前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[Google Vision API与Am...]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Tesseract
...本。不过,当遇到一些对比度贼高贼低的图片时,Tesseract可能就有点犯难了。在本文中,我们将讨论这些问题,并提供一些解决方案。 二、高对比度图像的问题 1.1 问题描述 当图像的对比度过高时,明亮的部分和暗淡的部分之间的差异可能非常大。这可能会让Tesseract识别文本时有点犯难,就像在一团乱麻中找线头一样,它没法准确判断哪些是真正的“干货”文本,哪些只是捣乱的背景噪声。 1.2 解决方案 一种解决方案是先对图像进行预处理,降低对比度,使文本与背景更加清晰地区分出来。我们可以使用Python的PIL库来实现这个功能: python from PIL import ImageEnhance def preprocess_image(image_path): img = Image.open(image_path) enhancer = ImageEnhance.Contrast(img) contrast_img = enhancer.enhance(0.5) 设置增强系数 return contrast_img 此外,我们还可以尝试使用一些专门针对高对比度图像的OCR工具,如Google Vision API或者Amazon Textract。 三、低对比度图像的问题 3.1 问题描述 相反,当图像的对比度过低时,所有的颜色可能都接近于灰色,使得文本与背景之间的边界变得模糊。这种情况下,Tesseract也可能无法准确识别文本。 3.2 解决方案 同样,我们可以通过提高对比度来改善这种情况。但是需要注意的是,如果对比度过高,可能会导致之前提到的问题。因此,我们需要找到一个合适的平衡点。 另外,我们也可以考虑使用更复杂的算法来提高识别效果。比如说,咱们可以尝试用深度学习的招数,比如那个卷积神经网络(CNN),来给图片做“切块”处理,就像把一副画分割成不同的小部分,然后对这些切割出来的前景部分,我们再单独进行识别工作。 四、结论 总的来说,处理图像对比度过高或过低的问题主要依赖于图像预处理和识别算法的选择。在实际操作中,咱们得瞅准实际情况和具体需求,像挑衣服那样,灵活地找出最合身、最合适的策略来用。同时呢,眼瞅着深度学习这些新鲜技术日益精进,我们可真是满怀期待,盼望着能有更多神奇的解决方案蹦跶出来,让OCR的表现力再上一层楼。
2023-09-16 20:45:02
119
寂静森林-t
Material UI
...l-UI作为一款基于Google Material Design设计规范的React UI组件库,因其丰富的组件和高度可定制性而备受开发者喜爱。这篇文儿呢,咱们要重点聊聊Material-UI里的Stepper组件,而且会掰扯得明明白白的,教你如何给这个Stepper组件加上个性化的自定义步骤指示器,让你在各种场景下都能玩转它,满足你的独特需求。 1. Stepper组件简介 Material-UI的Stepper组件是一种用于线性流程展示的强大工具,常用于表单填写、多步骤操作等场景。它默认提供了多种样式(如vertical和horizontal)以及步骤状态管理功能。不过,自带的那个步骤指示器样式可能跟你的项目设计不太对味儿,这时候我们就得亲自出手,给它来个定制化的变身。 2. 默认的Stepper组件与步骤指示器 首先,让我们通过一个简单的代码示例来看看Stepper组件及其默认步骤指示器的使用: jsx import { Stepper, Step, StepLabel } from '@material-ui/core'; function App() { return ( Step 1 Step 2 Step 3 ); } 上述代码创建了一个基本的水平方向Stepper,每个步骤都有一个默认的步骤指示器,显示为一个小圆点或一条横线,具体样式取决于步骤的状态。 3. 自定义步骤指示器 思路与方法 ① 定义自定义指示器 为了实现自定义步骤指示器,我们可以利用Stepper组件的StepIconComponent属性,传入一个自定义的React组件来替换默认的指示器。 ② 创建自定义指示器组件 下面是一个自定义步骤指示器组件的例子,我们将使用一个自定义图标替代原有的小圆点: jsx import React from 'react'; import CheckCircleIcon from '@material-ui/icons/CheckCircle'; import CircleIcon from '@material-ui/icons/Circle'; const CustomStepIcon = ({ active, completed }) => { const icon = completed ? : ; return ( {icon} {active && Now Active!} ); }; 上述代码中,我们根据步骤的active和completed状态显示不同的图标,并在步骤激活时额外显示文本提示。 ③ 将自定义指示器应用于Stepper组件 现在,我们将这个自定义指示器应用到之前的Stepper组件上: jsx function App() { return ( {/ ...steps... /} ); } 通过以上代码,你会发现Stepper组件中的每个步骤现在都已使用了我们自定义的步骤指示器。 4. 深度定制 拓展思考 实际上,对Stepper组件的自定义并不仅限于步骤指示器。你可以调整每个步骤的内容、样式,甚至可以进一步控制其交互行为。比如说,你完全可以按照实际的业务需求,灵活地给步骤换个颜色、改个大小,甚至玩转各种动画效果啥的。这完全就是Material-UI API的拿手好戏,只要咱们深入研究并熟练运用它,一切都不在话下! 总结来说,Material-UI赋予我们强大的灵活性,使得我们可以轻松地为Stepper组件添加自定义步骤指示器,从而更好地适应项目的设计需求。这种定制化的经历更像是一个边探险边创新的旅程,每一步都得我们像解密者一样深入理解各个组件是怎么运作的,然后再像个魔术师那样,把它们巧妙地融入到实际场景中,尽情挥洒创意。所以,不妨在实践中不断尝试,让Material-UI成为你前端开发道路上的得力助手吧!
2024-02-10 10:53:38
258
昨夜星辰昨夜风
转载文章
...者提供了更简洁直观的API和强大的功能集。 3. 跨平台UI工具包Qt Jambi:尽管Java Swing是纯Java环境下的GUI解决方案,但也有其他跨平台工具包值得关注,例如Qt Jambi,它允许开发者使用Java编写原生速度和外观的应用程序,并兼容多种操作系统。 4. 无障碍性设计原则在Swing中的应用:针对日益增长的无障碍需求,开发者应了解并遵循WCAG标准,在Swing应用程序中实施无障碍设计,如提供键盘导航支持、可调整的文字大小及高对比度模式等。 5. Swing组件最佳实践分享:查阅最新的开发者博客和论坛讨论,可以发现众多关于如何优化Swing组件性能、处理并发问题以及改善用户体验的实际案例和建议,这些都能帮助你更好地运用Swing进行复杂GUI的设计与实现。 综上所述,不断跟进最新的GUI开发趋势和技术发展,结合实际项目需求,灵活运用和扩展Swing或其他相关框架,将有助于打造更为出色和易用的桌面应用程序。
2023-01-18 08:36:23
525
转载
转载文章
...AWS、Azure和Google Cloud Platform(GCP)也在不断加强其容器服务功能。AWS最近推出了Amazon ECS Anywhere,允许用户在自建数据中心中运行ECS容器服务,实现混合云部署方案,这对于正在考虑容器化改造的企业提供了更多灵活选择。 另外,随着安全问题日益凸显,容器安全也成为业界焦点。CNCF基金会旗下的开源项目Open Policy Agent(OPA)正逐渐成为一种广泛应用于策略管理和权限控制的标准工具,确保容器在部署和运行时符合企业内部的安全规范。 此外,Serverless容器概念的兴起,如AWS Lambda和阿里云函数计算等产品,为企业提供了一种更为敏捷且按需付费的资源使用方式,将容器技术和无服务器架构相结合,为企业节省成本并提升效率。 总的来说,随着容器技术的不断演进及云服务生态的日趋完善,企业在实施容器化的过程中不仅需要参考通用路线图,更要紧密关注行业前沿动态,以实现更加高效、安全、经济的应用现代化转型。
2023-09-17 15:03:28
225
转载
转载文章
...kafka.javaapi.producer.Producer;import kafka.producer.KeyedMessage;import kafka.producer.ProducerConfig;/ 数据生成代码,Kafka Producer产生数据/public class MockAdClickedStat {/ @param args/public static void main(String[] args) {final Random random = new Random();final String[] provinces = new String[]{"Guangdong", "Zhejiang", "Jiangsu", "Fujian"};final Map<String, String[]> cities = new HashMap<String, String[]>();cities.put("Guangdong", new String[]{"Guangzhou", "Shenzhen", "Dongguan"});cities.put("Zhejiang", new String[]{"Hangzhou", "Wenzhou", "Ningbo"});cities.put("Jiangsu", new String[]{"Nanjing", "Suzhou", "Wuxi"});cities.put("Fujian", new String[]{"Fuzhou", "Xiamen", "Sanming"});final String[] ips = new String[] {"192.168.112.240","192.168.112.239","192.168.112.245","192.168.112.246","192.168.112.247","192.168.112.248","192.168.112.249","192.168.112.250","192.168.112.251","192.168.112.252","192.168.112.253","192.168.112.254",};/ Kafka相关的基本配置信息/Properties kafkaConf = new Properties();kafkaConf.put("serializer.class", "kafka.serializer.StringEncoder");kafkaConf.put("metadeta.broker.list", "Master:9092,Worker1:9092,Worker2:9092");ProducerConfig producerConfig = new ProducerConfig(kafkaConf);final Producer<Integer, String> producer = new Producer<Integer, String>(producerConfig);new Thread(new Runnable() {public void run() {while(true) {//在线处理广告点击流的基本数据格式:timestamp、ip、userID、adID、province、cityLong timestamp = new Date().getTime();String ip = ips[random.nextInt(12)]; //可以采用网络上免费提供的ip库int userID = random.nextInt(10000);int adID = random.nextInt(100);String province = provinces[random.nextInt(4)];String city = cities.get(province)[random.nextInt(3)];String clickedAd = timestamp + "\t" + ip + "\t" + userID + "\t" + adID + "\t" + province + "\t" + city;producer.send(new KeyedMessage<Integer, String>("AdClicked", clickedAd));try {Thread.sleep(50);} catch (InterruptedException e) {// TODO Auto-generated catch blocke.printStackTrace();} }} }).start();} } package com.tom.spark.SparkApps.sparkstreaming;import java.sql.Connection;import java.sql.DriverManager;import java.sql.PreparedStatement;import java.sql.ResultSet;import java.sql.SQLException;import java.util.ArrayList;import java.util.Arrays;import java.util.HashMap;import java.util.HashSet;import java.util.Iterator;import java.util.List;import java.util.Map;import java.util.Set;import java.util.concurrent.LinkedBlockingQueue;import kafka.serializer.StringDecoder;import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaPairRDD;import org.apache.spark.api.java.JavaRDD;import org.apache.spark.api.java.JavaSparkContext;import org.apache.spark.api.java.function.Function;import org.apache.spark.api.java.function.Function2;import org.apache.spark.api.java.function.PairFunction;import org.apache.spark.api.java.function.VoidFunction;import org.apache.spark.sql.DataFrame;import org.apache.spark.sql.Row;import org.apache.spark.sql.RowFactory;import org.apache.spark.sql.hive.HiveContext;import org.apache.spark.sql.types.DataTypes;import org.apache.spark.sql.types.StructType;import org.apache.spark.streaming.Durations;import org.apache.spark.streaming.api.java.JavaDStream;import org.apache.spark.streaming.api.java.JavaPairDStream;import org.apache.spark.streaming.api.java.JavaPairInputDStream;import org.apache.spark.streaming.api.java.JavaStreamingContext;import org.apache.spark.streaming.api.java.JavaStreamingContextFactory;import org.apache.spark.streaming.kafka.KafkaUtils;import com.google.common.base.Optional;import scala.Tuple2;/ 数据处理,Kafka消费者/public class AdClickedStreamingStats {/ @param args/public static void main(String[] args) {// TODO Auto-generated method stub//好处:1、checkpoint 2、工厂final SparkConf conf = new SparkConf().setAppName("SparkStreamingOnKafkaDirect").setMaster("hdfs://Master:7077/");final String checkpointDirectory = "hdfs://Master:9000/library/SparkStreaming/CheckPoint_Data";JavaStreamingContextFactory factory = new JavaStreamingContextFactory() {public JavaStreamingContext create() {// TODO Auto-generated method stubreturn createContext(checkpointDirectory, conf);} };/ 可以从失败中恢复Driver,不过还需要指定Driver这个进程运行在Cluster,并且在提交应用程序的时候制定--supervise;/JavaStreamingContext javassc = JavaStreamingContext.getOrCreate(checkpointDirectory, factory);/ 第三步:创建Spark Streaming输入数据来源input Stream: 1、数据输入来源可以基于File、HDFS、Flume、Kafka、Socket等 2、在这里我们指定数据来源于网络Socket端口,Spark Streaming连接上该端口并在运行的时候一直监听该端口的数据 (当然该端口服务首先必须存在),并且在后续会根据业务需要不断有数据产生(当然对于Spark Streaming 应用程序的运行而言,有无数据其处理流程都是一样的) 3、如果经常在每间隔5秒钟没有数据的话不断启动空的Job其实会造成调度资源的浪费,因为并没有数据需要发生计算;所以 实际的企业级生成环境的代码在具体提交Job前会判断是否有数据,如果没有的话就不再提交Job;///创建Kafka元数据来让Spark Streaming这个Kafka Consumer利用Map<String, String> kafkaParameters = new HashMap<String, String>();kafkaParameters.put("metadata.broker.list", "Master:9092,Worker1:9092,Worker2:9092");Set<String> topics = new HashSet<String>();topics.add("SparkStreamingDirected");JavaPairInputDStream<String, String> adClickedStreaming = KafkaUtils.createDirectStream(javassc, String.class, String.class, StringDecoder.class, StringDecoder.class,kafkaParameters, topics);/因为要对黑名单进行过滤,而数据是在RDD中的,所以必然使用transform这个函数; 但是在这里我们必须使用transformToPair,原因是读取进来的Kafka的数据是Pair<String,String>类型, 另一个原因是过滤后的数据要进行进一步处理,所以必须是读进的Kafka数据的原始类型 在此再次说明,每个Batch Duration中实际上讲输入的数据就是被一个且仅被一个RDD封装的,你可以有多个 InputDStream,但其实在产生job的时候,这些不同的InputDStream在Batch Duration中就相当于Spark基于HDFS 数据操作的不同文件来源而已罢了。/JavaPairDStream<String, String> filteredadClickedStreaming = adClickedStreaming.transformToPair(new Function<JavaPairRDD<String,String>, JavaPairRDD<String,String>>() {public JavaPairRDD<String, String> call(JavaPairRDD<String, String> rdd) throws Exception {/ 在线黑名单过滤思路步骤: 1、从数据库中获取黑名单转换成RDD,即新的RDD实例封装黑名单数据; 2、然后把代表黑名单的RDD的实例和Batch Duration产生的RDD进行Join操作, 准确的说是进行leftOuterJoin操作,也就是说使用Batch Duration产生的RDD和代表黑名单的RDD实例进行 leftOuterJoin操作,如果两者都有内容的话,就会是true,否则的话就是false 我们要留下的是leftOuterJoin结果为false; /final List<String> blackListNames = new ArrayList<String>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();jdbcWrapper.doQuery("SELECT FROM blacklisttable", null, new ExecuteCallBack() {public void resultCallBack(ResultSet result) throws Exception {while(result.next()){blackListNames.add(result.getString(1));} }});List<Tuple2<String, Boolean>> blackListTuple = new ArrayList<Tuple2<String,Boolean>>();for(String name : blackListNames) {blackListTuple.add(new Tuple2<String, Boolean>(name, true));}List<Tuple2<String, Boolean>> blacklistFromListDB = blackListTuple; //数据来自于查询的黑名单表并且映射成为<String, Boolean>JavaSparkContext jsc = new JavaSparkContext(rdd.context());/ 黑名单的表中只有userID,但是如果要进行join操作的话就必须是Key-Value,所以在这里我们需要 基于数据表中的数据产生Key-Value类型的数据集合/JavaPairRDD<String, Boolean> blackListRDD = jsc.parallelizePairs(blacklistFromListDB);/ 进行操作的时候肯定是基于userID进行join,所以必须把传入的rdd进行mapToPair操作转化成为符合格式的RDD/JavaPairRDD<String, Tuple2<String, String>> rdd2Pair = rdd.mapToPair(new PairFunction<Tuple2<String,String>, String, Tuple2<String, String>>() {public Tuple2<String, Tuple2<String, String>> call(Tuple2<String, String> t) throws Exception {// TODO Auto-generated method stubString userID = t._2.split("\t")[2];return new Tuple2<String, Tuple2<String,String>>(userID, t);} });JavaPairRDD<String, Tuple2<Tuple2<String, String>, Optional<Boolean>>> joined = rdd2Pair.leftOuterJoin(blackListRDD);JavaPairRDD<String, String> result = joined.filter(new Function<Tuple2<String,Tuple2<Tuple2<String,String>,Optional<Boolean>>>, Boolean>() {public Boolean call(Tuple2<String, Tuple2<Tuple2<String, String>, Optional<Boolean>>> tuple)throws Exception {// TODO Auto-generated method stubOptional<Boolean> optional = tuple._2._2;if(optional.isPresent() && optional.get()){return false;} else {return true;} }}).mapToPair(new PairFunction<Tuple2<String,Tuple2<Tuple2<String,String>,Optional<Boolean>>>, String, String>() {public Tuple2<String, String> call(Tuple2<String, Tuple2<Tuple2<String, String>, Optional<Boolean>>> t)throws Exception {// TODO Auto-generated method stubreturn t._2._1;} });return result;} });//广告点击的基本数据格式:timestamp、ip、userID、adID、province、cityJavaPairDStream<String, Long> pairs = filteredadClickedStreaming.mapToPair(new PairFunction<Tuple2<String,String>, String, Long>() {public Tuple2<String, Long> call(Tuple2<String, String> t) throws Exception {String[] splited=t._2.split("\t");String timestamp = splited[0]; //YYYY-MM-DDString ip = splited[1];String userID = splited[2];String adID = splited[3];String province = splited[4];String city = splited[5]; String clickedRecord = timestamp + "_" +ip + "_"+userID+"_"+adID+"_"+province +"_"+city;return new Tuple2<String, Long>(clickedRecord, 1L);} });/ 第4.3步:在单词实例计数为1基础上,统计每个单词在文件中出现的总次数/JavaPairDStream<String, Long> adClickedUsers= pairs.reduceByKey(new Function2<Long, Long, Long>() {public Long call(Long i1, Long i2) throws Exception{return i1 + i2;} });/判断有效的点击,复杂化的采用机器学习训练模型进行在线过滤 简单的根据ip判断1天不超过100次;也可以通过一个batch duration的点击次数判断是否非法广告点击,通过一个batch来判断是不完整的,还需要一天的数据也可以每一个小时来判断。/JavaPairDStream<String, Long> filterClickedBatch = adClickedUsers.filter(new Function<Tuple2<String,Long>, Boolean>() {public Boolean call(Tuple2<String, Long> v1) throws Exception {if (1 < v1._2){//更新一些黑名单的数据库表return false;} else { return true;} }});//filterClickedBatch.print();//写入数据库filterClickedBatch.foreachRDD(new Function<JavaPairRDD<String,Long>, Void>() {public Void call(JavaPairRDD<String, Long> rdd) throws Exception {rdd.foreachPartition(new VoidFunction<Iterator<Tuple2<String,Long>>>() {public void call(Iterator<Tuple2<String, Long>> partition) throws Exception {//使用数据库连接池的高效读写数据库的方式将数据写入数据库mysql//例如一次插入 1000条 records,使用insertBatch 或 updateBatch//插入的用户数据信息:userID,adID,clickedCount,time//这里面有一个问题,可能出现两条记录的key是一样的,此时需要更新累加操作List<UserAdClicked> userAdClickedList = new ArrayList<UserAdClicked>();while(partition.hasNext()) {Tuple2<String, Long> record = partition.next();String[] splited = record._1.split("\t");UserAdClicked userClicked = new UserAdClicked();userClicked.setTimestamp(splited[0]);userClicked.setIp(splited[1]);userClicked.setUserID(splited[2]);userClicked.setAdID(splited[3]);userClicked.setProvince(splited[4]);userClicked.setCity(splited[5]);userAdClickedList.add(userClicked);}final List<UserAdClicked> inserting = new ArrayList<UserAdClicked>();final List<UserAdClicked> updating = new ArrayList<UserAdClicked>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();//表的字段timestamp、ip、userID、adID、province、city、clickedCountfor(final UserAdClicked clicked : userAdClickedList) {jdbcWrapper.doQuery("SELECT clickedCount FROM adclicked WHERE"+ " timestamp =? AND userID = ? AND adID = ?",new Object[]{clicked.getTimestamp(), clicked.getUserID(),clicked.getAdID()}, new ExecuteCallBack() {public void resultCallBack(ResultSet result) throws Exception {// TODO Auto-generated method stubif(result.next()) {long count = result.getLong(1);clicked.setClickedCount(count);updating.add(clicked);} else {inserting.add(clicked);clicked.setClickedCount(1L);} }});}//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> insertParametersList = new ArrayList<Object[]>();for(UserAdClicked insertRecord : inserting) {insertParametersList.add(new