前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[MemCache缓存容量满载时的数据淘汰...]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
...实现以及常见的参数 数据结构基本都问了一遍:链表、队列等 Java内存模型:常问的JVM分代模型,以及JDK1.8后的区别,最后还问了JVM相关的调优参数 分布式锁的实现比较技术 一面题目 自我介绍 擅长哪方面的技术? java有哪些锁中类?(乐观锁&悲观锁、可重入锁&Synchronize等)。 比较重要的数据结构,如链表,队列,栈的基本原理及大致实现 J.U.C下的常见类的使用。Threadpool的深入考察;blockingQueue的使用 Java内存分代模型,GC算法,JVM常见的启动参数;CMS算法的过程。 Volatile关键字有什么用(包括底层原理) 线程池的调优策略 Spring cloud的服务注册与发现是怎么设计的? 分布式系统的全局id如何实现 分布式锁的方案,redis和zookeeper那个好,如果是集群部署,高并发情况下那个性能更好。 1.2 Java中间件二面 技术二面考察范围: 问了项目相关的技术实现细节 数据库相关:索引、索引底层实现、mysql相关的行锁、表锁等 redis相关:架构设计、数据一致性问题 容器:容器的设计原理等技术 二面题目: 参与的项目,选一个,技术难度在哪里? Collections.sort底层排序方式 负载均衡的原理设计模式与重构,谈谈你对重构的理解 谈谈redis相关的集群有哪些成熟方案? 再谈谈一致hash算法(redis)? 数据库索引,B+树的特性和建树过程 Mysql相关的行锁,表锁;乐观锁,悲观锁 谈谈多线程和并发工具的使用 谈谈redis的架构和组件 Redis的数据一致性问题(分布式多节点环境&单机环境) Docker容器 1.3 Java中间件三面 技术三面考察范围: 主要谈到了高并发的实现方案 以及中间件:redis、rocketmq、kafka等的架构设计思路 最后问了平时怎么提升技术的技术 三面题目 高并发情况下,系统是如何支撑大量的请求的? 接着上面的问题,延伸到了中间件,kafka、redis、rocketmq、mycat等设计思路和适用场景等 最近上过哪些技术网站;最近再看那些书。 工作和生活中遇见最大的挑战,怎么去克服? 未来有怎样的打算 1.4 Java中间件四面 最后,你懂的,主要就是HR走流程了,主要问了未来的职业规划。 02 头条Java后台3面 2.1 头条一面 讲讲jvm运行时数据库区 讲讲你知道的垃圾回收算法 jvm内存模型jmm 内存泄漏与内存溢出的区别 select、epool 的区别?底层的数据结构是什么? mysql数据库默认存储引擎,有什么优点 优化数据库的方法,从sql到缓存到cpu到操作系统,知道多少说多少 什么情景下做分表,什么情景下做分库 linkedList与arrayList区别 适用场景 array list是如何扩容的 volatile 关键字的作用?Java 内存模型? java lock的实现,公平锁、非公平锁 悲观锁和乐观锁,应用中的案例,mysql当中怎么实现,java中的实现 2.2 头条二面 Java 内存分配策略? 多个线程同时请求内存,如何分配? Redis 底层用到了哪些数据结构? 使用 Redis 的 set 来做过什么? Redis 使用过程中遇到什么问题? 搭建过 Redis 集群吗? 如何分析“慢查询”日志进行 SQL/索引 优化? MySQL 索引结构解释一下?(B+ 树) MySQL Hash 索引适用情况?举下例子? 2.3 头条三面 如何保证数据库与redis缓存一致的Redis 的并发竞争问题是什么? 如何解决这个问题? 了解 Redis 事务的 CAS 方案吗? 如何保证 Redis 高并发、高可用? Redis 的主从复制原理,以及Redis 的哨兵原理? 如果让你写一个消息队列,该如何进行架构设计啊?说一下你的思路。 MySQL数据库主从同步怎么实现? 秒杀模块怎么设计的,如何压测,抗压手段 03 今日头条Java后台研发三面 3.1 一面 concurrent包下面用过哪些? countdownlatch功能实现 synchronized和lock区别,重入锁thread和runnable的区别 AtomicInteger实现原理(CAS自旋) java并发sleep与wait、notify与notifyAll的区别 如何实现高效的同步链表 java都有哪些加锁方式(synchronized、ReentrantLock、共享锁、读写锁等) 设计模式(工厂模式、单例模式(几种情况)、适配器模式、装饰者模式) maven依赖树,maven的依赖传递,循环依赖 3.2 二面 synchronized和reentrantLock的区别,synchronized用在代码快、方法、静态方法时锁的都是什么? 介绍spring的IOC和AOP,分别如何实现(classloader、动态代理)JVM的内存布局以及垃圾回收原理及过程 讲一下,讲一下CMS垃圾收集器垃圾回收的流程,以及CMS的缺点 redis如何处理分布式服务器并发造成的不一致OSGi的机制spring中bean加载机制,bean生成的具体步骤,ioc注入的方式spring何时创建- applicationContextlistener是监听哪个事件? 介绍ConcurrentHashMap原理,用的是哪种锁,segment有没可能增大? 解释mysql索引、b树,为啥不用平衡二叉树、红黑树 Zookeeper如何同步配置 3.3 三面 Java线程池ThreadPoolEcecutor参数,基本参数,使用场景 MySQL的ACID讲一下,延伸到隔离级别 dubbo的实现原理,说说RPC的要点 GC停顿原因,如何降低停顿? JVM如何调优、参数怎么调? 如何用工具分析jvm状态(visualVM看堆中对象的分配,对象间的引用、是否有内存泄漏,jstack看线程状态、是否死锁等等) 描述一致性hash算法 分布式雪崩场景如何避免? 再谈谈消息队列 04 抖音Java 三面 4.1 一面: hashmap,怎么扩容,怎么处理数据冲突? 怎么高效率的实现数据迁移? Linux的共享内存如何实现,大概说了一下。 socket网络编程,说一下TCP的三次握手和四次挥手同步IO和异步IO的区别? Java GC机制?GC Roots有哪些? 红黑树讲一下,五个特性,插入删除操作,时间复杂度? 快排的时间复杂度,最坏情况呢,最好情况呢,堆排序的时间复杂度呢,建堆的复杂度是多少 4.2 二面: 自我介绍,主要讲讲做了什么和擅长什么 设计模式了解哪些? AtomicInteger怎么实现原子修改的? ConcurrentHashMap 在Java7和Java8中的区别? 为什么Java8并发效率更好?什么情况下用HashMap,什么情况用ConcurrentHashMap? redis数据结构? redis数据淘汰机制? 4.3 三面(约五十分钟): mysql实现事务的原理(MVCC) MySQL数据主从同步是如何实现的? MySQL索引的实现,innodb的索引,b+树索引是怎么实现的,为什么用b+树做索引节点,一个节点存了多少数据,怎么规定大小,与磁盘页对应。 如果Redis有1亿个key,使用keys命令是否会影响线上服务? Redis的持久化方式,aod和rdb,具体怎么实现,追加日志和备份文件,底层实现原理的话知道么? 遇到最大困难是什么?怎么克服? 未来的规划是什么? 你想问我什么? 05 百度三面 5.1 百度一面 自我介绍 Java中的多态 为什么要同时重写hashcode和equals Hashmap的原理 Hashmap如何变线程安全,每种方式的优缺点 垃圾回收机制 Jvm的参数你知道的说一下 设计模式了解的说一下啊 手撕一个单例模式 手撕算法:反转单链表 手撕算法:实现类似微博子结构的数据结构,输入一系列父子关系,输出一个类似微博评论的父子结构图 手写java多线程 手写java的soeket编程,服务端和客户端 手撕算法: 爬楼梯,写出状态转移方程 智力题:时针分针什么时候重合 5.2 百度二面(现场) 自我介绍 项目介绍 服务器如何负载均衡,有哪些算法,哪个比较好,一致性哈希原理,怎么避免DDOS攻击请求打到少数机器。 TCP连接中的三次握手和四次挥手,四次挥手的最后一个ack的作用是什么,为什么要time wait,为什么是2msl。 数据库的备份和恢复怎么实现的,主从复制怎么做的,什么时候会出现数据不一致,如何解决。 Linux查看cpu占用率高的进程 手撕算法:给定一个数字三角形,找到从顶部到底部的最小路径和。每一步可以移动到下面一行的相邻数字上。 然后继续在这个问题上扩展 求出最短那条的路径 递归求出所有的路径 设计模式讲一下熟悉的 会不会滥用设计模式 多线程条件变量为什么要在while体里 你遇到什么挫折,怎么应对和处理 5.3 百度三面(现场) 自我介绍 项目介绍 Redis的特点 Redis的持久化怎么做,aof和rdb,有什么区别,有什么优缺点。 Redis使用哨兵部署会有什么问题,我说需要扩容的话还是得集群部署。 说一下JVM内存模型把,有哪些区,分别干什么的 说一下gc算法,分代回收说下 MySQL的引擎讲一下,有什么区别,使用场景呢 分布式事务了解么 反爬虫的机制,有哪些方式 06 蚂蚁中间件团队面试题 6.1 蚂蚁中间件一面: 自我介绍 JVM垃圾回收算法和垃圾回收器有哪些,最新的JDK采用什么算法。 新生代和老年代的回收机制。 讲一下ArrayList和linkedlist的区别,ArrayList与HashMap的扩容方式。 Concurrenthashmap1.8后的改动。 Java中的多线程,以及线程池的增长策略和拒绝策略了解么。 Tomcat的类加载器了解么 Spring的ioc和aop,Springmvc的基本架构,请求流程。 HTTP协议与Tcp有什么区别,http1.0和2.0的区别。 Java的网络编程,讲讲NIO的实现方式,与BIO的区别,以及介绍常用的NIO框架。 索引什么时候会失效变成全表扫描 介绍下分布式的paxos和raft算法 6.2 蚂蚁中间件二面 你在项目中怎么用到并发的。 消息队列的使用场景,谈谈Kafka。 你说了解分布式服务,那么你怎么理解分布式服务。 Dubbo和Spring Clound的区别,以及使用场景。 讲一下docker的实现原理,以及与JVM的区别。 MongoDB、Redis和Memcached的应用场景,各自优势 MongoDB有事务吗 Redis说一下sorted set底层原理 讲讲Netty为什么并发高,相关的核心组件有哪些 6.3 蚂蚁中间件三面 完整的画一个分布式集群部署图,从负载均衡到后端数据库集群。 分布式锁的方案,Redis和Zookeeper哪个好,如果是集群部署,高并发情况下哪个性能更好。 分布式系统的全局id如何实现。 数据库万级变成亿级,你如何来解决。 常见的服务器雪崩是由什么引起的,如何来防范。 异地容灾怎么实现 常用的高并发技术解决方案有哪些,以及对应的解决步骤。 07 京东4面(Java研发) 7.1 一面(基础面:约1小时) 自我介绍,主要讲讲做了什么和擅长什么 springmvc和spring-boot区别 @Autowired的实现原理 Bean的默认作用范围是什么?其他的作用范围? 索引是什么概念有什么作用?MySQL里主要有哪些索引结构?哈希索引和B+树索引比较? Java线程池的原理?线程池有哪些?线程池工厂有哪些线程池类型,及其线程池参数是什么? hashmap原理,处理哈希冲突用的哪种方法? 还知道什么处理哈希冲突的方法? Java GC机制?GC Roots有哪些? Java怎么进行垃圾回收的?什么对象会进老年代?垃圾回收算法有哪些?为什么新生代使用复制算法? HashMap的时间复杂度?HashMap中Hash冲突是怎么解决的?链表的上一级结构是什么?Java8中的HashMap有什么变化?红黑树需要比较大小才能进行插入,是依据什么进行比较的?其他Hash冲突解决方式? hash和B+树的区别?分别应用于什么场景?哪个比较好? 项目里有个数据安全的,aes和md5的区别?详细点 7.2 二面(问数据库较多) 自我介绍 为什么MyISAM查询性能好? 事务特性(acid) 隔离级别 SQL慢查询的常见优化步骤? 说下乐观锁,悲观锁(select for update),并写出sql实现 TCP协议的三次握手和四次挥手过程? 用到过哪些rpc框架 数据库连接池怎么实现 Java web过滤器的生命周期 7.3 三面(综合面;约一个小时) 自我介绍。 ConcurrentHashMap 在Java7和Java8中的区别?为什么Java8并发效率更好?什么情况下用HashMap,什么情况用ConcurrentHashMap? 加锁有什么机制? ThreadLocal?应用场景? 数据库水平切分,垂直切分的设计思路和切分顺序 Redis如何解决key冲突 soa和微服务的区别? 单机系统演变为分布式系统,会涉及到哪些技术的调整?请从前面负载到后端详细描述。 设计一个秒杀系统? 7.4 四面(HR面) 你自己最大优势和劣势是什么 平时遇见过什么样的挑战,怎么去克服的 工作中遇见了技术解决不了的问题,你的应对思路? 你的兴趣爱好? 未来的职业规划是什么? 08 美团java高级开发3面 8.1 美团一面 自我介绍 项目介绍 Redis介绍 了解redis源码么 了解redis集群么 Hashmap的原理,增删的情况后端数据结构如何位移 hashmap容量为什么是2的幂次 hashset的源码 object类你知道的方法 hashcode和equals 你重写过hashcode和equals么,要注意什么 假设现在一个学生类,有学号和姓名,我现在hashcode方法重写的时候,只将学号参与计算,会出现什么情况? 往set里面put一个学生对象,然后将这个学生对象的学号改了,再put进去,可以放进set么?并讲出为什么 Redis的持久化?有哪些方式,原理是什么? 讲一下稳定的排序算法和不稳定的排序算法 讲一下快速排序的思想 8.2 美团二面 自我介绍 讲一下数据的acid 什么是一致性 什么是隔离性 Mysql的隔离级别 每个隔离级别是如何解决 Mysql要加上nextkey锁,语句该怎么写 Java的内存模型,垃圾回收 线程池的参数 每个参数解释一遍 然后面试官设置了每个参数,给了是个线程,让描述出完整的线程池执行的流程 Nio和IO有什么区别 Nio和aio的区别 Spring的aop怎么实现 Spring的aop有哪些实现方式 动态代理的实现方式和区别 Linux了解么 怎么查看系统负载 Cpu load的参数如果为4,描述一下现在系统处于什么情况 Linux,查找磁盘上最大的文件的命令 Linux,如何查看系统日志文件 手撕算法:leeetcode原题 22,Generate Parentheses,给定 n 对括号,请- 写一个函数以将其生成新的括号组合,并返回所有组合结果。 8.3 美团三面(现场) 三面没怎么问技术,问了很多技术管理方面的问题 自我介绍 项目介绍 怎么管理项目成员 当意见不一致时,如何沟通并说服开发成员,并举个例子 怎么保证项目的进度 数据库的索引原理 非聚簇索引和聚簇索引 索引的使用注意事项 联合索引 从底层解释最左匹配原则 Mysql对联合索引有优化么?会自动调整顺序么?哪个版本开始优化? Redis的应用 Redis的持久化的方式和原理 技术选型,一个新技术和一个稳定的旧技术,你会怎么选择,选择的考虑有哪些 说你印象最深的美团点评技术团队的三篇博客 最近在学什么新技术 你是怎么去接触一门新技术的 会看哪些书 怎么选择要看的书 最后 由于篇幅限制,小编在此截出几张知识讲解的图解,有需要的程序猿(媛)可以点赞后戳这里免费领取全部资料获取哦 子 怎么保证项目的进度 数据库的索引原理 非聚簇索引和聚簇索引 索引的使用注意事项 联合索引 从底层解释最左匹配原则 Mysql对联合索引有优化么?会自动调整顺序么?哪个版本开始优化? Redis的应用 Redis的持久化的方式和原理 技术选型,一个新技术和一个稳定的旧技术,你会怎么选择,选择的考虑有哪些 说你印象最深的美团点评技术团队的三篇博客 最近在学什么新技术 你是怎么去接触一门新技术的 会看哪些书 怎么选择要看的书 最后 由于篇幅限制,小编在此截出几张知识讲解的图解,有需要的程序猿(媛)可以点赞后戳这里免费领取全部资料获取哦 [外链图片转存中…(img-SFREePIJ-1624074891834)] [外链图片转存中…(img-5kF3pkiC-1624074891834)] [外链图片转存中…(img-HDVXfOMR-1624074891835)] [外链图片转存中…(img-RyaAC5jy-1624074891836)] [外链图片转存中…(img-iV32C5Ok-1624074891837)] 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_57285325/article/details/118051767。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-13 23:43:59
