前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[Docker统一文件系统]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
...能够帮助读者深入理解Docker的命令,还有容器(container)和镜像(image)之间的区别,并深入探讨容器和运行中的容器之间的区别。 当我对Docker技术还是一知半解的时候,我发现理解Docker的命令非常困难。于是,我花了几周的时间来学习Docker的工作原理,更确 切地说,是关于Docker统一文件系统(the union file system)的知识,然后回过头来再看Docker的命令,一切变得顺理成章,简单极了。 题外话:就我个人而言,掌握一门技术并合理使用它的最好办法就是深入理解这项技术背后的工作原理。通常情况 下,一项新技术的诞生常常会伴随着媒体的大肆宣传和炒作,这使得用户很难看清技术的本质。更确切地说,新技术总是会发明一些新的术语或者隐喻词来帮助宣 传,这在初期是非常有帮助的,但是这给技术的原理蒙上了一层砂纸,不利于用户在后期掌握技术的真谛。 Git就是一个很好的例子。我之前不能够很好的使用Git,于是我花了一段时间去学习Git的原理,直到这时,我才真正明白了Git的用法。我坚信只有真正理解Git内部原理的人才能够掌握这个工具。 Image Definition 镜像(Image)就是一堆只读层(read-only layer)的统一视角,也许这个定义有些难以理解,下面的这张图能够帮助读者理解镜像的定义。 从左边我们看到了多个只读层,它们重叠在一起。除了最下面一层,其它层都会有一个指针指向下一层。这些层是Docker内部的实现细节,并且能够 在主机(译者注:运行Docker的机器)的文件系统上访问到。统一文件系统(union file system)技术能够将不同的层整合成一个文件系统,为这些层提供了一个统一的视角,这样就隐藏了多层的存在,在用户的角度看来,只存在一个文件系统。 我们可以在图片的右边看到这个视角的形式。 你可以在你的主机文件系统上找到有关这些层的文件。需要注意的是,在一个运行中的容器内部,这些层是不可见的。在我的主机上,我发现它们存在于/var/lib/docker/aufs目录下。 sudo tree -L 1 /var/lib/docker/ /var/lib/docker/├── aufs├── containers├── graph├── init├── linkgraph.db├── repositories-aufs├── tmp├── trust└── volumes7 directories, 2 files Container Definition 容器(container)的定义和镜像(image)几乎一模一样,也是一堆层的统一视角,唯一区别在于容器的最上面那一层是可读可写的。 细心的读者可能会发现,容器的定义并没有提及容器是否在运行,没错,这是故意的。正是这个发现帮助我理解了很多困惑。 要点:容器 = 镜像 + 可读层。并且容器的定义并没有提及是否要运行容器。 接下来,我们将会讨论运行态容器。 Running Container Definition 一个运行态容器(running container)被定义为一个可读写的统一文件系统加上隔离的进程空间和包含其中的进程。下面这张图片展示了一个运行中的容器。 正是文件系统隔离技术使得Docker成为了一个前途无量的技术。一个容器中的进程可能会对文件进行修改、删除、创建,这些改变都将作用于可读写层(read-write layer)。下面这张图展示了这个行为。 我们可以通过运行以下命令来验证我们上面所说的: docker run ubuntu touch happiness.txt 即便是这个ubuntu容器不再运行,我们依旧能够在主机的文件系统上找到这个新文件。 find / -name happiness.txt /var/lib/docker/aufs/diff/860a7b...889/happiness.txt Image Layer Definition 为了将零星的数据整合起来,我们提出了镜像层(image layer)这个概念。