前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[GIS 地理信息系统 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
VUE
...型Web应用程序。而GIS(地理信息系统)是一种用于采集,保存和解析地理空间资料的技艺。随着Web GIS应用程序的普及和发展,Vue与GIS的融合越来越受欢迎。 Vue可以与地图框架整合,在GIS应用程序中运用。运用Vue和GIS,开发人员可以大大提高地图应用程序的互动性和可重用性。Vue中的模块可以以相同的方式操作GIS应用程序的层级和模块。 import Vue from 'vue'; import L from 'leaflet'; export default Vue.extend({ data() { return { map: null, marker: null, }; }, mounted() { this.initMap(); this.addMarker(); }, methods: { initMap() { this.map = L.map('map').setView([51.505, -0.09], 13); L.tileLayer('https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png').addTo(this.map); }, addMarker() { this.marker = L.marker([51.5, -0.09]).addTo(this.map); this.marker.bindPopup('A popup.'); }, }, template: ' ', }); 这个Vue模块运用leaflet地图框架。在mounted阶段,initMap和addMarker方法执行。initMap方法运用leafletmap实例创建了一个地图实例,并在地图上添加了tile layers。在addMarker方法中,我们在地图上添加了一个marker,并运用Leaflet的popup方法添加了一个弹出窗口。 对于开发人员而言,运用Vue和GIS的好处在于,可以将GIS应用程序看作Vue模块化的片段,从而为应用程序增加了可重用性和可拓展性。开发人员可以运用Vue和GIS创建专业的GIS应用程序,同时运用Vue的优点来操控和绘制资料。
2023-01-25 15:08:59
48
键盘勇士
转载文章
...表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 作者:Flyingis ArcGIS 9.3已经发布,还没有仔细研究what's new in arcgis 9.3,但这次版本升级确实带来了不少新的变化,等新版本全面铺开之后,我们可以渐渐体会到新版本所带来的改进与新功能。 ArcGIS Server始终是关注的焦点,新版本的软件到用户手上还需要一段时间,如果现在就迫不及待想了解ags9.3新的特性,可以看ESRI刚刚发布的在线文档: ArcGIS Server 9.3 Web Help ArcGIS Server 9.3 Javascript API 标准和Mushup是这次ags更新的主题,wfs、using SLDs in wms、wcs、kml、javascript extension for google map api、javascript extension for visual earth等等,从9.3beta提交之前,不少基于ags9.2(including arcims9.2)的应用就已经开始向标准(事实标准)和其他服务整合,比如2007年ESRI中国应用开发大赛一等奖作品(作者Mars)就是arcims9.2+openlayer整合,一些ags项目使用google map服务作为底图,加上业务图层实现数据层面的整合,还有开发人员将google earth和ags发布的二维地图的地理坐标联动起来,下载安装google earth plugin之后,可以同时浏览某一地理位置的google earth三维地图和ags二维地图,当业务的侧重点在于地理展示和客户端体验时,不能不说Google树立了一个典范,从ags抽取地理核心服务,从Google Earth/Map或是其他服务提取基础地图和应用展示,两者结合实现某种需求。 虽然从ags9.2-9.3的功能改进,可以看出ESRI在过去以GIS核心服务为重心的基础上,开始增强客户端的应用开发(ADF模板程序、javascript api),但是它并没有停止服务层面的不断改进,各种新增的各种server服务以及REST API就是最好的体现。思想到位了,还需要实际检验,估计不少bug等着我们挖掘,后面会向大家介绍一些比较流行的server基本开发模式。 相关链接: Javascript API Samples ArcGIS Server Resource Center 转载于:https://www.cnblogs.com/flyingis/archive/2008/07/09/1239585.html 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_30429201/article/details/98226373。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-22 09:33:23
