCache作为一种高效的缓存解决方案,在现代IT基础设施中扮演着不可或缺的角色。但要想充分发挥其潜力,企业必须正视潜在风险,积极拥抱技术创新,才能在激烈的市场竞争中立于不败之地。
2025-04-08 15:44:16
87
雪落无痕
MySQL
...泛使用的是愈发复杂的系统架构和更高的性能需求。就在上周,某知名电商公司在其大规模分布式数据库集群中遭遇了类似的问题——由于未及时调整文件描述符限制,导致核心业务系统在高并发访问时频繁出现“Too many open files”的错误,严重影响用户体验。这一事件引发了业内对于数据库资源管理的关注。 事实上,此类问题并非孤立存在。根据权威机构发布的最新报告显示,近年来因数据库配置不当而导致的服务中断比例逐年上升。特别是在互联网行业,随着微服务架构的普及,单个应用程序可能依赖数十甚至上百个数据库实例,这对数据库的稳定性提出了更高要求。此外,随着人工智能算法模型训练需求的增长,大模型的数据存储与计算任务也给传统数据库带来了前所未有的压力。 针对上述趋势,国内外多家科技公司已经开始探索更加智能化的数据库运维解决方案。例如,谷歌推出的Cloud SQL自动扩展功能可以根据实时流量动态调整资源分配,从而有效缓解类似问题的发生;阿里云则推出了PolarDB-X产品线,专门针对超高并发场景进行了优化设计。这些创新举措表明,未来数据库运维将朝着自动化、智能化方向发展。 与此同时,开源社区也在积极贡献力量。Linux内核开发者近日宣布,将在即将发布的5.18版本中引入一项名为“FD-PIN”的新特性,该特性能够显著提高文件描述符管理效率,为数据库等高性能应用场景提供更多可能性。这无疑为解决“Too many open files”这类经典问题提供了全新思路。 综上所述,无论是从技术演进还是实际案例来看,如何高效管理数据库资源已成为当下亟待解决的重要课题。作为从业者,我们需要紧跟时代步伐,不断学习新技术,同时注重实践经验积累,唯有如此才能更好地应对未来的挑战。
2025-04-17 16:17:44
109
山涧溪流_
RabbitMQ
近期,随着微服务架构的普及,消息队列技术在企业级应用中的需求日益增长。RabbitMQ作为其中的佼佼者,继续受到广泛关注。最近,RabbitMQ发布了3.10.0版本,引入了多项改进和新特性,其中包括增强的安全性和性能优化。这一版本特别强调了对大规模分布式系统的支持,旨在帮助企业更好地应对高并发场景下的消息传递挑战。 根据《InfoQ》报道,RabbitMQ 3.10.0版本引入了新的安全机制,增强了对TLS/SSL的支持,使得消息传输更加安全可靠。此外,该版本还优化了消息路由算法,提高了消息传递效率。这对于金融、电商等需要处理大量实时交易的企业来说尤为重要。 同时,《DZone》的一篇文章指出,RabbitMQ的新版本在集群管理方面也有所改进,提供了更强大的监控和管理工具。这使得运维人员可以更方便地进行故障排查和性能调优。对于正在考虑升级RabbitMQ版本的企业而言,这些改进无疑是一个好消息。 然而,正如我们在文章中所讨论的,版本更新也伴随着潜在的风险。企业在升级过程中需要仔细评估新版本带来的变化,确保代码和配置文件能够正确兼容。建议在正式部署前,进行充分的测试,以避免出现由于版本不匹配导致的意外问题。 总之,RabbitMQ 3.10.0版本的发布为企业提供了更多选择,但也提醒我们,技术的演进需要持续关注和学习。只有不断适应新技术的发展,才能确保业务系统的稳定性和可靠性。
2025-03-12 16:12:28
105
岁月如歌
MemCache
...ched与现代云原生架构的融合 随着云计算技术的快速发展,微服务架构、容器化部署、以及Serverless计算模式逐渐成为企业数字化转型的主流趋势。在这种背景下,如何高效地管理和优化分布式缓存,成为了支撑云原生应用稳定运行的关键因素。Memcached作为一款经典的分布式内存对象缓存系统,其在云原生环境中的应用与优化,成为当前IT领域研究的热点话题。 微服务与分布式缓存的挑战 在微服务架构中,服务的解耦和模块化带来了巨大的灵活性和可扩展性,但也带来了通信成本增加、服务间依赖复杂等问题。分布式缓存作为微服务间数据共享和状态一致性维护的重要手段,对于提升系统响应速度、降低数据库压力具有不可替代的作用。然而,在分布式系统中,缓存的一致性、失效策略、以及缓存穿透等问题日益凸显,成为影响系统稳定性和性能的关键因素。 Memcached在云原生环境中的应用 面对上述挑战,Memcached通过其轻量级的设计和高效的数据访问特性,在云原生环境中找到了新的应用场景和优化路径。例如,结合Kubernetes和Docker容器技术,Memcached可以被方便地部署到集群中,实现资源的动态扩展和负载均衡。通过使用Kubernetes的服务发现和自动缩放功能,可以确保Memcached服务在高并发场景下保持良好的性能和稳定性。 同时,借助现代云平台提供的监控和日志服务,如Prometheus和ELK Stack,可以实时监控Memcached的运行状态,及时发现并定位性能瓶颈,实现故障快速响应和自动化优化。此外,通过集成Redisson等开源库或自定义实现,Memcached可以支持更多高级特性,如事务、订阅/发布消息机制等,进一步增强其在复杂业务场景下的适用性。 结语:持续优化与技术创新 随着云原生技术的不断发展,对分布式缓存的需求也在不断演变。Memcached作为一款成熟且灵活的缓存工具,其在云原生环境中的应用与优化,是一个持续探索和创新的过程。通过结合最新的云原生技术栈,如无服务器计算、事件驱动架构等,可以进一步挖掘Memcached的潜力,为其在现代云原生应用中的角色注入新的活力。在这个过程中,不断积累实践经验,推动技术的迭代与创新,是实现系统高效、稳定运行的关键所在。 通过深入分析云原生环境下的分布式缓存需求,以及Memcached在此场景下的应用实践,我们可以看到,技术的融合与创新是推动系统性能优化、应对复杂业务挑战的重要驱动力。随着技术的不断进步和应用场景的不断丰富,Memcached在云原生架构中的角色将会变得更加重要,为构建高性能、高可用的云原生应用提供坚实的基础。
2024-09-02 15:38:39
38
人生如戏
Mongo
...指非关系型数据库管理系统,它们不遵循传统 SQL 数据库的模式约束和事务一致性保证。NoSQL 数据库适用于处理大量非结构化或半结构化数据,通常具有高可扩展性和高可用性,适合于大规模分布式系统。MongoDB 是一种典型的 NoSQL 数据库,它使用 JSON 格式的文档存储数据,支持动态模式调整,适用于快速数据存储和检索。 名词 , 分布式架构。 解释 , 分布式架构是指将应用程序或系统分解为多个独立的、可部署在不同节点上的组件,这些组件之间通过网络进行通信和协作。在 MongoDB 的上下文中,分布式架构意味着数据被分散存储在多台服务器上,这提高了系统的容错能力和可扩展性。MongoDB 使用分片技术,将数据分布在多个物理服务器上,从而支持大规模数据处理和水平扩展。 名词 , 大数据处理。 解释 , 大数据处理涉及收集、存储、管理和分析大规模数据集的过程。随着互联网、物联网和其他数据源的兴起,产生的数据量呈指数级增长,传统的数据处理方法已无法满足需求。MongoDB 在大数据处理中扮演重要角色,它能够高效地存储和检索大量数据,支持实时数据分析,并与其他大数据工具(如 Hadoop 和 Spark)集成,实现数据的深度挖掘和价值提取。大数据处理的关键在于处理速度、数据量和数据多样性,MongoDB 的设计旨在优化这些方面的表现。