85
转载
MemCache
正文: 一、引言 Memcached是一种分布式键值存储系统,它被广泛应用于Web应用程序中的缓存处理,以提高网站性能。然而,在实际应用过程中,我们可能会遇到Memcached进程占用CPU过高的问题。这不仅会影响系统的运行效率,还可能引发一系列问题。这篇文章会手把手教你一步步弄明白,为啥Memcached这个小家伙有时候会使劲霸占CPU资源,然后咱再一起商量商量怎么把它给“治”好,让它恢复正常运作。 二、Memcached进程占用CPU高的原因分析 1. Memcached配置不当 当Memcached配置不当时,会导致其频繁进行数据操作,从而增加CPU负担。比如说,要是你给数据设置的过期时间太长了,让Memcached这个家伙没法及时把没用的数据清理掉,那可能会造成CPU这老兄压力山大,消耗过多的资源。 示例代码如下: python import memcache mc = memcache.Client(['localhost:11211']) mc.set('key', 'value', 120) 上述代码中,设置的数据过期时间为120秒,即两分钟。这就意味着,即使数据已经没啥用了,Memcached这家伙还是会死拽着这些数据不放,在接下来的两分钟里持续占据着CPU资源不肯放手。 2. Memcached与大量客户端交互 当Memcached与大量客户端频繁交互时,会加重其CPU负担。这是因为每次交互都需要进行复杂的计算和数据处理操作。比如,想象一下你运营的Web应用火爆到不行,用户请求多得不得了,每个请求都得去Memcached那儿抓取数据。这时候,Memcached这个家伙可就压力山大了,CPU资源被消耗得嗷嗷叫啊! 示例代码如下: python import requests for i in range(1000): response = requests.get('http://localhost/memcached/data') print(response.text) 上述代码中,循环执行了1000次HTTP GET请求,每次请求都会从Memcached获取数据。这会导致Memcached的CPU资源消耗过大。 三、排查Memcached进程占用CPU高的方法 1. 使用top命令查看CPU使用情况 在排查Memcached进程占用CPU过高的问题时,我们可以首先使用top命令查看系统中哪些进程正在占用大量的CPU资源。例如,以下输出表示PID为31063的Memcached进程正在占用大量的CPU资源: javascript top - 13:34:47 up 1 day, 6:13, 2 users, load average: 0.24, 0.36, 0.41 Tasks: 174 total, 1 running, 173 sleeping, 0 stopped, 0 zombie %Cpu(s): 0.2 us, 0.3 sy, 0.0 ni, 99.5 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st KiB Mem : 16378080 total, 16163528 free, 182704 used, 122848 buff/cache KiB Swap: 0 total, 0 free, 0 used. 2120360 avail Mem PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 3106 root 20 0 1058688 135484 4664 S 45.9 8.3 1:23.79 python memcached_client.py 我们可以看到,PID为31063的Python程序正在占用大量的CPU资源。接着,我们可以使用ps命令进一步了解这个进程的情况: bash ps -p 3106 2. 查看Memcached配置文件 在确认Memcached进程是否异常后,我们需要查看其配置文件,以确定是否存在配置错误导致的高CPU资源消耗。例如,以下是一个默认的Memcached配置文件(/etc/memcached.conf)的一部分: php-template Default MaxItems per key (65536). default_maxbytes 67108864 四、解决Memcached进程占用CPU高的方案 1. 调整Memcached配置 根据Memcached配置不当的原因,我们可以调整相关参数来降低CPU资源消耗。例如,可以减少过期时间、增大最大数据大小等。以下是修改过的配置文件的一部分: php-template Default MaxItems per key (131072). default_maxbytes 134217728 Increase expiration time to reduce CPU usage. default_time_to_live 14400 2. 控制与Memcached的交互频率 对于因大量客户端交互导致的高CPU资源消耗问题,我们可以采取一些措施来限制与Memcached的交互频率。例如,可以在服务器端添加限流机制,防止短时间内产生大量请求。或者,优化客户端代码,减少不必要的网络通信。 3. 提升硬件设备性能 最后,如果其他措施都无法解决问题,我们也可以考虑提升硬件设备性能,如增加CPU核心数量、扩大内存容量等。但这通常不是最佳解决方案,因为这可能会带来更高的成本。 五、结论 总的来说,Memcached进程占用CPU过高是一个常见的问题,其产生的原因是多种多样的。要真正把这个问题给揪出来,咱们得把系统工具和实际操作的经验都使上劲儿,得像钻井工人一样深入挖掘Memcached这家伙的工作内幕和使用门道。只有这样,才能真正找到问题的关键所在,并提出有效的解决方案。 感谢阅读这篇文章,希望对你有所帮助!
2024-01-19 18:02:16
94
醉卧沙场-t
MemCache
MemCache过期时间未生效问题探析与实践 1. 引言 Memcached,作为一款高性能、分布式内存对象缓存系统,被广泛应用于减轻数据库负载,提高动态Web应用的响应速度。然而,在实际开发过程中,我们偶尔会遇到设置的缓存过期时间并未如预期那样生效的情况,这无疑给我们的系统带来了一定困扰。本文将深入探讨这个问题,并通过实例代码进行解析和解决方案演示。 2. Memcached过期时间设定原理 在使用Memcached时,我们可以为每个存储的对象指定一个过期时间(TTL, Time To Live)。当达到这个时间后,该缓存项将自动从Memcached中移除。但是,这里有个关键知识点要敲黑板强调一下:Memcached这家伙并不严格按照你给它设定的时间去清理过期的数据,而是玩了个小聪明,用了一个叫LRU(最近最少使用)的算法,再搭配上数据的到期时间,来决定哪些数据该被淘汰掉。 python import memcache mc = memcache.Client(['127.0.0.1:11211'], debug=0) mc.set('key', 'value', time=60) 这里设置了60秒后过期 上述Python示例中,我们尝试设置了一个60秒后过期的缓存项。按理说,60秒一过,你应该能见到这个键变成失效状态。不过呢,实际情况可能不是那么“听话”。除非Memcached这家伙发现自己的空间快不够用了,急需存储新的数据,然后还刚好挑中了这个最不常用的键,否则它可能并不会那么痛快地立马消失不见。 3. 过期时间未生效的原因及分析 3.1 时间精度问题 首先,我们要明确的是,Memcached服务器内部对过期时间的处理并不保证绝对的精度。这就意味着,就算你把过期时间精细到秒去设置了,但Memcached这家伙由于自身内部的定时任务执行不那么准时,或者其他一些小插曲,可能会让过期时间的判断出现一点小误差。 3.2 LRU缓存淘汰策略 其次,正如前面所述,Memcached基于LRU算法以及缓存项的过期时间进行数据淘汰。只有当缓存满载并且某个缓存项已过期,Memcached才会将其淘汰。所以,就算你设置的缓存时间已经过了保质期,但如果这个缓存项是个“人气王”,被大家频频访问,或者Memcached的空间还绰绰有余,那么这个缓存项就可能还在缓存里赖着不走。 3.3 客户端与服务器时间差 另外,客户端与Memcached服务器之间的时间差异也可能导致过期时间看似未生效的问题。确保客户端和服务器时间同步一致对于正确计算缓存过期至关重要。 4. 解决方案与实践建议 4.1 确保时间同步 为了防止因时间差异导致的问题,我们需要确保所有涉及Memcached操作的服务器和客户端具有准确且一致的时间。 4.2 合理设置缓存有效期 理解并接受Memcached过期机制的非实时性特点,根据业务需求合理设置缓存的有效期,尽量避免依赖于过期时间的精确性来做关键决策。 4.3 使用touch命令更新过期时间 Memcached提供了touch命令用于更新缓存项的过期时间,可以在某些场景下帮助我们更好地控制缓存生命周期。 python mc.touch('key', 60) 更新key的过期时间为60秒后 5. 结语 总的来说,Memcached过期时间未按预期生效并非其本身缺陷,而是其基于LRU策略及自身实现机制的结果。在日常开发过程中,我们需要深入了解并适应这些特性,以便更高效地利用Memcached进行缓存管理。而且,通过灵活巧妙的设置和实际编码操作,我们完全可以成功避开这类问题引发的影响,让Memcached变成我们提升系统性能的好帮手,就像一位随时待命、给力的助手一样。在捣鼓技术的道路上,能够理解、深入思考,并且灵活机动地做出调整,这可是我们不断进步的关键招数,也是编程世界让人欲罢不能的独特趣味所在。
2023-06-17 20:15:55
121
半夏微凉
MemCache
MemCache与LRU失效策略:深度探索与实践演示 1. 引言 MemCache,这个高效、分布式的内存对象缓存系统,在我们的日常开发中扮演着重要的角色。尤其是在处理大量数据和减轻数据库负载方面,它的价值尤为显著。然而,MemCache的核心机制之一——LRU(最近最少使用)替换策略,却常常在特定场景下出现失效情况,这引发了我们对其深入探讨的欲望。 LRU,简单来说就是“最近最少使用的数据最先被淘汰”。这个算法啊,它玩的是时间局部性原理的把戏,通俗点讲呢,就是它特别擅长猜哪些数据短时间内大概率不会再蹦跶出来和我们见面啦。在一些特别复杂的应用场合,LRU的预测功能可能就不太好使了,这时候我们就得深入地去探究它背后的运行原理,然后用实际的代码案例把这些失效的情况给演示出来,并且附带上我们的解决对策。 2. LRU失效策略浅析 想象一下,当MemCache缓存空间满载时,新加入的数据就需要挤掉一些旧的数据。此时,按照LRU策略,系统会淘汰最近最少使用过的数据。不过,假如一个应用程序访问数据的方式不按“局部性”这个规矩来玩,比如有时候会周期性或者突然冒出对某个热点数据的频繁访问,这时LRU(最近最少使用)算法可能就抓瞎了。它可能会误删掉一些虽然最近没被翻牌子、但马上就要用到的数据,这样一来,整个系统的运行效率可就要受影响喽。 2.1 实际案例模拟 python import memcache 创建一个MemCache客户端连接 mc = memcache.Client(['127.0.0.1:11211'], debug=0) 假设缓存大小为3个键值对 for i in range(4): 随机访问并设置四个键值对 key = f'key_{i}' value = 'some_value' mc.set(key, value) 模拟LRU失效情况:每次循环都将访问第一个键值对,导致其余三个虽然新近设置,但因为未被访问而被删除 mc.get('key_0') 在这种情况下,尽管'key_1', 'key_2', 'key_3'是最新设置的,但由于它们没有被及时访问,因此可能会被LRU策略误删 3. LRU失效的思考与对策 面对LRU可能失效的问题,我们需要更灵活地运用MemCache的策略。比如,我们可以根据实际业务的情况,灵活调整缓存策略,就像烹饪时根据口味加调料一样。还可以给缓存数据设置一个合理的“保鲜期”,也就是过期时间(TTL),确保信息新鲜不过期。更进一步,我们可以引入一些有趣的淘汰法则,比如LFU(最近最少使用)算法,简单来说,就是让那些长时间没人搭理的数据,自觉地给常用的数据腾地方。 3.1 调整缓存策略 对于周期性访问的数据,我们可以尝试在每个周期开始时重新加载这部分数据,避免LRU策略将其淘汰。 3.2 设定合理的TTL 给每个缓存项设置合适的过期时间,确保即使在LRU策略失效的情况下,也能通过过期自动清除不再需要的数据。 python 设置键值对时添加过期时间 mc.set('key_0', 'some_value', time=60) 这个键值对将在60秒后过期 3.3 结合LFU或其他算法 部分MemCache的高级版本支持多种淘汰算法,我们可以根据实际情况选择或定制混合策略,以最大程度地优化缓存效果。 4. 结语 MemCache的LRU策略在多数情况下确实表现优异,但在某些特定场景下也难免会有失效的时候。作为开发者,咱们得把这一策略的精髓吃透,然后在实际操作中灵活运用,像炒菜一样根据不同的“食材”和“火候”,随时做出调整优化,真正做到接地气,让策略活起来。只有这样,才能充分发挥MemCache的效能,使其成为提升我们应用性能的利器。如同人生的每一次抉择,技术选型与调优亦需审时度势,智勇兼备,方能游刃有余。