116
转载
Apache Solr
...ache Solr的地理搜索功能后,进一步探索相关领域的发展动态和实际应用案例将有助于我们紧跟行业趋势并提升实践能力。最近,Elasticsearch在其7.x版本中也对地理空间搜索进行了重大改进,引入了更强大的Geo-point数据类型以及增强的聚合和过滤功能(来源:Elastic官方博客)。这意味着开发者现在可以根据业务需求,在Solr和Elasticsearch之间做出更为精细的选择。 同时,大数据与AI技术在地理信息处理领域的融合愈发紧密。例如,Google Maps利用机器学习技术进行实时路况预测与智能路线规划,这启示我们在构建基于Solr的地理信息系统时,也可以尝试集成深度学习模型以优化地理位置查询结果,并实现更加精准的地理信息服务(参考:Google AI博客)。 另外,随着物联网、5G等新技术的发展,海量设备产生的实时地理位置数据为搜索引擎提出了新的挑战。有研究团队正在积极探索如何结合Apache Solr和其他开源工具,如Kafka和Spark,实现实时地理数据分析与可视化(来源:ACM SIGSPATIAL GIS会议论文集)。这对于智慧城市、物流跟踪、紧急救援等领域具有重要价值。 综上所述,深入挖掘Apache Solr地理搜索的应用潜力,并关注同类产品和技术的最新进展,将有助于我们在地理信息检索和分析方面保持领先优势。同时,随着AI和大数据技术的不断发展,未来地理搜索功能有望迎来更多创新应用场景和解决方案。
2024-03-06 11:31:08
405
红尘漫步-t
转载文章
...类数据库对于各类业务系统的重要性,尤其是在物流、电商、政务服务平台等领域。近期,随着数字化进程的加速推进,政府部门正积极推动全国行政区划数据库的标准化和动态更新机制。 例如,2023年5月,国家统计局公布了最新的《全国县级以上行政区划代码》标准,强调了数据准确性与实时性对社会治理现代化的意义,并鼓励各企事业单位参照新标准调整自身数据库。与此同时,阿里云等大型云服务商也推出了基于国家标准的地理信息系统服务,能够提供无缝对接的全国地址数据接口,方便开发者进行高效准确的数据调用和多级联动功能开发。 此外,结合大数据与AI技术,一些研究团队正在探索如何利用此类精细化地址数据优化配送路径、提升公共服务效率以及进行人口流动分析等深度应用。通过深入挖掘地址数据背后的社会经济信息,可以为政策制定者提供更为精准的决策依据,也为各类商业智能应用开辟了新的可能性。 总之,在信息化时代,全国范围内的详细地址数据库不仅是基础设施建设的重要组成部分,更是驱动各行各业创新发展的重要动力。无论是政府层面的规范化管理,还是企业及开发者具体应用场景的创新实践,都离不开对这类数据资源的充分利用和持续更新优化。
2023-06-30 09:11:08
62
转载
Apache Atlas
...、结构、来源、关系等信息。元数据管理工具如Apache Atlas,则是一种专门用于收集、存储、管理和分析元数据的软件系统,旨在帮助企业更好地理解、控制和利用其数据资产,实现数据治理与合规性目标。 数据加密 , 数据加密是一种将原始数据转换为密文的过程,通过使用特定的加密算法和密钥,使得未经授权的用户无法解读数据的真实内容。在Apache Atlas中,数据加密功能可确保敏感数据在存储或传输过程中即使被非法获取,也无法被轻易解密和滥用,从而提高数据的安全性。 审计跟踪 , 审计跟踪是一种记录并追踪信息系统内所有重要操作的技术手段,在Apache Atlas中表现为对用户访问和操作数据资产行为的详细记录。这些记录包括但不限于操作时间、执行操作的用户、涉及的数据资产以及具体操作类型等信息,以便于管理员在发生安全事件时能够追溯源头,快速定位问题,并采取相应的安全措施。
2024-01-02 12:35:39
512
初心未变-t
ActiveMQ
...们经常需要处理大量的信息。为了让大家的数据既安全又可靠,我们得找到一个稳妥的办法,既能把数据妥善保管起来,还能安全无虞地传输数据。这就是ActiveMQ的作用,它是一个开源的消息中间件,可以用于处理高并发的网络应用程序。ActiveMQ支持多种数据存储方式,其中之一就是消息持久化。 本文将重点讨论ActiveMQ中的磁盘同步选项,帮助你更好地理解和使用这个强大的消息中间件。 二、什么是磁盘同步? 磁盘同步是指在硬盘上进行的数据修改被系统接收并写入到内存后,再由操作系统将这些修改提交到硬件设备上的过程。磁盘同步可以防止因意外情况导致的数据丢失。 三、ActiveMQ中的磁盘同步选项 在ActiveMQ中,有两种磁盘同步模式可供选择: 1. 自动(autocommit) 自动模式是默认的磁盘同步模式。在这种模式下,每当一个事务(transaction)完成后,都会立即提交到磁盘。