下面的这张图描述了一个镜像层,通过图片我们能够发现一个层并不仅仅包含文件系统的改变,它还能包含了其他重要信息。 元数据(metadata)就是关于这个层的额外信息,它不仅能够让Docker获取运行和构建时的信息,还包括父层的层次信息。需要注意,只读层和读写层都包含元数据。 除此之外,每一层都包括了一个指向父层的指针。如果一个层没有这个指针,说明它处于最底层。 Metadata Location: 我发现在我自己的主机上,镜像层(image layer)的元数据被保存在名为”json”的文件中,比如说: /var/lib/docker/graph/e809f156dc985.../json e809f156dc985...就是这层的id 一个容器的元数据好像是被分成了很多文件,但或多或少能够在/var/lib/docker/containers/<id>目录下找到,<id>就是一个可读层的id。这个目录下的文件大多是运行时的数据,比如说网络,日志等等。 全局理解(Tying It All Together) 现在,让我们结合上面提到的实现细节来理解Docker的命令。 docker create <image-id> docker create 命令为指定的镜像(image)添加了一个可读写层,构成了一个新的容器。注意,这个容器并没有运行。 docker start <container-id> Docker start命令为容器文件系统创建了一个进程隔离空间。注意,每一个容器只能够有一个进程隔离空间。 docker run <image-id> 看到这个命令,读者通常会有一个疑问:docker start 和 docker run命令有什么区别。 从图片可以看出,docker run 命令先是利用镜像创建了一个容器,然后运行这个容器。这个命令非常的方便,并且隐藏了两个命令的细节,但从另一方面来看,这容易让用户产生误解。 题外话:继续我们之前有关于Git的话题,我认为docker run命令类似于git pull命令。git pull命令就是git fetch 和 git merge两个命令的组合,同样的,docker run就是docker create和docker start两个命令的组合。 docker ps docker ps 命令会列出所有运行中的容器。这隐藏了非运行态容器的存在,如果想要找出这些容器,我们需要使用下面这个命令。 docker ps –a docker ps –a命令会列出所有的容器,不管是运行的,还是停止的。 docker images docker images命令会列出了所有顶层(top-level)镜像。实际上,在这里我们没有办法区分一个镜像和一个只读层,所以我们提出了top-level 镜像。只有创建容器时使用的镜像或者是直接pull下来的镜像能被称为顶层(top-level)镜像,并且每一个顶层镜像下面都隐藏了多个镜像层。 docker images –a docker images –a命令列出了所有的镜像,也可以说是列出了所有的可读层。如果你想要查看某一个image-id下的所有层,可以使用docker history来查看。 docker stop <container-id> docker stop命令会向运行中的容器发送一个SIGTERM的信号,然后停止所有的进程。 docker kill <container-id> docker kill 命令向所有运行在容器中的进程发送了一个不友好的SIGKILL信号。 docker pause <container-id> docker stop和docker kill命令会发送UNIX的信号给运行中的进程,docker pause命令则不一样,它利用了cgroups的特性将运行中的进程空间暂停。具体的内部原理你可以在这里找到:https://www.kernel.org/doc/Doc ... m.txt,但是这种方式的不足之处在于发送一个SIGTSTP信号对于进程来说不够简单易懂,以至于不能够让所有进程暂停。 docker rm <container-id> docker rm命令会移除构成容器的可读写层。注意,这个命令只能对非运行态容器执行。 docker rmi <image-id> docker rmi 命令会移除构成镜像的一个只读层。