前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[HDFS数据访问]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Hadoop
Hadoop中的数据备份与恢复策略 一、引言 随着大数据的发展,Hadoop已经成为一种非常流行的分布式计算框架。然而,在大数据处理过程中,数据的安全性和完整性是非常重要的。为了稳稳地保护好我们的数据安全,咱们得养成定期给数据做个“备胎”的习惯,这样万一碰上啥情况需要数据时,就能迅速又麻利地把它给找回来。这篇文章将介绍如何在Hadoop中实现数据备份和恢复。 二、数据备份策略 1. 完全备份 完全备份是一种最基本的备份策略,它是指备份整个系统的数据。在Hadoop中,我们可以使用HDFS的hdfs dfs -get命令来完成数据的完整备份。 例如: bash hdfs dfs -get /data/hadoop/data /backup/data 上述命令表示将HDFS目录/data/hadoop/data下的所有文件复制到本地目录/backup/data下。 优点:全面保护数据安全,可以避免因系统故障导致的数据丢失。 缺点:备份操作耗时较长,且在数据量大的情况下,占用大量存储空间。 2. 差异备份 差异备份是在已有备份的基础上,只备份自上次备份以来发生改变的部分数据。在用Hadoop的时候,我们有一个超好用的小工具叫Hadoop DistCp,它可以帮我们轻松实现数据的差异备份,就像是给大数据做个“瘦身”运动一样。 例如: css hadoop distcp hdfs://namenode:port/oldpath newpath 上述命令表示将HDFS目录oldpath下的所有文件复制到新路径newpath下。 优点:可以减少备份所需的时间和存储空间,提高备份效率。 缺点:如果已经有多个备份,则每次都需要比较和找出不同的部分进行备份,增加了备份的复杂性。 三、数据恢复策略 1. 点对点恢复 点对点恢复是指直接从原始存储设备上恢复数据,不需要经过任何中间环节。在Hadoop中,我们可以通过Hadoop自带的工具Hadoop fsck来实现数据恢复。 例如: bash hadoop fsck /data/hadoop/data 上述命令表示检查HDFS目录/data/hadoop/data下的所有文件是否完好。 优点:可以直接恢复原始数据,恢复速度快,不会因为中间环节出现问题而导致数据丢失。 缺点:只能用于单节点故障恢复,对于大规模集群无法有效应对。 2. 复制恢复 复制恢复是指通过备份的数据副本来恢复原始数据。在Hadoop中,我们可以使用Hadoop自带的工具Hadoop DistCp来实现数据恢复。 例如: bash hadoop distcp hdfs://namenode:port/source newpath 上述命令表示将HDFS目录source下的所有文件复制到新路径newpath下。 优点:可以用于大规模集群恢复,恢复速度较快,无需等待数据传输。 缺点:需要有足够的存储空间存放备份数据,且恢复过程中需要消耗较多的网络带宽。 四、结论 在Hadoop中实现数据备份和恢复是一个复杂的过程,需要根据实际情况选择合适的备份策略和恢复策略。同时呢,咱们也得把数据备份的频次和备份数据的质量这两点重视起来。想象一下,就像咱们定期存钱进小金库,而且每次存的都是真金白银,这样在遇到突发情况需要用到的时候,才能迅速又准确地把“财产”给找回来,对吧?所以,确保数据备份既及时又靠谱,关键时刻才能派上大用场。希望通过这篇文章,能让你对Hadoop中的数据备份和恢复有更深入的理解和认识。
2023-09-08 08:01:47
400
时光倒流-t
Impala
...到的分布式缓存是一种数据库技术,用于存储SQL查询结果或频繁访问的数据片段,以提升数据访问速度。这种缓存策略不仅限于本地内存,还可以扩展到集群中的多个节点,实现数据在不同计算节点之间的快速共享和复用,尤其适用于大数据处理场景,能够显著降低对磁盘I/O的依赖,提高整体查询性能。 分片缓存 , 在Impala的缓存策略中,分片缓存特指将大型表或者特定查询结果按照分区或其他逻辑分割为较小的数据块,并将这些数据块分别缓存在系统内存中。当用户执行与缓存分片相关的查询时,Impala可以从内存直接读取部分或全部所需数据,从而减少不必要的磁盘读取操作,提升查询效率。 Apache Impala , Apache Impala是一个开源、高性能的MPP(大规模并行处理)SQL查询引擎,专为Hadoop和云环境设计,支持实时查询分析海量数据。Impala通过集成内存计算、智能缓存策略以及优化查询执行计划等功能,能够在HDFS和HBase等大数据存储平台上实现亚秒级查询响应,极大提升了大数据分析的实时性和效率。
2023-07-22 12:33:17
550
晚秋落叶-t
Apache Atlas
随着大数据技术的发展,我们每天都在生成海量的数据。这些数据全方位地记录了咱们日常生活、工作奋斗、学习进步的点点滴滴,帮咱们挖出了不少有价值的信息宝藏,让咱们看得更深更透彻。不过呢,特别是在面对海量数据的时候,如何把它们处理得既快又准,这确实是我们现在急需解决的一道大难题啊! 本文将介绍一种名为Apache Atlas的技术,它能够有效地解决大规模图表数据性能问题,并提供了一种最佳的实践方法。 一、Apache Atlas简介 Apache Atlas是一款企业级的大数据图谱解决方案,它可以帮助我们更好地管理和理解复杂的大规模数据。把数据串联起来,就像编织一张信息图谱一样,这样一来,我们就能更像看故事书那样,一目了然地瞧见各个数据点之间千丝万缕的联系,进而对它们进行更加接地气、细致入微的分析探索。 二、大规模图表数据性能问题 在处理大规模图表数据时,我们经常会遇到一些性能问题,如查询速度慢、存储空间不足等。这些问题不仅拖慢了我们有效利用数据的节奏,甚至可能变成一道坎儿,拦住我们深入挖掘、获得更多有价值的数据洞见。 三、Apache Atlas解决问题的方法 那么,Apache Atlas是如何帮助我们解决这些问题的呢?主要有以下几点: 1. 使用高效的图数据库 Apache Atlas使用了TinkerPop作为其底层的图数据库,这是一个高性能、可扩展的图数据库框架。用上TinkerPop这个神器,Apache Atlas就像装上了涡轮增压器,嗖嗖地在大规模数据查询中飞驰,让咱们的数据访问性能瞬间飙升,变得超级给力! 2. 提供灵活的数据模型 Apache Atlas提供了一个灵活的数据模型,允许我们根据需要自定义图谱中的节点和边的属性。这样一来,我们就能在不扩容存储空间的前提下,灵活应对各种场景下的数据需求啦。 3. 支持多种数据源 Apache Atlas支持多种数据源,包括Hadoop、Hive、Spark等,这使得我们可以从多个角度理解和管理我们的数据。 四、Apache Atlas的实践应用 接下来,我们将通过一个实际的例子来展示Apache Atlas的应用。 假设我们需要对一组用户的行为数据进行分析。这些数据分布在多个不同的系统中,包括Hadoop HDFS、Hive和Spark SQL。我们想要构建一个图谱,表示用户和他们的行为之间的关系。 首先,我们需要创建一个图模型,定义用户和行为两个节点类型以及它们之间的关系。然后,我们使用Apache Atlas提供的API,将这些数据导入到图数据库中。最后,我们就可以通过查询图谱,得到我们想要的结果了。 这就是Apache Atlas的一个简单应用。用Apache Atlas,我们就能轻轻松松地管理并解析那些海量的图表数据,这样一来,工作效率嗖嗖地提升,简直不要太方便! 五、总结 总的来说,Apache Atlas是一个强大的工具,可以帮助我们有效地解决大规模图表数据性能问题。无论你是大数据的初学者,还是经验丰富的专业人士,都可以从中受益。嘿,真心希望这篇文章能帮到你!如果你有任何疑问、想法或者建议,千万别客气,随时欢迎来找我聊聊哈!