2024-08-13 15:48:45
148
柳暗花明又一村
转载文章
...版本中,开发者进一步优化了RCU的性能和内存利用率,并针对大规模并发环境下的宽限期处理逻辑进行了改进,显著降低了锁竞争,提升了系统整体响应速度。 在实际应用场景上,Google开源项目BPF(Berkeley Packet Filter)利用RCU机制实现了高效的跟踪和分析工具,使得网络数据包过滤、性能监控等功能能够在不影响主线程性能的前提下实现近乎实时的数据读取与更新。 另外,知名计算机科学家Paul E. McKenney于2022年发表了一篇关于RCU最新进展和技术挑战的深度论文,其中深入剖析了RCU在未来多核处理器架构下的扩展性问题以及可能的解决方案。他强调,在面对日益复杂的硬件环境时,RCU机制需要不断演进以适应更高级别的并发控制需求。 同时,随着云计算和大数据技术的发展,RCU在分布式存储系统中的作用也逐渐凸显。例如,Ceph文件系统通过借鉴RCU思想,设计出适用于自身场景的读写同步算法,有效提高了大规模集群环境下的数据一致性保障能力。 综上所述,RCU作为Linux内核中不可或缺的同步原语,其理论研究和实践应用都在与时俱进,为现代操作系统及分布式系统的高效稳定运行提供了有力支撑。未来,我们有理由期待更多基于RCU机制的创新技术和解决方案涌现,持续推动软件工程领域的发展进步。
2023-09-25 09:31:10
105
转载
转载文章
...3版本,引入了一系列优化内存管理的新特性,如改进的内存压力检测机制和更精细的QoS(服务质量)控制,使得集群能够更加智能地处理内存资源紧张的情况,确保系统稳定性和应用性能。 此外,在云原生计算基金会(CNCF)的一篇深度解读文章中,作者详细探讨了Kubernetes内存管理背后的原理,并结合实际场景分析了如何根据应用程序特性和业务需求合理设置内存请求和限制,以实现资源的有效利用和成本控制。同时,文中还引用了Google Borg论文中的经典研究,揭示了大规模分布式系统内存资源调度的复杂性及其解决方案在Kubernetes设计中的体现。 对于希望进一步提升Kubernetes集群资源管理能力的用户,可以关注一些业内知名的案例研究,例如Netflix如何借助Kubernetes进行大规模服务部署时的内存优化策略。这些实战经验不仅有助于理解理论知识,还能指导读者在实际环境中运用和调整内存配置,从而最大化资源使用效率,降低运维风险。 总之,随着Kubernetes生态系统的持续发展和容器技术的日臻完善,不断跟进最新的内存管理实践与研究动态,将助力企业和开发者更好地驾驭这一强大的容器编排工具,构建高效、稳定的云原生架构。
2023-12-23 12:14:07
494
转载
Beego
...,随着云计算和微服务架构的普及,越来越多的开发者开始关注配置管理的最佳实践。在这一背景下,Beego 框架的配置文件解析问题虽然看似基础,却依然具有重要意义。实际上,类似的问题不仅限于 Beego,而是广泛存在于各种框架和工具中。例如,Spring Boot 社区最近也发布了一篇博客,探讨了如何优化配置文件的加载机制,以应对大规模分布式系统的挑战。这表明,随着技术的发展,配置管理正变得越来越复杂,同时也更加关键。 从现实案例来看,某知名电商企业在一次系统升级过程中,由于配置文件格式错误导致服务中断长达数小时。事后调查发现,问题的根本原因并非技术难度,而是团队缺乏对配置管理的重视。这一事件引发了行业内对于配置文件规范化管理的反思。一些专家指出,现代开发团队应当建立完善的 CI/CD 流程,将配置文件的检查纳入自动化测试环节,从而最大限度地减少人为失误。 此外,近年来 DevOps 思维的兴起也为配置管理带来了新的视角。传统的配置管理往往被视为运维人员的职责,但在 DevOps 文化中,开发与运维之间的界限逐渐模糊。这意味着开发者也需要具备一定的配置管理知识,以便更好地支持持续交付流程。例如,GitHub Actions 等工具集成了丰富的配置模板,帮助开发者快速搭建自动化工作流。这种趋势不仅提升了效率,还促进了跨部门协作。 回到 Beego 框架本身,其核心开发者也在积极迭代版本,引入更多智能化特性。例如,新版 Beego 支持基于环境变量的动态配置加载,允许用户在不同环境中灵活切换设置。这一改进既体现了技术的进步,也反映了社区对用户体验的关注。未来,随着 Go 语言生态的不断完善,配置管理工具可能会进一步集成到语言标准库中,形成更加统一的解决方案。 综上所述,无论是从技术趋势还是实际应用的角度看,配置文件管理始终是软件工程中的重要一环。希望本文能够激发读者对这一领域的兴趣,并鼓励大家在日常工作中投入更多精力去优化配置流程。毕竟,正如一句古话所言:“千里之堤,溃于蚁穴”,细微之处往往决定成败。
2025-04-13 15:33:12
24
桃李春风一杯酒
Netty
...,随着云计算和微服务架构的普及,越来越多的企业开始采用Netty作为其后端服务的核心框架。特别是在金融行业,由于对系统稳定性和安全性要求极高,Netty因其卓越的性能和灵活的扩展性备受青睐。例如,某大型银行的支付清算系统近期完成了全面升级,采用了基于Netty的微服务架构,实现了每秒百万级的交易处理能力,同时大幅降低了系统延迟和资源消耗。这一成功案例不仅验证了Netty在高并发场景下的强大适应性,也为其他金融机构提供了宝贵的经验。 此外,在物联网领域,Netty的应用同样值得关注。随着智能家居设备数量的激增,如何高效处理海量设备的实时通信成为一大挑战。Netty凭借其轻量级、非阻塞的特性,成为了许多物联网平台的首选解决方案。例如,一家领先的智能家居公司通过引入Netty,成功构建了全球化的设备管理平台,支持数千万台设备的同时在线。该平台不仅实现了设备间的数据同步,还通过心跳检测和长连接复用等技术,确保了通信的稳定性和可靠性。 从技术发展的角度来看,Netty的未来潜力依然巨大。随着Rust等新兴编程语言逐渐进入主流视野,未来的Netty版本可能会结合多语言特性,进一步提升系统的兼容性和性能。同时,随着量子计算技术的发展,Netty的研究者们也在积极探索如何将这一前沿技术融入框架中,以应对未来更大规模的分布式计算需求。这些趋势表明,Netty不仅在当下具有重要意义,还将继续引领未来的网络编程潮流。
2025-03-19 16:22:40
79
红尘漫步
Hadoop