Object[] {insertRecord.getTimestamp(),insertRecord.getIp(),insertRecord.getUserID(),insertRecord.getAdID(),insertRecord.getProvince(),insertRecord.getCity(),insertRecord.getClickedCount()});}jdbcWrapper.doBatch("INSERT INTO adclicked VALUES(?, ?, ?, ?, ?, ?, ?)", insertParametersList);//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> updateParametersList = new ArrayList<Object[]>();for(UserAdClicked updateRecord : updating) {updateParametersList.add(new Object[] {updateRecord.getTimestamp(),updateRecord.getIp(),updateRecord.getUserID(),updateRecord.getAdID(),updateRecord.getProvince(),updateRecord.getCity(),updateRecord.getClickedCount() + 1});}jdbcWrapper.doBatch("UPDATE adclicked SET clickedCount = ? WHERE"+ " timestamp =? AND ip = ? AND userID = ? AND adID = ? "+ "AND province = ? AND city = ?", updateParametersList);} });return null;} });//再次过滤,从数据库中读取数据过滤黑名单JavaPairDStream<String, Long> blackListBasedOnHistory = filterClickedBatch.filter(new Function<Tuple2<String,Long>, Boolean>() {public Boolean call(Tuple2<String, Long> v1) throws Exception {//广告点击的基本数据格式:timestamp,ip,userID,adID,province,cityString[] splited = v1._1.split("\t"); //提取key值String date =splited[0];String userID =splited[2];String adID =splited[3];//查询一下数据库同一个用户同一个广告id点击量超过50次列入黑名单//接下来 根据date、userID、adID条件去查询用户点击广告的数据表,获得总的点击次数//这个时候基于点击次数判断是否属于黑名单点击int clickedCountTotalToday = 81 ;if (clickedCountTotalToday > 50) {return true;}else {return false ;} }});//map操作,找出用户的idJavaDStream<String> blackListuserIDBasedInBatchOnhistroy =blackListBasedOnHistory.map(new Function<Tuple2<String,Long>, String>() {public String call(Tuple2<String, Long> v1) throws Exception {// TODO Auto-generated method stubreturn v1._1.split("\t")[2];} });//有一个问题,数据可能重复,在一个partition里面重复,这个好办;//但多个partition不能保证一个用户重复,需要对黑名单的整个rdd进行去重操作。//rdd去重了,partition也就去重了,一石二鸟,一箭双雕// 找出了黑名单,下一步就写入黑名单数据库表中JavaDStream<String> blackListUniqueuserBasedInBatchOnhistroy = blackListuserIDBasedInBatchOnhistroy.transform(new Function<JavaRDD<String>, JavaRDD<String>>() {public JavaRDD<String> call(JavaRDD<String> rdd) throws Exception {// TODO Auto-generated method stubreturn rdd.distinct();} });// 下一步写入到数据表中blackListUniqueuserBasedInBatchOnhistroy.foreachRDD(new Function<JavaRDD<String>, Void>() {public Void call(JavaRDD<String> rdd) throws Exception {rdd.foreachPartition(new VoidFunction<Iterator<String>>() {public void call(Iterator<String> t) throws Exception {// TODO Auto-generated method stub//插入的用户信息可以只包含:useID//此时直接插入黑名单数据表即可。//写入数据库List<Object[]> blackList = new ArrayList<Object[]>();while(t.hasNext()) {blackList.add(new Object[]{t.next()});}JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();jdbcWrapper.doBatch("INSERT INTO blacklisttable values (?)", blackList);} });return null;} });/广告点击累计动态更新,每个updateStateByKey都会在Batch Duration的时间间隔的基础上进行广告点击次数的更新, 更新之后我们一般都会持久化到外部存储设备上,在这里我们存储到MySQL数据库中/JavaPairDStream<String, Long> updateStateByKeyDSteam = filteredadClickedStreaming.mapToPair(new PairFunction<Tuple2<String,String>, String, Long>() {public Tuple2<String, Long> call(Tuple2<String, String> t)throws Exception {String[] splited=t._2.split("\t");String timestamp = splited[0]; //YYYY-MM-DDString ip = splited[1];String userID = splited[2];String adID = splited[3];String province = splited[4];String city = splited[5]; String clickedRecord = timestamp + "_" +ip + "_"+userID+"_"+adID+"_"+province +"_"+city;return new Tuple2<String, Long>(clickedRecord, 1L);} }).updateStateByKey(new Function2<List<Long>, Optional<Long>, Optional<Long>>() {public Optional<Long> call(List<Long> v1, Optional<Long> v2)throws Exception {// v1:当前的Key在当前的Batch Duration中出现的次数的集合,例如{1,1,1,。。。,1}// v2:当前的Key在以前的Batch Duration中积累下来的结果;Long clickedTotalHistory = 0L; if(v2.isPresent()){clickedTotalHistory = v2.get();}for(Long one : v1) {clickedTotalHistory += one;}return Optional.of(clickedTotalHistory);} });updateStateByKeyDSteam.foreachRDD(new Function<JavaPairRDD<String,Long>, Void>() {public Void call(JavaPairRDD<String, Long> rdd) throws Exception {rdd.foreachPartition(new VoidFunction<Iterator<Tuple2<String,Long>>>() {public void call(Iterator<Tuple2<String, Long>> partition) throws Exception {//使用数据库连接池的高效读写数据库的方式将数据写入数据库mysql//例如一次插入 1000条 records,使用insertBatch 或 updateBatch//插入的用户数据信息:timestamp、adID、province、city//这里面有一个问题,可能出现两条记录的key是一样的,此时需要更新累加操作List<AdClicked> AdClickedList = new ArrayList<AdClicked>();while(partition.hasNext()) {Tuple2<String, Long> record = partition.next();String[] splited = record._1.split("\t");AdClicked adClicked = new AdClicked();adClicked.setTimestamp(splited[0]);adClicked.setAdID(splited[1]);adClicked.setProvince(splited[2]);adClicked.setCity(splited[3]);adClicked.setClickedCount(record._2);AdClickedList.add(adClicked);}final List<AdClicked> inserting = new ArrayList<AdClicked>();final List<AdClicked> updating = new ArrayList<AdClicked>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();//表的字段timestamp、ip、userID、adID、province、city、clickedCountfor(final AdClicked clicked : AdClickedList) {jdbcWrapper.doQuery("SELECT clickedCount FROM adclickedcount WHERE"+ " timestamp = ? AND adID = ? AND province = ? AND city = ?",new Object[]{clicked.getTimestamp(), clicked.getAdID(),clicked.getProvince(), clicked.getCity()}, new ExecuteCallBack() {public void resultCallBack(ResultSet result) throws Exception {// TODO Auto-generated method stubif(result.next()) {long count = result.getLong(1);clicked.setClickedCount(count);updating.add(clicked);} else {inserting.add(clicked);clicked.setClickedCount(1L);} }});}//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> insertParametersList = new ArrayList<Object[]>();for(AdClicked insertRecord : inserting) {insertParametersList.add(new Object[] {insertRecord.getTimestamp(),insertRecord.getAdID(),insertRecord.getProvince(),insertRecord.getCity(),insertRecord.getClickedCount()});}jdbcWrapper.doBatch("INSERT INTO adclickedcount VALUES(?, ?, ?, ?, ?)", insertParametersList);//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> updateParametersList = new ArrayList<Object[]>();for(AdClicked updateRecord : updating) {updateParametersList.add(new Object[] {updateRecord.getClickedCount(),updateRecord.getTimestamp(),updateRecord.getAdID(),updateRecord.getProvince(),updateRecord.getCity()});}jdbcWrapper.doBatch("UPDATE adclickedcount SET clickedCount = ? WHERE"+ " timestamp =? AND adID = ? AND province = ? AND city = ?", updateParametersList);} });return null;} });/ 对广告点击进行TopN计算,计算出每天每个省份Top5排名的广告 因为我们直接对RDD进行操作,所以使用了transfomr算子;/updateStateByKeyDSteam.transform(new Function<JavaPairRDD<String,Long>, JavaRDD<Row>>() {public JavaRDD<Row> call(JavaPairRDD<String, Long> rdd) throws Exception {JavaRDD<Row> rowRDD = rdd.mapToPair(new PairFunction<Tuple2<String,Long>, String, Long>() {public Tuple2<String, Long> call(Tuple2<String, Long> t)throws Exception {// TODO Auto-generated method stubString[] splited=t._1.split("_");String timestamp = splited[0]; //YYYY-MM-DDString adID = splited[3];String province = splited[4];String clickedRecord = timestamp + "_" + adID + "_" + province;return new Tuple2<String, Long>(clickedRecord, t._2);} }).reduceByKey(new Function2<Long, Long, Long>() {public Long call(Long v1, Long v2) throws Exception {// TODO Auto-generated method stubreturn v1 + v2;} }).map(new Function<Tuple2<String,Long>, Row>() {public Row call(Tuple2<String, Long> v1) throws Exception {// TODO Auto-generated method stubString[] splited=v1._1.split("_");String timestamp = splited[0]; //YYYY-MM-DDString adID = splited[3];String province = splited[4];return RowFactory.create(timestamp, adID, province, v1._2);} });StructType structType = DataTypes.createStructType(Arrays.asList(DataTypes.createStructField("timestamp", DataTypes.StringType, true),DataTypes.createStructField("adID", DataTypes.StringType, true),DataTypes.createStructField("province", DataTypes.StringType, true),DataTypes.createStructField("clickedCount", DataTypes.LongType, true)));HiveContext hiveContext = new HiveContext(rdd.context());DataFrame df = hiveContext.createDataFrame(rowRDD, structType);df.registerTempTable("topNTableSource");DataFrame result = hiveContext.sql("SELECT timestamp, adID, province, clickedCount, FROM"+ " (SELECT timestamp, adID, province,clickedCount, "+ "ROW_NUMBER() OVER(PARTITION BY province ORDER BY clickeCount DESC) rank "+ "FROM topNTableSource) subquery "+ "WHERE rank <= 5");return result.toJavaRDD();} }).foreachRDD(new Function<JavaRDD<Row>, Void>() {public Void call(JavaRDD<Row> rdd) throws Exception {// TODO Auto-generated method stubrdd.foreachPartition(new VoidFunction<Iterator<Row>>() {public void call(Iterator<Row> t) throws Exception {// TODO Auto-generated method stubList<AdProvinceTopN> adProvinceTopN = new ArrayList<AdProvinceTopN>();while(t.hasNext()) {Row row = t.next();AdProvinceTopN item = new AdProvinceTopN();item.setTimestamp(row.getString(0));item.setAdID(row.getString(1));item.setProvince(row.getString(2));item.setClickedCount(row.getLong(3));adProvinceTopN.add(item);}// final List<AdProvinceTopN> inserting = new ArrayList<AdProvinceTopN>();// final List<AdProvinceTopN> updating = new ArrayList<AdProvinceTopN>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();Set<String> set = new HashSet<String>();for(AdProvinceTopN item: adProvinceTopN){set.add(item.getTimestamp() + "_" + item.getProvince());}//表的字段timestamp、adID、province、clickedCountArrayList<Object[]> deleteParametersList = new ArrayList<Object[]>();for(String deleteRecord : set) {String[] splited = deleteRecord.split("_");deleteParametersList.add(new Object[]{splited[0],splited[1]});}jdbcWrapper.doBatch("DELETE FROM adprovincetopn WHERE timestamp = ? AND province = ?", deleteParametersList);//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> insertParametersList = new ArrayList<Object[]>();for(AdProvinceTopN insertRecord : adProvinceTopN) {insertParametersList.add(new Object[] {insertRecord.getClickedCount(),insertRecord.getTimestamp(),insertRecord.getAdID(),insertRecord.getProvince()});}jdbcWrapper.doBatch("INSERT INTO adprovincetopn VALUES (?, ?, ?, ?)", insertParametersList);} });return null;} });/ 计算过去半个小时内广告点击的趋势 广告点击的基本数据格式:timestamp、ip、userID、adID、province、city/filteredadClickedStreaming.mapToPair(new PairFunction<Tuple2<String,String>, String, Long>() {public Tuple2<String, Long> call(Tuple2<String, String> t)throws Exception {String splited[] = t._2.split("\t");String adID = splited[3];String time = splited[0]; //Todo:后续需要重构代码实现时间戳和分钟的转换提取。此处需要提取出该广告的点击分钟单位return new Tuple2<String, Long>(time + "_" + adID, 1L);} }).reduceByKeyAndWindow(new Function2<Long, Long, Long>() {public Long call(Long v1, Long v2) throws Exception {// TODO Auto-generated method stubreturn v1 + v2;} }, new Function2<Long, Long, Long>() {public Long call(Long v1, Long v2) throws Exception {// TODO Auto-generated method stubreturn v1 - v2;} }, Durations.minutes(30), Durations.milliseconds(5)).foreachRDD(new Function<JavaPairRDD<String,Long>, Void>() {public Void call(JavaPairRDD<String, Long> rdd) throws Exception {// TODO Auto-generated method stubrdd.foreachPartition(new VoidFunction<Iterator<Tuple2<String,Long>>>() {public void call(Iterator<Tuple2<String, Long>> partition)throws Exception {List<AdTrendStat> adTrend = new ArrayList<AdTrendStat>();// TODO Auto-generated method stubwhile(partition.hasNext()) {Tuple2<String, Long> record = partition.next();String[] splited = record._1.split("_");String time = splited[0];String adID = splited[1];Long clickedCount = record._2;/ 在插入数据到数据库的时候具体需要哪些字段?time、adID、clickedCount; 而我们通过J2EE技术进行趋势绘图的时候肯定是需要年、月、日、时、分这个维度的,所以我们在这里需要 年月日、小时、分钟这些时间维度;/AdTrendStat adTrendStat = new AdTrendStat();adTrendStat.setAdID(adID);adTrendStat.setClickedCount(clickedCount);adTrendStat.set_date(time); //Todo:获取年月日adTrendStat.set_hour(time); //Todo:获取小时adTrendStat.set_minute(time);//Todo:获取分钟adTrend.add(adTrendStat);}final List<AdTrendStat> inserting = new ArrayList<AdTrendStat>();final List<AdTrendStat> updating = new ArrayList<AdTrendStat>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();//表的字段timestamp、ip、userID、adID、province、city、clickedCountfor(final AdTrendStat trend : adTrend) {final AdTrendCountHistory adTrendhistory = new AdTrendCountHistory();jdbcWrapper.doQuery("SELECT clickedCount FROM adclickedtrend WHERE"+ " date =? AND hour = ? AND minute = ? AND AdID = ?",new Object[]{trend.get_date(), trend.get_hour(), trend.get_minute(),trend.getAdID()}, new ExecuteCallBack() {public void resultCallBack(ResultSet result) throws Exception {// TODO Auto-generated method stubif(result.next()) {long count = result.getLong(1);adTrendhistory.setClickedCountHistoryLong(count);updating.add(trend);} else { inserting.add(trend);} }});}//表的字段date、hour、minute、adID、clickedCountList<Object[]> insertParametersList = new ArrayList<Object[]>();for(AdTrendStat insertRecord : inserting) {insertParametersList.add(new Object[] {insertRecord.get_date(),insertRecord.get_hour(),insertRecord.get_minute(),insertRecord.getAdID(),insertRecord.getClickedCount()});}jdbcWrapper.doBatch("INSERT INTO adclickedtrend VALUES(?, ?, ?, ?, ?)", insertParametersList);//表的字段date、hour、minute、adID、clickedCountList<Object[]> updateParametersList = new ArrayList<Object[]>();for(AdTrendStat updateRecord : updating) {updateParametersList.add(new Object[] {updateRecord.getClickedCount(),updateRecord.get_date(),updateRecord.get_hour(),updateRecord.get_minute(),updateRecord.getAdID()});}jdbcWrapper.doBatch("UPDATE adclickedtrend SET clickedCount = ? WHERE"+ " date =? AND hour = ? AND minute = ? AND AdID = ?", updateParametersList);} });return null;} });;/ Spark Streaming 执行引擎也就是Driver开始运行,Driver启动的时候是位于一条新的线程中的,当然其内部有消息循环体,用于 接收应用程序本身或者Executor中的消息,/javassc.start();javassc.awaitTermination();javassc.close();}private static JavaStreamingContext createContext(String checkpointDirectory, SparkConf conf) {// If you do not see this printed, that means the StreamingContext has been loaded// from the new checkpointSystem.out.println("Creating new context");// Create the context with a 5 second batch sizeJavaStreamingContext ssc = new JavaStreamingContext(conf, Durations.seconds(10));ssc.checkpoint(checkpointDirectory);return ssc;} }class JDBCWrapper {private static JDBCWrapper jdbcInstance = null;private static LinkedBlockingQueue<Connection> dbConnectionPool = new LinkedBlockingQueue<Connection>();static {try {Class.forName("com.mysql.jdbc.Driver");} catch (ClassNotFoundException e) {// TODO Auto-generated catch blocke.printStackTrace();} }public static JDBCWrapper getJDBCInstance() {if(jdbcInstance == null) {synchronized (JDBCWrapper.class) {if(jdbcInstance == null) {jdbcInstance = new JDBCWrapper();} }}return jdbcInstance; }private JDBCWrapper() {for(int i = 0; i < 10; i++){try {Connection conn = DriverManager.getConnection("jdbc:mysql://Master:3306/sparkstreaming","root", "root");dbConnectionPool.put(conn);} catch (Exception e) {// TODO Auto-generated catch blocke.printStackTrace();} } }public