2023-06-03 23:27:41
472
彩虹之上-t
Mahout
...域的前沿研究。随着大数据技术的不断演进,Apache Mahout已从最初的MapReduce时代过渡到Spark和Flink等更高效计算框架的支持,这为处理大规模机器学习任务提供了更为先进的工具。 近期,Apache Mahout团队推出了Mahout 0.14版本,其中包含了对内存管理和分布式计算性能的重大改进。例如,新版本中强化了对Spark MLlib库的集成,使得用户能够在处理海量数据时更便捷地利用Spark的内存管理和I/O优化特性,从而有效提升模型训练效率。 此外,对于内存优化策略,一些现代机器学习库如TensorFlow、PyTorch也开始借鉴流式处理的思想,结合动态计算图、梯度累积等技术,实现了在有限内存条件下处理深度学习模型的大规模数据集。 同时,在磁盘I/O优化方面,云存储和分布式文件系统(如HDFS)的最新研究成果也值得深入探究。通过智能缓存策略、数据局部性优化以及新型存储硬件的应用,这些技术正持续推动着大数据处理效能的边界。 综上所述,理解并掌握Apache Mahout及其他现代机器学习框架在内存和磁盘I/O优化上的实践,不仅有助于解决当前面临的挑战,也有利于紧跟行业发展趋势,为未来复杂的数据科学项目打下坚实基础。
2023-04-03 17:43:18
87
雪域高原-t
Kylin
...个基于Hadoop的数据仓库工具,其主要目标是提供一个快速查询分析海量数据的方式。本文将分享我在使用Kylin进行报表设计过程中的一些经验和技巧。 二、Kylin的优势 首先,让我们来了解一下Kylin的优点。Kylin在对付大数据的时候,可真是展现出了超凡的实力,为啥呢?因为它用了一种叫“多维立方体”的独门数据结构。这就像是给数据装上了一辆超级跑车,让数据访问速度嗖嗖地往上窜,效果显著到不行!另外,Kylin还特别贴心地提供了超级灵活的查询语句支持,让你能够按照自己的小心愿,随心所欲地定制SQL查询语句,这样一来,就能轻松捞到更加精确无比的结果啦! 三、如何开始 开始使用Kylin的第一步就是创建一个项目。在Kylin的网页界面里头,瞅准那个醒目的“新建项目”按钮,给它轻轻一点,接着就可以麻溜地输入你项目的响亮大名和其他一些必要的细节信息啦。接着,你需要配置你的Hadoop集群信息,包括HDFS地址、JobTracker地址等。最后,点击"提交"按钮,Kylin就会开始创建你的项目。 java // 创建一个新的Kylin项目 ClientService client = ClientService.getInstance(); ProjectMeta meta = new ProjectMeta(); meta.setName("my_project"); meta.setHiveUrl("hdfs://localhost:9000"); meta.setHiveUser("hive"); meta.setHivePasswd("hive"); client.createProject(meta); 四、数据模型设计 在Kylin中,我们通常需要对我们的数据进行建模,以便于后续的查询操作。Kylin提供了两种数据模型:维度模型和事实模型。维度模型,你把它想象成一个大大的资料夹,里面装着实体的各种详细信息,像是什么时间发生的、在哪个地点、属于哪种产品类型等等;而事实模型呢,就更像是个记账本,专门用来记录实体的各种行为表现,像卖了多少货、交易额有多少这些具体的数字信息。 java // 创建一个新的维度模型 DimensionModelDesc modelDesc = new DimensionModelDesc(); modelDesc.setName("my_dim_model"); modelDesc.setColumns(Arrays.asList(new ColumnDesc("dim_date", "date"), new ColumnDesc("dim_location", "string"))); client.createDimModel(modelDesc); // 创建一个新的事实模型 FactModelDesc factModelDesc = new FactModelDesc(); factModelDesc.setName("my_fact_model"); factModelDesc.setColumns(Arrays.asList(new ColumnDesc("fact_sales", "bigint"))); factModelDesc.setDimensions(Arrays.asList("my_dim_model")); client.createFactModel(factModelDesc); 五、报表设计与查询 接下来,我们可以开始设计我们的报表了。在Kylin这个工具里头,我们能够像平常一样用标准的SQL查询语句去查数据,然后把查出来的结果,随心所欲地转换成各种格式保存,比如说CSV啦、Excel表格什么的,超级方便。 java // 查询指定日期的销售数据 String sql = "SELECT dim_date, SUM(fact_sales) FROM my_fact_model GROUP BY dim_date"; CubeInstance cube = CubeManager.getInstance().getCube("my_cube"); List rows = cube.cubeQuery(sql); for (Row row : rows) { System.out.println(row.getString(0) + ": " + row.getLong(1)); } 六、总结 总的来说,Kylin是一个非常强大的数据分析工具,它可以帮助我们轻松地处理大量的数据,并且提供了丰富的查询功能,使得我们能够更方便地获取所需的信息。如果你也在寻找一种高效的数据分析解决方案,那么我强烈推荐你试试Kylin。
2023-05-03 20:55:52
111
冬日暖阳-t
Hadoop
...e System (HDFS) , HDFS是Hadoop项目的核心组件之一,是一个高度容错性的分布式文件系统,设计用于在廉价的硬件上运行,并能提供高吞吐量的数据访问。在Hadoop生态系统中,HDFS为海量数据提供了存储解决方案,将大文件分割成多个块存储在集群中的不同节点上,从而实现数据的分布式存储和管理。 MapReduce , MapReduce是一种编程模型和相关实现,用于大规模数据集(通常大于单个机器内存容量)的并行处理。在Hadoop框架中,MapReduce通过“映射”阶段将输入数据分解成独立的键值对,然后在“归约”阶段对这些中间结果进行合并和进一步处理,最终生成用户所需的输出结果。这种方式极大地简化了并行计算过程的设计与实现,使得开发者无需关心底层的分布式细节。 Apache Spark , Apache Spark是一个开源的大数据处理框架,提供了对大规模数据集的快速、通用且可扩展的计算引擎。相较于Hadoop MapReduce,Spark基于内存计算,可以显著提高迭代工作负载的速度,并支持SQL查询、流处理、图形计算以及机器学习等多种计算范式。在需要实时或近实时处理以及复杂分析任务的场景下,Spark常被作为更高效的选择来替代或补充Hadoop。