...,如何确保数据在不同系统间的高效迁移同时兼顾安全性,已经成为企业和政府必须面对的重大课题。就在上周,欧盟委员会发布了一份关于加强数据跨境传输监管的新提案,旨在强化GDPR(《通用数据保护条例》)的执行力度,尤其是针对云服务提供商的跨境数据处理活动提出了更为严格的审查标准。这一举措无疑将对依赖Hadoop等分布式系统的企业带来深远影响,尤其是在涉及跨国业务的数据处理环节中,如何平衡技术创新与法律合规将成为新的挑战。 与此同时,国内也在加速推进数据安全立法进程。近日,中国信通院发布了《中国数字经济发展白皮书》,其中特别提到,在数字经济快速发展的背景下,数据要素市场化配置改革亟需解决的关键问题之一便是如何构建统一的数据流通体系。报告建议,应加快制定和完善数据分级分类管理制度,鼓励采用先进的技术手段如区块链、联邦学习等,以提升数据流动的安全性和透明度。这表明,无论是在国际还是国内层面,围绕数据安全的技术创新与政策规范都呈现出同步加强的趋势。 值得注意的是,尽管Hadoop因其强大的分布式计算能力在全球范围内得到了广泛应用,但其在实际部署过程中仍面临诸多挑战,例如如何在满足业务需求的同时避免因权限配置不当而导致的数据泄露风险。对此,专家指出,企业应当加强对员工的数据安全意识培训,同时积极引入第三方审计机制,定期评估系统内的访问控制策略是否符合最新的行业标准。此外,随着量子计算等新兴技术的发展,未来的数据加密方案也需要重新审视,以应对潜在的安全威胁。 综上所述,无论是国际法规的变化还是国内政策的调整,都在推动数据安全领域发生深刻变革。对于那些希望借助Hadoop等工具实现高效数据迁移的企业而言,只有紧跟时代步伐,不断优化自身的数据管理体系,才能在未来竞争中立于不败之地。
2025-04-29 15:54:59
77
风轻云淡
ZooKeeper
...,随着云计算和微服务架构的普及,越来越多的企业开始依赖ZooKeeper这类分布式协调工具来保障系统的稳定性和一致性。然而,正如文章所提到的,CommitQueueFullException仍然是许多开发者头疼的问题。最近,阿里云发布的开源项目“SOFARegistry”引起了广泛关注,这是一个基于ZooKeeper的高性能注册中心,旨在解决大规模分布式系统中的服务发现和配置管理问题。SOFARegistry通过对ZooKeeper的深度优化,大幅提升了请求处理能力,降低了CommitQueueFullException的发生概率。例如,在某电商平台的双11活动中,使用SOFARegistry后,服务调用成功率提升了近30%,同时降低了约40%的系统资源消耗。此外,腾讯云也推出了类似的解决方案,其推出的TSeer组件同样基于ZooKeeper,专注于提供低延迟的服务发现和负载均衡能力。这些新技术的出现,不仅为企业提供了更多选择,也为ZooKeeper的未来发展注入了新活力。值得注意的是,尽管这些优化方案效果显著,但在实际应用中仍需结合自身业务特点进行定制化调整。例如,某些企业可能需要进一步增强SOFARegistry的容错能力,而另一些企业则可能需要TSeer提供的更细粒度的流量控制功能。总之,随着分布式系统规模的不断扩大,如何高效利用现有工具并持续创新将成为未来发展的关键。希望这些前沿技术和最佳实践能为读者带来启发,助力企业在数字化转型中抢占先机。
2025-03-16 15:37:44
10
林中小径
Redis
近期,随着微服务架构的普及,分布式锁的应用场景愈发广泛。特别是在双十一这样的高并发购物节期间,各大电商平台频繁面临库存超卖、重复下单等问题。例如,今年某知名电商平台在促销活动中因未妥善处理分布式锁机制,导致部分商品短时间内被恶意刷单,造成了数百万的经济损失。这一事件再次提醒我们,分布式锁不仅仅是理论上的技术难题,更是直接影响业务成败的关键环节。 从技术角度来看,Redis作为一种轻量级的分布式缓存解决方案,其性能优势毋庸置疑,但同时也存在一些潜在风险。例如,文章中提到的Lua脚本虽然能够保障原子性,但如果脚本编写不当,可能会引发意外行为。此外,过期时间的设置也需要权衡,过短可能导致频繁重试,增加系统负担;过长则可能造成死锁隐患。这些问题在实际生产环境中往往需要结合具体的业务场景进行调优。 值得注意的是,近年来分布式事务技术逐渐兴起,如Seata框架便试图从更高层次解决跨服务一致性问题。相比传统的分布式锁,这种方案减少了对单一存储引擎的依赖,同时提高了系统的容错能力。然而,它也带来了额外的学习成本和技术复杂度。因此,企业在选择技术方案时,应综合考虑团队技术水平、项目规模以及预算等因素。 此外,随着云原生理念深入人心,越来越多的企业开始采用Kubernetes等容器编排平台来管理分布式应用。在这种背景下,分布式锁的实现方式也迎来了新机遇。例如,可以通过CRD(Custom Resource Definition)自定义资源,将锁的状态信息存储于Etcd等分布式存储系统中,从而实现更灵活、更高效的锁管理。这类创新实践不仅提升了系统的可用性,也为开发者提供了更大的自由度。 总而言之,分布式锁作为分布式系统中的基石技术,其重要性不容忽视。无论是从技术选型还是架构设计的角度出发,我们都应保持敏锐的洞察力,紧跟行业趋势,不断优化现有方案,以适应快速变化的市场需求。
2025-04-22 16:00:29
58
寂静森林
Ruby
...”,该框架支持大规模分布式系统的构建,特别适合处理高并发场景下的请求分发和负载均衡。MOSN的设计理念强调模块化和可扩展性,使得开发者能够轻松应对复杂的业务逻辑。不过,随着越来越多的企业采用类似的架构,如何有效管理线程池大小、避免死锁等问题成为了新的关注焦点。 此外,近期一篇发表在《ACM Transactions on Programming Languages and Systems》上的论文引起了广泛关注。这篇论文探讨了现代编程语言在并发模型设计上的差异,并提出了一种新型的“乐观并发控制”算法。该算法通过预测线程间的冲突概率,动态调整同步策略,从而在一定程度上减少了锁的使用频率。这一方法不仅提升了程序的执行效率,还降低了开发者的维护成本。 从哲学角度来看,无论是技术层面还是理论层面,人类对于并发编程的追求始终未曾停歇。正如古希腊哲学家赫拉克利特所言:“人不能两次踏进同一条河流。”同样,在并发编程的世界里,每一次尝试都是一次全新的探索,而每一次成功都离不开对失败教训的深刻反思。未来,随着量子计算等前沿科技的发展,我们或许将迎来一场关于并发编程范式的革命,而这无疑将为软件工程领域带来前所未有的机遇与挑战。
2025-04-25 16:14:17
32
凌波微步
转载文章
...对异步编程模式的持续优化,委托和事件在现代应用程序开发中的重要性更为凸显。例如,在构建大规模分布式系统或微服务架构时,通过事件驱动的方式进行组件间通信已成为一种最佳实践。 在实际应用中,.NET Core 3.0引入了源生成器(Source Generators),这一特性使得开发者能够更高效地处理事件和委托,进一步提升代码质量和可维护性。通过自定义源生成器,可以动态创建委托实例并自动绑定相关事件,从而减少手动编写重复代码的工作量。 此外,委托还在并发和多线程编程场景下发挥关键作用,如Task类和async/await关键字背后就依赖于委托来实现异步方法的调用和状态管理。微软在.NET生态系统中提倡采用异步编程模型,利用C的事件和委托机制,能够简化异步操作的处理流程,提高程序性能和响应速度。 对于设计模式层面的理解,委托与观察者模式(Observer Pattern)紧密相连,它允许对象之间的一对多依赖关系,当一个对象的状态发生改变时,所有依赖于它的对象都会得到通知并自动更新。结合最新的.NET技术趋势,诸如Reactive Extensions (Rx.NET)等库更是将这种模式发扬光大,借助LINQ风格的查询操作符和事件流处理,让委托在实时数据流处理领域展现出了强大的功能。 总之,深入掌握C中的委托和事件不仅有助于日常开发工作的效率提升,更能紧跟现代软件工程的发展潮流,充分利用最新的技术和框架优势,构建出高性能、高可维护性的应用程序。而不断跟进官方文档、社区讨论和技术博客,则是深化此类主题理解和实践运用的有效途径。