你只能够使用docker rmi来移除最顶层(top level layer)(也可以说是镜像),你也可以使用-f参数来强制删除中间的只读层。 docker commit <container-id> docker commit命令将容器的可读写层转换为一个只读层,这样就把一个容器转换成了不可变的镜像。 docker build docker build命令非常有趣,它会反复的执行多个命令。 我们从上图可以看到,build命令根据Dockerfile文件中的FROM指令获取到镜像,然后重复地1)run(create和start)、2)修改、3)commit。在循环中的每一步都会生成一个新的层,因此许多新的层会被创建。 docker exec <running-container-id> docker exec 命令会在运行中的容器执行一个新进程。 docker inspect <container-id> or <image-id> docker inspect命令会提取出容器或者镜像最顶层的元数据。 docker save <image-id> docker save命令会创建一个镜像的压缩文件,这个文件能够在另外一个主机的Docker上使用。和export命令不同,这个命令为每一个层都保存了它们的元数据。这个命令只能对镜像生效。 docker export <container-id> docker export命令创建一个tar文件,并且移除了元数据和不必要的层,将多个层整合成了一个层,只保存了当前统一视角看到的内容(译者注:expoxt后 的容器再import到Docker中,通过docker images –tree命令只能看到一个镜像;而save后的镜像则不同,它能够看到这个镜像的历史镜像)。 docker history <image-id> docker history命令递归地输出指定镜像的历史镜像。 参考: http://www.cnblogs.com/bethal/p/5942369.html 本篇文章为转载内容。原文链接:https://blog.csdn.net/u010098331/article/details/53485539。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-26 15:47:20
538
转载
转载文章
...式处理器、Linux系统管理和文件系统操作后,以下是一些相关的“延伸阅读”内容: 1. 嵌入式处理器最新动态:近期,Arm公司发布了其最新的Cortex-A78AE和Cortex-X1AE处理器,专为高级驾驶辅助系统(ADAS)及自动驾驶汽车设计,提供了更高的效能与安全性。同时,RISC-V架构作为一种开源指令集体系结构,在嵌入式领域逐渐崭露头角,得到了SiFive等公司的大力推广和应用,有关RISC-V的生态建设和市场前景可深入研究。 2. Linux内核更新与优化:Linux 5.13版内核正式发布,该版本在硬件支持、性能优化以及安全增强等方面有显著提升,尤其对于嵌入式设备的支持更加全面。例如,对新型NAND Flash控制器的原生支持得到加强,有助于提高存储效率和稳定性。 3. Linux文件系统创新:科研人员正不断探索新的文件系统技术以适应大数据时代的需求。如Facebook主导开发的开源文件系统——Rocksteady,旨在提供超大规模数据中心所需的高效能、高稳定性和低延迟特性。此外,持久化内存(PMEM)技术的发展也在推动着Linux文件系统的变革,如pmemfs文件系统,它利用持久性内存的优势实现高性能的数据存取。 4. 跨平台开发与容器化趋势:随着云原生理念的普及,嵌入式开发开始关注容器化技术在边缘计算场景的应用。Docker和Kubernetes等工具正在帮助开发者更便捷地构建和部署跨平台的嵌入式应用,通过统一的容器环境简化了不同处理器架构间的移植难题。 5. 用户权限管理与安全实践:针对Linux系统安全问题,近年来有许多关于如何强化用户权限管理的研究报告和技术文章发表。例如,SELinux策略的深入解读,以及如何结合最小权限原则进行服务账户设置,避免因权限过高导致的安全风险,这些内容都是嵌入式系统安全运维的重要参考。
2023-11-23 17:18:30
79
转载