2023-09-04 10:56:10
109
凌波微步
MemCache
Memcached服务器负载过高,响应延迟问题深度探讨与解决方案 0. 引言 当我们谈论Memcached——这个广泛应用于Web开发中的分布式内存对象缓存系统时,其高效性与易用性无疑是我们首要赞许的特性。不过在实际操作中,咱们可能经常会碰上个让人脑壳疼的状况:那就是Memcached服务器压力山大,负载过高,结果响应速度慢得像蜗牛,真能把人气得跳脚。这就像是一个快递小哥,当手头的包裹多到堆成山时,他再怎么努力也难以保证每个包裹都能准时准点地送到大伙儿手上。这篇东西,咱们要大刀阔斧地深挖这个问题是怎么冒出来的、它捣了什么乱,还有我们该怎么收拾这摊子事。而且啊,为了让你们看得更明白,我还特意准备了实例代码,手把手教你们怎么优化和调试,包你看完就能上手实操! 1. 问题分析 为何Memcached会负载过高? (1) 数据量过大:当我们的业务增长,缓存的数据量也随之暴增,Memcached的内存空间可能达到极限,频繁的读写操作使CPU负载升高,从而引发响应延迟。 python import memcache mc = memcache.Client(['localhost:11211'], debug=0) 假设大量并发请求都在向Memcached写入或获取数据 for i in range(500000): mc.set('key_%s' % i, 'a_large_value') (2) 键值过期策略不当:如果大量的键在同一时刻过期,Memcached需要同时处理这些键的删除和新数据的写入,可能导致瞬时负载激增。 (3) 网络带宽限制:数据传输过程中,若网络带宽成为瓶颈,也会使得Memcached响应变慢。 2. 影响与后果 高负载下的Memcached响应延迟不仅会影响用户体验,如页面加载速度变慢,也可能进一步拖垮整个系统的性能,甚至引发雪崩效应,让整个服务瘫痪。如同多米诺骨牌效应,一环出错,全链受阻。 3. 解决方案与优化策略 (1)扩容与分片:根据业务需求合理分配和扩展Memcached服务器数量,进行数据分片存储,分散单个节点压力。 bash 配置多个Memcached服务器地址 memcached -p 11211 -d -m 64 -u root localhost server1 memcached -p 11212 -d -m 64 -u root localhost server2 在客户端代码中配置多个服务器 mc = memcache.Client(['localhost:11211', 'localhost:11212'], debug=0) (2)调整键值过期策略:避免大量键值在同一时间点过期,采用分散式的过期策略,比如使用随机过期时间。 (3)增大内存与优化网络:提升Memcached服务器硬件配置,增加内存容量以应对更大规模的数据缓存;同时优化网络设备,提高带宽以减少数据传输延迟。 (4)监控与报警:建立完善的监控机制,对Memcached的各项指标(如命中率、内存使用率等)进行实时监控,并设置合理的阈值进行预警,确保能及时发现并解决问题。 4. 结语 面对Memcached服务器负载过高、响应延迟的情况,我们需要像侦探一样细致观察、精准定位问题所在,然后采取针对性的优化措施。每一个技术难题,对我们来说,都是在打造那个既快又稳的系统的旅程中的一次实实在在的锻炼和成长机会,就像升级打怪一样,让我们不断强大。要真正玩转这个超牛的缓存神器Memcached,让它为咱们的应用程序提供更稳、更快的服务,就得先彻底搞明白它的运行机制和可能遇到的各种潜在问题。只有这样,才能称得上是真正把Memcached给“驯服”了,让其在提升应用性能的道路上发挥出最大的能量。
2023-03-25 19:11:18
122
柳暗花明又一村
MemCache
MemCache的深入探讨:理解与解决"Value too large to be stored in a single chunk"问题 1. 引言 MemCache,这个在分布式缓存领域中久负盛名的角色,以其快速、高效的内存对象缓存能力,在提升系统性能和降低数据库负载方面发挥着关键作用。然而,在实际使用过程中,我们偶尔会遇到“Value too large to be stored in a single chunk”这样的错误提示。今天,咱们就手拉手,一起去揭开这个看似神神秘秘的错误面纱,用实际的代码例子,像破案一样摸清它的来龙去脉,最后把这个问题给妥妥地解决掉。 2. MemCache的工作原理与chunk概念解析 在MemCache内部,它将存储的数据项分割成固定大小的chunks进行存储(默认为1MB)。当一个值(value)过大以至于无法一次性放入一个chunk时,就会抛出“Value too large to be stored in a single chunk”的异常。这就像是你硬要把一只大大的熊宝宝塞进一个超级迷你的小口袋里,任凭你怎么使劲、怎么折腾,这个艰巨的任务都几乎不可能完成。 python import memcache mc = memcache.Client(['127.0.0.1:11211'], debug=1) 假设这里有一个超大的数据对象,比如一个非常长的字符串或复杂的数据结构 huge_value = 'A' (1024 1024 2) 大于默认chunk大小的字符串 try: mc.set('huge_key', huge_value) except ValueError as e: print(f"Oops! We got an error: {e}") 输出:"Value too large to be stored in a single chunk" 3. 解决“Value too large to be stored in a single chunk”问题的方法 面对这种情况,我们可以从两个角度来应对: 3.1 优化数据结构或压缩数据 首先,考虑是否可以对存储的数据进行优化。比如,假如你现在要缓存的是文本信息,你可以尝试简化一下内容,或者换个更省空间的数据格式,就拿JSON来说吧,比起XML它能让你的数据体积变得更小巧。另外,也可以使用压缩算法来减少数据大小,如Gzip。 python import zlib from io import BytesIO compressed_value = zlib.compress(huge_value.encode()) mc.set('compressed_key', compressed_value) 3.2 调整MemCache的chunk大小 其次,如果优化数据结构或压缩后仍无法满足需求,且确实需要缓存大型数据,那么可以尝试调整Memcached服务器的chunk大小。通常情况下,为了让MemCache启动时能分配更大的单个内存块,你需要动手调整一下启动参数,也就是那个 -I 参数(或者,你也可以选择在配置文件里设置 chunk_size 这个选项),把它调大一些。这样就好比给 MemCache 扩大了每个“小仓库”的容量,让它能装下更多的数据。但是,亲,千万要留意,增大chunk大小可是会吃掉更多的内存资源呢。所以在动手做这个调整之前,一定要先摸清楚你的内存使用现状和业务需求,不然的话,可能会有点小麻烦。 bash memcached -m 64 -I 4m 上述命令启动了一个内存大小为64MB且每个chunk大小为4MB的MemCached服务。 4. 总结与思考 在MemCache的世界里,“Value too large to be stored in a single chunk”并非不可逾越的鸿沟,而是一个促使我们反思数据处理策略和资源利用效率的机会。无论是捣鼓数据结构,把数据压缩得更小,还是摆弄MemCache的配置设置,这些都是我们在追求那个超给力缓存解决方案的过程中,实实在在踩过、试过的有效招数。同时呢,这也给我们提了个醒,在捣鼓和构建系统的时候,可别忘了时刻关注并妥善处理好性能、内存使用和业务需求这三者之间那种既微妙又关键的平衡关系。就像亲手做一道美味的大餐,首先得像个挑剔的美食家那样,用心选好各种新鲜上乘的食材(也就是我们需要的数据);然后呢,你得像玩俄罗斯方块一样,巧妙地把它们在有限的空间(也就是内存)里合理摆放好;最后,掌握好火候可是大厨的必杀技,这就好比我们得精准配置各项参数。只有这样,才能烹制出一盘让人垂涎欲滴的佳肴——那就是我们的高效缓存系统啦!
2023-06-12 16:06:00
50
清风徐来
Go-Spring
...代互联网架构设计中,缓存技术的应用已成常态,尤其在高并发、大数据量的场景下,其对于提升系统性能和用户体验的作用不言而喻。Go-Spring框架中的ehcache配置与使用仅是众多实现方案之一,实际上,随着云原生技术的发展,新型的分布式缓存服务如Redis、Memcached以及云服务商提供的托管缓存服务也逐渐崭露头角。 近期,AWS宣布对其Amazon ElastiCache服务进行升级,提供了更为强大的内存数据库功能,支持自动扩展、多可用区部署以及数据持久化,使开发者能够更加便捷高效地构建高可用、高性能的应用。同时,Google Cloud Platform也推出了Cloud Memorystore,一款全托管的Redis和Memcached服务,旨在简化大规模Web应用和服务的数据缓存管理。 此外,对于缓存策略的设计与优化亦至关重要,比如LRU(最近最少使用)算法、LFU(最不经常使用)算法等淘汰策略的选择及应用场景分析,都是深入研究缓存技术时不可或缺的内容。因此,在实际项目开发中,结合业务特性和资源条件灵活运用并持续优化缓存机制,方能最大程度发挥其效能,为系统的整体性能保驾护航。
2023-12-01 09:24:43
447
半夏微凉-t
Redis
...中,并通过轻量级通信机制互相协调。在本文中,微服务架构意味着Redis在其中作为关键的缓存和数据共享组件,服务之间通过Redis进行快速数据交换和同步。 Redisson , 一个基于Redis的分布式锁和事件发布/订阅库,它为Java开发者提供了一个易于使用的API,用于在分布式系统中实现数据一致性。在文章中,Redisson是实现服务间快速交互的一个工具,通过Java客户端连接Redis,进行数据同步和事件驱动操作。 Sentinel , Redis的高可用性解决方案,它是一个监控、故障检测和自动恢复服务,用于维护主从复制关系,当主服务器出现故障时,Sentinel能够自动选举新的主节点,确保服务的连续性。在文章中,Sentinel是确保Redis在微服务环境中高可用性的关键组成部分。 AOF持久化 , 全称Append Only File,是Redis的一种持久化策略,它记录每一次写操作,而不是只记录修改,从而保证了数据的完整性和一致性。在微服务架构中,AOF策略有助于在服务宕机后恢复数据,降低数据丢失的风险。 LFU(Least Frequently Used)算法 , 一种数据淘汰策略,Redis的LRU(Least Recently Used)是最近最少使用,而LFU则是最少使用频率,会优先移除最不经常访问的数据。在内存有限的环境中,LFU可能更适合某些应用场景,因为它考虑的是长期使用频率而非最近访问时间。 数据一致性 , 在分布式系统中,多个副本保持数据状态的一致性,无论哪个副本被读取,结果都是相同的。在微服务中,确保Redis数据一致性至关重要,尤其是在跨服务调用和分布式事务处理时。 Redis集群 , Redis的一种部署模式,通过多个Redis实例组成集群,提供水平扩展和容错能力。在微服务架构中,集群模式有助于提高Redis服务的可扩展性和可靠性。
2024-04-08 11:13:38
218
岁月如歌
Spark
近期,随着云计算和大数据技术的快速发展,分布式缓存技术的应用场景愈发广泛。除了Spark之外,Redis、Memcached等工具也在企业级应用中占据了重要地位。最近的一项研究表明,全球分布式缓存市场预计将在未来五年内以超过15%的年复合增长率扩张,这表明越来越多的企业开始意识到数据高效管理的重要性。 例如,亚马逊AWS最近推出了全新的DynamoDB Accelerator(DAX)服务,这是一种托管的缓存解决方案,专为高吞吐量、低延迟的数据库查询设计。DAX能够将响应时间缩短至毫秒级别,这对于实时数据分析和大规模用户交互场景至关重要。这一举措不仅展示了云服务商在提升数据处理效率上的持续投入,也为开发者提供了更多灵活的选择。 与此同时,国内互联网巨头阿里巴巴也宣布对其自主研发的Tair缓存系统进行全面升级。新版Tair支持更高的并发能力,并引入了更先进的冷热数据分离机制,大幅降低了内存占用率。这一改进尤其适用于电商促销活动期间的流量洪峰场景,有效缓解了服务器的压力。 此外,学术界对于分布式缓存的研究也在不断深入。一篇发表于《IEEE Transactions on Parallel and Distributed Systems》的论文提出了一种基于机器学习的缓存预取算法,可以根据历史访问模式预测未来的请求热点,从而提前将数据加载到缓存中。这种方法理论上可以进一步降低查询延迟,但实际部署仍面临模型训练成本高昂等问题。 值得注意的是,尽管分布式缓存带来了诸多便利,但它并非没有挑战。隐私保护、数据一致性以及跨地域同步等问题仍然是业界亟待解决的难题。随着GDPR等法规的出台,企业在使用缓存技术时还需格外注意合规性,确保用户数据的安全与合法使用。在未来,我们或许可以看到更多结合区块链技术的去中心化缓存解决方案,为用户提供更加透明和安全的服务体验。
2025-05-02 15:46:14
80
素颜如水
转载文章