2023-04-18 09:23:00
468
秋水共长天一色
Impala
... 1. 引言 在大数据领域,实时、高效的数据分析能力对于企业决策和业务优化至关重要。Apache Impala,这可是个不得了的开源神器,它是一款超给力的大规模并行处理SQL查询引擎,专门为Hadoop和Hive这两大数据平台量身定制。为啥说它不得了呢?因为它有着高性能、低延迟的超强特性,在处理海量数据的时候,那速度简直就像一阵风,独树一帜。尤其在处理那些海量日志分析的任务上,更是游刃有余,表现得尤为出色。这篇文会手牵手带你畅游Impala的大千世界,咱不光说理论,更会实操演示,带着你一步步见识怎么用Impala这把利器,对海量日志进行深度剖析。 2. Impala简介 Impala以其对HDFS和HBase等大数据存储系统的原生支持,以及对SQL-92标准的高度兼容性,使得用户可以直接在海量数据上执行实时交互式SQL查询。跟MapReduce和Hive这些老哥不太一样,Impala这小子更机灵。它不玩儿那一套先将SQL查询变魔术般地转换成一堆Map和Reduce任务的把戏,而是直接就在数据所在的节点上并行处理查询,这一招可是大大加快了我们分析数据的速度,效率杠杠滴! 3. Impala在日志分析中的应用 3.1 日志数据加载与处理 首先,我们需要将日志数据导入到Impala可以访问的数据存储系统,例如HDFS或Hive表。以下是一个简单的Hive DDL创建日志表的例子: sql CREATE TABLE IF NOT EXISTS logs ( log_id BIGINT, timestamp TIMESTAMP, user_id STRING, event_type STRING, event_data STRING ) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' STORED AS TEXTFILE; 然后,通过Hive或Hadoop工具将日志文件加载至该表: bash hive -e "LOAD DATA INPATH '/path/to/logs' INTO TABLE logs;" 3.2 Impala SQL查询实例 有了结构化的日志数据后,我们便可以在Impala中执行复杂的SQL查询来进行深入分析。例如,我们可以找出过去一周内活跃用户的数量: sql SELECT COUNT(DISTINCT user_id) FROM logs WHERE timestamp >= UNIX_TIMESTAMP(CURRENT_DATE) - 7246060; 或者,我们可以统计各类事件发生的频率: sql SELECT event_type, COUNT() as event_count FROM logs GROUP BY event_type ORDER BY event_count DESC; 这些查询均能在Impala中以极快的速度得到结果,满足了对大规模日志实时分析的需求。 3.3 性能优化探讨 在使用Impala进行日志分析时,性能优化同样重要。比如,对常量字段创建分区表,可以显著提高查询速度: sql CREATE TABLE logs_partitioned ( -- 同样的列定义... ) PARTITIONED BY (year INT, month INT, day INT); 随后按照日期对原始表进行分区数据迁移: sql INSERT OVERWRITE TABLE logs_partitioned PARTITION (year, month, day) SELECT log_id, timestamp, user_id, event_type, event_data, YEAR(timestamp), MONTH(timestamp), DAY(timestamp) FROM logs; 这样,在进行时间范围相关的查询时,Impala只需扫描相应分区的数据,大大提高了查询效率。 4. 结语 总之,Impala凭借其出色的性能和易用性,在大规模日志分析领域展现出了强大的实力。它让我们能够轻松应对PB级别的数据,实现实时、高效的查询分析。当然啦,每个项目都有它独特的小脾气和难关,但只要巧妙地运用Impala的各种神通广大功能,并根据实际情况灵活机动地调整作战方案,保证能稳稳驾驭那滔滔不绝的大规模日志分析大潮。这样一来,企业就能像看自家后院一样清晰洞察业务动态,优化决策也有了如虎添翼的强大力量。在这个过程中,我们就像永不停歇的探险家,不断开动脑筋思考问题,动手实践去尝试,勇敢探索未知领域。这股劲头,就像是咱们在技术道路上前进的永动机,推动着我们持续进步,一步一个脚印地向前走。
2023-07-04 23:40:26
520
月下独酌
Hive
... Hive:在大数据时代中挖掘并行计算的力量 一、引言 并行计算的诱惑与挑战 在大数据时代,数据处理的速度与效率成为了衡量一个系统是否强大的关键指标之一。嘿,你知道Hive吗?这家伙可是Apache家族里的宝贝疙瘩,专门用来处理大数据的仓库工具!它最大的亮点就是用的那套HQL,超级像咱们平时玩的SQL,简单易懂,方便操作。这玩意儿一出,分析海量数据就跟翻书一样轻松,简直是数据分析师们的福音啊!哎呀,你知道的,现在数据就像雨后春笋一样,长得飞快,复杂程度也跟上去了。在这大背景下,怎么在Hive里用好并行计算这个神器,就成了咱们提高数据处理速度的大秘密武器了。就像是在厨房里,你得知道怎么合理安排人力物力,让每个步骤都能高效进行,这样才能做出最美味的佳肴。在大数据的世界里,这不就是个道理嘛! 二、理解并行计算在Hive中的应用 并行计算,即通过多个处理器或计算机同时执行任务,可以极大地缩短数据处理时间。在Hive中,这种并行能力主要体现在以下两个方面: 1. 分布式文件系统(DFS)支持 Hive能够将数据存储在分布式文件系统如HDFS上,这样数据的读取和写入就可以被多个节点同时处理,大大提高了数据访问速度。 2. MapReduce执行引擎 Hive的核心执行引擎是MapReduce,它允许任务被拆分成多个小任务并行执行,从而加速了数据处理流程。 三、案例分析 优化Hive查询性能的策略 为了更好地利用Hive的并行计算能力,我们可以采取以下几种策略来优化查询性能: 1. 合理使用分区和表结构 sql CREATE TABLE sales ( date STRING, product STRING, quantity INT ) PARTITIONED BY (year INT, month INT); 分区操作能帮助Hive在执行查询时快速定位到特定的数据集,从而减少扫描的文件数量,提高查询效率。 2. 利用索引增强查询性能 sql CREATE INDEX idx_sales_date ON sales (date); 索引可以显著加快基于某些列的查询速度,特别是在进行过滤和排序操作时。 3. 优化查询语句 - 避免使用昂贵的函数和复杂的子查询。 - 使用EXPLAIN命令预览查询计划,识别瓶颈并进行调整。 sql EXPLAIN SELECT FROM sales WHERE year = 2023 AND month = 5; 4. 批处理与实时查询分离 对于频繁执行的查询,考虑将其转换为更高效的批处理作业,而非实时查询。 