2023-10-05 16:02:19
80
转载
转载文章
...容。 中小企业MIS系统的管理基本上由两大部份组成,一是前台的可视化操作,二是后台的数据库管理。网管对前台的管理和维护工作包括保障网络链路通畅、处理MIS终端的突发事件以及对操作员的管理、培训等,这是网管们日常做得最多、最辛苦的功课;然而MIS系统架构中同等重要的针对数据库的管理、维护和优化工作,现实中似乎并没有得到网管朋友的足够重视,看起来这都是程序员的事,事实上,一个网管如果能在MIS设计期间就数据表的规范化、表索引优化、容量设计、事务处理等诸多方面与程序员进行卓有成效的沟通和协作,那么日常的前台管理工作将会变得大为轻松,因为在某种意义上,数据库管理系统就相当于操作系统,在系统中占有同样重要的位置。 这正是SQL SERVER等数据库管理系统和dBASEX、ACCESS等数据库文件系统的本质区别,所以,对数据库管理系统操作能力的强弱在某种程度上也折射出了网管的水平——个人认为,称得上优秀的Admin,至少应该是一个称职的DBA(数据库管理员)。 下面以SQL SERVER(下称 SQLS)为例,将数据库管理中难于理解的“索引原理”问题给各位朋友作一个深入浅出的介绍。其他的数据库管理系统如Oracle、Sybase等,朋友们可以融会贯通,举一反三。 一、数据表的基本结构 建立数据库的目的是管理大量数据,而建立索引的目的就是提高数据检索效率,改善数据库工作性能,提高数据访问速度。对于索引,我们要知其然,更要知其所以然,关键在于认识索引的工作原理,才能更好的管理索引。 为认识索引工作原理,首先有必要对数据表的基本结构作一次全面的复习。 SQLS当一个新表被创建之时,系统将在磁盘中分配一段以8K为单位的连续空间,当字段的值从内存写入磁盘时,就在这一既定空间随机保存,当一个8K用完的时候,SQLS指针会自动分配一个8K的空间。这里,每个8K空间被称为一个数据页(Page),又名页面或数据页面,并分配从0-7的页号,每个文件的第0页记录引导信息,叫文件头(File header);每8个数据页(64K)的组合形成扩展区(Extent),称为扩展。全部数据页的组合形成堆(Heap)。 SQLS规定行不能跨越数据页,所以,每行记录的最大数据量只能为8K。这就是char和varchar这两种字符串类型容量要限制在8K以内的原因,存储超过8K的数据应使用text类型,实际上,text类型的字段值不能直接录入和保存,它只是存储一个指针,指向由若干8K的文本数据页所组成的扩展区,真正的数据正是放在这些数据页中。 页面有空间页面和数据页面之分。 当一个扩展区的8个数据页中既包含了空间页面又包括了数据或索引页面时,称为混合扩展(Mixed Extent),每张表都以混合扩展开始;反之,称为一致扩展(Uniform Extent),专门保存数据及索引信息。 表被创建之时,SQLS在混合扩展中为其分配至少一个数据页面,随着数据量的增长,SQLS可即时在混合扩展中分配出7个页面,当数据超过8个页面时,则从一致扩展中分配数据页面。 空间页面专门负责数据空间的分配和管理,包括:PFS页面(Page free space):记录一个页面是否已分配、位于混合扩展还是一致扩展以及页面上还有多少可用空间等信息;GAM页面(Global allocation map)和SGAM页面(Secodary global allocation map):用来记录空闲的扩展或含有空闲页面的混合扩展的位置。SQLS综合利用这三种类型的页面文件在必要时为数据表创建新空间; 数据页或索引页则专门保存数据及索引信息,SQLS使用4种类型的数据页面来管理表或索引:它们是IAM页、数据页、文本/图像页和索引页。 在WINDOWS中,我们对文件执行的每一步操作,在磁盘上的物理位置只有系统(system)才知道;SQL SERVER沿袭了这种工作方式,在插入数据的过程中,不但每个字段值在数据页面中的保存位置是随机的,而且每个数据页面在“堆”中的排列位置也只有系统(system)才知道。 这是为什么呢?众所周知,OS之所以能管理DISK,是因为在系统启动时首先加载了文件分配表:FAT(File Allocation Table),正是由它管理文件系统并记录对文件的一切操作,系统才得以正常运行;同理,作为管理系统级的SQL SERVER,也有这样一张类似FAT的表存在,它就是索引分布映像页:IAM(Index Allocation Map)。 IAM的存在,使SQLS对数据表的物理管理有了可能。 IAM页从混合扩展中分配,记录了8个初始页面的位置和该扩展区的位置,每个IAM页面能管理512,000个数据页面,如果数据量太大,SQLS也可以增加更多的IAM页,可以位于文件的任何位置。第一个IAM页被称为FirstIAM,其中记录了以后的IAM页的位置。 数据页和文本/图像页互反,前者保存非文本/图像类型的数据,因为它们都不超过8K的容量,后者则只保存超过8K容量的文本或图像类型数据。而索引页顾名思义,保存的是与索引结构相关的数据信息。了解页面的问题有助我们下一步准确理解SQLS维护索引的方式,如页拆分、填充因子等。 二、索引的基本概念 索引是一种特殊类型的数据库对象,它与表有着密切的联系。 索引是为检索而存在的。如一些书籍的末尾就专门附有索引,指明了某个关键字在正文中的出现的页码位置,方便我们查找,但大多数的书籍只有目录,目录不是索引,只是书中内容的排序,并不提供真正的检索功能。可见建立索引要单独占用空间;索引也并不是必须要建立的,它们只是为更好、更快的检索和定位关键字而存在。 再进一步说,我们要在图书馆中查阅图书,该怎么办呢?图书馆的前台有很多叫做索引卡片柜的小柜子,里面分了若干的类别供我们检索图书,比如你可以用书名的笔画顺序或者拼音顺序作为查找的依据,你还可以从作者名的笔画顺序或拼音顺序去查询想要的图书,反正有许多检索方式,但有一点很明白,书库中的书并没有按照这些卡片柜中的顺序排列——虽然理论上可以这样做,事实上,所有图书的脊背上都人工的粘贴了一个特定的编号①,它们是以这个顺序在排列。索引卡片中并没有指明这本书摆放在书库中的第几个书架的第几本,仅仅指明了这个特定的编号。管理员则根据这一编号将请求的图书返回到读者手中。这是很形象的例子,以下的讲解将会反复用到它。 SQLS在安装完成之后,安装程序会自动创建master、model、tempdb等几个特殊的系统数据库,其中master是SQLS的主数据库,用于保存和管理其它系统数据库、用户数据库以及SQLS的系统信息,它在SQLS中的地位与WINDOWS下的注册表相当。 master中有一个名为sysindexes的系统表,专门管理索引。SQLS查询数据表的操作都必须用到它,毫无疑义,它是本文主角之一。 查看一张表的索引属性,可以在查询分析器中使用以下命令:select from sysindexes where id=object_id(‘tablename’) ;而要查看表的索引所占空间的大小,可以使用系统存储过程命令:sp_spaceused tablename,其中参数tablename为被索引的表名。 三、平衡树 如果你通过书后的索引知道了一个关键字所在的页码,你有可能通过随机的翻寻,最终到达正确的页码。