...edis 的这种事务机制来实现原子性,保证数据的一致。 3、Lua脚本 Lua/ˈluə/是一种轻量级脚本语言,它是用 C 语言编写的,跟数据的存储过程有点类似。 使用 Lua 脚本来执行 Redis 命令的好处: 1、一次发送多个命令,减少网络开销。 2、Redis 会将整个脚本作为一个整体执行,不会被其他请求打断,保持原子性。 3、对于复杂的组合命令,我们可以放在文件中,可以实现程序之间的命令集复用。 3.1 在Redis中调用Lua脚本 使用 eval /ɪ’væl/ 方法,语法格式: redis> eval lua-script key-num [key1 key2 key3 ....] [value1 value2 value3 ....] eval代表执行Lua语言的命令。 lua-script代表Lua语言脚本内容。 key-num表示参数中有多少个key,需要注意的是Redis中key是从1开始的,如果没有key的参数,那么写0。 [key1key2key3…]是key作为参数传递给Lua语言,也可以不填,但是需要和key-num的个数对应起来。 [value1 value2 value3 …]这些参数传递给 Lua 语言,它们是可填可不填的。 示例,返回一个字符串,0 个参数: redis> eval "return 'Hello World'" 0 3.2 在Lua脚本中调用Redis命令 使用 redis.call(command, key [param1, param2…])进行操作。语法格式: redis> eval "redis.call('set',KEYS[1],ARGV[1])" 1 lua-key lua-value command是命令,包括set、get、del等。 key是被操作的键。 param1,param2…代表给key的参数。 注意跟 Java 不一样,定义只有形参,调用只有实参。 Lua 是在调用时用 key 表示形参,argv 表示参数值(实参)。 3.2.1 设置键值对 在 Redis 中调用 Lua 脚本执行 Redis 命令 redis> eval "return redis.call('set',KEYS[1],ARGV[1])" 1 gupao 2673 redis> get gupao 以上命令等价于 set gupao 2673。 在 redis-cli 中直接写 Lua 脚本不够方便,也不能实现编辑和复用,通常我们会把脚本放在文件里面,然后执行这个文件。 3.2.2 在 Redis 中调用 Lua 脚本文件中的命令,操作 Redis 创建 Lua 脚本文件: cd /usr/local/soft/redis5.0.5/src vim gupao.lua Lua 脚本内容,先设置,再取值: cd /usr/local/soft/redis5.0.5/src redis-cli --eval gupao.lua 0 得到返回值: root@localhost src] redis-cli --eval gupao.lua 0 "lua666" 3.2.3 案例:对 IP 进行限流 需求:在 X 秒内只能访问 Y 次。 设计思路:用 key 记录 IP,用 value 记录访问次数。 拿到 IP 以后,对 IP+1。如果是第一次访问,对 key 设置过期时间(参数 1)。否则判断次数,超过限定的次数(参数 2),返回 0。如果没有超过次数则返回 1。超过时间, key 过期之后,可以再次访问。 KEY[1]是 IP, ARGV[1]是过期时间 X,ARGV[2]是限制访问的次数 Y。 -- ip_limit.lua-- IP 限流,对某个 IP 频率进行限制 ,6 秒钟访问 10 次 local num=redis.call('incr',KEYS[1])if tonumber(num)==1 thenredis.call('expire',KEYS[1],ARGV[1])return 1elseif tonumber(num)>tonumber(ARGV[2]) thenreturn 0 elsereturn 1 end 6 秒钟内限制访问 10 次,调用测试(连续调用 10 次): ./redis-cli --eval "ip_limit.lua" app:ip:limit:192.168.8.111 , 6 10 app:ip:limit:192.168.8.111 是 key 值 ,后面是参数值,中间要加上一个空格和一个逗号,再加上一个空格 。 即:./redis-cli –eval [lua 脚本] [key…]空格,空格[args…] 多个参数之间用一个空格分割 。 代码:LuaTest.java 3.2.4 缓存 Lua 脚本 为什么要缓存 在脚本比较长的情况下,如果每次调用脚本都需要把整个脚本传给 Redis 服务端, 会产生比较大的网络开销。为了解决这个问题,Redis 提供了 EVALSHA 命令,允许开发者通过脚本内容的 SHA1 摘要来执行脚本。 如何缓存 Redis 在执行 script load 命令时会计算脚本的 SHA1 摘要并记录在脚本缓存中,执行 EVALSHA 命令时 Redis 会根据提供的摘要从脚本缓存中查找对应的脚本内容,如果找到了则执行脚本,否则会返回错误:“NOSCRIPT No matching script. Please use EVAL.” 127.0.0.1:6379> script load "return 'Hello World'" "470877a599ac74fbfda41caa908de682c5fc7d4b"127.0.0.1:6379> evalsha "470877a599ac74fbfda41caa908de682c5fc7d4b" 0 "Hello World" 3.2.5 自乘案例 Redis 有 incrby 这样的自增命令,但是没有自乘,比如乘以 3,乘以 5。我们可以写一个自乘的运算,让它乘以后面的参数: local curVal = redis.call("get", KEYS[1]) if curVal == false thencurVal = 0 elsecurVal = tonumber(curVal)endcurVal = curVal tonumber(ARGV[1]) redis.call("set", KEYS[1], curVal) return curVal 把这个脚本变成单行,语句之间使用分号隔开 local curVal = redis.call("get", KEYS[1]); if curVal == false then curVal = 0 else curVal = tonumber(curVal) end; curVal = curVal tonumber(ARGV[1]); redis.call("set", KEYS[1], curVal); return curVal script load ‘命令’ 127.0.0.1:6379> script load 'local curVal = redis.call("get", KEYS[1]); if curVal == false then curVal = 0 else curVal = tonumber(curVal) end; curVal = curVal tonumber(ARGV[1]); redis.call("set", KEYS[1], curVal); return curVal' "be4f93d8a5379e5e5b768a74e77c8a4eb0434441" 调用: 127.0.0.1:6379> set num 2OK127.0.0.1:6379> evalsha be4f93d8a5379e5e5b768a74e77c8a4eb0434441 1 num 6 (integer) 12 3.2.6 脚本超时 Redis 的指令执行本身是单线程的,这个线程还要执行客户端的 Lua 脚本,如果 Lua 脚本执行超时或者陷入了死循环,是不是没有办法为客户端提供服务了呢? eval 'while(true) do end' 0 为了防止某个脚本执行时间过长导致 Redis 无法提供服务,Redis 提供了 lua-time-limit 参数限制脚本的最长运行时间,默认为 5 秒钟。 lua-time-limit 5000(redis.conf 配置文件中) 当脚本运行时间超过这一限制后,Redis 将开始接受其他命令但不会执行(以确保脚本的原子性,因为此时脚本并没有被终止),而是会返回“BUSY”错误。 Redis 提供了一个 script kill 的命令来中止脚本的执行。新开一个客户端: script kill 如果当前执行的 Lua 脚本对 Redis 的数据进行了修改(SET、DEL 等),那么通过 script kill 命令是不能终止脚本运行的。 127.0.0.1:6379> eval "redis.call('set','gupao','666') while true do end" 0 因为要保证脚本运行的原子性,如果脚本执行了一部分终止,那就违背了脚本原子性的要求。最终要保证脚本要么都执行,要么都不执行。 127.0.0.1:6379> script kill(error) UNKILLABLE Sorry the script already executed write commands against the dataset. You can either wait the scripttermination or kill the server in a hard way using the SHUTDOWN NOSAVE command. 遇到这种情况,只能通过 shutdown nosave 命令来强行终止 redis。 shutdown nosave 和 shutdown 的区别在于 shutdown nosave 不会进行持久化操作,意味着发生在上一次快照后的数据库修改都会丢失。 4、Redis 为什么这么快? 4.1 Redis到底有多快? 根据官方的数据,Redis 的 QPS 可以达到 10 万左右(每秒请求数)。 4.2 Redis为什么这么快? 总结:1)纯内存结构、2)单线程、3)多路复用 4.2.1 内存 KV 结构的内存数据库,时间复杂度 O(1)。 第二个,要实现这么高的并发性能,是不是要创建非常多的线程? 恰恰相反,Redis 是单线程的。 4.2.2 单线程 单线程有什么好处呢? 1、没有创建线程、销毁线程带来的消耗 2、避免了上线文切换导致的 CPU 消耗 3、避免了线程之间带来的竞争问题,例如加锁释放锁死锁等等 4.2.3 异步非阻塞 异步非阻塞 I/O,多路复用处理并发连接。 4.3 Redis为什么是单线程的? 不是白白浪费了 CPU 的资源吗? 因为单线程已经够用了,CPU 不是 redis 的瓶颈。Redis 的瓶颈最有可能是机器内存或者网络带宽。既然单线程容易实现,而且 CPU 不会成为瓶颈,那就顺理成章地采用单线程的方案了。 4.4 单线程为什么这么快? 因为 Redis 是基于内存的操作,我们先从内存开始说起。 4.4.1 虚拟存储器(虚拟内存 Vitual Memory) 名词解释:主存:内存;辅存:磁盘(硬盘) 计算机主存(内存)可看作一个由 M 个连续的字节大小的单元组成的数组,每个字节有一个唯一的地址,这个地址叫做物理地址(PA)。早期的计算机中,如果 CPU 需要内存,使用物理寻址,直接访问主存储器。 这种方式有几个弊端: 1、在多用户多任务操作系统中,所有的进程共享主存,如果每个进程都独占一块物理地址空间,主存很快就会被用完。我们希望在不同的时刻,不同的进程可以共用同一块物理地址空间。 2、如果所有进程都是直接访问物理内存,那么一个进程就可以修改其他进程的内存数据,导致物理地址空间被破坏,程序运行就会出现异常。 为了解决这些问题,我们就想了一个办法,在 CPU 和主存之间增加一个中间层。CPU 不再使用物理地址访问,而是访问一个虚拟地址,由这个中间层把地址转换成物理地址,最终获得数据。这个中间层就叫做虚拟存储器(Virtual Memory)。 具体的操作如下所示: 在每一个进程开始创建的时候,都会分配一段虚拟地址,然后通过虚拟地址和物理地址的映射来获取真实数据,这样进程就不会直接接触到物理地址,甚至不知道自己调用的哪块物理地址的数据。 目前,大多数操作系统都使用了虚拟内存,如 Windows 系统的虚拟内存、Linux 系统的交换空间等等。Windows 的虚拟内存(pagefile.sys)是磁盘空间的一部分。 在 32 位的系统上,虚拟地址空间大小是 2^32bit=4G。在 64 位系统上,最大虚拟地址空间大小是多少? 是不是 2^64bit=10241014TB=1024PB=16EB?实际上没有用到 64 位,因为用不到这么大的空间,而且会造成很大的系统开销。Linux 一般用低 48 位来表示虚拟地址空间,也就是 2^48bit=256T。 cat /proc/cpuinfo address sizes : 40 bits physical, 48 bits virtual 实际的物理内存可能远远小于虚拟内存的大小。 总结:引入虚拟内存,可以提供更大的地址空间,并且地址空间是连续的,使得程序编写、链接更加简单。并且可以对物理内存进行隔离,不同的进程操作互不影响。还可以通过把同一块物理内存映射到不同的虚拟地址空间实现内存共享。 4.4.2 用户空间和内核空间 为了避免用户进程直接操作内核,保证内核安全,操作系统将虚拟内存划分为两部分,一部分是内核空间(Kernel-space)/ˈkɜːnl /,一部分是用户空间(User-space)。 内核是操作系统的核心,独立于普通的应用程序,可以访问受保护的内存空间,也有访问底层硬件设备的权限。 内核空间中存放的是内核代码和数据,而进程的用户空间中存放的是用户程序的代码和数据。不管是内核空间还是用户空间,它们都处于虚拟空间中,都是对物理地址的映射。 在 Linux 系统中, 内核进程和用户进程所占的虚拟内存比例是 1:3。 当进程运行在内核空间时就处于内核态,而进程运行在用户空间时则处于用户态。 进程在内核空间以执行任意命令,调用系统的一切资源;在用户空间只能执行简单的运算,不能直接调用系统资源,必须通过系统接口(又称 system call),才能向内核发出指令。 top 命令: us 代表 CPU 消耗在 User space 的时间百分比; sy 代表 CPU 消耗在 Kernel space 的时间百分比。 4.4.3 进程切换(上下文切换) 多任务操作系统是怎么实现运行远大于 CPU 数量的任务个数的? 当然,这些任务实际上并不是真的在同时运行,而是因为系统通过时间片分片算法,在很短的时间内,将 CPU 轮流分配给它们,造成多任务同时运行的错觉。 为了控制进程的执行,内核必须有能力挂起正在 CPU 上运行的进程,并恢复以前挂起的某个进程的执行。这种行为被称为进程切换。 什么叫上下文? 在每个任务运行前,CPU 都需要知道任务从哪里加载、又从哪里开始运行,也就是说,需要系统事先帮它设置好 CPU 寄存器和程序计数器(ProgramCounter),这个叫做 CPU 的上下文。 而这些保存下来的上下文,会存储在系统内核中,并在任务重新调度执行时再次加载进来。这样就能保证任务原来的状态不受影响,让任务看起来还是连续运行。 在切换上下文的时候,需要完成一系列的工作,这是一个很消耗资源的操作。 4.4.4 进程的阻塞 正在运行的进程由于提出系统服务请求(如 I/O 操作),但因为某种原因未得到操作系统的立即响应,该进程只能把自己变成阻塞状态,等待相应的事件出现后才被唤醒。 进程在阻塞状态不占用 CPU 资源。 4.4.5 文件描述符 FD Linux 系统将所有设备都当作文件来处理,而 Linux 用文件描述符来标识每个文件对象。 文件描述符(File Descriptor)是内核为了高效管理已被打开的文件所创建的索引,用于指向被打开的文件,所有执行 I/O 操作的系统调用都通过文件描述符;文件描述符是一个简单的非负整数,用以表明每个被进程打开的文件。 Linux 系统里面有三个标准文件描述符。 0:标准输入(键盘); 1:标准输出(显示器); 2:标准错误输出(显示器)。 4.4.6 传统 I/O 数据拷贝 以读操作为例: 当应用程序执行 read 系统调用读取文件描述符(FD)的时候,如果这块数据已经存在于用户进程的页内存中,就直接从内存中读取数据。