四、实践与经验分享 在实际操作中,我们发现以下几点经验尤为重要: - 数据预处理:确保数据在导入Hive前已经进行了清洗和格式化,减少无效数据的处理时间。 - 定期维护:定期清理不再使用的数据和表,以及更新索引,保持系统的高效运行。 - 监控与调优:利用Hive Metastore提供的监控工具,持续关注查询性能,并根据实际情况调整配置参数。 五、结论 并行计算与Hive的未来展望 随着大数据技术的不断发展,Hive在并行计算领域的潜力将进一步释放。哎呀,兄弟!咱们得好好调整数据存档的布局,还有那些查询命令和系统的设定,这样才能让咱们的数据处理快如闪电,用户体验棒棒哒!到时候,用咱们的服务就跟喝着冰镇可乐一样爽,那叫一个舒坦啊!哎呀,你知道不?就像咱们平时用的工具箱里又添了把更厉害的瑞士军刀,那就是Apache Drill这样的新技术。这玩意儿一出现,Hive这个大数据分析的家伙就更牛了,能干的事情更多,效率也更高,就像开挂了一样。它现在不仅能快如闪电地处理数据,还能像变魔术一样,根据我们的需求变出各种各样的分析结果。这下子,咱们做数据分析的时候,可就轻松多了! --- 本文旨在探讨Hive如何通过并行计算能力提升数据处理效率,通过具体实例展示了如何优化Hive查询性能,并分享了实践经验。希望这些内容能对您在大数据分析领域的工作提供一定的启发和帮助。
2024-09-13 15:49:02
35
秋水共长天一色
Sqoop
...Hadoop和关系型数据库(如MySQL、Oracle等)之间高效地迁移大量数据。它支持将数据从关系型数据库导入到Hadoop分布式文件系统(HDFS)中,同时也支持将Hadoop处理后的数据导出回关系型数据库。在大数据处理场景中,Sqoop是连接传统数据库与大数据生态系统的桥梁。 HDFS (Hadoop Distributed File System) , HDFS是Hadoop项目的核心组件之一,是一种高度容错性的分布式文件系统,设计用于部署在低成本硬件上运行,并提供高吞吐量的数据访问。在Sqoop作业中,当设置并发度过高时,由于多个任务同时向HDFS写入数据,可能导致NameNode节点元数据管理负担加重,进而影响集群性能,特别是在处理小文件过多的情况下。 NameNode , 在Hadoop HDFS架构中,NameNode是中心管理节点,负责维护文件系统的命名空间,以及存储文件系统中所有文件的元数据信息,如文件块的位置信息等。当Sqoop作业并发度设置过高时,若目标目录下文件过多且并发写入,NameNode可能面临较大压力,因为其需要频繁处理各个DataNode上传的元数据更新请求,这可能导致集群整体性能下降。
2023-06-03 23:04:14
154
半夏微凉
Hadoop
...投资物理基础设施。 数据安全 , 指保护数据免受未经授权的访问、泄露、篡改或破坏的一系列措施和策略。在文章语境中,数据安全特别关注在云计算环境下确保数据在传输、存储和处理过程中的机密性、完整性和可用性。 Hadoop , 是一个开源的分布式计算框架,用于大规模数据集的处理和分析。Hadoop通过分布式的文件系统(HDFS)和MapReduce计算模型,支持在廉价硬件上进行高效的大数据处理。 数据驱动的世界 , 指的是依赖大量数据进行决策和业务运作的世界。在这种世界中,数据被视为关键资产,用于预测趋势、优化业务流程、改进产品和服务,以及制定战略决策。 弹性扩展能力 , 云计算的一个关键特性,指的是能够根据需求自动增加或减少计算资源的能力。这种能力允许用户在不中断服务的情况下,根据业务负载的变化灵活调整资源,以优化成本和性能。 本地缓存层 , Hadoop Cloud Storage Gateway(HCSG)中用于存储数据副本的部分。这个层提供快速访问数据的机制,减少了从远程云存储读取数据的延迟,提高了数据处理效率。
2024-09-11 16:26:34
109
青春印记
MySQL
...op生态系统与关系型数据库系统之间高效地传输大量数据而设计。它允许用户从结构化数据库中导入数据到Hadoop HDFS或相关组件(如Hive、HBase等),以及将Hadoop处理结果导出回关系型数据库。在本文语境中,Sqoop用于将存储在HDFS中的数据迁移至MySQL数据库。 Hadoop Distributed File System (HDFS) , HDFS是Hadoop项目的核心组件之一,是一个高度容错性的分布式文件系统,设计用于在低成本硬件上存储和处理大规模数据集。HDFS能够提供高吞吐量的数据访问,并通过数据冗余实现数据的可靠性。在文章中提到,由于HDFS不支持SQL查询操作,因此需要借助Sqoop将其中的数据导出至MySQL进行更深度分析和复杂查询。 MySQL , MySQL是一个广泛应用的关系型数据库管理系统(RDBMS),使用SQL作为主要查询语言,由Oracle公司开发并维护。MySQL以其稳定可靠、易于管理且开源免费的特点受到广泛欢迎。在本文场景下,MySQL被用作接收从HDFS迁移过来的数据的目标存储库,便于利用其强大的SQL查询能力和事务处理机制对数据进行进一步处理和分析。
2023-04-12 16:50:07
247
素颜如水_t
HBase
...法 1. 引言 在大数据时代,HBase作为一款开源、分布式、面向列族的NoSQL数据库,因其卓越的水平扩展性及海量数据处理能力而备受瞩目。不过,在实际操作里头,对HBase做性能测试和调优这个步骤可是超级重要的!这不仅仅关系到系统的坚挺度和运转快慢,更直接影响到我们处理业务的速度有多快,还有用户使用起来舒不舒服,爽不爽的问题。这篇文咱要接地气地聊聊怎么给HBase做性能测试的大事儿,还会手把手教大家一些超实用的调优诀窍和小技巧。 2. HBase性能测试基础 在着手进行HBase性能测试前,我们需要先了解其基本工作原理。HBase基于Hadoop HDFS存储数据,利用RegionServer处理读写请求,通过Zookeeper进行集群协调。所以,平常我们聊性能测试时,经常会提到几个关键指标。就好比,读写速度怎么样,响应时间快不快,能同时处理多少请求,还有资源利用效率高不高,这些都是咱们评估性能表现的重点要素~ 示例代码(创建表并插入数据): java Configuration config = HBaseConfiguration.create(); config.set("hbase.zookeeper.quorum", "zk_host:2181"); HTable table = new HTable(config, "test_table"); Put put = new Put(Bytes.toBytes("row_key")); put.add(Bytes.toBytes("cf"), Bytes.toBytes("cq"), Bytes.toBytes("value")); table.put(put); 3. HBase性能测试方法 (1)基准测试 使用Apache BenchMark工具(如YCSB,Yahoo! Cloud Serving Benchmark),可以模拟不同场景下的读写压力,以此评估HBase的基础性能。比如说,我们可以尝试调整各种不同的参数来考验HBase,就好比设置不同数量的同时在线用户,改变他们的操作行为(比如读取或者写入数据),甚至调整数据量的大小。