synchronized Connection getConnection() {while(0 == dbConnectionPool.size()){try {Thread.sleep(20);} catch (InterruptedException e) {// TODO Auto-generated catch blocke.printStackTrace();} }return dbConnectionPool.poll();}public int[] doBatch(String sqlText, List<Object[]> paramsList){Connection conn = getConnection();PreparedStatement preparedStatement = null;int[] result = null;try {conn.setAutoCommit(false);preparedStatement = conn.prepareStatement(sqlText);for(Object[] parameters: paramsList) {for(int i = 0; i < parameters.length; i++){preparedStatement.setObject(i + 1, parameters[i]);} preparedStatement.addBatch();}result = preparedStatement.executeBatch();conn.commit();} catch (SQLException e) {// TODO Auto-generated catch blocke.printStackTrace();} finally {if(preparedStatement != null) {try {preparedStatement.close();} catch (SQLException e) {// TODO Auto-generated catch blocke.printStackTrace();} }if(conn != null) {try {dbConnectionPool.put(conn);} catch (InterruptedException e) {// TODO Auto-generated catch blocke.printStackTrace();} }}return result; }public void doQuery(String sqlText, Object[] paramsList, ExecuteCallBack callback){Connection conn = getConnection();PreparedStatement preparedStatement = null;ResultSet result = null;try {preparedStatement = conn.prepareStatement(sqlText);for(int i = 0; i < paramsList.length; i++){preparedStatement.setObject(i + 1, paramsList[i]);} result = preparedStatement.executeQuery();try {callback.resultCallBack(result);} catch (Exception e) {// TODO Auto-generated catch blocke.printStackTrace();} } catch (SQLException e) {// TODO Auto-generated catch blocke.printStackTrace();} finally {if(preparedStatement != null) {try {preparedStatement.close();} catch (SQLException e) {// TODO Auto-generated catch blocke.printStackTrace();} }if(conn != null) {try {dbConnectionPool.put(conn);} catch (InterruptedException e) {// TODO Auto-generated catch blocke.printStackTrace();} }} }}interface ExecuteCallBack {void resultCallBack(ResultSet result) throws Exception;}class UserAdClicked {private String timestamp;private String ip;private String userID;private String adID;private String province;private String city;private Long clickedCount;public String getTimestamp() {return timestamp;}public void setTimestamp(String timestamp) {this.timestamp = timestamp;}public String getIp() {return ip;}public void setIp(String ip) {this.ip = ip;}public String getUserID() {return userID;}public void setUserID(String userID) {this.userID = userID;}public String getAdID() {return adID;}public void setAdID(String adID) {this.adID = adID;}public String getProvince() {return province;}public void setProvince(String province) {this.province = province;}public String getCity() {return city;}public void setCity(String city) {this.city = city;}public Long getClickedCount() {return clickedCount;}public void setClickedCount(Long clickedCount) {this.clickedCount = clickedCount;} }class AdClicked {private String timestamp;private String adID;private String province;private String city;private Long clickedCount;public String getTimestamp() {return timestamp;}public void setTimestamp(String timestamp) {this.timestamp = timestamp;}public String getAdID() {return adID;}public void setAdID(String adID) {this.adID = adID;}public String getProvince() {return province;}public void setProvince(String province) {this.province = province;}public String getCity() {return city;}public void setCity(String city) {this.city = city;}public Long getClickedCount() {return clickedCount;}public void setClickedCount(Long clickedCount) {this.clickedCount = clickedCount;} }class AdProvinceTopN {private String timestamp;private String adID;private String province;private Long clickedCount;public String getTimestamp() {return timestamp;}public void setTimestamp(String timestamp) {this.timestamp = timestamp;}public String getAdID() {return adID;}public void setAdID(String adID) {this.adID = adID;}public String getProvince() {return province;}public void setProvince(String province) {this.province = province;}public Long getClickedCount() {return clickedCount;}public void setClickedCount(Long clickedCount) {this.clickedCount = clickedCount;} }class AdTrendStat {private String _date;private String _hour;private String _minute;private String adID;private Long clickedCount;public String get_date() {return _date;}public void set_date(String _date) {this._date = _date;}public String get_hour() {return _hour;}public void set_hour(String _hour) {this._hour = _hour;}public String get_minute() {return _minute;}public void set_minute(String _minute) {this._minute = _minute;}public String getAdID() {return adID;}public void setAdID(String adID) {this.adID = adID;}public Long getClickedCount() {return clickedCount;}public void setClickedCount(Long clickedCount) {this.clickedCount = clickedCount;} }class AdTrendCountHistory{private Long clickedCountHistoryLong;public Long getClickedCountHistoryLong() {return clickedCountHistoryLong;}public void setClickedCountHistoryLong(Long clickedCountHistoryLong) {this.clickedCountHistoryLong = clickedCountHistoryLong;} } 本篇文章为转载内容。原文链接:https://blog.csdn.net/tom_8899_li/article/details/71194434。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-14 19:16:35
297
转载
Go Iris
...,gRPC应运而生。Google开源的gRPC,这可是一款超级给力、速度飞快的通用RPC框架。它不仅性能炸裂,编码解码效率高到没朋友,而且还有一大堆实用工具给你保驾护航,真是让人爱不释手的优点多多啊!那么,如何在Iris中结合gRPC服务呢?本文将会给出详细的介绍。 二、安装gRPC 首先,我们需要在项目中引入gRPC。可以通过以下命令来安装: bash go get google.golang.org/grpc 三、创建gRPC服务 接下来,我们需要创建一个gRPC服务。这个例子,咱们来捣鼓一个超简单的“HelloWorld”小服务,这玩意儿有个功能叫做SayHello。你只要给它传个名字,它就能变魔术般地给你返回一条包含亲切问候的消息。 protobuf syntax = "proto3"; package hello; service HelloWorld { rpc SayHello (HelloRequest) returns (HelloReply) {} } message HelloRequest { string name = 1; } message HelloReply { string message = 1; } 然后,我们可以使用protoc编译器将这个.proto文件编译成Go语言代码: bash protoc -I=. --go_out=. hello.proto 这会生成两个文件:hello.pb.go和hello.pb.h。这两个文件包含了我们之前定义的所有类型和函数。 四、在Iris中调用gRPC服务 有了gRPC服务之后,我们就可以在Iris应用中调用了。首先,我们需要导入gRPC的相关库: go import ( "context" "fmt" "net" "time" "google.golang.org/grpc" "github.com/kataras/iris/v12" ) 然后,我们需要启动gRPC服务器: go func main() { l, err := net.Listen("tcp", ":50051") if err != nil { panic(err) } go func() { defer l.Close() for { conn, err := l.Accept() if err != nil { fmt.Println(err) continue } go serveGRPC(conn) } }() iris.Default.Run(":8080") } func serveGRPC(conn net.Conn) { defer conn.Close() c, err := grpc.NewClientConn(conn) if err != nil { return } defer c.Close() client := new(hello.HelloWorldClient) stream, err := client.SayHello(context.Background(), &hello.HelloRequest{Name: "world"}) if err != nil { return } for { msg, err := stream.Recv() if err == io.EOF { break } if err != nil { return } fmt.Printf("Received %s\n", msg.Message) } } 最后,在Iris应用中,我们可以这样调用这个服务: go func handler(ctx iris.Context) { grpcStream, grpcStatus, err := ctx.GRPCServerStream("say_hello", &hello.HelloRequest{Name: "world"}) if err != nil { ctx.StatusCode(grpcStatus.Code()) ctx.WriteString(err.Error()) return } go func() { defer grpcStream.CloseSend() message := &hello.HelloReply{Message: "Hello " + grpcStream.Recv().(hello.HelloRequest).Name} if err := grpcStream.Send(message); err != nil { log.Println("Error sending reply:", err) } }() } 五、结论 以上就是如何在Iris中结合gRPC服务的一个简单教程。通过这个教程,咱们就能发现,利用gRPC这个神器,咱们的服务效率和灵活性都能妥妥地往上蹭蹭涨!而且,要知道gRPC可是搭建在HTTP/2的基础之上,这就意味着它的稳定性和可靠性比起那些传统的RPC框架来说,可是更胜一筹!所以,甭管你是在捣鼓自己的小玩意儿,还是在搭建企业级的超级大应用,都可以考虑用上gRPC这个神器!