如果数据不存在,则先将数据从磁盘加载数据到内核缓冲区中,再从内核缓冲区拷贝到用户进程的页内存中。(两次拷贝,两次 user 和 kernel 的上下文切换)。 I/O 的阻塞到底阻塞在哪里? 4.4.7 Blocking I/O 当使用 read 或 write 对某个文件描述符进行过读写时,如果当前 FD 不可读,系统就不会对其他的操作做出响应。从设备复制数据到内核缓冲区是阻塞的,从内核缓冲区拷贝到用户空间,也是阻塞的,直到 copy complete,内核返回结果,用户进程才解除 block 的状态。 为了解决阻塞的问题,我们有几个思路。 1、在服务端创建多个线程或者使用线程池,但是在高并发的情况下需要的线程会很多,系统无法承受,而且创建和释放线程都需要消耗资源。 2、由请求方定期轮询,在数据准备完毕后再从内核缓存缓冲区复制数据到用户空间 (非阻塞式 I/O),这种方式会存在一定的延迟。 能不能用一个线程处理多个客户端请求? 4.4.8 I/O 多路复用(I/O Multiplexing) I/O 指的是网络 I/O。 多路指的是多个 TCP 连接(Socket 或 Channel)。 复用指的是复用一个或多个线程。它的基本原理就是不再由应用程序自己监视连接,而是由内核替应用程序监视文件描述符。 客户端在操作的时候,会产生具有不同事件类型的 socket。在服务端,I/O 多路复用程序(I/O Multiplexing Module)会把消息放入队列中,然后通过文件事件分派器(File event Dispatcher),转发到不同的事件处理器中。 多路复用有很多的实现,以 select 为例,当用户进程调用了多路复用器,进程会被阻塞。内核会监视多路复用器负责的所有 socket,当任何一个 socket 的数据准备好了,多路复用器就会返回。这时候用户进程再调用 read 操作,把数据从内核缓冲区拷贝到用户空间。 所以,I/O 多路复用的特点是通过一种机制一个进程能同时等待多个文件描述符,而这些文件描述符(套接字描述符)其中的任意一个进入读就绪(readable)状态,select() 函数就可以返回。 Redis 的多路复用, 提供了 select, epoll, evport, kqueue 几种选择,在编译的时 候来选择一种。 evport 是 Solaris 系统内核提供支持的; epoll 是 LINUX 系统内核提供支持的; kqueue 是 Mac 系统提供支持的; select 是 POSIX 提供的,一般的操作系统都有支撑(保底方案); 源码 ae_epoll.c、ae_select.c、ae_kqueue.c、ae_evport.c 5、内存回收 Reids 所有的数据都是存储在内存中的,在某些情况下需要对占用的内存空间进行回 收。内存回收主要分为两类,一类是 key 过期,一类是内存使用达到上限(max_memory) 触发内存淘汰。 5.1 过期策略 要实现 key 过期,我们有几种思路。 5.1.1 定时过期(主动淘汰) 每个设置过期时间的 key 都需要创建一个定时器,到过期时间就会立即清除。该策略可以立即清除过期的数据,对内存很友好;但是会占用大量的 CPU 资源去处理过期的 数据,从而影响缓存的响应时间和吞吐量。 5.1.2 惰性过期(被动淘汰) 只有当访问一个 key 时,才会判断该 key 是否已过期,过期则清除。该策略可以最大化地节省 CPU 资源,却对内存非常不友好。极端情况可能出现大量的过期 key 没有再次被访问,从而不会被清除,占用大量内存。 例如 String,在 getCommand 里面会调用 expireIfNeeded server.c expireIfNeeded(redisDb db, robj key) 第二种情况,每次写入 key 时,发现内存不够,调用 activeExpireCycle 释放一部分内存。 expire.c activeExpireCycle(int type) 5.1.3 定期过期 源码:server.h typedef struct redisDb { dict dict; / 所有的键值对 /dict expires; / 设置了过期时间的键值对 /dict blocking_keys; dict ready_keys; dict watched_keys; int id;long long avg_ttl;list defrag_later; } redisDb; 每隔一定的时间,会扫描一定数量的数据库的 expires 字典中一定数量的 key,并清除其中已过期的 key。该策略是前两者的一个折中方案。通过调整定时扫描的时间间隔和每次扫描的限定耗时,可以在不同情况下使得 CPU 和内存资源达到最优的平衡效果。 Redis 中同时使用了惰性过期和定期过期两种过期策略。 5.2 淘汰策略 Redis 的内存淘汰策略,是指当内存使用达到最大内存极限时,需要使用淘汰算法来决定清理掉哪些数据,以保证新数据的存入。 5.2.1 最大内存设置 redis.conf 参数配置: maxmemory <bytes> 如果不设置 maxmemory 或者设置为 0,64 位系统不限制内存,32 位系统最多使用 3GB 内存。 动态修改: redis> config set maxmemory 2GB 到达最大内存以后怎么办? 5.2.2 淘汰策略 https://redis.io/topics/lru-cache redis.conf maxmemory-policy noeviction 先从算法来看: LRU,Least Recently Used:最近最少使用。判断最近被使用的时间,目前最远的数据优先被淘汰。 LFU,Least Frequently Used,最不常用,4.0 版本新增。 random,随机删除。 如果没有符合前提条件的 key 被淘汰,那么 volatile-lru、volatile-random、 volatile-ttl 相当于 noeviction(不做内存回收)。 动态修改淘汰策略: redis> config set maxmemory-policy volatile-lru 建议使用 volatile-lru,在保证正常服务的情况下,优先删除最近最少使用的 key。 5.2.3 LRU 淘汰原理 问题:如果基于传统 LRU 算法实现 Redis LRU 会有什么问题? 需要额外的数据结构存储,消耗内存。 Redis LRU 对传统的 LRU 算法进行了改良,通过随机采样来调整算法的精度。如果淘汰策略是 LRU,则根据配置的采样值 maxmemory_samples(默认是 5 个), 随机从数据库中选择 m 个 key, 淘汰其中热度最低的 key 对应的缓存数据。所以采样参数m配置的数值越大, 就越能精确的查找到待淘汰的缓存数据,但是也消耗更多的CPU计算,执行效率降低。 问题:如何找出热度最低的数据? Redis 中所有对象结构都有一个 lru 字段, 且使用了 unsigned 的低 24 位,这个字段用来记录对象的热度。对象被创建时会记录 lru 值。在被访问的时候也会更新 lru 的值。 但是不是获取系统当前的时间戳,而是设置为全局变量 server.lruclock 的值。 源码:server.h typedef struct redisObject {unsigned type:4;unsigned encoding:4;unsigned lru:LRU_BITS;int refcount;void ptr; } robj; server.lruclock 的值怎么来的? Redis 中有个定时处理的函数 serverCron,默认每 100 毫秒调用函数 updateCachedTime 更新一次全局变量的 server.lruclock 的值,它记录的是当前 unix 时间戳。 源码:server.c void updateCachedTime(void) { time_t unixtime = time(NULL); atomicSet(server.unixtime,unixtime); server.mstime = mstime();struct tm tm; localtime_r(&server.unixtime,&tm);server.daylight_active = tm.tm_isdst; } 问题:为什么不获取精确的时间而是放在全局变量中?不会有延迟的问题吗? 这样函数 lookupKey 中更新数据的 lru 热度值时,就不用每次调用系统函数 time,可以提高执行效率。 OK,当对象里面已经有了 LRU 字段的值,就可以评估对象的热度了。 函数 estimateObjectIdleTime 评估指定对象的 lru 热度,思想就是对象的 lru 值和全局的 server.lruclock 的差值越大(越久没有得到更新),该对象热度越低。 源码 evict.c / Given an object returns the min number of milliseconds the object was never requested, using an approximated LRU algorithm. /unsigned long long estimateObjectIdleTime(robj o) {unsigned long long lruclock = LRU_CLOCK(); if (lruclock >= o->lru) {return (lruclock - o->lru) LRU_CLOCK_RESOLUTION; } else {return (lruclock + (LRU_CLOCK_MAX - o->lru)) LRU_CLOCK_RESOLUTION;} } server.lruclock 只有 24 位,按秒为单位来表示才能存储 194 天。当超过 24bit 能表 示的最大时间的时候,它会从头开始计算。 server.h define LRU_CLOCK_MAX ((1<<LRU_BITS)-1) / Max value of obj->lru / 在这种情况下,可能会出现对象的 lru 大于 server.lruclock 的情况,如果这种情况 出现那么就两个相加而不是相减来求最久的 key。 为什么不用常规的哈希表+双向链表的方式实现?需要额外的数据结构,消耗资源。而 Redis LRU 算法在 sample 为 10 的情况下,已经能接近传统 LRU 算法了。 问题:除了消耗资源之外,传统 LRU 还有什么问题? 如图,假设 A 在 10 秒内被访问了 5 次,而 B 在 10 秒内被访问了 3 次。因为 B 最后一次被访问的时间比 A 要晚,在同等的情况下,A 反而先被回收。 问题:要实现基于访问频率的淘汰机制,怎么做? 5.2.4 LFU server.h typedef struct redisObject {unsigned type:4;unsigned encoding:4;unsigned lru:LRU_BITS;int refcount;void ptr; } robj; 当这 24 bits 用作 LFU 时,其被分为两部分: 高 16 位用来记录访问时间(单位为分钟,ldt,last decrement time) 低 8 位用来记录访问频率,简称 counter(logc,logistic counter) counter 是用基于概率的对数计数器实现的,8 位可以表示百万次的访问频率。 对象被读写的时候,lfu 的值会被更新。 db.c——lookupKey void updateLFU(robj val) {unsigned long counter = LFUDecrAndReturn(val); counter = LFULogIncr(counter);val->lru = (LFUGetTimeInMinutes()<<8) | counter;} 增长的速率由,lfu-log-factor 越大,counter 增长的越慢 redis.conf 配置文件。 lfu-log-factor 10 如果计数器只会递增不会递减,也不能体现对象的热度。没有被访问的时候,计数器怎么递减呢? 减少的值由衰减因子 lfu-decay-time(分钟)来控制,如果值是 1 的话,N 分钟没有访问就要减少 N。 redis.conf 配置文件 lfu-decay-time 1 6、持久化机制 https://redis.io/topics/persistence Redis 速度快,很大一部分原因是因为它所有的数据都存储在内存中。如果断电或者宕机,都会导致内存中的数据丢失。为了实现重启后数据不丢失,Redis 提供了两种持久化的方案,一种是 RDB 快照(Redis DataBase),一种是 AOF(Append Only File)。 6.1 RDB RDB 是 Redis 默认的持久化方案。当满足一定条件的时候,会把当前内存中的数据写入磁盘,生成一个快照文件 dump.rdb。Redis 重启会通过加载 dump.rdb 文件恢复数据。 什么时候写入 rdb 文件? 6.1.1 RDB 触发 1、自动触发 a)配置规则触发。 redis.conf, SNAPSHOTTING,其中定义了触发把数据保存到磁盘的触发频率。 如果不需要 RDB 方案,注释 save 或者配置成空字符串""。 save 900 1 900 秒内至少有一个 key 被修改(包括添加) save 300 10 400 秒内至少有 10 个 key 被修改save 60 10000 60 秒内至少有 10000 个 key 被修改 注意上面的配置是不冲突的,只要满足任意一个都会触发。 RDB 文件位置和目录: 文件路径,dir ./ 文件名称dbfilename dump.rdb 是否是LZF压缩rdb文件 rdbcompression yes 开启数据校验 rdbchecksum yes 问题:为什么停止 Redis 服务的时候没有 save,重启数据还在? RDB 还有两种触发方式: b)shutdown 触发,保证服务器正常关闭。 c)flushall,RDB 文件是空的,没什么意义(删掉 dump.rdb 演示一下)。 2、手动触发 如果我们需要重启服务或者迁移数据,这个时候就需要手动触 RDB 快照保存。Redis 提供了两条命令: a)save save 在生成快照的时候会阻塞当前 Redis 服务器, Redis 不能处理其他命令。如果内存中的数据比较多,会造成 Redis 长时间的阻塞。生产环境不建议使用这个命令。 为了解决这个问题,Redis 提供了第二种方式。 执行 bgsave 时,Redis 会在后台异步进行快照操作,快照同时还可以响应客户端请求。 具体操作是 Redis 进程执行 fork 操作创建子进程(copy-on-write),RDB 持久化过程由子进程负责,完成后自动结束。它不会记录 fork 之后后续的命令。阻塞只发生在 fork 阶段,一般时间很短。 用 lastsave 命令可以查看最近一次成功生成快照的时间。 