然后,咱们就可以通过观察HBase在这些极限条件下的表现,看看它是否能够坚挺如初,表现出色。 (2)监控分析 利用HBase自带的监控接口或第三方工具(如Grafana+Prometheus)实时收集并分析集群的各项指标,如RegionServer负载均衡状况、内存使用率、磁盘I/O、RPC延迟等,以发现可能存在的性能瓶颈。 4. HBase性能调优策略 (1)配置优化 - 网络参数:调整hbase.client.write.buffer大小以适应网络带宽和延迟。 - 内存分配:合理分配BlockCache和MemStore的空间,以平衡读写性能。 - Region大小:根据数据访问模式动态调整Region大小,防止热点问题。 (2)架构优化 - 增加RegionServer节点,提高并发处理能力。 - 采用预分裂策略避免Region快速膨胀导致的性能下降。 (3)数据模型优化 - 合理设计RowKey,实现热点分散,提升查询效率。 - 根据查询需求选择合适的列族压缩算法,降低存储空间占用。 5. 实践案例与思考过程 在一次实践中,我们发现某业务场景下HBase读取速度明显下滑。经过YCSB压测后,定位到RegionServer的BlockCache已满,导致频繁的磁盘IO。于是我们决定给BlockCache扩容,让它变得更大些,同时呢,为了让热点现象不再那么频繁出现,我们对RowKey的结构进行了大刀阔斧的改造。这一系列操作下来,最终咱们成功让系统的性能蹭蹭地往上提升啦!在这个过程中,我们可是实实在在地感受到了,摸清业务特性、一针见血找准问题所在,还有灵活运用各种调优手段的重要性,这简直就像是打游戏升级一样,缺一不可啊! 6. 结语 性能测试与调优是HBase运维中的必修课,它需要我们既具备扎实的技术理论知识,又要有敏锐的洞察力和丰富的实践经验。经过对HBase从头到脚、一丝不苟的性能大考验,再瞅瞅咱的真实业务场景,咱们能针对性地使出一些绝招进行调优。这样一来,HBase就能更溜地服务于我们的业务需求,在大数据的世界里火力全开,展现它那无比强大的能量。
2023-03-14 18:33:25
580
半夏微凉
Hive
Hive无法访问HDFS文件系统的问题排查与解决 一、引言 Hive与HDFS的亲密关系 大家好啊!今天咱们聊聊Hive和HDFS这对CP(组合)。Hive 这个东西呢,其实就是个搭在 Hadoop 身上的数据仓库工具,说白了嘛,它的工作方式特别直白——把你的 SQL 查询语句给翻译成 MapReduce 任务,然后甩给 Hadoop 去干活儿。而HDFS呢,就是存储这些数据的地方。它们就像一对老朋友,互相依赖,缺一不可。 但有时候,这俩家伙可能会闹别扭,尤其是当你发现Hive突然不能访问HDFS了。这可真是让人头疼,因为这意味着你的数据查询直接凉凉。所以今天我们就来聊聊,为什么会出现这种情况,以及该怎么解决。 二、可能的原因 为什么Hive访问不了HDFS? 2.1 网络问题 首先,我们得想想是不是网络出了问题。嘿,你知道吗?我猜你们公司那位网络大神最近是不是偷偷调整了防火墙的设置?或者是服务器那边抽风了,直接断网了?反正不管咋回事儿,现在Hive跟HDFS就像是隔了一座大山,怎么也连不上,所以它想读数据都读不到啊! 举个例子吧,假设你的Hive配置文件里写着HDFS的地址是hdfs://namenode:9000/,但是实际上NameNode所在的机器根本不在网络范围内,那Hive当然会报错啦。 解决方法:检查一下网络连接是否正常。你可以试着ping一下HDFS的NameNode地址,看看能不能通。如果不行的话,赶紧找网络管理员帮忙修一下。 2.2 权限问题 其次,权限问题也是常见的原因。HDFS对文件和目录是有严格权限控制的,如果你的用户没有足够的权限去读取某个文件,那么Hive自然也无能为力。 举个栗子,假如你有一个HDFS路径/user/hive/warehouse/my_table,但是这个目录的权限设置成了只有root用户才能访问,而你的Hive用户不是root,那肯定就悲剧了。 解决方法:检查HDFS上的文件和目录权限。如果你想看看某个文件的权限,可以用这个命令:hadoop fs -ls /path/to/file。看完之后,要是觉得权限不对劲,就动手改一下呗,比如说用hadoop fs -chmod 755 /path/to/file,给它整成合适的权限就行啦! 2.3 HDFS服务未运行 还有一种可能是HDFS服务本身挂掉了。比如说,NameNode突然罢工了,DataNode也闹起了情绪,甚至整个集群都瘫痪了,啥都不干了。哎呀糟糕了,这情况有点悬啊!HDFS直接罢工了,完全不干活,任凭Hive使出浑身解数也无济于事。这下可好,整个系统像是瘫了一样,啥也跑不起来了。 解决方法:检查HDFS的服务状态。可以通过命令jps查看是否有NameNode和DataNode进程在运行。如果没有,那就得赶紧启动它们,或者重启整个HDFS服务。 三、实战演练 Hive访问HDFS的具体操作 接下来,我们通过一些实际的例子来看看如何用Hive操作HDFS。 3.1 创建表并加载数据到HDFS 假设我们现在要创建一个简单的表,并将数据加载到HDFS中。我们可以先创建一个本地文件data.txt,内容如下: id,name,age 1,Alice,25 2,Bob,30 3,Charlie,35 然后上传到HDFS: bash hadoop fs -put data.txt /user/hive/warehouse/my_table/ 接着在Hive中创建表: sql CREATE TABLE my_table ( id INT, name STRING, age INT ) ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' STORED AS TEXTFILE; 最后加载数据: sql LOAD DATA INPATH '/user/hive/warehouse/my_table/data.txt' INTO TABLE my_table; 这样,我们的数据就成功存到了HDFS上,并且Hive也能读取到了。 3.2 查询数据 现在我们可以试试查询数据: sql SELECT FROM my_table; 如果一切正常,你应该能看到类似这样的结果: OK 1 Alice 25 2 Bob 30 3 Charlie 35 Time taken: 0.077 seconds, Fetched: 3 row(s) 但如果之前出现了访问不了HDFS的情况,这里就会报错。所以我们要确保每一步都正确无误。 四、总结与展望 总之,Hive无法访问HDFS的问题虽然看起来很复杂,但实际上只要找到根本原因,解决起来并不难。无论是网络问题、权限问题还是服务问题,都有相应的解决办法。嘿,大家听我说啊!以后要是再碰到这种事儿,别害怕,也别乱了阵脚。就当是玩个解谜游戏,一步一步慢慢来,肯定能找出办法搞定它! 未来,随着大数据技术的发展,Hive和HDFS的功能也会越来越强大。说不定哪天它们还能像人类一样交流感情呢!(开玩笑啦) 好了,今天的分享就到这里啦。如果你还有什么疑问或者经验想要分享,欢迎随时留言讨论哦!让我们一起进步,一起探索大数据的奥秘吧!