这样做的好处是可以快速地响应客户端的请求,但是也有一定的风险。假如系统的某个环节出了状况,可能会让那些还没处理完的事情没法恢复原状,这样一来,就可能导致数据对不上号,出现混乱。 2. 手动(manual) 手动模式下,需要手动触发磁盘同步。在这种模式下,每次提交事务之前都需要先调用commit方法。这种方式确实安全系数挺高,不过呢,它也有个小缺点,就是会让系统的反应速度没那么快。因为每次提交的时候,都得耐心等待磁盘操作彻底完成才能进行下一步,这就像是在排队等电梯,得等电梯门完全打开、乘客上下完毕,才能轮到我们一样。 四、磁盘同步选项的设置 在ActiveMQ中,可以通过配置文件来设置磁盘同步选项。以下是一个简单的配置示例: xml useJmx="true" persistent="false"> /var/activemq/data 5000 5000 在这个配置中,我们将持久化设置为false,这意味着所有的消息都不会被保存到磁盘。如果你想启用持久化,只需将persistenceAdapter标签下的directory属性设置为你想要保存消息的位置即可。 五、结论 总的来说,ActiveMQ提供了两种磁盘同步模式供我们选择,可以根据我们的需求来选择最合适的模式。在日常使用时,咱们千万得留心合理设置磁盘同步这个选项,要不然一不小心碰上数据同步出岔子,可能会让咱辛辛苦苦保存的数据消失得无影无踪呢。希望这篇文章能对你有所帮助,如果你有任何问题,欢迎留言交流。
2023-12-08 11:06:07
463
清风徐来-t
Hadoop
...度可伸缩的分布式文件系统,用于存储大量数据;而MapReduce则是一种编程模型,用于对这些大规模数据进行并行处理,通过将任务分割成“映射”和“归约”两个阶段来实现高效的数据分析。 数据一致性 , 在分布式系统或数据库中,数据一致性是指所有用户或者节点在同一时间点看到的数据状态是一致的,即无论数据在何处被读取或写入,其结果都是符合预期且一致的。在本文背景下,数据一致性验证失败意味着在Hadoop处理大数据的过程中,由于各种原因导致各个节点上的数据校验结果不匹配,未能达到预设的一致性要求。 异地容灾 , 异地容灾是企业信息系统灾难恢复策略的一种,指的是在相隔一定地理距离的两个或多个地点建立互为备份的信息系统,当主站点发生不可预见的灾难(如火灾、地震等)时,备用站点可以接管业务,确保数据和服务的连续性。在文中,通过采用异地容灾的方式,即使Hadoop集群中的某个系统出现故障,也能保证存储在不同地理位置的数据副本间保持一致性,从而继续进行有效的大数据分析和处理工作。
2023-01-12 15:56:12
519
烟雨江南-t
Apache Atlas
...管理和理解大数据生态系统的元数据结构。所以呢,你不能指望着靠编写一段Apache Atlas的代码示例,就解决“图表数据源没提供足够数据或者干脆没给数据”的问题。这就跟没法儿用一段程序命令,让一个空米袋子自己变出白米饭来一样。但我可以为您撰写一篇关于如何利用Apache Atlas进行元数据管理以辅助解决数据源问题的技术性探讨文章,以下是我按照您的要求编写的草稿: Apache Atlas:透视数据源与元数据管理的艺术 1. 引言 在当今大数据时代,我们时常会面临一个挑战——图表数据源突然无法提供足够的数据,这就像在黑夜中寻找方向,没有足够的星星作为参照。这个时候,我们急需一个像超级英雄那样的给力工具,能帮我们点亮那些复杂的数据迷宫,扒开层层数据表象,把内在的构造和它们之间的亲密关系给揪出来。说白了,这就像是Apache Atlas在我们数据世界中的超能力展现!尽管它并不直接解决图表数据源的问题,但通过统 一、精准地管理元数据,它可以协助我们更好地理解和优化数据源。 2. Apache Atlas 元数据管理中枢 Apache Atlas是一个企业级的元数据管理系统,它适用于Hadoop生态系统和其他大数据平台。设想一下,当你面对数据不足或数据源失效的问题时,如果有一个全局视角,清晰地展示出数据资产的全貌以及它们之间的关系,无疑将极大提升问题定位和解决方案设计的效率。 3. Apache Atlas的应用场景举例(虽然不是针对数据不足问题的代码示例,但通过实际操作演示其功能) (a)创建实体类型与属性 java // 创建一个名为'DataSource'的实体类型,并定义其属性 EntityTypeDef dataSourceTypeDef = new EntityTypeDef(); dataSourceTypeDef.setName("DataSource"); dataSourceTypeDef.setServiceType("metadata_management"); List attrNames = Arrays.asList("name", "status", "lastUpdateTimestamp"); dataSourceTypeDef.setAttributeDefs(getAttributeDefs(attrNames)); // 调用Atlas API创建实体类型 EntityTypes.create(dataSourceTypeDef); (b)注册数据源实例的元数据 