6.1.2 RDB 数据的恢复(演示) 1、shutdown 持久化添加键值 添加键值 redis> set k1 1 redis> set k2 2 redis> set k3 3 redis> set k4 4 redis> set k5 5 停服务器,触发 save redis> shutdown 备份 dump.rdb 文件 cp dump.rdb dump.rdb.bak 启动服务器 /usr/local/soft/redis-5.0.5/src/redis-server /usr/local/soft/redis-5.0.5/redis.conf 啥都没有: redis> keys 3、通过备份文件恢复数据停服务器 redis> shutdown 重命名备份文件 mv dump.rdb.bak dump.rdb 启动服务器 /usr/local/soft/redis-5.0.5/src/redis-server /usr/local/soft/redis-5.0.5/redis.conf 查看数据 redis> keys 6.1.3 RDB 文件的优势和劣势 一、优势 1.RDB 是一个非常紧凑(compact)的文件,它保存了 redis 在某个时间点上的数据集。这种文件非常适合用于进行备份和灾难恢复。 2.生成 RDB 文件的时候,redis 主进程会 fork()一个子进程来处理所有保存工作,主进程不需要进行任何磁盘 IO 操作。 3.RDB 在恢复大数据集时的速度比 AOF 的恢复速度要快。 二、劣势 1、RDB 方式数据没办法做到实时持久化/秒级持久化。因为 bgsave 每次运行都要执行 fork 操作创建子进程,频繁执行成本过高。 2、在一定间隔时间做一次备份,所以如果 redis 意外 down 掉的话,就会丢失最后一次快照之后的所有修改(数据有丢失)。 如果数据相对来说比较重要,希望将损失降到最小,则可以使用 AOF 方式进行持久化。 6.2 AOF Append Only File AOF:Redis 默认不开启。AOF 采用日志的形式来记录每个写操作,并追加到文件中。开启后,执行更改 Redis 数据的命令时,就会把命令写入到 AOF 文件中。 Redis 重启时会根据日志文件的内容把写指令从前到后执行一次以完成数据的恢复工作。 6.2.1 AOF 配置 配置文件 redis.conf 开关appendonly no 文件名appendfilename "appendonly.aof" AOF 文件的内容(vim 查看): 问题:数据都是实时持久化到磁盘吗? 由于操作系统的缓存机制,AOF 数据并没有真正地写入硬盘,而是进入了系统的硬盘缓存。什么时候把缓冲区的内容写入到 AOF 文件? 问题:文件越来越大,怎么办? 由于 AOF 持久化是 Redis 不断将写命令记录到 AOF 文件中,随着 Redis 不断的进行,AOF 的文件会越来越大,文件越大,占用服务器内存越大以及 AOF 恢复要求时间越长。 例如 set xxx 666,执行 1000 次,结果都是 xxx=666。 为了解决这个问题,Redis 新增了重写机制,当 AOF 文件的大小超过所设定的阈值时,Redis 就会启动 AOF 文件的内容压缩,只保留可以恢复数据的最小指令集。 可以使用命令 bgrewriteaof 来重写。 AOF 文件重写并不是对原文件进行重新整理,而是直接读取服务器现有的键值对,然后用一条命令去代替之前记录这个键值对的多条命令,生成一个新的文件后去替换原来的 AOF 文件。 重写触发机制 auto-aof-rewrite-percentage 100 auto-aof-rewrite-min-size 64mb 问题:重写过程中,AOF 文件被更改了怎么办? 另外有两个与 AOF 相关的参数: 6.2.2 AOF 数据恢复 重启 Redis 之后就会进行 AOF 文件的恢复。 6.2.3 AOF 优势与劣势 优点: 1、AOF 持久化的方法提供了多种的同步频率,即使使用默认的同步频率每秒同步一次,Redis 最多也就丢失 1 秒的数据而已。 缺点: 1、对于具有相同数据的的 Redis,AOF 文件通常会比 RDB 文件体积更大(RDB 存的是数据快照)。 2、虽然 AOF 提供了多种同步的频率,默认情况下,每秒同步一次的频率也具有较高的性能。在高并发的情况下,RDB 比 AOF 具好更好的性能保证。 6.3 两种方案比较 那么对于 AOF 和 RDB 两种持久化方式,我们应该如何选择呢? 如果可以忍受一小段时间内数据的丢失,毫无疑问使用 RDB 是最好的,定时生成 RDB 快照(snapshot)非常便于进行数据库备份, 并且 RDB 恢复数据集的速度也要比 AOF 恢复的速度要快。 否则就使用 AOF 重写。但是一般情况下建议不要单独使用某一种持久化机制,而是应该两种一起用,在这种情况下,当 redis 重启的时候会优先载入 AOF 文件来恢复原始的数据,因为在通常情况下 AOF 文件保存的数据集要比 RDB 文件保存的数据集要完整。 本篇文章为转载内容。原文链接:https://blog.csdn.net/zhoutaochun/article/details/120075092。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-03-18 12:25:04
541
转载
MemCache
一、引言 Memcached, 这个小小的但威力强大的内存对象缓存系统,一直以来都是Web开发中不可或缺的工具。它能极大地提升网站性能,特别是对于那些频繁访问的数据。然而,当面对超高访问量的场景时,单个Memcached可能就有点力不从心了,这时候,我们就得考虑给它找个帮手,搭建一个Memcached集群,让它们一起分担压力。本文将带你一步步走进Memcached集群的世界。 二、了解Memcached的基本原理 首先,让我们快速回顾一下Memcached的工作原理。它把数据先存到内存里,然后像个超级智能调度员一样,用一致性哈希算法这个秘密武器,把每个请求精准地送到对应的服务器上。这样一来,找数据的时间就大大缩短了,效率嗖嗖的!当数据量蹭蹭往上涨,单机的Memcached可能就有点力不从心了,这时候咱们就得想办法搭建一个集群。这个集群就像是个团队,能够实现工作负载的平均分配,谁忙不过来,其他的就能顶上,而且还能防止某个成员“生病”时,整个系统垮掉的情况,保证服务稳稳当当的运行。 三、搭建Memcached集群的基本步骤 1. 选择合适的节点 集群中的每个节点都应是独立且可靠的,通常我们会选择多台服务器作为集群成员。 bash 安装Memcached sudo apt-get install memcached 2. 配置文件设置 每个节点的/etc/memcached.conf都需要配置,确保端口、最大内存限制等参数一致。 conf /etc/memcached.conf port 11211 max_memory 256MB 3. 启动服务 在每台服务器上启动Memcached服务。 bash sudo service memcached start 4. 实现集群 我们需要一个工具来管理集群,如Consistent Hashing Load Balancer(CHLB)或者使用像memcached-tribool这样的工具。 bash 使用memcached-tribool sudo memcached-tribool add server1.example.com:11211 sudo memcached-tribool add server2.example.com:11211 5. 数据同步 为了保证数据的一致性,我们需要一种策略来同步各个节点的数据。这可以通过定期轮询(ping)或使用像Redis的PUBLISH/SUBSCRIBE机制来实现。 四、集群优化与故障处理 1. 负载均衡 使用一致性哈希算法,新加入或离开的节点不会导致大量数据迁移,从而保持性能稳定。 2. 监控与报警 使用像stats命令获取节点状态,监控内存使用情况,当达到预设阈值时发送警报。 3. 故障转移 当某个节点出现问题时,自动将连接转移到其他节点,保证服务不中断。 五、实战示例 python import memcache mc = memcache.Client(['server1.example.com:11211', 'server2.example.com:11211'], debug=0) 插入数据 mc.set('key', 'value') 获取数据 value = mc.get('key') if value: print(f"Value for key 'key': {value}") 删除数据 mc.delete('key') 清除所有数据 mc.flush_all() 六、总结 Memcached集群搭建并非易事,它涉及到网络、性能、数据一致性等多个方面。但只要咱们搞懂了它的运作机理,并且合理地给它安排布置,就能在实际项目里让它发挥出超乎想象的大能量。记住这句话,亲身下河知深浅,只有不断摸爬滚打、尝试调整,你的Memcached集群才能像勇士一样越战越勇,越来越强大。
2024-02-28 11:08:19
89
彩虹之上-t
MemCache
服务连接超时:MemCache中的那些“坑” 嗨,大家好!今天咱们来聊聊一个让无数开发者头疼的话题——服务连接超时,特别是在使用MemCache的时候。作为一个喜欢捣鼓技术的小程序员,我之前也被这个问题搞得头都快秃了,天天挠头叹气的。不过经过无数次的失败和摸索,总算琢磨出了一些门道!这篇文章可不只是告诉你“问题出在哪”,它还会手把手带着你,用代码例子一步一步把问题给解决了!就像有个编程小老师在旁边耐心指导一样,超贴心的!别急着离开,这可是干货满满哦! --- 1. 什么是MemCache?它为什么这么受欢迎? 先简单介绍一下MemCache吧!MemCache是一种高性能的分布式内存对象缓存系统,主要用于减轻数据库的压力,提升应用的响应速度。其实说白了就是这么个事儿——把数据都存到内存里,用的时候直接拿出来,省得每次都要跑去数据库翻箱倒柜找一遍,多麻烦啊! 举个例子,假设你正在做一个电商网站,用户点击商品详情页时,如果每次都要从数据库拉取商品信息,那服务器负载肯定爆表。但如果我们将这些数据缓存在MemCache中,用户访问时直接从内存读取,岂不是快如闪电? 不过呢,事情可没那么简单。MemCache这小子虽然挺能干的,但也不是省油的灯啊!比如说吧,你老是疯狂地去请求数据,结果服务器偏偏不给面子,连个响应都没有,那它就直接给你来个“服务连接超时”的报错,气得你直跺脚。这就像你去餐厅点菜,服务员一直不在,你说能不急吗? --- 2. 服务连接超时到底是个啥? 服务连接超时,简单来说就是你的程序试图与MemCache服务器建立连接,但因为某些原因(比如网络延迟、服务器过载等),连接请求迟迟得不到回应,最终超时失败。这种错误通常会伴随着一条令人沮丧的信息:“连接超时”。 让我分享一个小故事:有一次我在调试一个项目时,发现某个接口总是返回“服务连接超时”,我当时的第一反应是“天啊,是不是MemCache崩了?”于是我赶紧登录服务器检查日志,结果发现MemCache运行正常,只是偶尔响应慢了一点。后来我才意识到,可能是客户端配置的问题。 所以,当遇到这种错误时,不要慌!我们得冷静下来,分析一下可能的原因。 --- 2.1 可能的原因有哪些? 1. 网络问题 MemCache服务器和客户端之间的网络不稳定。 2. MemCache配置不当 比如设置了太短的超时时间。 3. 服务器负载过高 MemCache服务器被太多请求压垮。 4. 客户端代码问题 比如没有正确处理异常情况。 --- 3. 如何解决服务连接超时? 接下来,咱们就从代码层面入手,看看如何优雅地解决这个问题。我会结合实际例子,手把手教你如何避免“服务连接超时”。 --- 3.1 检查网络连接 首先,确保你的MemCache服务器和客户端之间网络通畅。你可以试试用ping命令测试一下: bash ping your-memcache-server 如果网络不通畅,那就得找运维同事帮忙优化网络环境了。不过,如果你确定网络没问题,那就继续往下看。 --- 3.2 调整超时时间 很多时候,“服务连接超时”是因为你设置的超时时间太短了。默认情况下,MemCache的超时时间可能比较保守,你需要根据实际情况调整它。 在Java中,可以这样设置超时时间: java import net.spy.memcached.AddrUtil; import net.spy.memcached.MemcachedClient; public class MemCacheExample { public static void main(String[] args) throws Exception { // 创建MemCache客户端,设置超时时间为5秒 MemcachedClient memcachedClient = new MemcachedClient(AddrUtil.getAddresses("localhost:11211"), 5000); System.out.println("成功连接到MemCache服务器!"); } } 这里的关键是5000,表示超时时间为5秒。你可以根据实际情况调整这个值,比如改成10秒或者20秒。 --- 3.3 使用重试机制 有时候,一次连接失败并不代表MemCache服务器真的挂了。在这种情况下,我们可以加入重试机制,让程序自动尝试重新连接。 下面是一个简单的Python示例: python import time from pymemcache.client.base import Client def connect_to_memcache(): attempts = 3 while attempts > 0: try: client = Client(('localhost', 11211)) print("成功连接到MemCache服务器!") return client except Exception as e: print(f"连接失败,重试中... ({attempts}次机会)") time.sleep(2) attempts -= 1 raise Exception("无法连接到MemCache服务器,请检查配置!") client = connect_to_memcache() 在这个例子中,程序会尝试三次连接MemCache服务器,每次失败后等待两秒钟再重试。如果三次都失败,就抛出异常提示用户。 --- 3.4 监控MemCache状态 最后,建议你定期监控MemCache服务器的状态。你可以通过工具(比如MemAdmin)查看服务器的健康状况,包括内存使用率、连接数等指标。 如果你发现服务器负载过高,可以考虑增加MemCache实例数量,或者优化业务逻辑减少不必要的请求。 --- 4. 总结 服务连接超时不可怕,可怕的是不去面对 好了,到这里,关于“服务连接超时”的问题基本就说完了。虽然MemCache确实容易让人踩坑,但只要我们用心去研究,总能找到解决方案。 最后想说的是,技术这条路没有捷径,遇到问题不要急躁,多思考、多实践才是王道。希望我的分享对你有所帮助,如果你还有什么疑问,欢迎随时来找我讨论!😄 祝大家编码愉快!