2025-04-01 16:11:37
105
幽谷听泉
Hadoop
HDFS , Hadoop分布式文件系统,是Hadoop框架的核心组件之一,负责存储和管理海量数据。它将文件分割成固定大小的数据块(默认128MB),并将这些数据块分布存储在由多个服务器组成的集群中。为了提高数据的可靠性和可用性,HDFS会对每个数据块创建多个副本,默认情况下每个数据块会有三个副本。这些副本会被放置在不同的服务器上,当某台服务器发生故障时,数据仍可以从其他服务器获取,从而避免数据丢失。这种分布式存储方式不仅提高了系统的容错能力,还便于实现负载均衡。 伪分布式模式 , 这是一种特殊的Hadoop运行模式,允许用户在一个物理机器上模拟完整的Hadoop集群环境。在这种模式下,所有的Hadoop服务都在同一台机器上运行,但它们彼此独立,就像在真实的分布式环境中一样。这种方式非常适合初学者和小型项目,因为它不需要额外的硬件成本就能体验Hadoop的各项功能。通过伪分布式模式,用户可以练习文件上传、下载、查看副本分布等基本操作,为后续在真实集群环境中部署和管理Hadoop打下坚实的基础。此外,由于只需要一台机器即可完成配置,因此调试和解决问题也变得更加方便快捷。 副本策略 , HDFS中的一个重要概念,指的是如何决定文件数据块副本的存放位置。默认的副本策略考虑到了网络拓扑结构,旨在优化数据访问性能和系统稳定性。通常情况下,第一个副本会存放在与客户端最接近的节点上,这样可以减少网络延迟;第二个副本则会放到另一个机架上,以增加数据的容灾能力;第三个副本通常会放在同一个机架内的其他节点上,以便在本机架内实现快速恢复。这种策略有助于平衡数据冗余带来的存储开销与读取效率之间的关系。当然,用户也可以根据实际需求自定义副本策略,比如指定所有副本都位于同一机架内,或者按照特定规则分配副本位置,从而满足不同的业务场景需求。
2025-03-26 16:15:40
97
冬日暖阳
Hadoop
HDFS , Hadoop Distributed File System,是一种分布式文件系统,设计用于在商用硬件集群上运行,并以高容错性、高吞吐量的方式存储和处理超大体量的数据集。在本文语境中,HDFS是大数据处理过程中可能出现“HDFS Quota exceeded”错误的基础存储服务。 HDFS Quota exceeded , 这是一个在Hadoop Distributed File System(HDFS)中出现的错误提示,意味着用户或应用试图写入的数据超过了HDFS为其分配的存储空间配额,导致无法继续存储更多数据。 Hadoop配置文件(如hdfs-site.xml) , 在Hadoop框架中,配置文件是用来设置和管理Hadoop各个组件行为的关键文件。hdfs-site.xml就是其中之一,主要用于定义与HDFS相关的各种属性,如存储空间限额、命名空间限制等。在解决“HDFS Quota exceeded”问题时,可以通过修改此文件中的相关属性值来调整HDFS的空间分配策略和命名空间限额。 动态持久卷声明(Persistent Volume Claim,PVC) , 在Kubernetes等容器编排平台中,Persistent Volume Claim是一种抽象资源对象,允许用户请求特定大小和访问模式的存储资源。在大数据存储场景下,当HDFS存储空间不足时,可以利用PVC实现存储容量的弹性扩展,即根据应用需求自动挂载合适的持久卷(Persistent Volume),从而应对数据增长带来的存储压力。
2023-05-23 21:07:25
531
岁月如歌-t
Golang
...,避免并发写入导致的数据不一致问题。 此外,针对大规模数据处理场景,可研究Golang结合开源库如gofsutil来实现跨平台的文件系统挂载与管理,或者参考Netflix的开源项目如HDFS-Go客户端,了解如何在Go中实现与大数据文件系统(如Hadoop HDFS)的无缝集成。 最后,对于安全性要求极高的场景,不妨阅读相关安全研究论文及业界案例,探讨如何通过Go实现加密文件系统、访问控制列表等功能,确保敏感数据在存储和传输过程中的安全性。这些实时的、针对性的技术发展和实践应用将极大地丰富您对Go语言处理文件系统操作的理解,并帮助您在实际项目开发中做出更为明智和高效的决策。
2024-02-24 11:43:21
428
雪落无痕
Kylin
...lin以支持跨集群的数据源查询? 在大数据领域,Apache Kylin作为一款开源的分布式分析引擎,因其强大的OLAP能力与超高的查询性能而备受瞩目。不过在实际操作的时候,我们可能会遇到一个头疼的问题,那就是得从不同集群的数据源里查询信息。这就涉及到怎样巧妙地设置Kylin,让它能够帮我们搞定这个难题。本文将通过详尽的步骤和实例代码,带您逐步了解并掌握如何配置Kylin来支持跨集群的数据源查询。 1. 理解Kylin跨集群数据源查询 在开始配置之前,首先理解Kylin处理跨集群数据源查询的基本原理至关重要。Kylin的心脏就是构建Cube,这个过程其实就是在玩一场源数据的“预计算游戏”,把各种维度的数据提前捣鼓好,然后把这些多维度、经过深度整合的聚合结果,妥妥地存放在HBase这个大仓库里。所以,当我们想要实现不同集群间的查询互通时,重点就在于怎样让Kylin能够顺利地触及到各个集群的数据源头,并且在此基础之上成功构建出Cube。这就像是给Kylin装上一双可以跨越数据海洋的翅膀,让它在不同的数据岛屿之间自由翱翔,搭建起高效查询的桥梁。 2. 配置跨集群数据源连接 2.1 配置远程数据源连接 首先,我们需要在Kylin的kylin.properties配置文件中指定远程数据源的相关信息。例如,假设我们的原始数据位于一个名为“ClusterA”的Hadoop集群: properties kylin.source.hdfs-working-dir=hdfs://ClusterA:8020/user/kylin/ kylin.storage.hbase.rest-url=http://ClusterA:60010/ 这里,我们设置了HDFS的工作目录以及HBase REST服务的URL地址,确保Kylin能访问到ClusterA上的数据。 2.2 配置数据源连接器(JDBC) 对于关系型数据库作为数据源的情况,还需要配置相应的JDBC连接信息。例如,若ClusterB上有一个MySQL数据库: properties kylin.source.jdbc.url=jdbc:mysql://ClusterB:3306/mydatabase?useSSL=false kylin.source.jdbc.user=myuser kylin.source.jdbc.pass=mypassword 3. 创建项目及模型并关联远程表 接下来,在Kylin的Web界面创建一个新的项目,并在该项目下定义数据模型。在选择数据表时,Kylin会根据之前配置的HDFS和JDBC连接信息自动发现远程集群中的表。 - 创建项目:在Kylin管理界面点击"Create Project",填写项目名称和描述等信息。 - 定义模型:在新建的项目下,点击"Model" -> "Create Model",添加从远程集群引用的表,并设计所需的维度和度量。 4. 构建Cube并对跨集群数据进行查询 完成模型定义后,即可构建Cube。Kylin会在后台执行MapReduce任务,读取远程集群的数据并进行预计算。构建完成后,您便可以针对这个Cube进行快速、高效的查询操作,即使这些数据分布在不同的集群上。 bash 在Kylin命令行工具中构建Cube ./bin/kylin.sh org.apache.kylin.tool.BuildCubeCommand --cube-name MyCube --project-name MyProject --build-type BUILD 至此,通过精心配置和一系列操作,您的Kylin环境已经成功支持了跨集群的数据源查询。在这一路走来,我们不断挠头琢磨、摸石头过河、动手实践,不仅硬生生攻克了技术上的难关,更是让Kylin在各种复杂环境下的强大适应力和灵活应变能力展露无遗。 总结起来,配置Kylin支持跨集群查询的关键在于正确设置数据源连接,并在模型设计阶段合理引用这些远程数据源。每一次操作都像是人类智慧的一次小小爆发,每查询成功的背后,都是我们对Kylin功能那股子钻研劲儿和精心打磨的成果。在这整个过程中,我们实实在在地感受到了Kylin这款大数据处理神器的厉害之处,它带来的便捷性和无限可能性,真是让我们大开眼界,赞不绝口啊!