转载文章
...,主要针对企业有存量系统改造为容器,或者部分新开发的系统使用容器技术的场景。不包含企业系统从0开始全新构建的场景,这种场景相对简单。 容器实践路线图 企业着手实践容器的路线,建议从3个维度评估,然后根据评估结果落地实施。3个评估维度为:商业目标,技术选型,团队配合。 商业目标是重中之重,需要回答为何要容器化,这个也是牵引团队在容器实践路上不断前行的动力,是遇到问题是解决问题的方向指引,最重要的是让决策者认同商业目标,并能了解到支持商业目标的技术原理,上下目标对齐才好办事。 商业目标确定之后,需要确定容器相关的技术选型,容器是一种轻量化的虚拟化技术,与传统虚拟机比较有优点也有缺点,要找出这些差异点识别出对基础设施与应用的影响,提前识别风险并采取应对措施。 技术选型明确之后,在公司或部门内部推广与评审,让开发人员、架构师、测试人员、运维人员相关人员与团队理解与认同方案,听取他们意见,他们是直接使用容器的客户,不要让他们有抱怨。 最后是落地策略,一般是选取一些辅助业务先试点,在实践过程中不断总结经验。 商业目标 容器技术是以应用为中心的轻量级虚拟化技术,而传统的Xen与KVM是以资源为中心的虚拟化技术,这是两者的本质差异。以应用为中心是容器技术演进的指导原则,正是在这个原则指导下,容器技术相对于传统虚拟化有几个特点:打包既部署、镜像分层、应用资源调度。 打包即部署:打包即部署是指在容器镜像制作过程包含了传统软件包部署的过程(安装依赖的操作系统库或工具、创建用户、创建运行目录、解压、设置文件权限等等),这么做的好处是把应用及其依赖封装到了一个相对封闭的环境,减少了应用对外部环境的依赖,增强了应用在各种不同环境下的行为一致性,同时也减少了应用部署时间。 镜像分层:容器镜像包是分层结构,同一个主机上的镜像层是可以在多个容器之间共享的,这个机制可以极大减少镜像更新时候拉取镜像包的时间,通常应用程序更新升级都只是更新业务层(如Java程序的jar包),而镜像中的操作系统Lib层、运行时(如Jre)层等文件不会频繁更新。因此新版本镜像实质有变化的只有很小的一部分,在更新升级时候也只会从镜像仓库拉取很小的文件,所以速度很快。 应用资源调度:资源(计算/存储/网络)都是以应用为中心的,中心体现在资源分配是按照应用粒度分配资源、资源随应用迁移。 基于上述容器技术特点,可以推导出容器技术的3大使用场景:CI/CD、提升资源利用率、弹性伸缩。这3个使用场景自然推导出通用的商业层面收益:CI/CD提升研发效率、提升资源利用率降低成本、按需弹性伸缩在体验与成本之间达成平衡。 当然,除了商业目标之外,可能还有其他一些考虑因素,如基于容器技术实现计算任务调度平台、保持团队技术先进性等。 CI/CD提升研发效率 为什么容器技术适合CI/CD CI/CD是DevOps的关键组成部分,DevOps是一套软件工程的流程,用于持续提升软件开发效率与软件交付质量。DevOps流程来源于制造业的精益生产理念,在这个领域的领头羊是丰田公司,《丰田套路》这本书总结丰田公司如何通过PDCA(Plan-Do-Check-Act)方法实施持续改进。PDCA通常也称为PDCA循环,PDCA实施过程简要描述为:确定目标状态、分析当前状态、找出与目标状态的差距、制定实施计划、实施并总结、开始下一个PDCA过程。 DevOps基本也是这么一个PDCA流程循环,很容易认知到PDCA过程中效率是关键,同一时间段内,实施更多数量的PDCA过程,收益越高。在软件开发领域的DevOps流程中,各种等待(等待编译、等待打包、等待部署等)、各种中断(部署失败、机器故障)是影响DevOps流程效率的重要因素。 容器技术出来之后,将容器技术应用到DevOps场景下,可以从技术手段消除DevOps流程中的部分等待与中断,从而大幅度提升DevOps流程中CI/CD的效率。 容器的OCI标准定义了容器镜像规范,容器镜像包与传统的压缩包(zip/tgz等)相比有两个关键区别点:1)分层存储;2)打包即部署。 分层存储可以极大减少镜像更新时候拉取镜像包的时间,通常应用程序更新升级都只是更新业务层(如Java程序的jar包),而镜像中的操作系统Lib层、运行时(如Jre)层等文件不会频繁更新。因此新版本镜像实质有变化的只有很小的一部分,在更新升级时候也只会从镜像仓库拉取很小的文件,所以速度很快。 