2023-04-20 14:32:44
450
幽谷听泉-t
RabbitMQ
...TP集成 HTTP API Gateway 为了支持HTTP请求,RabbitMQ可以与HTTP API Gateway集成。例如,我们可以使用amqplib库来编写Node.js代码,如下所示: javascript const amqp = require('amqplib'); async function publishHttpMessage(url) { const connection = await amqp.connect('amqp://localhost'); const channel = await connection.createChannel(); // 创建一个HTTP Exchange await channel.exchangeDeclare( 'http_requests', // Exchange name 'topic', // Exchange type (HTTP requests use topic) { durable: false } // Durable exchanges are not needed for HTTP ); // 发送HTTP请求消息 const message = { routingKey: 'http.request.', // Match all HTTP requests body: JSON.stringify({ url }), }; await channel.publish('http_requests', message.routingKey, Buffer.from(JSON.stringify(message))); console.log(Published HTTP request to ${url}); await channel.close(); await connection.close(); } // 调用函数并发送请求 publishHttpMessage('https://example.com/api/v1'); 这种方式允许API Gateway接收来自客户端的HTTP请求,然后将这些请求转化为RabbitMQ的消息,进一步转发给后端处理服务。 4. gRPC集成 gRPC-RabbitMQ Bridge 对于gRPC,我们可能需要一个中间件桥接器,如grpc-gateway和protobuf-rpc。例如,gRPC客户端可以通过gRPC Gateway将请求转换为HTTP请求,然后由RabbitMQ处理。这里有一个简化版的伪代码示例: python from google.api import service_pb2_grpc from grpc_gateway import services_pb2, gateway class RabbitMQGrpcHandler(service_pb2_grpc.MyServiceServicer): def UnaryCall(self, request, context): Convert gRPC request to RabbitMQ message rabbit_message = services_pb2.MyRequestToProcess(request.to_dict()) Publish the message to RabbitMQ with channel: channel.basic_publish( exchange='gRPC_Requests', routing_key=rabbit_message.routing_key, body=json.dumps(rabbit_message), properties=pika.BasicProperties(content_type='application/json') ) Return a response or acknowledge the call return services_pb2.MyResponse(status="Accepted") Start the gRPC server with the RabbitMQ handler server = grpc.server(futures.ThreadPoolExecutor(max_workers=10)) service_pb2_grpc.add_MyServiceServicer_to_server(RabbitMQGrpcHandler(), server) server.add_insecure_port('[::]:50051') server.start() 这样,gRPC客户端发出的请求经过gRPC Gateway的适配,最终被RabbitMQ处理,实现异步解耦。 5. 特点和应用场景 - 灵活性:HTTP和gRPC集成使得RabbitMQ能够适应各种服务间的通信需求,无论是API网关、微服务架构还是跨语言通信。 - 解耦:生产者和消费者不需要知道对方的存在,提高了系统的可维护性和扩展性。 - 扩展性:RabbitMQ的集群模式允许在高并发场景下轻松扩展。 - 错误处理:消息持久化和重试机制有助于处理暂时性的网络问题。 - 安全性:通过SSL/TLS可以确保消息传输的安全性。 6. 结论 RabbitMQ的强大之处在于它能跨越多种协议,提供了一种通用的消息传递平台。你知道吗,咱们可以像变魔术那样,把HTTP和gRPC这两个家伙灵活搭配起来,这样就能构建出一个超级灵动、随时能扩展的分布式系统,就跟你搭积木一样,想怎么拼就怎么拼,特别给力!当然啦,实际情况是会根据咱们项目的需求和手头现有的技术工具箱灵活调整具体实现方式,不过无论咋整,RabbitMQ都像是个超级靠谱的邮差,让各个服务之间的交流变得贼顺畅。
2024-02-23 11:44:00
92
笑傲江湖-t
Docker
...在集群资源调度方面的对比分析,文中引用了多个行业案例,强调合理利用集群管理系统对于有效分配容器资源、避免竞争瓶颈的重要性,这对于大规模部署Docker容器的用户极具参考价值。 另外,Cloud Native Computing Foundation(CNCF)社区的一项研究揭示了网络存储解决方案在容器环境中的最新发展动态,如CSI(Container Storage Interface)接口支持下的Amazon EFS、Google Cloud Filestore等云存储服务如何助力企业级用户实现Docker存储卷的高效管理和扩展。 综上所述,持续跟进Docker及其生态系统的最新技术动态,结合具体业务场景灵活运用资源管理策略、优化存储配置以及选择合适的镜像构建方案,将有力推动Docker在生产环境中的性能表现和稳定性提升。
2023-04-04 23:17:36
512
算法侠
MySQL
...,AWS近期宣布对其Amazon RDS for MySQL服务进行升级,全面支持MySQL 8.0版本,用户可以利用其增强的窗口函数、JSON功能以及安全审计特性来构建更为复杂且安全的企业级应用。此外,Google Cloud也发布了关于优化MySQL在GCP(Google Cloud Platform)上的最佳实践指南,强调了如何结合Cloud SQL与缓存技术如Memcached或Redis,以实现数据的快速读取与响应。 与此同时,对于大数据场景下的MySQL应用,业界正积极探索将其与Apache Spark、Hadoop等大数据框架深度整合的可能性,通过建立高效的数据管道,实现SQL查询与大数据分析任务的无缝对接。这种趋势使得MySQL不仅局限于在线交易处理(OLTP),也开始在在线分析处理(OLAP)领域展现潜力。 综上所述,MySQL作为关系型数据库的重要代表,在面对云计算、大数据等新兴技术挑战时,持续演进并展现出强大的适应力。深入研究MySQL的新特性及其在不同技术栈中的集成应用,将有助于开发者更好地应对实际业务需求,提升系统性能与稳定性。
2024-02-28 15:31:14
130
逻辑鬼才
Tesseract
... 调整字符的亮度和对比度 enhanced_char = char.convert('L').point(lambda x: x 1.5) 显示原字符和处理后的字符 char.show() enhanced_char.show() 3. 模型优化 最后,我们还可以尝试对Tesseract的模型进行优化,使其更加适合处理模糊图像。简单来说,我们在训练模型的时候,可以适当掺入一些模糊不清的样本数据,这样做能让模型更能适应这种“迷糊”的情况,就像让模型多见识见识各种不同的环境,提高它的应变能力一样。另外,我们也可以考虑尝鲜一些更高端的深度学习玩法,比如采用带注意力机制的OCR模型,让它代替老旧的CRNN模型,给咱们的任务加点猛料。 四、总结 总的来说,通过上述方法,我们可以有效地提高Tesseract识别模糊图像的效果。当然啦,这还只是我们的一次小小试水,要想真正挖掘出更优的解决方案,我们还得加把劲儿,继续深入研究和探索才行。
2023-05-12 09:28:36
115
时光倒流-t
AngularJS
...am Abrons在Google创建。它是一个开源的JavaScript框架,主要用于构建单页应用(SPA)。从那时候开始,AngularJS 就在前端开发界火了起来,它的数据绑定功能超级强大,让咱们这些开发者能更轻松地搞定用户界面和数据互动的问题。而$watch,就是AngularJS中数据绑定的核心机制之一。它就像是一位尽职的守卫,一直盯着模型数据的动静,一旦有啥变化,就赶紧通知视图更新一下。接下来,我们深入了解一下$watch的工作原理吧! 3. $watch的基本概念 $watch是AngularJS中$scope对象的一个方法,它的主要作用是监听模型数据的变化。简单地说,就是当数据有变化时,$watch就会启动一个回调函数,这样就能让视图自动更新啦。这听起来是不是挺酷的?接下来,咱们用个小例子来瞧瞧$watch到底是怎么运作的。 示例代码1:基本的$watch使用 html Hello, { { name } }! 在这个例子中,我们定义了一个简单的输入框和一个问候语句。当你在输入框里打字时,name这个变量也会跟着变化。这时候,$watch就像个哨兵一样,检测到变化后就会触发一个回调函数,然后蹦出一条日志信息。你可以试试看,在输入框中输入不同的名字,看看控制台有什么变化。 4. $watch的高级用法 除了基本的使用方式,$watch还可以接受一个函数作为参数,这个函数负责返回需要被监听的数据。这种方式可以更灵活地控制监听的范围和条件。下面,我们来看一个稍微复杂一点的例子。 示例代码2:使用函数作为参数 html User: { { userInfo.name } } Update User 在这个例子中,我们添加了一个按钮,点击按钮后会调用updateUser函数,更新userInfo.name的值。用函数当参数,咱们就能更精准地盯紧某个属性的变化,而不用大费周章地监视整个对象。 5. 思考与讨论 到这里,你可能已经对$watch有了更深的理解。不过,你有没有想过,$watch真的在所有情况下都好用吗?比如说,当你做的应用越来越复杂时,太多的$watch可能会拖慢速度。这时候,我们或许得想想其他的办法,比如用$scope.$watchGroup或者$scope.$watchCollection这些方法,来提升一下性能。 另外,你有没有尝试过自己实现类似$watch的功能?这将是一个非常有趣且富有挑战性的实践项目。通过这种练习,你会更清楚AngularJS到底是怎么运作的,说不定还能找到一些可以改进的地方呢! 6. 结语 好了,今天的分享就到这里。希望你看完这篇文章后,不仅能搞定$watch的基础用法,还能对它的进阶玩法和那些坑爹的问题有点儿数。记住,编程不仅仅是解决问题的过程,更是一场探索未知的旅程。希望你在未来的编程道路上越走越远,发现更多有趣的东西! 最后,如果你有任何疑问或想了解更多细节,请随时联系我。让我们一起探索AngularJS的世界,享受编程带来的乐趣吧!