java Referenceable dataSourceRef = new Referenceable("DataSource", "dataSource1"); dataSourceRef.set("name", "MyDataLake"); dataSourceRef.set("status", "Inactive"); dataSourceRef.set("lastUpdateTimestamp", System.currentTimeMillis()); // 将数据源实例的元数据注册到Atlas EntityMutationResponse response = EntityService.createOrUpdate(new AtlasEntity.AtlasEntitiesWithExtInfo(dataSourceRef)); 4. 借助Apache Atlas解决数据源问题的策略探讨 当图表数据源出现问题时,我们可以利用Apache Atlas查询和分析相关数据源的元数据信息,如数据源的状态、更新时间等,以此为线索追踪问题源头。比如,当我们瞅瞅数据源的那个“status”属性时,如果发现它显示的是“Inactive”,那我们就能恍然大悟,原来图表数据不全的问题根源就在这儿呢!同时,通过对历史元数据记录的挖掘,还可以进一步评估影响范围,制定恢复策略。 5. 结论 Apache Atlas虽不能直接生成或补充图表数据,但其对数据源及其元数据的精细管理能力,如同夜空中最亮的北斗星,为我们指明了探寻数据问题真相的方向。当你碰上数据源那些头疼问题时,别忘了活用Apache Atlas这个给力的元数据管理工具。瞅准实际情况,灵活施展它的功能,咱们就能像在大海里畅游一样,轻松应对各种数据挑战啦! 以上内容在风格上尽量口语化并穿插了人类的理解过程和探讨性话术,但由于Apache Atlas的实际应用场景限制,未能给出针对“图表数据源无法提供数据或数据不足”主题的直接代码示例。希望这篇文章能帮助您从另一个角度理解Apache Atlas在大数据环境中的价值。
2023-05-17 13:04:02
438
昨夜星辰昨夜风
Oracle
...机制以适应现代分布式系统环境的需求。 一项名为“基于时间戳的乐观并发控制”(OTCC)的新特性引起了业界广泛关注。该技术结合了序列化事务处理的优点,并在此基础上采用乐观锁定策略,减少了不必要的锁竞争,从而提高了系统的整体性能。在实际应用中,OTCC特别适用于高并发且冲突较少的场景,如电商交易、金融结算等领域。 此外,随着云原生数据库服务的兴起,Oracle也在云端环境中提供了增强版的序列化事务处理支持。用户可以灵活配置事务隔离级别,并结合云数据库的自动扩展能力,确保在大规模分布式部署下仍能保证数据的一致性和完整性。 同时,为了帮助开发者更好地理解和掌握序列化事务处理,Oracle官方社区和博客平台不断推出系列教程和案例分析,深度解读如何在不同应用场景中合理运用这一关键技术,以应对复杂的数据同步问题,提升业务处理的健壮性和可靠性。 总之,在数字化转型日益深入的今天,理解并熟练应用Oracle数据库的序列化事务处理功能,对于构建高效、稳定的企业级信息系统具有至关重要的意义。紧跟技术发展趋势,持续学习和实践,是每一位Oracle开发者走向卓越的必由之路。
2023-12-05 11:51:53
136
海阔天空-t
Greenplum
... 在大数据时代,推荐系统已经成为我们生活的一部分。无论是你在逛电商网站时看到的各种商品推荐,还是在音乐视频平台刷到的个性化内容推送,甚至是社交媒体上为你精心匹配的好友建议,可以说它们简直就是无处不在,充斥着我们的日常生活。然而,现如今啊,随着数据量蹭蹭地往上涨,怎么才能把这些海量数据吃得透透的,并且精准地给用户推送他们想要的东西,这可真成了我们眼前一道躲不过去的大难题了。 这就是我们要讨论的主题——使用Greenplum进行实时推荐系统开发。Greenplum这个家伙,是Pivotal公司家的明星产品,一款超级给力的分布式数据库系统。它特擅长对付那种海量数据,而且还能做到实时分析,就像个数据处理的超能勇士一样。 二、绿萍普的基本概念与特性 首先,我们需要了解什么是Greenplum。简单来说,Greenplum是一种基于PostgreSQL的关系型数据库管理系统。它具有以下特点: 1. 分布式架构 Greenplum采用了MPP(Massively Parallel Processing)架构,可以将数据分布在多个节点上进行处理,大大提高了处理速度。 2. 实时查询 Greenplum支持实时查询,可以在海量数据中快速找到需要的信息。 3. 高可用性 Greenplum采用了冗余设计,任何一个节点出现问题,都不会影响整个系统的运行。 三、Greenplum在实时推荐系统中的应用 接下来,我们将详细介绍如何使用Greenplum来构建一个实时推荐系统。 首先,我们需要收集用户的行为数据,如用户的浏览记录、购买记录等。这些数据可以通过日志文件、API接口等方式获取。 然后,我们可以使用Greenplum来存储和管理这些数据。