打包即部署是指在容器镜像制作过程包含了传统软件包部署的过程(安装依赖的操作系统库或工具、创建用户、创建运行目录、解压、设置文件权限等等),这么做的好处是把应用及其依赖封装到了一个相对封闭的环境,减少了应用对外部环境的依赖,增强了应用在各种不同环境下的行为一致性,同时也减少了应用部署时间。 基于容器镜像的这些优势,容器镜像用到CI/CD场景下,可以减少CI/CD过程中的等待时间,减少因环境差异而导致的部署中断,从而提升CI/CD的效率,提升整体研发效率。 CI/CD的关键诉求与挑战 快 开发人员本地开发调试完成后,提交代码,执行构建与部署,等待部署完成后验证功能。这个等待的过程尽可能短,否则开发人员工作容易被打断,造成后果就是效率降低。如果提交代码后几秒钟就能够完成部署,那么开发人员几乎不用等待,工作也不会被打断;如果需要好几分钟或十几分钟,那么可以想象,这十几分钟就是浪费了,这时候很容易做点别的事情,那么思路又被打断了。 所以构建CI/CD环境时候,快是第一个需要考虑的因素。要达到快,除了有足够的机器资源免除排队等待,引入并行编译技术也是常用做法,如Maven3支持多核并行构建。 自定义流程 不同行业存在不同的行业规范、监管要求,各个企业有一套内部质量规范,这些要求都对软件交付流程有定制需求,如要求使用商用的代码扫描工具做安全扫描,如构建结果与企业内部通信系统对接发送消息。 在团队协同方面,不同的公司,对DevOps流程在不同团队之间分工有差异,典型的有开发者负责代码编写构建出构建物(如jar包),而部署模板、配置由运维人员负责;有的企业开发人员负责构建并部署到测试环境;有的企业开发人员直接可以部署到生产环境。这些不同的场景,对CI/CD的流程、权限管控都有定制需求。 提升资源利用率 OCI标准包含容器镜像标准与容器运行时标准两部分,容器运行时标准聚焦在定义如何将镜像包从镜像仓库拉取到本地并更新、如何隔离运行时资源这些方面。得益于分层存储与打包即部署的特性,容器镜像从到镜像仓库拉取到本地运行速度非常快(通常小于30秒,依赖镜像本身大小等因素),基于此可以实现按需分配容器运行时资源(cpu与内存),并限定单个容器资源用量;然后根据容器进程资源使用率设定弹性伸缩规则,实现自动的弹性伸缩。 这种方式相对于传统的按峰值配置资源方式,可以提升资源利用率。 按需弹性伸缩在体验与成本之间达成平衡 联动弹性伸缩 应用运行到容器,按需分配资源之后,理想情况下,Kubernetes的池子里没有空闲的资源。这时候扩容应用实例数,新扩容的实例会因资源不足调度失败。这时候需要资源池能自动扩容,加入新的虚拟机,调度新扩容的应用。 由于应用对资源的配比与Flavor有要求,因此新加入的虚拟机,应当是与应用所需要的资源配比与Flavor一致的。缩容也是类似。 弹性伸缩还有一个诉求点是“平滑”,对业务做到不感知,也称为“优雅”扩容/缩容。 请求风暴 上面提到的弹性伸缩一般是有计划或缓慢增压的场景,存在另外一种无法预期的请求风暴场景,这种场景的特征是无法预测、突然请求量增大数倍或数十倍、持续时间短。典型的例子如行情交易系统,当行情突变的时候,用户访问量徒增,持续几十分钟或一个小时。 这种场景的弹性诉求,要求短时间内能将资源池扩大数倍,关键是速度要快(秒级),否则会来不及扩容,系统已经被冲垮(如果无限流的话)。 目前基于 Virtual Kubelet 与云厂家的 Serverless 容器,理论上可以提供应对请求风暴的方案。不过在具体实施时候,需要考虑传统托管式Kubernetes容器管理平台与Serverless容器之间互通的问题,需要基于具体厂家提供的能力来评估。 基于容器技术实现计算调度平台 计算(大数据/AI训练等)场景的特征是短时间内需要大量算力,算完即释放。容器的环境一致性以及调度便利性适合这种场景。 技术选型 容器技术是属于基础设施范围,但是与传统虚拟化技术(Xen/KVM)比较,容器技术是应用虚拟化,不是纯粹的资源虚拟化,与传统虚拟化存在差异。在容器技术选型时候,需要结合当前团队在应用管理与资源管理的现状,对照容器技术与虚拟化技术的差异,选择最合适的容器技术栈。 什么是容器技术 (1)容器是一种轻量化的应用虚拟化技术。 在讨论具体的容器技术栈的时候,先介绍目前几种常用的应用虚拟化技术,当前有3种主流的应用虚拟化技术: LXC,MicroVM,UniKernel(LibOS)。 