2023-01-26 10:59:48
83
月下独酌
转载文章
...件块大小 128M HDFS的shell操作(重点) 基本语法 hadoop fs 具体命令或者hdfs dfs 具体命名 命令大全 Usage: hadoop fs [generic options][-appendToFile <localsrc> ... <dst>] 追加[-cat [-ignoreCrc] <src> ...] 查看[-checksum <src> ...][-chgrp [-R] GROUP PATH...] 改组[-chmod [-R] <MODE[,MODE]... | OCTALMODE> PATH...] 改权限[-chown [-R] [OWNER][:[GROUP]] PATH...] 改所有者[-copyFromLocal [-f] [-p] [-l] [-d] [-t <thread count>] <localsrc> ... <dst>] 上传[-copyToLocal [-f] [-p] [-ignoreCrc] [-crc] <src> ... <localdst>] 下载[-count [-q] [-h] [-v] [-t [<storage type>]] [-u] [-x] [-e] <path> ...][-cp [-f] [-p | -p[topax]] [-d] <src> ... <dst>] 复制[-createSnapshot <snapshotDir> [<snapshotName>]][-deleteSnapshot <snapshotDir> <snapshotName>][-df [-h] [<path> ...]][-du [-s] [-h] [-v] [-x] <path> ...] 统计磁盘文件大小[-expunge][-find <path> ... <expression> ...][-get [-f] [-p] [-ignoreCrc] [-crc] <src> ... <localdst>] 下载[-getfacl [-R] <path>][-getfattr [-R] {-n name | -d} [-e en] <path>][-getmerge [-nl] [-skip-empty-file] <src> <localdst>][-head <file>][-help [cmd ...]][-ls [-C] [-d] [-h] [-q] [-R] [-t] [-S] [-r] [-u] [-e] [<path> ...]] 查看列表[-mkdir [-p] <path> ...] 创建[-moveFromLocal <localsrc> ... <dst>] 剪切到hdfs[-moveToLocal <src> <localdst>] 剪切到本地[-mv <src> ... <dst>] 移动[-put [-f] [-p] [-l] [-d] <localsrc> ... <dst>] 上传[-renameSnapshot <snapshotDir> <oldName> <newName>][-rm [-f] [-r|-R] [-skipTrash] [-safely] <src> ...] 删除[-rmdir [--ignore-fail-on-non-empty] <dir> ...][-setfacl [-R] [{-b|-k} {-m|-x <acl_spec>} <path>]|[--set <acl_spec> <path>]][-setfattr {-n name [-v value] | -x name} <path>][-setrep [-R] [-w] <rep> <path> ...] 设置副本数[-stat [format] <path> ...][-tail [-f] <file>][-test -[defsz] <path>][-text [-ignoreCrc] <src> ...][-touch [-a] [-m] [-t TIMESTAMP ] [-c] <path> ...][-touchz <path> ...][-truncate [-w] <length> <path> ...][-usage [cmd ...]]Generic options supported are:-conf <configuration file> specify an application configuration file-D <property=value> define a value for a given property-fs <file:///|hdfs://namenode:port> specify default filesystem URL to use, overrides 'fs.defaultFS' property from configurations.-jt <local|resourcemanager:port> specify a ResourceManager-files <file1,...> specify a comma-separated list of files to be copied to the map reduce cluster-libjars <jar1,...> specify a comma-separated list of jar files to be included in the classpath-archives <archive1,...> specify a comma-separated list of archives to be unarchived on the compute machinesThe general command line syntax is:command [genericOptions] [commandOptions] 查看详细命令 hadoop fs -help 命令(如cat) 更改hdfs的权限 vi core-site.xml <property><name>hadoop.http.staticuser.user</name><value>root</value></property> HDFS客户端API操作 Windows环境配置 将Windows依赖放到文件夹, 配置环境变量,添加HADOOP_HOME ,编辑Path添加%HADOOP_HOME%/bin 拷贝hadoop.dll和winutils.exe到C:\Windows\System32 创建java项目 配置 编辑pom.xml <dependencies><dependency><groupId>junit</groupId><artifactId>junit</artifactId><version>4.12</version></dependency><dependency><groupId>org.apache.logging.log4j</groupId><artifactId>log4j-slf4j-impl</artifactId><version>2.12.0</version></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-client</artifactId><version>3.1.3</version></dependency></dependencies> 在src/main/resources中建立log4j2.xml 打印日志到控制台 <?xml version="1.0" encoding="UTF-8"?><Configuration status="WARN"><Appenders><Console name="Console" target="SYSTEM_OUT"><PatternLayout pattern="%d{HH:mm:ss.SSS} [%t] %-5level %logger{36} - %msg%n"/></Console></Appenders><Loggers><Root level="error"><AppenderRef ref="Console"/></Root></Loggers></Configuration> 编写代码 在/src/main/java/cn.zcx.hdfs创建TestHDFS类 public class TestHDFS {// 创建全局变量private FileSystem fs;private Configuration conf;private URI uri;private String user;// 从本地上传文件@Testpublic void testUpload() throws IOException {fs.copyFromLocalFile(false,true,new Path("F:\\Download\\使用前说明.txt"),new Path("/testhdfs"));}/ @Before 方法在@Test方法执行之前执行 /@Beforepublic void init() throws IOException, InterruptedException {uri = URI.create("hdfs://master:8020");conf = new Configuration();user = "root";fs = FileSystem.get(uri,conf,user);}/ @After方法在@Test方法结束后执行 /@Afterpublic void close() throws IOException {fs.close();}@Testpublic void testHDFS() throws IOException, InterruptedException {//1. 创建文件系统对象/URI uri = URI.create("hdfs://master:8020");Configuration conf = new Configuration();String user = "root";FileSystem fs = FileSystem.get(uri,conf,user);System.out.println("fs: " + fs);/// 2. 创建一个目录boolean b = fs.mkdirs(new Path("/testhdfs"));System.out.println(b);// 3. 