比如说,我们可以动手建立一个用户行为记录表,就像个小本本一样,把用户的ID号码、干了啥类型的行为、啥时候干的这些小细节,都一五一十地记在这个表格里。 接着,我们需要计算用户的历史行为模式,以便于对用户进行个性化推荐。这可以通过一些机器学习算法来完成,如协同过滤、矩阵分解等。 最后,我们可以使用Greenplum来进行实时推荐。当有新的用户行为数据蹦出来的时候,我们能立马给用户行为表来个实时更新。接着,咱们通过一套算法“火速”算出用户的最新行为习惯,最后就能生成专属于他们的个性化推荐啦! 四、代码示例 下面是一段使用Greenplum进行实时推荐的代码示例: sql CREATE TABLE user_behavior ( user_id INT, behavior_type TEXT, behavior_time TIMESTAMP ); INSERT INTO user_behavior VALUES (1, 'view', '2021-01-01 00:00:00'); INSERT INTO user_behavior VALUES (1, 'buy', '2021-01-02 00:00:00'); INSERT INTO user_behavior VALUES (2, 'view', '2021-01-01 00:00:00'); -- 计算用户行为模式 SELECT user_id, behavior_type, COUNT() as frequency FROM user_behavior GROUP BY user_id, behavior_type; -- 实时推荐 INSERT INTO user_behavior VALUES (3, 'view', '2021-01-01 00:00:00'); SELECT u.user_id, m.product_id, m.rating FROM user_behavior u JOIN product_behavior b ON u.user_id = b.user_id AND u.behavior_type = b.behavior_type JOIN matrix m ON u.user_id = m.user_id AND b.product_id = m.product_id WHERE u.user_id = 3; 以上代码首先创建了一个用户行为表,然后插入了一些样本数据。然后,我们统计了大家的使用习惯频率,最后,根据每个人独特的行为模式,实时地给出了个性化的推荐内容~ 五、结论 总的来说,使用Greenplum进行实时推荐系统开发是一个既有趣又有挑战的任务。通过巧妙地搭建架构和精挑细选高效的算法,我们能够轻松应对海量数据的挑战,进而为用户提供贴心又个性化的推荐服务。就像是给每一片浩瀚的数据海洋架起一座智慧桥梁,让每位用户都能接收到量身定制的好内容推荐。 当然,这只是冰山一角。在未来,随着科技的进步和大家需求的不断变化,咱们的推荐系统肯定还会碰上更多意想不到的挑战,当然啦,机遇也是接踵而至、满满当当的。但是,只要我们敢于尝试,勇于创新,就一定能创造出更好的推荐系统。
2023-07-17 15:19:10
745
晚秋落叶-t
转载文章
...表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 联通智慧足迹技术 本项目由联通智慧足迹投递并参与“数据猿年度金猿策划活动——2021大数据产业创新技术突破榜单及奖项”评选。 数据智能产业创新服务媒体 ——聚焦数智 · 改变商业 中国联通智慧足迹开发的SSNG多源数据处理平台,是完全自研的新一代面向行为集成的位置数据处理系统。平台沉淀海量信令处理过程中的长期经验,着力解决影响数据输出质量的核心堵点,可兼容类似信令的多种LBS数据源接入并实现自动化、标准化输出数据结果。 技术说明 SSNG多源数据处理平台技术创新部分包括: 行为矩阵:将离散的驻留信息,转化为用户的时空矩阵,通过机器学习模式识别,提取出用户的LBS行为特征。 行为集成:将用户的行为矩阵,结合搜集沉淀的土地利用&地物POI数据,为用户的驻留、出行信息赋予具体的目的,便于后续的场景化分析。 人车匹配:结合车联网LBS数据,将轨迹重合度高的“人-车”用户对,通过轨迹伴随算法识别出来,可用于判断用户的车辆保有情况。 路径拟合:解决信令数据定位不连续和受限基站布设密度等问题,引入路网拓扑数据,将用户出行链还原至真实道路上,并确定流向及关键转折点,以便于判断出行方式。 出行洞察:利用信令数据、基站数据,匹配地铁网络、高铁网络,通过机器学习算法,判定用户出行时使用的出行方式。 基于SSNG多源数据处理平台,可实现的技术突破包括: 1)全国长时序人口流动监测技术 针对运营商信令数据以及spark分布式计算平台的特点,独创了处理运营商信令数据的双层计算框架,填补了分布式机器学习方法处理运营商信令数据的空白,实现了大规模高效治理运营商大数据的愿景;研发了人口流动与现代大数据技术相结合的宏观监测仿真模型。 基于以上技术构建了就业、交通、疫情、春运等一系列场景模型,并开发了响应决策平台,实现了对我国人口就业、流动及疫情影响的全域实时监测。 