但更科学更快捷的方法是:首先把书翻到大概二分之一的位置,如果要找的页码比该页的页码小,就把书向前翻到四分之一处,否则,就把书向后翻到四分之三的地方,依此类推,把书页续分成更小的部分,直至正确的页码。这叫“两分法”,微软在官方教程MOC里另有一种说法:叫B树(B-Tree,Balance Tree),即平衡树。 一个表索引由若干页面组成,这些页面构成了一个树形结构。B树由“根”(root)开始,称为根级节点,它通过指向另外两个页,把一个表的记录从逻辑上分成两个部分:“枝”—--非叶级节点(Non-Leaf Level);而非叶级节点又分别指向更小的部分:“叶”——叶级节点(Leaf Level)。根节点、非叶级节点和叶级节点都位于索引页中,统称为索引节点,属于索引页的范筹。这些“枝”、“叶”最终指向了具体的数据页(Page)。在根级节点和叶级节点之间的叶又叫数据中间页。 “根”(root)对应了sysindexes表的Root字段,其中记载了非叶级节点的物理位置(即指针);非叶级节点位于根节点和叶节点之间,记载了指向叶级节点的指针;而叶级节点则最终指向数据页。这就是“平衡树”。 四、聚集索引和非聚集索引 从形式上而言,索引分为聚集索引(Clustered Indexes)和非聚集索引(NonClustered Indexes)。 聚集索引相当于书籍脊背上那个特定的编号。如果对一张表建立了聚集索引,其索引页中就包含着建立索引的列的值(下称索引键值),那么表中的记录将按照该索引键值进行排序。比如,我们如果在“姓名”这一字段上建立了聚集索引,则表中的记录将按照姓名进行排列;如果建立了聚集索引的列是数值类型的,那么记录将按照该键值的数值大小来进行排列。 非聚集索引用于指定数据的逻辑顺序,也就是说,表中的数据并没有按照索引键值指定的顺序排列,而仍然按照插入记录时的顺序存放。其索引页中包含着索引键值和它所指向该行记录在数据页中的物理位置,叫做行定位符(RID:Row ID)。好似书后面的的索引表,索引表中的顺序与实际的页码顺序也是不一致的。而且一本书也许有多个索引。比如主题索引和作者索引。 SQL Server在默认的情况下建立的索引是非聚集索引,由于非聚集索引不对表中的数据进行重组,而只是存储索引键值并用一个指针指向数据所在的页面。一个表如果没有聚集索引时,理论上可以建立249个非聚集索引。每个非聚集索引提供访问数据的不同排序顺序。 五、数据是怎样被访问的 若能真正理解了以上索引的基础知识,那么再回头来看索引的工作原理就简单和轻松多了。 (一)SQLS怎样访问没有建立任何索引数据表: Heap译成汉语叫做“堆”,其本义暗含杂乱无章、无序的意思,前面提到数据值被写进数据页时,由于每一行记录之间并没地有特定的排列顺序,所以行与行的顺序就是随机无序的,当然表中的数据页也就是无序的了,而表中所有数据页就形成了“堆”,可以说,一张没有索引的数据表,就像一个只有书柜而没有索引卡片柜的图书馆,书库里面塞满了一堆乱七八糟的图书。当读者对管理员提交查询请求后,管理员就一头钻进书库,对照查找内容从头开始一架一柜的逐本查找,运气好的话,在第一个书架的第一本书就找到了,运气不好的话,要到最后一个书架的最后一本书才找到。 SQLS在接到查询请求的时候,首先会分析sysindexes表中一个叫做索引标志符(INDID: Index ID)的字段的值,如果该值为0,表示这是一张数据表而不是索引表,SQLS就会使用sysindexes表的另一个字段——也就是在前面提到过的FirstIAM值中找到该表的IAM页链——也就是所有数据页集合。 这就是对一个没有建立索引的数据表进行数据查找的方式,是不是很没效率?对于没有索引的表,对于一“堆”这样的记录,SQLS也只能这样做,而且更没劲的是,即使在第一行就找到了被查询的记录,SQLS仍然要从头到尾的将表扫描一次。这种查询称为“遍历”,又叫“表扫描”。 可见没有建立索引的数据表照样可以运行,不过这种方法对于小规模的表来说没有什么太大的问题,但要查询海量的数据效率就太低了。 (二)SQLS怎样访问建立了非聚集索引的数据表: 如前所述,非聚集索引可以建多个,具有B树结构,其叶级节点不包含数据页,只包含索引行。假定一个表中只有非聚集索引,则每个索引行包含了非聚集索引键值以及行定位符(ROW ID,RID),他们指向具有该键值的数据行。每一个RID由文件ID、页编号和在页中行的编号组成。 当INDID的值在2-250之间时,意味着表中存在非聚集索引页。此时,SQLS调用ROOT字段的值指向非聚集索引B树的ROOT,在其中查找与被查询最相近的值,根据这个值找到在非叶级节点中的页号,然后顺藤摸瓜,在叶级节点相应的页面中找到该值的RID,最后根据这个RID在Heap中定位所在的页和行并返回到查询端。 例如:假定在Lastname上建立了非聚集索引,则执行Select From Member Where Lastname=’Ota’时,查询过程是:①SQLS查询INDID值为2;②立即从根出发,在非叶级节点中定位最接近Ota的值“Martin”,并查到其位于叶级页面的第61页;③仅在叶级页面的第61页的Martin下搜寻Ota的RID,其RID显示为N∶706∶4,表示Lastname字段中名为Ota的记录位于堆的第707页的第4行,N表示文件的ID值,与数据无关;④根据上述信息,SQLS立马在堆的第 707页第4行将该记录“揪”出来并显示于前台(客户端)。视表的数据量大小,整个查询过程费时从百分之几毫秒到数毫秒不等。 在谈到索引基本概念的时候,我们就提到了这种方式: 图书馆的前台有很多索引卡片柜,里面分了若干的类别,诸如按照书名笔画或拼音顺序、作者笔画或拼音顺序等等,但不同之处有二:① 索引卡片上记录了每本书摆放的具体位置——位于某柜某架的第几本——而不是“特殊编号”;② 书脊上并没有那个“特殊编号”。管理员在索引柜中查到所需图书的具体位置(RID)后,根据RID直接在书库中的具体位置将书提出来。 显然,这种查询方式效率很高,但资源占用极大,因为书库中书的位置随时在发生变化,必然要求管理员花费额外的精力和时间随时做好索引更新。 (三)SQLS怎样访问建立了聚集索引的数据表: 在聚集索引中,数据所在的数据页是叶级,索引数据所在的索引页是非叶级。 查询原理和上述对非聚集索引的查询相似,但由于记录是按照聚集索引中索引键值进行排序,换句话说,聚集索引的索引键值也就是具体的数据页。 这就好比书库中的书就是按照书名的拼音在排序,而且也只按照这一种排序方式建立相应的索引卡片,于是查询起来要比上述只建立非聚集索引的方式要简单得多。仍以上面的查询为例: 假定在Lastname字段上建立了聚集索引,则执行Select From Member Where Lastname=’Ota’时,查询过程是:①SQLS查询INDID值为1,这是在系统中只建立了聚集索引的标志;②立即从根出发,在非叶级节点中定位最接近Ota的值“Martin”,并查到其位于叶级页面的第120页;③在位于叶级页面第120页的Martin下搜寻到Ota条目,而这一条目已是数据记录本身;④将该记录返回客户端。 这一次的效率比第二种方法更高,以致于看起来更美,然而它最大的优点也恰好是它最大的缺点——由于同一张表中同时只能按照一种顺序排列,所以在任何一种数据表中的聚集索引只能建立一个;并且建立聚集索引需要至少相当于源表120%的附加空间,以存放源表的副本和索引中间页! 