关闭fs.close();} } 参数优先级 xxx-default.xml < xxx-site.xml < IDEA中resource中创建xxx-site.xml < 在代码中通过更改Configuration 参数 文件下载 @Testpublic void testDownload() throws IOException {fs.copyToLocalFile(false,new Path("/testhdfs/使用前说明.txt"),new Path("F:\\Download\\"),true);} 文件更改移动 //改名or移动(路径改变就可以)@Testpublic void testRename() throws IOException {boolean b = fs.rename(new Path("/testhdfs/使用前说明.txt"),new Path("/testhdfs/zcx.txt"));System.out.println(b);} 查看文件详细信息 // 查看文件详情@Testpublic void testListFiles() throws IOException {RemoteIterator<LocatedFileStatus> listFiles = fs.listFiles(new Path("/"), true);//迭代操作while (listFiles.hasNext()){LocatedFileStatus fileStatus = listFiles.next();//获取文件详情System.out.println("文件路径:"+fileStatus.getPath());System.out.println("文件权限:"+fileStatus.getPermission());System.out.println("文件主人:"+fileStatus.getOwner());System.out.println("文件组:"+fileStatus.getGroup());System.out.println("文件大小:"+fileStatus.getLen());System.out.println("文件副本数:"+fileStatus.getReplication());System.out.println("文件块位置:"+ Arrays.toString(fileStatus.getBlockLocations()));System.out.println("===============================");} } 文件删除 第二参数,true递归删除 //文件删除@Testpublic void testDelete() throws IOException {boolean b = fs.delete(new Path("/testhdfs/"), true);System.out.println(b);} NN与2NN工作原理 本篇文章为转载内容。原文链接:https://blog.csdn.net/Python1One/article/details/108546050。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-05 22:55:20
276
转载
Docker
...入理解Docker的数据卷与数据卷容器的概念及其应用后,我们可以进一步探索如何在实际场景中优化和管理这些数据存储机制。最近,随着Kubernetes等容器编排系统的广泛应用,Docker数据卷的管理也变得更加复杂且重要。例如,在Kubernetes中,可以通过PersistentVolume(持久化卷)和PersistentVolumeClaim(持久化卷声明)对Docker数据卷进行更高级别的抽象和自动化管理,确保跨节点、跨Pod的数据持久性和可用性。 另外,考虑到数据安全性和备份恢复问题,近期有开发者提出了一种利用Docker数据卷容器实现定期自动备份的方法,并结合云存储服务(如AWS S3或阿里云OSS),将容器内的关键数据定期同步到云端,以防止因本地硬件故障导致的数据丢失。 此外,针对多用户环境下数据卷权限控制的问题,Docker在新版本中引入了改进的数据卷驱动程序支持,允许通过插件形式实现更灵活的数据访问控制策略,比如使用Rancher Local Path Provisioner或者开源项目Portworx提供动态、多租户的数据卷管理方案。 综上所述,随着技术的发展和企业级应用场景的拓展,对Docker数据卷及数据卷容器的理解和运用也需要与时俱进,关注最新实践案例和技术趋势,以便更好地服务于微服务架构、DevOps流程以及大数据分析等领域的数据管理需求。
2023-10-29 12:32:53
504
软件工程师
MySQL
...今,鉴于云技术、海量数据等技术的积极推进,MySQL也持续发展,提供了各种访问MySQL的方法。 //采用Python访问MySQL import mysql.connector mydb = mysql.connector.connect( host="localhost", user="yourusername", password="yourpassword", database="yourdatabase" ) mycursor = mydb.cursor() mycursor.execute("SELECT FROM customers") myresult = mycursor.fetchall() for x in myresult: print(x) //采用Java访问MySQL import java.sql.; public class ReadMySQL { public static void main(String[] args) { try { Connection myConn = DriverManager.getConnection("jdbc:mysql://localhost:3306/yourdatabase", "yourusername", "yourpassword"); Statement myStmt = myConn.createStatement(); ResultSet myRs = myStmt.executeQuery("SELECT FROM customers"); while (myRs.next()) { System.out.println(myRs.getString("name") + "," + myRs.getString("email")); } } catch (Exception exc) { exc.printStackTrace(); } } } 以上是采用Python和Java访问MySQL的示例,访问MySQL还可以采用其他编程语言,如PHP、Ruby等。同时,为了提高MySQL的访问效率,也可以引入缓存技术,如Memcached、Redis等。
2024-02-28 15:31:14
130
逻辑鬼才
Docker
...的环境,其中可能包括数据存储。当发生数据丢失时,用户可以通过Docker提供的机制来恢复这些数据。 数据卷(Data Volume) , 在Docker中,数据卷是一种持久化存储机制,它可以独立于容器生命周期之外存在。数据卷可以在多个容器之间共享和重用,即使容器被删除或重建,数据卷中的内容仍会保持不变。在本文的数据恢复方案中,数据卷备份是关键步骤之一,通过tar命令对数据卷进行打包备份,并在需要时解压恢复到新的数据卷中。 NAS服务器(Network Attached Storage) , NAS是一种专用的数据存储设备,通过网络(如局域网)为多台计算机提供文件级别的数据访问服务。在文章中提到,用户可以将Docker容器的数据备份文件安全地传输并存储到NAS服务器上,以便在数据丢失时能从这个集中式、可靠的存储位置恢复数据,提高数据安全性与可用性。 SCP命令(Secure Copy) , SCP是一种基于SSH协议的安全文件复制工具,允许用户在本地主机与远程主机之间安全地复制文件。在本文所描述的第一种数据恢复方法中,用户利用SCP命令将备份数据从本地或其他宿主机复制到新容器映射的数据目录中,实现数据迁移和恢复。 容器备份文件 , 容器备份文件是指在Docker环境中,针对某个特定容器的状态和数据进行完整保存而形成的文件。该文件通常包含了容器内所有重要数据的快照,可用于在容器出现故障或者需要迁移到其他环境时快速恢复容器到备份时刻的状态。在本文中,停止相关容器后,用户依据宿主机器上的容器备份文件重建新的容器,并通过挂载数据目录完成数据恢复。
2023-04-14 09:42:03
301
码农
JSON
...ion,一种轻量级的数据交换格式,它基于JavaScript的一个子集,采用完全独立于语言的文本格式来存储和传输数据。JSON格式简洁、易于阅读和编写,同时也易于机器解析和生成。在文中,JSON被用于在不同系统或程序间进行数据交换,并且能够在JavaScript中直接转换为原生对象,或者将JavaScript对象转换为JSON字符串。 JSON.parse() , JavaScript内置方法,用于将一个JSON格式的字符串转换为JavaScript原生对象。例如,在文章中,通过JSON.parse(jsonStr),可以将JSON字符串 name:Jack,age:20 解析成一个具有 name 和 age 属性的对象,从而可以在JavaScript中直接访问这些属性值。 JSON.stringify() , 与JSON.parse()相对应的JavaScript内置方法,用于将JavaScript对象或值转换为JSON格式的字符串。在文中举例说明,若有一个JavaScript对象 name: Jack , age: 20 ,使用JSON.stringify(obj)后会得到对应的JSON字符串 name: \ Jack\ , age: 20 ,这个字符串可以方便地在网络上传输或保存到文件中。 跨域问题(CORS) , 跨源资源共享(Cross-Origin Resource Sharing),是现代Web应用中浏览器实施的一种安全策略。由于同源策略限制,通常情况下,一个源(如网页所在的域名、协议和端口)中的脚本不能读取另一个源中的资源,除非明确允许。在处理JSON数据交互时,如果前后端属于不同的域名,就会触发跨域问题。为了解决这一问题,服务器需要设置Access-Control-Allow-Origin响应头部信息以允许特定或所有来源对资源的请求,从而实现跨域数据访问。 Access-Control-Allow-Origin , HTTP响应头部字段,用于指定哪些网站的请求可以获取当前资源。在解决JSON数据交换时的跨域问题时,服务器可以通过设置该头部信息,允许来自不同源的请求获取资源,从而实现跨域数据通信。例如,如果设置为Access-Control-Allow-Origin: ,则表示任何源都可以访问该资源;如果设置为具体的源地址,如Access-Control-Allow-Origin: https://example.com,则只有该源的请求才能成功获取资源。
2023-12-14 20:46:43
491
程序媛
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
sed -i 's/old_string/new_string/g' file.txt
- 在文件内替换字符串。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"