2)全国长时序人口流动预测技术 即人口流动的大尺度OD预测技术,研发了人口跨区域流动OD预测模型,解决了信令大数据在量化模拟大尺度人口流动中的技术难题,形成了对全国人口流动在日、周、月不同时间段和社区、乡镇、县市不同地理尺度进行预测的先进技术,实现了2020年新冠疫情后全国返城返岗和2021年全国春节期间人口流动的高精度预测。 3)实时人口监测 实时人口监测是通过对用户手机信令进行实时处理、计算和分析,得出指定区域的实时人口数量、特征和迁徙情况。包括区域人口密度、人口数量、人口结构、人口来源、人口画像、人口迁徙、职住分析、人口预测等信息。 4)超强数据处理及AI能力 引入Bitmap大数据处理算法及Pilosa数据库集群,采用实时流式计算,集成Kafka、redis、RabbitMQ等分布式大数据处理组件,搭建自有信令大数据处理平台,使用百亿计算go-kite架构,实现毫秒级响应,实时批量处理数据达500000条 /秒,每天可处理1000亿条数据。集成AI分析能力(A/B轨),有效避免了运营商数据采集及传输过程中的时延及中断情况,大幅提高数据结果的实时性。 已获专利情况: 专利名称 专利号 出行统计方法、装置、计算机设备和可读存储介质 ZL 2020 1 0908424.3 信令数据匹配方法、装置及电子设备 ZL 2019 1 1298869.8 轨道交通用户识别方法和装置 ZL 2019 1 0755903.3 公共聚集事件识别方法、装置、计算机设备及存储介质 ZL 2020 1 1191917.6 广域高铁基站识别方法、装置、服务器及存储介质 ZL 2020 1 1325543.2 相关荣誉: 2021地理信息科技进步奖一等奖、中国测绘学会科技进步奖特等奖、2021数博会领先科技成果奖、兼容系统创新应用大赛大数据专项赛优秀奖。 开发团队 ·带队负责人:陶周天 公司CTO,北京大学理学学士。长期任职于微软等世界500强企业,曾任上市公司优炫软件VP,具备丰富的IT架构、数据安全、数据分析建模、机器学习、项目管理经验。牵头组织突破多个技术难题(人地匹配、人车匹配、室内基站优化、行为集成AI等),研发一系列技术专利。 ·团队其他重要成员:刘祖军 高级算法工程师,美国爱荷华大学计算机科学本硕,曾任职于美国俄亥俄州立大学研究院。 ·隶属机构:智慧足迹 智慧足迹数据科技有限公司是中国联通控股,京东科技参股的专业大数据及智能科技公司。公司依托中国联通卓越的数据资源和5G能力,京东科技强大的人工智能、物联网等技术和“产业X科技”能力,聚焦“人口+”大数据,连接人-物-企,成为全域数据智能科技领先服务商。 公司以P·A·Dt为核心能力,面向数字政府、智慧城市、企业数字化转型广大市场主体,专注经济治理、社会治理和企业数字化服务,构建“人口+”七大多源数据主题库,提供“人口+” 就业、经济、消费、民生、城市、企业等大数据产品平台,服务支撑国家治理现代化和国家战略,推动经济社会发展。 目前,公司已服务国家二十多个部委及众多省市政府、300+城市规划、知名企业和高校等智库、国有及股份制银行等数百家头部客户,已建成全球最强大的手机信令处理平台,是中国就业、城规、统计等领域大数据领先服务商。 相关评价 新一代SSNG多源大数据处理平台,提升了手机信令数据在空间数据计算的精度,信令处理结果对室内场景更具敏锐性,在区域范围的职住人群空间分布更加接近实际情况。 ——某央企大数据部技术负责人 新一代SSNG多源大数据处理平台,可处理实时及历史信令数据,应对不同客户应用场景。并且根据长时间序列历史数据实现人口预测,为提高数据精度可对接室内基站数据,从而提供更加准确的人员定位。 ——某企业政府事业部总监 提示:了解更多相关内容,点击文末左下角“阅读原文”链接可直达该机构官网。 《2021企业数智化转型升级服务全景图/产业图谱1.0版》 《2021中国数据智能产业图谱3.0升级版》 《2021中国企业数智化转型升级发展研究报告》 《2021中国数据智能产业发展研究报告》 ❷ 创新服务企业榜 ❸ 创新服务产品榜 ❸ 最具投资价值榜 ❺ 创新技术突破榜 ☆条漫:《看过大佬们发的朋友圈之后,我相信:明天会更好!》 联系数据猿 北京区负责人:Summer 电话:18500447861(微信) 邮箱:summer@datayuan.cn 全国区负责人:Yaphet 电话:18600591561(微信) 邮箱:yaphet@datayuan.cn 本篇文章为转载内容。原文链接:https://blog.csdn.net/YMPzUELX3AIAp7Q/article/details/122314407。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-01 09:57:01
343
转载
建站模板下载
...网页模板”是一款专为信息化服务公司与数字产品研发团队打造的响应式网页设计模板。它以“团队、创新、服务”为核心,适用于信息公司和数字产品展示场景,具备出色的响应式布局,可在多种设备上自适应浏览。此模板强调了数字产品创新和服务体系的呈现,整合了信息系统元素,助力企业全面展现数字化实力与专业服务,提升品牌形象与影响力。同时,其丰富的功能和模块化设计,便于用户根据需求进行个性化定制,实现更多元化的展示效果。 点我下载 文件大小:1.77 MB 您将下载一个资源包,该资源包内部文件的目录结构如下: 本网站提供模板下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-02-28 19:20:26