2025-04-08 15:44:16
87
雪落无痕
MemCache
Memcached服务崩溃后丢失所有缓存数据:深入探讨与应对策略 0 1. 引言 Memcached,这个在Web开发领域久负盛名的分布式内存对象缓存系统,以其快速、简洁的设计赢得了广大开发者的心。然而,在我们尽情享受这波性能飙升带来的快感时,可别忘了有个隐藏的小危机:一旦Memcached服务突然闹脾气挂掉了,那所有的缓存数据就像肥皂泡一样,“砰”一下就消失得无影无踪了。这无疑是对应用连续性和稳定性的一大挑战。本文就以此为主题,通过实例代码和深入探讨,揭示这一问题并提供应对方案。 0 2. Memcached缓存机制及风险揭示 Memcached的工作原理是将用户临时存储在内存中的数据(如数据库查询结果)以键值对的形式暂存,当后续请求再次需要相同数据时,直接从内存中获取,避免了昂贵的磁盘IO操作,从而显著提高了响应速度。不过,因为内存这家伙的特性,一旦这服务闹罢工或者重启了,它肚子里暂存的数据就无法长久保存下来,这样一来,所有的缓存数据可就全都没啦。 python import memcache mc = memcache.Client(['localhost:11211'], debug=0) mc.set('key', 'value') 存储数据到Memcached data = mc.get('key') 从Memcached获取数据 上述Python代码展示了如何使用Memcached进行简单的数据存取,但在服务崩溃后,'key'对应的'value'将会丢失。 0 3. 面对Memcached崩溃时的数据丢失困境 面对这样的问题,首先我们需要理解的是,这不是Memcached设计上的缺陷,而是基于其内存缓存定位的选择。那么,作为开发者,我们应当如何应对呢? 03.1 理解并接受 首先,我们要理解并接受这种可能存在的数据丢失情况,并在架构设计阶段充分考虑其影响,确保即使缓存失效,系统仍能正常运作。 03.2 数据重建策略 其次,建立有效的数据重建策略至关重要。比如,假如我们发现从Memcached这小子那里获取数据时扑了个空,别担心,咱可以灵活应对,重新去数据库这个靠谱的仓库里翻出所需的数据,然后再把这些数据塞回给Memcached,让它满血复活。 python try: data = mc.get('key') except memcache.Error: 当Memcached访问异常时,从数据库重构建缓存数据 db_data = fetch_from_database('key') mc.set('key', db_data) data = db_data 03.3 使用备份和集群 另外,Memcached支持多服务器集群配置,通过在多台服务器上分散存储缓存数据,即使某一台服务器崩溃,其他服务器仍然能够提供部分缓存服务,降低整体数据丢失的影响。 03.4 数据持久化探索 虽然Memcached本身不支持数据持久化,但社区有一些变通的解决方案,如memcachedb、twemproxy等中间件,它们在一定程度上实现了缓存数据的持久化,不过这会牺牲一部分性能且增加系统复杂性,因此在选择时需权衡利弊。 0 4. 结论与思考 尽管Memcached服务崩溃会导致所有缓存数据丢失,但这并不妨碍它在提升系统性能方面发挥关键作用。作为开发者,咱们得充分意识到这个问题的重要性,并且动手去解决它。咱可以想想怎么设计出更合理的架构,重建一下数据策略,再比如利用集群技术和持久化方案这些手段,就能妥妥地应对这个问题了。每一个技术工具都有它自己的“用武之地”和“短板”,关键在于我们如何去洞察并巧妙运用,让它们在实际场景中最大程度地发光发热,发挥出最大的价值。就像一把锤子,不是所有问题都是钉子,但只要找准地方,就能敲出实实在在的效果。每一次遇到挑战,都是一次深度理解技术和优化系统的契机,让我们共同在实践中成长。
2023-09-25 18:48:16
60
青山绿水
MemCache
MemCache服务器的数据持久化问题探讨:数据丢失的挑战与解决方案 1. 引言 Memcached,这个我们熟悉的高性能、分布式内存对象缓存系统,在Web应用程序中扮演着关键角色,它能极大地提升动态Web应用的性能和可扩展性。不过,你知道吗?Memcached这家伙可纯粹是个临时记忆库,它并不支持数据长期存储这功能。也就是说,一旦服务器打了个盹(重启)或者撂挑子不干了(崩溃),那存放在它脑瓜子里的所有数据,就会瞬间蒸发得无影无踪。这就是咱们今天要重点唠一唠的话题——聊聊Memcached的数据丢失那些事儿。 2. Memcached的数据特性与潜在风险 (1)内存缓存与数据丢失 Memcached的设计初衷是提供临时性的高速数据访问服务,所有的数据都存储在内存中,而非硬盘上。这就意味着,如果突然出现个意外状况,比如系统崩溃啦,或者我们有意为之的重启操作,那内存里暂存的数据就无法原地待命了,会直接消失不见,这样一来,就难免会遇到数据丢失的麻烦喽。 python import memcache mc = memcache.Client(['localhost:11211'], debug=0) mc.set('key', 'value') 将数据存入Memcached 假设此时服务器突然宕机,'key'对应的'value'在重启后将不复存在 (2)业务场景下的影响 对于一些对数据实时性要求较高但又允许一定时间内数据短暂缺失的场景,如用户会话信息、热点新闻等,Memcached的数据丢失可能带来的影响相对有限。不过,在有些场景下,我们需要长期确保数据的一致性,比如你网购时的购物车信息、积分累计记录这些情况。万一这种数据丢失了,那可能就会影响你的使用体验,严重的话,甚至会引发一些让人头疼的业务逻辑问题。 3. 面对数据丢失的应对策略 (1)备份与恢复方案 虽然Memcached本身不具备数据持久化的功能,但我们可以通过其他方式间接实现数据的持久化。例如,可以定期将Memcached中的数据备份到数据库或其他持久化存储中: python 假设有一个从Memcached获取并持久化数据到MySQL的过程 def backup_to_mysql(): all_items = mc.get_multi(mc.keys()) for key, value in all_items.items(): save_to_mysql(key, value) 自定义保存到MySQL的函数 (2)组合使用Redis等具备持久化的缓存系统 另一个可行的方案是结合使用Redis等既具有高速缓存特性和又能持久化数据的系统。Redis不仅可以提供类似Memcached的内存缓存服务,还支持RDB和AOF两种持久化机制,能在一定程度上解决数据丢失的问题。 python import redis r = redis.Redis(host='localhost', port=6379, db=0) r.set('key', 'value') 在Redis中设置键值对,即使服务器重启,数据也能通过持久化机制得以恢复 (3)架构层面优化 在大型分布式系统中,可以通过设计冗余和分布式存储策略来降低单点故障带来的影响。比如,我们可以像搭积木那样部署多个Memcached实例,然后用一致性哈希这类聪明的算法给它们分配工作量和切分数据块。这样不仅能确保整体负载均衡,还能保证每一份数据都有好几个备份,分别存放在不同的节点上,就像把鸡蛋放在不同的篮子里一样,安全又可靠。 4. 结语 人类视角的理解与思考 面对Memcached数据丢失的问题,开发者们不能止步于理解其原理,更应积极寻求有效的应对策略。这就像生活中我们对待易逝的事物,尽管明白“天下无不散之筵席”,但我们依然会拍照留念、撰写日记,以期留住美好瞬间。同样,在我们使用Memcached这玩意儿的时候,也得充分了解它的脾性,借助一些巧妙的技术手段和设计架构,让数据既能痛快地享受高速缓存带来的速度福利,又能机智地避开数据丢失的坑。只有这样,我们的系统才能在效率与可靠性之间取得最佳平衡,更好地服务于业务需求。
2023-05-22 18:41:39
83
月影清风
MemCache
MemCache在多实例部署下实例间数据分布混乱问题的探讨 1. 引言 Memcached,这个久经沙场、被广大开发者所钟爱的高性能、分布式内存对象缓存系统,在提升应用性能和降低数据库压力方面有着卓越的表现。然而,在真正动手部署的时候,特别是在多个实例一起上的情况下,我们很可能碰上个让人头疼的问题,那就是数据分布乱七八糟的。这种情况下,如何保证数据的一致性和高效性就显得尤为重要。本文打算深入地“解剖”一下Memcached的数据分布机制,咱们会配合着实例代码,边讲边演示,让大伙儿能真正理解并搞定这个难题。 2. Memcached的数据分布机制 Memcached采用哈希一致性算法(如 Ketama 算法)来决定键值对存储到哪个节点上。在我们搭建Memcached的多实例环境时,其实就相当于给每个实例分配了自己独立的小仓库,它们都有自己的一片存储天地。客户端这边呢,就像是个聪明的快递员,它会用一种特定的哈希算法给每个“包裹”(也就是键)算出一个独一无二的编号,然后拿着这个编号去核对服务器列表,找到对应的“货架”,这样一来就知道把数据放到哪个实例里去了。 python 示例:使用pylibmc库实现键值存储到Memcached的一个实例 import pylibmc client = pylibmc.Client(['memcached1:11211', 'memcached2:11211']) key = "example_key" value = "example_value" 哈希算法自动处理键值对到具体实例的映射 client.set(key, value) 获取时同样由哈希算法决定从哪个实例获取 result = client.get(key) 3. 多实例部署下的数据分布混乱问题 尽管哈希一致性算法尽可能地均匀分配了数据,但在集群规模动态变化(例如增加或减少实例)的情况下,可能导致部分数据需要迁移到新的实例上,从而出现“雪崩”现象,即大量请求集中在某几个实例上,引发服务不稳定甚至崩溃。另外,若未正确配置一致性哈希环,也可能导致数据分布不均,形成混乱。 4. 解决策略与实践 - 一致性哈希:确保在添加或删除节点时,受影响的数据迁移范围相对较小。大多数Memcached客户端库已经实现了这一点,只需正确配置即可。 - 虚拟节点技术:为每个物理节点创建多个虚拟节点,进一步提高数据分布的均匀性。这可以通过修改客户端配置或者使用支持此特性的客户端库来实现。 - 定期数据校验与迁移:对于重要且需保持一致性的数据,可以设定周期性任务检查数据分布情况,并进行必要的迁移操作。 java // 使用Spymemcached库设置虚拟节点 List addresses = new ArrayList<>(); addresses.add(new InetSocketAddress("memcached1", 11211)); addresses.add(new InetSocketAddress("memcached2", 11211)); HashAlgorithm hashAlg = HashAlgorithm.KETAMA_HASH; KetamaConnectionFactory factory = new KetamaConnectionFactory(hashAlg); factory.setNumRepetitions(100); // 增加虚拟节点数量 MemcachedClient memcachedClient = new MemcachedClient(factory, addresses); 5. 总结与思考 面对Memcached在多实例部署下的数据分布混乱问题,我们需要充分理解其背后的工作原理,并采取针对性的策略来优化数据分布。同时,制定并执行一个给力的监控和维护方案,就能在第一时间火眼金睛地揪出问题,迅速把它解决掉,这样一来,系统的运行就会稳如磐石,数据也能始终保持一致性和准确性,就像咱们每天检查身体,小病早治,保证健康一样。作为开发者,咱们得不断挖掘、摸透和掌握这些技术小细节,才能在实际操作中挥洒自如,更溜地运用像Memcached这样的神器,让咱的系统性能蹭蹭上涨,用户体验也一路飙升。
2023-05-18 09:23:18
89
时光倒流
MemCache
...中有效管理和维护多个MemCache节点,实现数据的分布式存储和同步更新? 随着互联网业务规模的不断扩大,MemCache作为一种高效的分布式缓存系统,在处理高并发、大数据量场景中发挥着重要作用。不过,在实际动手布阵这套系统的时候,如何在满是分散节点的环境里头,既把多个MemCache节点管理得井井有条,又保证数据能在各个节点间实现靠谱的分布式存储和同步更新,这可真是个挺让人挠头的技术难题啊。本文将围绕这一主题,结合代码实例,深入探讨并给出解决方案。 1. MemCache在分布式环境中的部署策略 首先,我们需要理解MemCache在分布式环境下的工作原理。MemCache这东西吧,本身并不具备跨节点数据一致性的功能,也就是说,每个节点都是个自给自足的小缓存个体,它们之间没有那种自动化同步数据的机制。所以,当我们在实际动手部署的时候,得想办法让这些工作量分散开,就像大家分担家务一样。这里我们可以用个很巧妙的方法,就叫“一致性哈希”,这个算法就像一个超级智能的分配器,能帮我们精准地判断每一份数据应该放在哪个小仓库(节点)里头,这样一来,所有的东西都能各归其位,整整齐齐。 python from pymemcache.client.hash import ConsistentHashRing nodes = [('node1', 11211), ('node2', 11211), ('node3', 11211)] ring = ConsistentHashRing(nodes) 使用一致性哈希决定key对应的节点 node, _ = ring.get_node('your_key') 2. 数据的分布式存储 上述的一致性哈希算法能够保证当新增或减少节点时,对已存在的大部分键值对的映射关系影响较小,从而实现数据的均衡分布。此外,咱们得牢牢记住一个大原则:如果有那么些关系紧密的数据兄弟,最好让它们挤在同一台MemCache服务器上,这样可以有效避免因为跨节点访问而产生的网络开销,懂我意思吧? 3. 同步更新问题及其解决思路 MemCache本身不具备数据同步功能,因此在分布式环境下进行数据更新时,需要通过应用层逻辑来保障一致性。常见的一种做法是“先更新数据库,再清除相关缓存”。 python 假设我们有一个更新用户信息的方法 def update_user_info(user_id, new_info): 先更新数据库 db.update_user(user_id, new_info) 清除MemCache中相关的缓存数据 memcached_client.delete(f'user_{user_id}') 另一种策略是引入消息队列,例如使用Redis Pub/Sub或者RabbitMQ等中间件,当数据库发生变更时,发布一条消息通知所有MemCache节点删除对应的缓存项。 4. MemCache节点的维护与监控 为了保证MemCache集群的稳定运行,我们需要定期对各个节点进行健康检查和性能监控,及时发现并处理可能出现的内存溢出、节点失效等问题。可以通过编写运维脚本定期检查,或者接入诸如Prometheus+Grafana这样的监控工具进行可视化管理。 bash 示例:简单的shell脚本检查MemCache节点状态 for node in $(cat memcache_nodes.txt); do echo "Checking ${node}..." telnet $node 11211 <<< stats | grep -q 'STAT bytes 0' if [ $? -eq 0 ]; then echo "${node} is down or not responding." else echo "${node} is up and running." fi done 总的来说,要在分布式环境中有效管理和维护多个MemCache节点,并实现数据的分布式存储与同步更新,不仅需要合理设计数据分布策略,还需要在应用层面对数据一致性进行把控,同时配合完善的节点监控和运维体系,才能确保整个缓存系统的高效稳定运行。在整个探险历程中,咱们得时刻动脑筋、动手尝试、灵活应变、优化咱的计划,这绝对是一个挑战多多、趣味盎然的过程,让人乐在其中。
2023-11-14 17:08:32
69
凌波微步
MemCache
什么是缓存雪崩与缓存击穿?——一场MemCache的冒险故事 嘿,大家好!今天我们要聊聊一个挺有趣的话题——缓存雪崩与缓存击穿。这两个概念在我们使用MemCache(一种高速缓存系统)时经常会被提及。虽然听起来有点吓人,但其实只要了解了它们的本质,就能轻松应对了。咱们就从头开始讲起吧! 1. 缓存雪崩与缓存击穿的基本概念 首先,让我们了解一下什么是缓存雪崩与缓存击穿。简单说,缓存雪崩就像是在某个时间点,一大群人突然发现自己的“缓存购物券”都过期了,于是大家都跑去直接用现金(也就是直接访问数据库)买东西,结果把收银台(也就是服务器)给挤爆了。缓存击穿就是说,某个特别火的数据,比如明星的生日这种,本来缓存里是有存的,但突然间缓存失效了或者被人删掉了。这样一来,所有想看这个数据的人的请求就会一股脑儿地涌向数据库,把数据库给挤爆了。这也就是所谓的“热点问题”。 想象一下,你正坐在电影院里等待电影开场,突然影院的空调坏了,所有人都涌向门口,这就像缓存雪崩。缓存击穿就跟你的最爱电影票被抢光了一样,大家都跑去买票,结果售票处就挤爆了。 2. 为什么会出现缓存雪崩? 缓存雪崩通常发生在以下几个场景中: - 缓存过期时间设置相同:如果所有缓存数据的过期时间都设为同一时刻,那么当这一时刻到来时,所有的缓存都会同时失效,从而导致大量请求瞬间涌向数据库。 - 缓存服务宕机:如果缓存服务出现故障,所有依赖它的请求都会直接打到后端数据库上。 - 网络故障:网络问题也可能导致缓存失效,进而引发雪崩效应。 3. 如何防止缓存雪崩? 防止缓存雪崩的方法有很多,这里我给大家分享几个实用的技巧: - 设置不同的过期时间:不要让所有的缓存数据在同一时刻失效,可以通过随机化过期时间来避免这种情况。 - 部署多级缓存架构:比如可以将MemCache作为一级缓存,Redis作为二级缓存,这样即使MemCache出现问题,还有Redis可以缓冲一下。 - 使用缓存降级策略:当缓存不可用时,可以暂时返回默认值或者降级数据,减少对数据库的冲击。 4. 代码示例 MemCache的使用与缓存雪崩预防 现在,让我们通过一些代码示例来看看如何使用MemCache以及如何预防缓存雪崩。 python import memcache 初始化MemCache客户端 mc = memcache.Client(['127.0.0.1:11211'], debug=0) def get_data(key): 尝试从MemCache获取数据 data = mc.get(key) if not data: 如果没有找到,则从数据库中获取 data = fetch_from_db(key) 设置缓存过期时间为随机时间,避免雪崩 mc.set(key, data, time=random.randint(60, 300)) return data def fetch_from_db(key): 模拟从数据库获取数据的过程 print("Fetching from database...") return "Data for key: " + key 示例调用 print(get_data('key1')) 在这个例子中,我们设置了缓存的过期时间为一个随机时间,而不是固定的某个时刻,这样就可以有效避免缓存雪崩的问题。 5. 什么是缓存击穿? 接下来,我们聊聊缓存击穿。想象一下,你手头有个超级火的信息,比如说某位明星的新鲜事儿,这事儿火爆到不行,大伙儿都眼巴巴地等着第一时间瞧见呢!不过嘛,要是这个数据点刚好没在缓存里,或者因为某些原因被清理掉了,那所有的请求就都得直接去后台数据库那儿排队了。这样一来,缓存就起不到作用了,这种情况就叫“缓存击穿”。 6. 如何解决缓存击穿? 解决缓存击穿的方法主要有两种: - 加锁机制:对于同一个热点数据,只允许一个请求去加载数据,其他请求等待该请求完成后再从缓存中获取数据。 - 预先加载:在数据被删除之前,提前将其加载到缓存中,确保数据始终存在于缓存中。 7. 代码示例 加锁机制防止缓存击穿 python import threading lock = threading.Lock() def get_hot_data(key): with lock: 尝试从MemCache获取数据 data = mc.get(key) if not data: 如果没有找到,则从数据库中获取 data = fetch_from_db(key) 设置缓存过期时间 mc.set(key, data, time=300) return data 示例调用 print(get_hot_data('hot_key')) 在这个例子中,我们引入了一个线程锁lock,确保在同一时刻只有一个请求能够访问数据库,其他请求会等待锁释放后再从缓存中获取数据。 结语 好了,今天的讲解就到这里。希望读完这篇文章,你不仅能搞清楚啥是缓存雪崩和缓存击穿,还能学到一些在实际操作中怎么应对的小妙招。嘿,记得啊,碰到技术难题别慌,多琢磨琢磨,多动手试试,肯定能搞定的!如果你还有什么疑问或者想了解更多细节,欢迎随时留言讨论哦! 希望这篇文章能帮助到你,咱们下次见!