2025-02-02 16:00:09
29
清风徐来
ActiveMQ
...求。而在云服务领域,Amazon SQS推出了高级消息队列(Amazon SQS FIFO queues), 保证了消息的严格顺序传递,这对于金融交易、物联网等场景下需要遵循顺序的消息路由有着重要意义。 总的来说,在持续关注并掌握ActiveMQ消息过滤与路由机制的同时,我们还应紧跟业界发展步伐,对比研究其他主流消息队列产品的特性和最佳实践,以便更好地应对日益复杂的业务需求,并优化分布式系统的性能与稳定性。
2023-12-25 10:35:49
421
笑傲江湖
Spark
...与云原生数据库服务如Amazon RDS、Azure SQL Database和Google Cloud SQL的兼容性和性能。 此外,业界对于利用Spark进行实时数据处理和机器学习应用的需求日益增长。例如,某知名电商企业通过优化Spark与内部MySQL数据库的交互流程,成功实现了商品推荐系统的实时更新,显著提升了用户体验及转化率。这也突显出熟练掌握Spark数据导入技术并结合实际业务场景的重要性。 另外值得注意的是,在确保数据高效导入的同时,数据安全与隐私保护同样不容忽视。近期GDPR等相关法规的出台,要求企业在数据迁移过程中严格遵守数据最小化原则,并确保传输过程加密。因此,在使用Spark进行数据集成时,应充分考虑采用安全的连接方式,以及对敏感信息进行适当脱敏处理,以满足合规性要求。 综上所述,无论是从技术发展动态还是实践应用案例,都揭示了Apache Spark作为大数据处理引擎在数据迁移与集成领域的核心地位及其持续演进的趋势。而在此基础上深入理解并灵活运用数据导入策略,无疑将成为现代数据驱动型企业构建高效、安全数据分析体系的关键所在。
2023-12-24 19:04:25
162
风轻云淡-t
Netty
...术之一。 例如,近日Google发布了Chrome浏览器对WebSocket协议的重大更新,旨在提升连接稳定性与数据传输效率,并优化了对WebSocket握手过程中的错误处理机制,这将有助于开发者更好地应对类似“握手失败”等问题。同时,一些开源项目如Spring Framework 5.x版本也强化了对WebSocket的支持,提供了更简洁易用的API来帮助开发者创建符合规范的WebSocket服务端,从而有效避免因握手响应不完整或无效导致的问题。 此外,对于深入理解WebSocket协议规范以及实战应用,可以进一步研读RFC6455(WebSocket协议标准)以获取第一手权威资料,并参考行业内的最佳实践案例,比如各大云服务商基于WebSocket实现的消息推送服务架构解析,从中吸取经验教训,确保在使用Netty等工具进行WebSocket编程时能够更加得心应手。 总之,在实际开发过程中,紧跟WebSocket协议和技术的发展趋势,结合本文所探讨的Netty框架下握手问题解决方案,将有助于我们打造更为稳定、高效且符合业界标准的WebSocket应用程序。
2023-11-19 08:30:06
211
凌波微步
Tesseract
...的图像输入。 同时,Google于2021年对其开源的Tesseract OCR引擎进行了重要升级,新增了对更多语言的支持,并优化了对模糊、低分辨率图像的识别能力。实际应用中,如在档案数字化、车牌识别、历史文献复原等领域,这些技术进步都极大地提高了工作效率和数据准确性。 此外,针对特定场景下的OCR问题,学术界和工业界也正积极研发定制化解决方案。例如,有研究团队成功开发出一种专门用于医疗影像报告自动识别与结构化的OCR系统,有助于医生快速获取关键信息,提高医疗服务效率。 综上所述,OCR技术的发展日新月异,其在改善图像识别性能、解决现实世界问题方面的价值日益凸显,值得广大开发者和技术爱好者持续关注与深入探讨。
2023-02-06 17:45:52
66
诗和远方-t
Tesseract
...开源的OCR引擎,由Google维护,支持多种语言的文本识别。它不仅功能强大,而且灵活性高,能够应对各种复杂的图像处理任务。但是,面对模糊的图像,Tesseract也并非万能。 代码示例一:基本的Tesseract使用 python import pytesseract from PIL import Image 加载图像 image = Image.open('path_to_your_image.jpg') 使用Tesseract进行文本识别 text = pytesseract.image_to_string(image) print(text) 这段代码展示了如何使用Python和Tesseract来识别图像中的文本。当然啦,这只是一个超级简单的例子,真正在用的时候,肯定得花更多心思去调整和优化才行。 第三部分:处理模糊图像的策略 既然我们已经知道了问题所在,接下来就该谈谈解决方案了。处理模糊图像的秘诀就是先给它来个大变身!通过一些小技巧让图片变得更清晰,然后再交给Tesseract这个厉害的角色去认字。这样识别出来的内容才会更准确。下面,我将分享几种常用的方法。 1. 图像锐化 图像锐化可以显著提升图像的清晰度,让原本模糊的文字变得更加明显。我们可以使用OpenCV库来实现这一效果。 代码示例二:使用OpenCV进行图像锐化 python import cv2 加载图像 image = cv2.imread('path_to_your_image.jpg') 定义核矩阵 kernel = np.array([[0, -1, 0], [-1, 5,-1], [0, -1, 0]]) 应用锐化 sharpened = cv2.filter2D(image, -1, kernel) 显示结果 cv2.imshow('Sharpened Image', sharpened) cv2.waitKey(0) cv2.destroyAllWindows() 这段代码展示了如何使用OpenCV对图像进行锐化处理。通过调整核矩阵,你可以控制锐化的强度。 2. 增强对比度 有时,图像的模糊不仅仅是由于缺乏细节,还可能是因为对比度过低。在这种情况下,增加对比度可以帮助改善识别效果。 代码示例三:使用OpenCV增强对比度 python 调整亮度和对比度 adjusted = cv2.convertScaleAbs(image, alpha=2, beta=30) 显示结果 cv2.imshow('Adjusted Image', adjusted) cv2.waitKey(0) cv2.destroyAllWindows() 这里我们通过convertScaleAbs函数调整了图像的亮度和对比度,使文字更加突出。 第四部分:实战演练 最后,让我们结合以上提到的技术,看看如何实际操作。假设我们有一张模糊的图像,我们希望从中提取出关键信息。 完整示例代码 python import cv2 import numpy as np import pytesseract 加载图像 image = cv2.imread('path_to_your_image.jpg') 锐化图像 kernel = np.array([[0, -1, 0], [-1, 5,-1], [0, -1, 0]]) sharpened = cv2.filter2D(image, -1, kernel) 增强对比度 adjusted = cv2.convertScaleAbs(sharpened, alpha=2, beta=30) 转换为灰度图 gray = cv2.cvtColor(adjusted, cv2.COLOR_BGR2GRAY) 使用Tesseract进行文本识别 text = pytesseract.image_to_string(gray, lang='chi_sim') 如果是中文,则指定语言为'chi_sim' print(text) 这段代码首先对图像进行了锐化和对比度增强,然后转换为灰度图,最后才交给Tesseract进行识别。这样可以大大提高识别的成功率。 --- 好了,这就是今天的所有内容了。希望这篇分享对你有所帮助,尤其是在处理模糊图像时。嘿,别忘了,科技这东西总是日新月异的,遇到难题别急着放弃,多探索探索,说不定会有意想不到的收获呢!如果你有任何问题或者想分享你的经验,欢迎随时交流!