LXC: Linux Container,通过 Linux的 namespace/cgroups/chroot 等技术隔离进程资源,目前应用最广的docker就是基于LXC实现应用虚拟化的。 MicroVM: MicroVM 介于 传统的VM 与 LXC之间,隔离性比LXC好,但是比传统的VM要轻量,轻量体现在体积小(几M到几十M)、启动快(小于1s)。 AWS Firecracker 就是一种MicroVM的实现,用于AWS的Serverless计算领域,Serverless要求启动快,租户之间隔离性好。 UniKernel: 是一种专用的(特定编程语言技术栈专用)、单地址空间、使用 library OS 构建出来的镜像。UniKernel要解决的问题是减少应用软件的技术栈层次,现代软件层次太多导致越来越臃肿:硬件+HostOS+虚拟化模拟+GuestOS+APP。UniKernel目标是:硬件+HostOS+虚拟化模拟+APP-with-libos。 三种技术对比表: 开销 体积 启动速度 隔离/安全 生态 LXC 低(几乎为0) 小 快(等同进程启动) 差(内核共享) 好 MicroVM 高 大 慢(小于1s) 好 中(Kata项目) UniKernel 中 中 中 好 差 根据上述对比来看,LXC是应用虚拟化首选的技术,如果LXC无法满足隔离性要,则可以考虑MicroVM这种技术。当前社区已经在着手融合LXC与MicroVM这两种技术,从应用打包/发布调度/运行层面统一规范,Kubernetes集成Kata支持混合应用调度特性可以了解一下。 UniKernel 在应用生态方面相对比较落后,目前在追赶中,目前通过 linuxkit 工具可以在UniKernel应用镜像中使用docker镜像。这种方式笔者还未验证过,另外docker镜像运行起来之后,如何监控目前还未知。 从上述三种应用虚拟化技术对比,可以得出结论: (2)容器技术与传统虚拟化技术不断融合中。 再从规范视角来看容器技术,可以将容器技术定义为: (3)容器=OCI+CRI+辅助工具。 OCI规范包含两部分,镜像规范与运行时规范。简要的说,要实现一个OCI的规范,需要能够下载镜像并解压镜像到文件系统上组成成一个文件目录结构,运行时工具能够理解这个目录结构并基于此目录结构管理(创建/启动/停止/删除)进程。 容器(container)的技术构成就是实现OCI规范的技术集合。 对于不同的操作系统(Linux/Windows),OCI规范的实现技术不同,当前docker的实现,支持Windows与Linux与MacOS操作系统。当前使用最广的是Linux系统,OCI的实现,在Linux上组成容器的主要技术: chroot: 通过分层文件系统堆叠出容器进程的rootfs,然后通过chroot设置容器进程的根文件系统为堆叠出的rootfs。 cgroups: 通过cgroups技术隔离容器进程的cpu/内存资源。 namesapce: 通过pid, uts, mount, network, user namesapce 分别隔离容器进程的进程ID,时间,文件系统挂载,网络,用户资源。 网络虚拟化: 容器进程被放置到独立的网络命名空间,通过Linux网络虚拟化veth, macvlan, bridge等技术连接主机网络与容器虚拟网络。 存储驱动: 本地文件系统,使用容器镜像分层文件堆叠的各种实现驱动,当前推荐的是overlay2。 广义的容器还包含容器编排,即当下很火热的Kubernetes。Kubernetes为了把控容器调度的生态,发布了CRI规范,通过CRI规范解耦Kubelet与容器,只要实现了CRI接口,都可以与Kubelet交互,从而被Kubernetes调度。OCI规范的容器实现与CRI标准接口对接的实现是CRI-O。 辅助工具用户构建镜像,验证镜像签名,管理存储卷等。 容器定义 容器是一种轻量化的应用虚拟化技术。 容器=OCI+CRI+辅助工具。 容器技术与传统虚拟化技术不断融合中。 什么是容器编排与调度 选择了应用虚拟化技术之后,还需要应用调度编排,当前Kubernetes是容器领域内编排的事实标准,不管使用何种应用虚拟化技术,都已经纳入到了Kubernetes治理框架中。 