2024-11-22 15:40:26
59
岁月静好
MemCache
MemCache入门与MutexException问题探索 1. 引言 MemCache的神奇世界 在构建高性能的Web应用时,缓存是不可或缺的一部分。它能够显著提升系统响应速度,减轻数据库负担,从而提高整体性能。MemCache作为一款流行的分布式内存对象缓存系统,以其高效性和灵活性赢得了广大开发者的青睐。哎呀,用着用着,咱们可能会碰到一些意料之外的小麻烦,比如说MutexException。这事儿可不简单,它通常说明在咱们同时操作好几个线程的时候,遇到了锁的冲突,或者是怎么也拿不到那个关键的锁。就像是在厨房里,好几个人都想同时用同一把刀切菜,结果就乱了套,谁都得等着。这可得小心点,不然程序就可能卡住不动了。这篇文章将带你深入理解MemCache的工作原理,并探讨如何解决此类问题。 2. MemCache基础概念 MemCache通过在内存中存储数据来提供快速访问。哎呀,这个家伙可真能玩转各种数据类型啊!不管是那些字母串、一长串的数字清单,还是乱七八糟的集合,它都能轻松驾驭。而且,它还提供了一套超简单的操作工具,就像给小孩子们准备的玩具一样,简单易懂,轻轻松松就能搞定这些数据,真是太贴心了!MemCache这种玩意儿啊,就像是你跟朋友玩游戏,你负责喊口号出招,朋友负责听你的指挥去打怪兽或者抢金币。这游戏里头,MemCache的服务器就是那个强大的后盾,它负责把所有东西都记下来,还有找你要的东西。所以,简单来说,你就是客户端,是操作者;MemCache服务器呢,就是那个后台,负责处理一切数据的事情。这样子,你们俩配合起来,游戏玩得又快又好! 3. MutexException问题剖析 当多个线程同时尝试访问或修改同一数据时,MutexException的出现往往是因为互斥锁管理不当。哎呀,互斥锁就像是共享空间的门神,它负责在任何时候只让一个小伙伴进入这个共享区域,比如图书馆或者厨房,这样大家就不会抢着用同一本书或者同一把锅啦。这样就能避免发生混乱和冲突,保证大家都能平平安安地享受公共资源。在MemCache中,这种冲突可能发生在读取、写入或删除数据的操作上。 4. 实战案例 MemCache使用示例 为了更好地理解MemCache的工作流程及其可能出现的问题,我们通过一个简单的示例来展示其基本用法: python from pymemcache.client import base 创建MemCache客户端连接 client = base.Client(('localhost', 11211)) 缓存一个值 client.set('key', 'value') 从缓存中获取值 print(client.get('key')) 删除缓存中的值 client.delete('key') 5. 避免MutexException的策略 解决MutexException的关键在于正确管理互斥锁。以下是一些实用的策略: a. 使用原子操作 MemCache提供了原子操作,如add、replace、increment等,可以安全地执行更新操作而无需额外的锁保护。 b. 线程安全编程 确保所有涉及到共享资源的操作都是线程安全的。这意味着避免在多线程环境中直接访问全局变量或共享资源,而是使用线程本地存储或其他线程安全的替代方案。 c. 锁优化 合理使用锁。哎呀,你懂的,有时候网站或者应用里头有些东西经常被大家看,但是实际上内容变动不多。这时候,为了不让系统在处理这些信息的时候卡壳太久,我们可以用个叫做“读锁”的小技巧。简单来说,读锁就像是图书馆里的书,大家都想翻阅,但是不打算乱动它,所以不需要特别紧锁起来,这样能提高大家看书的效率,也避免了不必要的等待。此外,考虑使用更高效的锁实现,比如使用更细粒度的锁或非阻塞算法。 d. 锁超时 在获取锁时设置超时时间,避免无限等待。哎呀,如果咱们在规定的时间内没拿到钥匙(这里的“锁”就是需要获得的权限或资源),那咱们就得想点别的办法了。比如说,咱们可以先把手头的事情放一放,退一步海阔天空嘛,回头再试试;或者干脆来个“再来一次”,看看运气是不是转了一把。别急,总有办法解决问题的! 6. 结语 MemCache的未来与挑战 随着技术的发展,MemCache面临着更多的挑战,包括更高的并发处理能力、更好的跨数据中心一致性以及对新兴数据类型的支持。然而,通过持续优化互斥锁管理策略,我们可以有效地避免MutexException等并发相关问题,让MemCache在高性能缓存系统中发挥更大的作用。嘿,小伙伴们!在咱们的编程路上,要记得跟紧时代步伐,多看看那些最棒的做法和新出炉的技术。这样,咱们就能打造出既稳固又高效的超级应用了!别忘了,技术这玩意儿,就像个不停奔跑的小兔子,咱们得时刻准备着,跟上它的节奏,不然可就要被甩在后面啦!所以,多学习,多实践,咱们的编程技能才能芝麻开花节节高!
2024-09-02 15:38:39
38
人生如戏
MySQL
...况后,进一步深入探讨数据库性能优化和内存管理的重要性显得尤为关键。近期,随着数据量的爆炸性增长,许多企业级应用开始面临数据库响应速度下降的问题,其中内存管理和有效利用虚拟内存成为解决这一问题的核心策略之一。 2022年,Oracle官方发布的MySQL 8.0版本中,对内存管理机制进行了大幅优化升级,引入了一系列新特性,如改进的查询缓存策略、更精细的内存分配控制以及智能内存压缩技术等,使得MySQL能够更高效地在物理内存与虚拟内存之间进行切换,极大提升了大容量数据处理时的性能表现。 同时,业界专家建议,在系统层面合理配置交换空间大小以支持MySQL虚拟内存需求,并结合监控工具实时分析MySQL及其所在服务器的内存使用状况,以便及时发现并调整潜在的内存瓶颈。例如,通过定期审查query_cache_size等关键参数,根据实际业务负载动态调整其值,避免无谓的内存浪费或过度依赖虚拟内存导致性能下滑。 此外,对于大型分布式数据库系统而言,采用内存计算、混合存储架构以及先进的内存池技术也是提升数据库整体性能的有效手段。比如,阿里云自主研发的PolarDB-X数据库产品,就借助了智能内存管理和分布式缓存技术,实现了对大规模数据访问场景下虚拟内存使用的深度优化,从而确保了服务端的稳定高效运行。 综上所述,掌握MySQL虚拟内存查看方法仅仅是性能调优的第一步,了解并运用最新的内存管理技术、紧跟数据库发展趋势,才能更好地应对大数据时代带来的挑战,确保数据库系统的高性能、高可用与可扩展性。
2023-03-15 10:31:00
95
程序媛
Datax
在大数据时代,SQL查询超时问题不仅限于Datax等数据抽取工具中,在各类数据库管理系统和数据分析场景中都较为常见。近期,随着云计算和分布式数据库技术的快速发展,解决这一问题有了更多新的思路与实践。 例如,阿里巴巴集团研发的云原生数据仓库AnalyticDB已实现对大规模数据的实时分析处理,通过优化查询引擎、利用列存技术和向量计算大幅提升查询性能,有效避免了SQL查询超时的问题。其创新性的MPP(大规模并行处理)架构,能够将复杂的查询任务分解到多个计算节点并行执行,极大地缩短了响应时间。 此外,业界也在提倡采用预计算、缓存策略以及更先进的索引结构来优化查询效率。如Facebook开源的 Presto SQL 查询引擎,提供了动态过滤和资源组管理等功能,以应对海量数据查询中的超时挑战。 深入理解SQL查询原理及数据库内部机制,并结合最新技术发展趋势,对于系统性解决查询超时问题至关重要。同时,企业也需要根据自身业务特点和数据规模,合理选择和配置硬件资源,优化数据模型与查询语句,才能在实际应用中确保数据处理的高效稳定运行。
2023-06-23 23:10:05
231
人生如戏-t
MemCache
一、引言 Memcached 是一种高速缓存系统,常用于提升 Web 应用程序的性能。它就像一个超级智能的小秘书,把各种数据信息都存在一个小本本(内存)上,以“关键词+答案”的形式记录下来。这样一来,当你需要啥数据的时候,它就能迅速翻出对应的小纸条,眨眼间就把你要的数据送到你手上,响应速度那叫一个快!不过在实际用起来的时候,我们得时刻盯着 Memcached 的运行情况,确保这小子乖乖干活儿,不出岔子。本文将重点讨论如何分析 Memcached 的 topkeys 统计信息。 二、Memcached topkeys 统计信息介绍 在 Memcached 中,topkeys 是指那些最频繁被查询的 key。这些 key 对于优化 Memcached 的性能至关重要。瞧,通过瞅瞅那些 topkeys,咱们就能轻松发现哪些 key 是大家眼中的“香饽饽”,这样就能更巧妙、更接地气地去打理和优化咱们的数据啦! 三、如何获取 Memcached topkeys 统计信息 首先,我们可以通过 Memcached 的命令行工具来获取 topkeys 信息。例如,我们可以使用以下命令: bash $ memcached -l localhost:11211 -p 11211 -n 1 | grep 'GET ' | awk '{print $2}' | sort | uniq -c | sort -rn 这个命令会输出所有 GET 请求及其对应的次数,然后根据次数排序,并显示出最常见的 key。 四、解读 topkeys 统计信息 当我们获取到 topkeys 统计信息后,我们需要对其进行解读。下面是一些常见的解读方法: 1. 找出热点数据 通常,topkeys 就是我们的热点数据。设计应用程序的时候,咱得优先考虑那些最常被大家查来查去的数据的存储和查询效率。毕竟这些数据是“高频明星”,出场率贼高,咱们得好好伺候着,让它们能快准稳地被找到。 2. 调整数据分布 如果我们发现某些 topkeys 过于集中,可能会导致 Memcached 的负载不均衡。这时,我们应该尝试调整数据的分布,使数据更加均匀地分布在 Memcached 中。 3. 预测未来趋势 通过观察 topkeys 的变化,我们可以预测未来的流量趋势。如果某个key的访问量蹭蹭往上涨,那咱们就得未雨绸缪啦,提前把功课做足,别等到数据太多撑爆了,把服务整瘫痪喽。 五、结论 总的来说,Memcached topkeys 统计信息是我们管理 Memcached 数据的重要工具。把这些信息摸得门儿清,再巧妙地使上劲儿,咱们就能让 Memcached 的表现更上一层楼,把数据存取和查询速度调理得倍儿溜,这样一来,咱的应用程序使用体验自然就蹭蹭往上涨啦!
2023-07-06 08:28:47
127
寂静森林-t
MyBatis
...Batis处理大规模数据时的性能瓶颈问题上,除了上述提及的基础优化策略,近期技术发展和业界实践也提供了一些新的思路与解决方案。例如,MyBatis 3.5.0版本引入了对JDBC Statement的更精细控制,开发者可以进一步利用Statement.getGeneratedKeys()方法优化批量插入操作的性能,并通过配置batchSize属性实现批量更新与删除,极大地提升了数据库操作的效率。 同时,随着云原生架构的普及,许多企业开始尝试将MyBatis与分布式缓存、数据库读写分离等技术相结合。例如,结合Redis或Memcached实现一级缓存之外的数据暂存,减少对主数据库的压力;或者根据业务场景采用分库分表策略,有效分散单一表的大数据量压力,提升查询性能。 另外,在SQL优化层面,不仅需要关注基本的索引设计、查询语句优化,还可以借助数据库自身的高级特性,如Oracle的并行查询功能,MySQL 8.0以后支持的窗口函数进行复杂分页及聚合计算等,进一步挖掘系统的性能潜力。 最后,对于微服务架构下的应用,可以通过熔断、降级、限流等手段,避免因大量并发请求导致的性能瓶颈,同时,持续监控与分析系统性能指标,结合A/B测试等方法,科学评估不同优化措施的实际效果,确保在海量数据挑战面前,系统始终保持高效稳定运行。
2023-08-07 09:53:56
56
雪落无痕
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
whoami
- 显示当前登录用户的用户名。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"