难道鱼和熊掌就不能兼顾了吗?办法是有的。 (四)SQLS怎样访问既有聚集索引、又有非聚集索引的数据表: 如果我们在建立非聚集索引之前先建立了聚集索引的话,那么非聚集索引就可以使用聚集索引的关键字进行检索,就像在图书馆中,前台卡片柜中的可以有不同类别的图书索引卡,然而每张卡片上都载明了那个特殊编号——并不是书籍存放的具体位置。这样在最大程度上既照顾了数据检索的快捷性,又使索引的日常维护变得更加可行,这是最为科学的检索方法。 也就是说,在只建立了非聚集索引的情况下,每个叶级节点指明了记录的行定位符(RID);而在既有聚集索引又有非聚集索引的情况下,每个叶级节点所指向的是该聚集索引的索引键值,即数据记录本身。 假设聚集索引建立在Lastname上,而非聚集索引建立在Firstname上,当执行Select From Member Where Firstname=’Mike’时,查询过程是:①SQLS查询INDID值为2;②立即从根出发,在Firstname的非聚集索引的非叶级节点中定位最接近Mike的值“Jose”条目;③从Jose条目下的叶级页面中查到Mike逻辑位置——不是RID而是聚集索引的指针;④根据这一指针所指示位置,直接进入位于Lastname的聚集索引中的叶级页面中到达Mike数据记录本身;⑤将该记录返回客户端。 这就完全和我们在“索引的基本概念”中讲到的现实场景完全一样了,当数据发生更新的时候,SQLS只负责对聚集索引的健值驾以维护,而不必考虑非聚集索引,只要我们在ID类的字段上建立聚集索引,而在其它经常需要查询的字段上建立非聚集索引,通过这种科学的、有针对性的在一张表上分别建立聚集索引和非聚集索引的方法,我们既享受了索引带来的灵活与快捷,又相对规避了维护索引所导致的大量的额外资源消耗。 六、索引的优点和不足 索引有一些先天不足:1:建立索引,系统要占用大约为表的1.2倍的硬盘和内存空间来保存索引。2:更新数据的时候,系统必须要有额外的时间来同时对索引进行更新,以维持数据和索引的一致性——这就如同图书馆要有专门的位置来摆放索引柜,并且每当库存图书发生变化时都需要有人将索引卡片重整以保持索引与库存的一致。 当然建立索引的优点也是显而易见的:在海量数据的情况下,如果合理的建立了索引,则会大大加强SQLS执行查询、对结果进行排序、分组的操作效率。 实践表明,不恰当的索引不但于事无补,反而会降低系统性能。因为大量的索引在进行插入、修改和删除操作时比没有索引花费更多的系统时间。比如在如下字段建立索引应该是不恰当的:1、很少或从不引用的字段;2、逻辑型的字段,如男或女(是或否)等。 综上所述,提高查询效率是以消耗一定的系统资源为代价的,索引不能盲目的建立,必须要有统筹的规划,一定要在“加快查询速度”与“降低修改速度”之间做好平衡,有得必有失,此消则彼长。这是考验一个DBA是否优秀的很重要的指标。 至此,我们一直在说SQLS在维护索引时要消耗系统资源,那么SQLS维护索引时究竟消耗了什么资源?会产生哪些问题?究竟应该才能优化字段的索引? 在上篇中,我们就索引的基本概念和数据查询原理作了详细阐述,知道了建立索引时一定要在“加快查询速度”与“降低修改速度”之间做好平衡,有得必有失,此消则彼长。那么,SQLS维护索引时究竟怎样消耗资源?应该从哪些方面对索引进行管理与优化?以下就从七个方面来回答这些问题。 一、页分裂 微软MOC教导我们:当一个数据页达到了8K容量,如果此时发生插入或更新数据的操作,将导致页的分裂(又名页拆分): 1、有聚集索引的情况下:聚集索引将被插入和更新的行指向特定的页,该页由聚集索引关键字决定; 2、只有堆的情况下:只要有空间就可以插入新的行,但是如果我们对行数据的更新需要更多的空间,以致大于了当前页的可用空间,行就被移到新的页中,并且在原位置留下一个转发指针,指向被移动的新行,如果具有转发指针的行又被移动了,那么原来的指针将重新指向新的位置; 3、如果堆中有非聚集索引,那么尽管插入和更新操作在堆中不会发生页分裂,但是在非聚集索引上仍然产生页分裂。 无论有无索引,大约一半的数据将保留在老页面,而另一半将放入新页面,并且新页面可能被分配到任何可用的页。所以,频繁页分裂,后果很严重,将使物理表产生大量数据碎片,导致直接造成I/O效率的急剧下降,最后,停止SQLS的运行并重建索引将是我们的唯一选择! 二、填充因子 然而在“混沌之初”,就可以在一定程度上避免不愉快出现:在创建索引时,可以为这个索引指定一个填充因子,以便在索引的每个叶级页面上保留一定百分比的空间,将来数据可以进行扩充和减少页分裂。填充因子是从0到100的百分比数值,设为100时表示将数据页填满。只有当不会对数据进行更改时(例如只读表中)才用此设置。值越小则数据页上的空闲空间越大,这样可以减少在索引增长过程中进行页分裂的需要,但这一操作需要占用更多的硬盘空间。 填充因子只在创建索引时执行,索引创建以后,当表中进行数据的添加、删除或更新时,是不会保持填充因子的,如果想在数据页上保持额外的空间,则有悖于使用填充因子的本意,因为随着数据的输入,SQLS必须在每个页上进行页拆分,以保持填充因子指定的空闲空间。因此,只有在表中的数据进行了较大的变动,才可以填充数据页的空闲空间。这时,可以从容的重建索引,重新指定填充因子,重新分布数据。 反之,填充因子指定不当,就会降低数据库的读取性能,其降低量与填充因子设置值成反比。例如,当填充因子的值为50时,数据库的读取性能会降低两倍!所以,只有在表中根据现有数据创建新索引,并且可以预见将来会对这些数据进行哪些更改时,设置填充因子才有意义。 三、两道数学题 假定数据库设计没有问题,那么是否象上篇中分析的那样,当你建立了众多的索引,在查询工作中SQLS就只能按照“最高指示”用索引处理每一个提交的查询呢?答案是否定的! 上篇“数据是怎样被访问的”章节中提到的四种索引方案只是一种静态的、标准的和理论上的分析比较,实际上,将在外,军令有所不从,SQLS几乎完全是“自主”的决定是否使用索引或使用哪一个索引! 这是怎么回事呢? 让我们先来算一道题:如果某表的一条记录在磁盘上占用1000字节(1K)的话,我们对其中10字节的一个字段建立索引,那么该记录对应的索引大小只有10字节(0.01K)。上篇说过,SQLS的最小空间分配单元是“页(Page)”,一个页面在磁盘上占用8K空间,所以一页只能存储8条“记录”,但可以存储800条“索引”。现在我们要从一个有8000条记录的表中检索符合某个条件的记录(有Where子句),如果没有索引的话,我们需要遍历8000条×1000字节/8K字节=1000个页面才能够找到结果。如果在检索字段上有上述索引的话,那么我们可以在8000条×10字节/8K字节=10个页面中就检索到满足条件的索引块,然后根据索引块上的指针逐一找到结果数据块,这样I/O访问量肯定要少得多。 然而有时用索引还不如不用索引快! 同上,如果要无条件检索全部记录(不用Where子句),不用索引的话,需要访问8000条×1000字节/8K字节=1000个页面;而使用索引的话,首先检索索引,访问8000条×10字节/8K字节=10个页面得到索引检索结果,再根据索引检索结果去对应数据页面,由于是检索全部数据,所以需要再访问8000条×1000字节/8K字节=1000个页面将全部数据读取出来,一共访问了1010个页面,这显然不如不用索引快。 