2024-10-23 15:44:16
137
草原牧歌
Tesseract
...esseract,由Google支持并维护,是一个拥有极高准确率和广泛语言支持的OCR引擎。它能够识别图像中的文本信息,并将其转换为可编辑、可搜索的数据格式。就像生活中的各种复杂玩意儿一样,Tesseract这家伙在对付某些刁钻场景或是处理大工程时,也有可能会“卡壳”,闹个小脾气,这就引出了我们今天要讨论的“RecognitionTimeoutExceeded”这个问题啦。 3. “RecognitionTimeoutExceeded”:问题解析 - 定义:当Tesseract在规定的时间内无法完成对输入图像的识别工作时,就会抛出“RecognitionTimeoutExceeded”异常。这个时间限制是Tesseract自己内部定的一个规矩,主要是为了避免在碰到那些耗时又没啥结果,或者根本就解不开的难题时,它没完没了地运转下去。 - 原因:这种超时可能由于多种因素引起,例如图像质量差、字体复杂度高、文字区域过于密集或者识别参数设置不当等。尤其是对于复杂的、难以解析的图片,Tesseract可能需要更多的时间来尝试识别。 4. 代码示例及解决策略 (a) 示例一:调整识别超时时间 python import pytesseract from PIL import Image 加载图像 img = Image.open('complex_image.png') 设置Tesseract识别超时时间为60秒(默认通常为5秒) pytesseract.pytesseract.tesseract_cmd = 'path_to_your_tesseract_executable' config = '--oem 3 --psm 6 -c tessedit_timeout=60' text = pytesseract.image_to_string(img, config=config) print(text) 在这个例子中,我们通过修改tessedit_timeout配置项,将识别超时时间从默认的5秒增加到了60秒,以适应更复杂的识别场景。 (b) 示例二:优化图像预处理 有时,即使延长超时时间也无法解决问题,这时我们需要关注图像本身的优化。以下是一个简单的预处理步骤示例: python import cv2 import pytesseract 加载图像并灰度化 img = cv2.imread('complex_image.png', cv2.IMREAD_GRAYSCALE) 使用阈值进行二值化处理 _, img = cv2.threshold(img, 180, 255, cv2.THRESH_BINARY_INV) 再次尝试识别 text = pytesseract.image_to_string(img) print(text) 通过图像预处理(如灰度化、二值化等),可以显著提高Tesseract的识别效率和准确性,从而避免超时问题。 5. 思考与讨论 虽然调整超时时间和优化图像预处理可以在一定程度上缓解“RecognitionTimeoutExceeded”问题,但我们也要意识到,这并非万能良药。对于某些极其复杂的图像识别难题,我们可能还需要更进一步,捣鼓出更高阶的算法优化手段,或者考虑给硬件设备升个级,甚至可以试试分布式计算这种“大招”,来搞定它。 总之,面对Tesseract的“RecognitionTimeoutExceeded”,我们需要保持耐心与探究精神,通过不断调试和优化,才能让这款强大的OCR工具发挥出最大的效能。 结语 在技术的海洋里航行,难免会遭遇风浪,而像Tesseract这样强大的工具也不例外。当你真正摸清了“RecognitionTimeoutExceeded”这个小妖精的来龙去脉,以及应对它的各种妙招,就能把Tesseract这员大将驯得服服帖帖,在咱们的项目里发挥核心作用,推着我们在OCR的世界里一路狂奔,不断刷新成绩,取得更大的突破。
2023-09-16 16:53:34
55
春暖花开
Superset
...数据源,包括但不限于Amazon Redshift、Google BigQuery、Snowflake等云数据库服务,这无疑拓宽了用户在混合云或多云环境下的数据集成能力。同时,Superset也在提升安全性方面有所作为,如通过增强SQL Lab的安全策略来保护敏感数据,并优化元数据库管理机制,使得大规模企业级部署更为稳健可靠。 此外,针对现代数据分析工作中实时性要求的提高,Superset也正在积极整合流处理平台,如Kafka、Flink等,以实现对实时数据流的可视化分析。这意味着,在不久的将来,用户可能可以直接在Superset中配置实时数据源,进一步丰富其在业务监控、风险预警等方面的应用场景。 综上所述,掌握Superset数据源管理的基础操作只是第一步,持续关注该领域的技术动态和发展趋势,将有助于我们更好地利用这一强大工具,挖掘数据背后的深层价值,赋能企业决策与创新。
2023-06-10 10:49:30
75
寂静森林
HessianRPC
...AWS推出了一项名为Amazon API Gateway的托管服务,内置了智能连接池管理,可根据实时流量自动调整连接数量,这对于大规模HessianRPC部署具有重要意义。 Google Cloud也发布了新的优化策略,他们提倡使用gRPC作为替代方案,其内置的高性能HTTP/2和流处理能力,使得连接池管理更加高效。同时,Google强调了服务网格(Service Mesh)在连接池管理中的角色,通过统一的控制平面,实现全局的连接池优化和流量治理。 另外,Apache Netty等开源框架也在不断更新,引入了更多的高级功能,如异步I/O和多路复用,这进一步提升了连接池的性能。同时,对连接池优化的实时监控和自动调整算法的研究也在机器学习和数据科学的驱动下取得突破,比如使用AI预测模型来动态调整连接池大小。 总的来说,HessianRPC的连接池优化不再是孤立的技术问题,而是与整个系统架构、云服务和新兴技术紧密结合。开发者和架构师需要密切关注这些最新动态,以便在实际项目中做出最佳决策,实现更高效的分布式系统。
2024-03-31 10:36:28
503
寂静森林
SpringCloud
...中的锁服务设计原则,Google Chubby论文以及Amazon DynamoDB的Conditional Writes等经典技术文档,都深入剖析了分布式锁的设计思路和挑战,是深化理论知识、拓宽视野的良好延伸阅读资料。 同时,随着云原生时代的到来,Kubernetes等容器编排平台也开始关注分布式锁在多实例部署下的应用,例如使用Kubernetes CRD(CustomResourceDefinition)实现的分布式锁方案,为开发者在云环境下的微服务架构设计提供了新的思路和工具集。 综上所述,在面对不断发展的云计算和微服务架构趋势下,持续关注并学习业界先进的分布式锁实践和理论研究成果,将有助于我们在解决实际工作中的一致性问题时更加得心应手,从而构建出更为健壮、高效的分布式系统。
2023-03-19 23:46:57
89
青春印记
Kubernetes
...I的融合应用。例如,Google Cloud Platform(GCP)通过与AI技术的结合,为Kubernetes用户提供了更智能的管理工具和服务,如AutoML,帮助用户更高效地构建和部署机器学习模型。此外,AWS的Amazon Elastic Container Service (ECS)也通过集成AI功能,增强了其在自动化部署和运维方面的能力。 随着AI技术的不断进步和成熟,Kubernetes与AI的结合将带来更多的可能性。未来,我们或许可以看到更加智能、自动化的云平台,能够自主地进行资源管理、故障检测、服务优化等,为用户提供更加高效、稳定的云计算体验。 结语 Kubernetes与AI的融合是云计算领域的一大创新,它不仅提高了云平台的智能化水平,也为开发者提供了更多创新的空间。随着技术的持续发展,这一领域的潜力还有待进一步挖掘,未来值得期待。
2024-09-05 16:21:55
60
昨夜星辰昨夜风
NodeJS
...rome V8引擎是Google开发的开源JavaScript引擎,用于在浏览器中解析、编译和执行JavaScript代码。在Node.js中,V8引擎被用作其运行环境的核心部分,将JavaScript代码转换为机器码,实现高性能的服务器端JavaScript应用。 无服务器架构(Serverless Architecture) , 在本文语境下,无服务器架构是一种云计算模型,其中开发者无需关注底层服务器的运维管理,只需编写和上传业务逻辑代码至服务提供商如AWS Lambda。在这种模式下,平台会自动管理和扩展计算资源,按需执行代码并仅对实际使用的计算资源计费。 实时通信应用 , 实时通信应用是指能够实现实时数据交换和互动的应用程序,如在线聊天室、协同编辑文档工具等。这类应用通常依赖于WebSocket、Socket.IO等技术,以确保信息能够近乎实时地在客户端与服务器之间双向传输。 RESTful API , RESTful API是一种基于HTTP协议,遵循Representational State Transfer(表述性状态转移)设计原则构建的应用程序接口。它通过HTTP方法(GET、POST、PUT、DELETE等)来操作资源,并且具有统一接口格式,便于不同系统之间的数据交互。 AWS Lambda , AWS Lambda是Amazon Web Services提供的无服务器计算服务。用户可以在Lambda上部署和执行代码片段(函数),而无需预置或管理服务器。Lambda根据触发器(如API调用、文件上传等事件)自动执行代码,并按实际执行时间计费,从而实现高度可扩展性和成本效益。 npm , npm(Node Package Manager)是Node.js的包管理器,提供了便捷的方式来安装、共享和更新Node.js模块。开发者可以通过npm从全球最大的开源JavaScript软件库下载第三方代码包,以便在自己的项目中复用他人开发的功能组件,极大地提高了开发效率。
2024-01-24 17:58:24
144
青春印记-t
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
journalctl -u service_name
- 查看特定服务的日志。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"