55
本站
JQuery插件下载
...合应用于数据可视化、地理信息展示、以及各类需要与地域信息相结合的网页项目中,带给用户便捷而有趣的地图导航和数据探索体验。 点我下载 文件大小:355.08 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2024-04-19 10:53:11
337
本站
JQuery插件下载
...实现点击地标显示额外信息的交互效果。这意味着用户可以通过点击地图上的特定位置来获取相关信息,极大地丰富了信息展示方式,提高了信息的可访问性和互动性。这种设计不仅适合展示地理信息、产品演示或是故事叙述,还能用于教育、旅游、艺术等多个领域,提供沉浸式体验。在使用过程中,开发者只需遵循简单的步骤进行HTML结构的构建、CSS样式的编写以及jQuery脚本的整合,即可轻松地将此插件融入项目中。该插件支持广泛的浏览器环境,确保了跨平台兼容性,使得其适用范围更加广泛。总之,“jQuery和css3平面图片转换为3D模型动画效果”插件是一个集创意与技术于一体的解决方案,它能够帮助开发者和设计师们创造出更具吸引力和互动性的视觉内容,为用户提供更加丰富和个性化的浏览体验。无论是作为网站的一个特色功能,还是作为应用程序的一部分,这款插件都能显著提升项目的整体品质和用户满意度。 点我下载 文件大小:57.79 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2024-08-21 20:35:06
18
本站
Java
...tonGroup时,系统会自动确保任何时候只有一个单选按钮处于选中状态,从而实现“单选”功能。在文章中,buttonGroup.add(radioButton1); 这样的语句就是将单选框添加至ButtonGroup进行分组管理。 JCheckBox , JCheckBox是Java Swing库提供的另一个重要组件,用于创建复选框。与JRadioButton不同,JCheckBox允许多选,用户可以选择任意数量的复选框,每个复选框的状态独立于其他复选框。在实际应用中,开发者可能需要根据业务需求创建多个JCheckBox对象来收集用户的多项选择信息。 (补充) GUI(图形用户界面) , GUI是一种用户与计算机程序交互的方式,它通过图像和图形元素(如按钮、文本框、单选框、复选框等)代替或辅助命令行界面的文字输入。在Java编程中,Swing和JavaFX是构建GUI的主要工具包,提供了丰富的API供开发者设计和实现各种图形界面组件。本文所讨论的单选框和复选框便是GUI中的两种常用控件,用于实现用户的选择交互功能。
2023-04-24 23:41:54
386
码农
HTML
...码中插入的解释性文字信息。在HTML中,注释使用<!-- -->包裹,不会被浏览器解析为网页内容,旨在提高代码可读性和协作效率。 Git , Git是一个分布式版本控制系统,由林纳斯·托瓦兹开发,广泛应用于软件开发项目中。在团队网页设计场景下,Git允许团队成员跟踪和记录代码更改历史,支持多人协同编辑代码且互不冲突,提供分支管理、合并请求、回滚更改等功能,确保团队高效有序地管理和维护HTML代码库。 代码格式化 , 代码格式化是指按照一定的规则对编程代码进行排版和美化的过程,旨在使代码更易于阅读和理解。在HTML中,代码格式化可能包括统一缩进、合理换行、使用空格或制表符等,以及利用预格式化标签<pre>保留原始代码格式,使得团队成员能够快速定位和修改代码。 版本控制工具 , 版本控制工具是用来追踪和控制软件代码更改历史的系统,如Git、SVN等。在团队协作开发HTML代码时,版本控制工具可以记录每个文件的修改过程,实现不同版本之间的切换、对比、合并,以及解决代码冲突等问题,从而保障团队成员之间高效、有序地共享和更新代码资源。
2024-01-31 16:09:57
392
逻辑鬼才
Java
...存储方法调用时产生的信息,如局部变量、方法参数等。当一个方法被调用时,JVM会为该方法创建一个新的栈帧,并将其压入当前线程的栈上;当方法执行结束时,对应的栈帧会被弹出。栈的空间大小是有限制的,如果递归过深或者其他原因导致栈的使用超过了其预设的最大值,将会抛出StackOverflowError异常。 StackOverflowError , 在Java编程中,StackOverflowError是一个运行时错误,通常发生在程序递归调用过深或者线程栈空间不足的情况下。具体来说,当Java虚拟机栈内存无法再分配新的栈帧以处理下一次方法调用时,就会抛出StackOverflowError异常,表示程序出现了逻辑错误或者是系统资源限制的问题。这个异常名称直观地反映了问题的本质——栈溢出,意味着栈的容量已经被超出,无法容纳更多的调用信息。
2023-11-18 10:54:50