SQLS内部有一套完整的数据索引优化技术,在上述情况下,SQLS会自动使用表扫描的方式检索数据而不会使用任何索引。那么SQLS是怎么知道什么时候用索引,什么时候不用索引的呢?因为SQLS除了维护数据信息外,还维护着数据统计信息! 四、统计信息 打开企业管理器,单击“Database”节点,右击Northwind数据库→单击“属性”→选择“Options”选项卡,观察“Settings”下的各项复选项,你发现了什么? 从Settings中我们可以看到,在数据库中,SQLS将默认的自动创建和更新统计信息,这些统计信息包括数据密度和分布信息,正是它们帮助SQLS确定最佳的查询策略:建立查询计划和是否使用索引以及使用什么样的索引。 在创建索引时,SQLS会创建分布数据页来存放有关索引的两种统计信息:分布表和密度表。查询优化器使用这些统计信息估算使用该索引进行查询的成本(Cost),并在此基础上判断该索引对某个特定查询是否有用。 随着表中的数据发生变化,SQLS自动定期更新这些统计信息。采样是在各个数据页上随机进行。从磁盘读取一个数据页后,该数据页上的所有行都被用来更新统计信息。统计信息更新的频率取决于字段或索引中的数据量以及数据更改量。比如,对于有一万条记录的表,当1000个索引键值发生改变时,该表的统计信息便可能需要更新,因为1000 个值在该表中占了10%,这是一个很大的比例。而对于有1千万条记录的表来说,1000个索引值发生更改的意义则可以忽略不计,因此统计信息就不会自动更新。 至于它们帮助SQLS建立查询计划的具体过程,限于篇幅,这里就省略了,请有兴趣的朋友们自己研究。 顺便多说一句,SQLS除了能自动记录统计信息之外,还可以记录服务器中所发生的其它活动的详细信息,包括I/O 统计信息、CPU 统计信息、锁定请求、T-SQL 和 RPC 统计信息、索引和表扫描、警告和引发的错误、数据库对象的创建/除去、连接/断开、存储过程操作、游标操作等等。这些信息的读取、设置请朋友们在SQLS联机帮助文档(SQL Server Books Online)中搜索字符串“Profiler”查找。 五、索引的人工维护 上面讲到,某些不合适的索引将影响到SQLS的性能,随着应用系统的运行,数据不断地发生变化,当数据变化达到某一个程度时将会影响到索引的使用。这时需要用户自己来维护索引。 随着数据行的插入、删除和数据页的分裂,有些索引页可能只包含几页数据,另外应用在执行大量I/O的时候,重建非聚聚集索引可以维护I/O的效率。重建索引实质上是重新组织B树。需要重建索引的情况有: 1) 数据和使用模式大幅度变化; 2)排序的顺序发生改变; 3)要进行大量插入操作或已经完成; 4)使用I/O查询的磁盘读次数比预料的要多; 5)由于大量数据修改,使得数据页和索引页没有充分使用而导致空间的使用超出估算; 6)dbcc检查出索引有问题。 六、索引的使用原则 接近尾声的时候,让我们再从另一个角度认识索引的两个重要属性----唯一性索引和复合性索引。 在设计表的时候,可以对字段值进行某些限制,比如可以对字段进行主键约束或唯一性约束。 主键约束是指定某个或多个字段不允许重复,用于防止表中出现两条完全相同的记录,这样的字段称为主键,每张表都可以建立并且只能建立一个主键,构成主键的字段不允许空值。例如职员表中“身份证号”字段或成绩表中“学号、课程编号”字段组合。 而唯一性约束与主键约束类似,区别只在于构成唯一性约束的字段允许出现空值。 建立在主键约束和唯一性约束上的索引,由于其字段值具有唯一性,于是我们将这种索引叫做“唯一性索引”,如果这个唯一性索引是由两个以上字段的组合建立的,那么它又叫“复合性索引”。 注意,唯一索引不是聚集索引,如果对一个字段建立了唯一索引,你仅仅不能向这个字段输入重复的值。并不妨碍你可以对其它类型的字段也建立一个唯一性索引,它们可以是聚集的,也可以是非聚集的。 唯一性索引保证在索引列中的全部数据是唯一的,不会包含冗余数据。如果表中已经有一个主键约束或者唯一性约束,那么当创建表或者修改表时,SQLS自动创建一个唯一性索引。但出于必须保证唯一性,那么应该创建主键约束或者唯一性键约束,而不是创建一个唯一性索引。当创建唯一性索引时,应该认真考虑这些规则:当在表中创建主键约束或者唯一性键约束时, SQLS钭自动创建一个唯一性索引;如果表中已经包含有数据,那么当创建索引时,SQLS检查表中已有数据的冗余性,如果发现冗余值,那么SQLS就取消该语句的执行,并且返回一个错误消息,确保表中的每一行数据都有一个唯一值。 复合索引就是一个索引创建在两个列或者多个列上。在搜索时,当两个或者多个列作为一个关键值时,最好在这些列上创建复合索引。当创建复合索引时,应该考虑这些规则:最多可以把16个列合并成一个单独的复合索引,构成复合索引的列的总长度不能超过900字节,也就是说复合列的长度不能太长;在复合索引中,所有的列必须来自同一个表中,不能跨表建立复合列;在复合索引中,列的排列顺序是非常重要的,原则上,应该首先定义最唯一的列,例如在(COL1,COL2)上的索引与在(COL2,COL1)上的索引是不相同的,因为两个索引的列的顺序不同;为了使查询优化器使用复合索引,查询语句中的WHERE子句必须参考复合索引中第一个列;当表中有多个关键列时,复合索引是非常有用的;使用复合索引可以提高查询性能,减少在一个表中所创建的索引数量。 综上所述,我们总结了如下索引使用原则: 1)逻辑主键使用唯一的成组索引,对系统键(作为存储过程)采用唯一的非成组索引,对任何外键列采用非成组索引。考虑数据库的空间有多大,表如何进行访问,还有这些访问是否主要用作读写。 2)不要索引memo/note 字段,不要索引大型字段(有很多字符),这样作会让索引占用太多的存储空间。 3)不要索引常用的小型表 4)一般不要为小型数据表设置过多的索引,假如它们经常有插入和删除操作就更别这样作了,SQLS对这些插入和删除操作提供的索引维护可能比扫描表空间消耗更多的时间。 七、大结局 查询是一个物理过程,表面上是SQLS在东跑西跑,其实真正大部分压马路的工作是由磁盘输入输出系统(I/O)完成,全表扫描需要从磁盘上读表的每一个数据页,如果有索引指向数据值,则I/O读几次磁盘就可以了。但是,在随时发生的增、删、改操作中,索引的存在会大大增加工作量,因此,合理的索引设计是建立在对各种查询的分析和预测上的,只有正确地使索引与程序结合起来,才能产生最佳的优化方案。 一般来说建立索引的思路是: (1)主键时常作为where子句的条件,应在表的主键列上建立聚聚集索引,尤其当经常用它作为连接的时候。 (2)有大量重复值且经常有范围查询和排序、分组发生的列,或者非常频繁地被访问的列,可考虑建立聚聚集索引。 (3)经常同时存取多列,且每列都含有重复值可考虑建立复合索引来覆盖一个或一组查询,并把查询引用最频繁的列作为前导列,如果可能尽量使关键查询形成覆盖查询。 (4)如果知道索引键的所有值都是唯一的,那么确保把索引定义成唯一索引。 (5)在一个经常做插入操作的表上建索引时,使用fillfactor(填充因子)来减少页分裂,同时提高并发度降低死锁的发生。如果在只读表上建索引,则可以把fillfactor置为100。 (6)在选择索引字段时,尽量选择那些小数据类型的字段作为索引键,以使每个索引页能够容纳尽可能多的索引键和指针,通过这种方式,可使一个查询必须遍历的索引页面降到最小。此外,尽可能地使用整数为键值,因为它能够提供比任何数据类型都快的访问速度。 SQLS是一个很复杂的系统,让索引以及查询背后的东西真相大白,可以帮助我们更为深刻的了解我们的系统。一句话,索引就象盐,少则无味多则咸。 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_28052907/article/details/75194926。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-30 23:10:07