381
键盘勇士
Docker
...器都运行在宿主机操作系统上,但拥有隔离的用户空间,从而实现轻量级的资源隔离和部署。这意味着开发者可以将应用及其所有依赖项封装在一个容器中,在任何支持Docker的环境中,只需简单命令即可启动并运行该应用,确保了跨环境的一致性和便捷性。 Docker Hub , Docker Hub是Docker官方提供的镜像仓库服务,类似于软件开发中的代码仓库,但它存储的是Docker镜像。开发者可以在Docker Hub上查找、下载、分享和管理自己的Docker镜像,极大地简化了镜像分发与复用的过程。例如,通过docker run hello-world命令就能从Docker Hub拉取并运行hello-world镜像,体现了Docker Hub作为中心化镜像仓库的核心价值。 镜像 , 在Docker环境下,镜像是创建和运行容器的基础模板,包含了应用程序及其运行所需的所有文件和配置信息。镜像以层式结构构建,每层代表应用程序的一个修改或添加,从而使得镜像具有高效存储和快速分发的特点。例如,使用docker build -t myapp .命令基于当前目录下的Dockerfile构建一个名为myapp的新镜像,然后通过docker run -p 80:80 myapp命令使用这个新镜像启动一个容器,并映射端口以便外部访问。这样,无论何时何地,只要有了这个镜像,就可以快速且一致地创建出能够运行特定应用程序的容器实例。
2023-03-13 14:25:53
347
编程狂人
VUE
...将影片资料和时间戳等信息一起传输到服务器端加工。 在 Vue 中使用延时拍摄功能非常简易,我们只需要添加一些代码和使用相应的部件库即可。以上代码仅供参考。在实际开发中,我们需要对其进行适度的调整。希望这篇文章能够帮助你更好地理解 Vue 中的延时拍摄功能。
2023-07-16 10:09:08
87
程序媛
VUE
...器内部所有元素的状态信息,如元素的位置、大小、样式等属性,确保复杂交互场景下各组件间的通信与状态同步。 Vue-Router , Vue Router是Vue.js官方提供的路由管理器,用于构建单页面应用(SPA)的路由系统。在Vue可视化H5编辑器中,尽管并未直接说明使用了Vue Router的具体场景,但作为一款功能全面的前端工具,可能利用Vue Router实现不同编辑页面之间的导航和跳转,提供更加顺畅的多页面工作流体验。 H5网页 , H5全称为HTML5,是最新一代超文本标记语言标准。H5网页指采用HTML5技术制作的网页,相较于传统HTML网页,其支持更丰富的多媒体元素、图形绘制、离线存储、地理位置定位等功能,以及更好的跨平台兼容性。Vue可视化H5编辑器正是帮助用户便捷地创建这些具有丰富特性和交互性的H5网页的工具。
2023-09-25 09:42:00
91
逻辑鬼才
JSON
...,实时收集并处理用户信息,有效提升用户体验与数据流转效率。 此外,随着JSON-LD(JSON for Linking Data)标准的推广,Json不仅局限于简单的数据交换,也开始在语义网络和知识图谱领域发挥作用。例如,在教育行业的学生信息系统中,采用JSON-LD可以更好地结构化学生的教育经历和工作经历数据,使得这些信息能在不同系统间无缝集成和共享,为大数据分析、智能推荐等应用提供有力支持。 同时,国内外多家大型互联网企业如Google、阿里巴巴等也都在自家服务接口中广泛采纳Json作为数据交换的标准格式,不断推动Json在云计算、物联网等前沿领域的深度应用。 综上所述,Json在信息化社会中的地位日益凸显,无论是对于提升微信等社交平台的数据处理能力,还是在促进跨系统数据整合与开放互联等方面,都展现出巨大的潜力与价值。未来,随着技术的发展与应用场景的拓展,Json将在更多维度助力数字化生活的构建与升级。
2023-10-04 18:11:59
477
软件工程师
转载文章
...比较型排序算法以提升系统性能。研究人员发现,通过针对性地分析数据分布特征,并适时引入计数排序算法,可以在不影响稳定性的同时显著减少排序所需的时间成本。 然而,对于浮点数或数据范围极大的情况,计数排序则可能因为需要创建极大空间的计数数组而导致空间效率低下。因此,在实际应用中,往往需要结合其他高效排序算法(如快速排序、归并排序等)进行混合使用,根据实际情况灵活选择最优策略。 此外,深入探究排序算法背后的理论基础也十分有益,例如Knuth在其经典著作《计算机程序设计艺术》中对各种排序算法进行了详尽而深入的解读,其中包括计数排序的设计原理及其在实际问题中的应用场景分析。学习这些理论知识将有助于我们更好地理解并运用计数排序以及其他各类排序算法,从而在面对不同的工程问题时能够做出更为精准有效的决策。
2023-10-02 13:00:57
130
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
tar --list -f archive.tar.gz
- 列出归档文件中的内容。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"