97
转载
转载文章
...们发现这些功能在实时系统、高并发场景和分布式架构中具有广泛的应用价值。为了紧跟技术发展动态并进一步探讨其实际应用场景,以下是一些延伸阅读的推荐内容: 1. 最新实践案例:近期,某知名电商平台在其秒杀活动系统中采用Redis的发布订阅模式优化了库存扣减与订单创建流程,确保了数据一致性的同时显著提升了系统吞吐量。深入分析这一案例,我们可以学习如何在实际项目中结合使用Redis的多种特性来解决复杂业务问题。 2. 技术深度解析:“Redis 6.2版本对事务和Lua脚本执行机制的改进”——随着Redis新版本的迭代更新,其对事务处理和Lua脚本的支持更加完善,比如新增的多线程支持大幅提高了Lua脚本执行性能,同时针对事务模型也进行了增强,以更好地满足高并发环境下的需求。 3. 行业发展趋势:“基于Redis构建微服务架构中的事件驱动系统”——文章讨论了在微服务架构中如何利用Redis的发布订阅模式构建事件驱动的服务间通信机制,并辅以具体实例阐述了这种方式如何提升系统的响应速度与可扩展性。 4. 学术研究视角:“从CAP理论角度看Redis在分布式系统中的作用”——学术界针对Redis在分布式系统中的角色进行了深度剖析,尤其是针对消息队列和发布订阅模式在满足CAP定理中的权衡问题,为开发者提供了理论指导和实践启示。 5. 实用教程分享:“利用Lua脚本实现Redis高级功能实战指南”——一些技术博客和社区发布了系列教程,详细介绍了如何编写高效安全的Lua脚本来处理复杂的Redis操作,如自定义原子操作、限流控制等,是广大开发者进阶Redis应用能力的实用参考资源。
2024-03-18 12:25:04
541
转载
Docker
...。 同时,随着微服务架构的广泛应用,Docker Compose工具因其对多容器应用程序定义和部署的简化而备受瞩目。通过Compose文件,开发人员可以轻松配置多个容器间的数据卷挂载策略,从而确保服务间数据的可靠传输与同步。 另外,对于数据敏感型应用,诸如数据库容器等,Docker持续优化其对存储驱动的支持,如支持本地存储、网络存储(NFS、iSCSI)以及云服务商提供的块存储服务,这无疑提升了容器环境中数据的安全性和可用性。 此外,业界也在积极研究和发展基于Docker的新型文件系统解决方案,例如结合分布式存储系统以满足大规模集群环境下容器对高性能、高可用文件读写的诉求。这些前沿技术和实践为Docker在企业级应用场景中提供了更强大的支撑,也体现了容器技术在持续演进中不断解决实际问题的决心与创新力。 总之,深入掌握Docker容器中的文件读写机制,并关注其在云原生领域的发展动态和技术革新,将有助于我们在构建现代化、可扩展的应用架构时,更好地利用Docker的优势,提升开发运维效率,保障业务系统的稳定运行。
2023-12-30 15:13:37
472
编程狂人
Docker
...k)和服务发现功能的优化升级,使得在集群环境中管理容器间的端口映射和服务访问更加便捷高效。通过Swarm模式或Kubernetes等编排工具,可以实现跨节点的容器服务自动端口映射与负载均衡。 此外,在安全领域,如何合理规划和限制端口映射以增强容器安全性也是一大议题。有鉴于此,一些企业开始采用安全策略驱动的网络模型,如Calico提供的网络策略,它允许管理员精细控制进出容器的流量,包括端口范围、协议类型甚至基于标签的访问规则,从而有效防止未经授权的外部访问。 深入到技术原理层面,Docker使用的iptables和ipVS等Linux内核网络技术在端口映射中起到关键作用。理解这些底层机制有助于开发者在遇到复杂的网络问题时进行诊断和优化。例如,当需要处理大量并发连接时,可以通过调整内核参数或使用ipVS的负载均衡特性来提升性能。 总之,Docker端口映射虽为基础功能,但在实际生产环境中的应用却千变万化,从简单的单机部署到大规模分布式系统,都需要我们不断深化理解并灵活运用相关知识,以适应不断发展的云计算和容器化技术趋势。
2023-09-21 17:15:59
837
电脑达人
MySQL
...的核心作用以及数据库优化对提升玩家体验的影响。近期,《游戏开发者》杂志的一篇文章揭示了某知名网络游戏通过优化数据库架构,成功减少了游戏内交易的延迟,显著提升了元宝充值、消耗等操作的实时性,从而提高了用户满意度和留存率。 同时,随着云计算和大数据技术的发展,许多游戏公司开始采用分布式数据库来应对高并发场景下的数据处理需求。例如,阿里云发布的最新解决方案中就详细介绍了如何借助云数据库实现动态扩容,有效支撑了大型网游在高峰期的海量元宝数值更新与查询请求。 此外,针对游戏经济系统的安全问题,也有专家提出应当强化数据库权限管理,采用加密传输技术和二次验证机制确保元宝等虚拟财产的安全存储与变更。最近一起因数据库漏洞导致的游戏元宝被盗事件,再次敲响了游戏数据安全的警钟,促使业界加大对数据库防护措施的研究和投入。 总的来说,从基本的MySQL操作到复杂的数据库架构设计与优化,再到数据安全防护,游戏开发过程中对于数据库技术的应用和探索是一个持续且深入的过程,它不仅影响着游戏功能的实现,更是关乎游戏生态健康与用户体验的关键因素。
2023-04-20 08:05:28
62
软件工程师
MySQL
...0的发布,数据库管理系统再次迎来了重大革新。这个版本不仅在安全性上有了显著增强,还引入了一系列性能优化措施,以满足现代应用的需求。其中,引入了更强大的身份验证机制,如多因素认证(MFA),提高了账户的安全防护。此外,MySQL 8.0也优化了查询性能,例如采用了更快的字符串处理函数和改进的内存管理,使得大数据处理更为高效。 值得一提的是,该版本还引入了对JSON数据类型的全面支持,这对于处理复杂的数据结构和API接口变得更为简单。另外,对复制和分区功能的改进,使得在分布式环境中管理大规模数据库变得更加容易。 对于开发者来说,MySQL 8.0的插件式架构允许用户自定义功能,提供更大的灵活性。而对JSON路径查询的支持,使得基于文档的数据查询更加直观。 总的来说,MySQL 8.0是一个值得密切关注的更新,它不仅提升了系统的安全性,而且在性能和功能上都有所突破,是数据库管理员和开发者升级系统的重要参考。随着云计算和大数据的普及,掌握和利用这些新特性将有助于企业在竞争激烈的市场中保持竞争优势。
2024-05-08 15:31:53
111
程序媛
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
ln -sfn source_file link_name
- 创建指向源文件的软链接(如果存在同名链接,则替换)。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"