Kubernetes 通过 CRI 接口规范,将应用编排与应用虚拟化实现解耦:不管使用何种应用虚拟化技术(LXC, MicroVM, LibOS),都能够通过Kubernetes统一编排。 当前使用最多的是docker,其次是cri-o。docker与crio结合kata-runtime都能够支持多种应用虚拟化技术混合编排的场景,如LXC与MicroVM混合编排。 docker(now): Moby 公司贡献的 docker 相关部件,当前主流使用的模式。 docker(daemon) 提供对外访问的API与CLI(docker client) containerd 提供与 kubelet 对接的 CRI 接口实现 shim负责将Pod桥接到Host namespace。 cri-o: 由 RedHat/Intel/SUSE/IBM/Hyper 公司贡献的实现了CRI接口的符合OCI规范的运行时,当前包括 runc 与 kata-runtime ,也就是说使用 cir-o 可以同时运行LXC容器与MicroVM容器,具体在Kata介绍中有详细说明。 CRI-O: 实现了CRI接口的进程,与 kubelet 交互 crictl: 类似 docker 的命令行工具 conmon: Pod监控进程 other cri runtimes: 其他的一些cri实现,目前没有大规模应用到生产环境。 容器与传统虚拟化差异 容器(container)的技术构成 前面主要讲到的是容器与编排,包括CRI接口的各种实现,我们把容器领域的规范归纳为南向与北向两部分,CRI属于北向接口规范,对接编排系统,OCI就属于南向接口规范,实现应用虚拟化。 简单来讲,可以这么定义容器: 容器(container) ~= 应用打包(build) + 应用分发(ship) + 应用运行/资源隔离(run)。 build-ship-run 的内容都被定义到了OCI规范中,因此也可以这么定义容器: 容器(container) == OCI规范 OCI规范包含两部分,镜像规范与运行时规范。简要的说,要实现一个OCI的规范,需要能够下载镜像并解压镜像到文件系统上组成成一个文件目录结构,运行时工具能够理解这个目录结构并基于此目录结构管理(创建/启动/停止/删除)进程。 容器(container)的技术构成就是实现OCI规范的技术集合。 对于不同的操作系统(Linux/Windows),OCI规范的实现技术不同,当前docker的实现,支持Windows与Linux与MacOS操作系统。当前使用最广的是Linux系统,OCI的实现,在Linux上组成容器的主要技术: chroot: 通过分层文件系统堆叠出容器进程的rootfs,然后通过chroot设置容器进程的根文件系统为堆叠出的rootfs。 cgroups: 通过cgroups技术隔离容器进程的cpu/内存资源。 namesapce: 通过pid, uts, mount, network, user namesapce 分别隔离容器进程的进程ID,时间,文件系统挂载,网络,用户资源。 网络虚拟化: 容器进程被放置到独立的网络命名空间,通过Linux网络虚拟化veth, macvlan, bridge等技术连接主机网络与容器虚拟网络。 存储驱动: 本地文件系统,使用容器镜像分层文件堆叠的各种实现驱动,当前推荐的是overlay2。 广义的容器还包含容器编排,即当下很火热的Kubernetes。Kubernetes为了把控容器调度的生态,发布了CRI规范,通过CRI规范解耦Kubelet与容器,只要实现了CRI接口,都可以与Kubelet交互,从而被Kubernetes调度。OCI规范的容器实现与CRI标准接口对接的实现是CRI-O。 容器与虚拟机差异对比 容器与虚拟机的差异可以总结为2点:应用打包与分发的差异,应用资源隔离的差异。当然,导致这两点差异的根基是容器是以应用为中心来设计的,而虚拟化是以资源为中心来设计的,本文对比容器与虚拟机的差异,更多的是站在应用视角来对比。 从3个方面对比差异:资源隔离,应用打包与分发,延伸的日志/监控/DFX差异。 1.资源隔离 隔离机制差异 容器 虚拟化 mem/cpu cgroup, 使用时候设定 require 与 limit 值 QEMU, KVM network Linux网络虚拟化技术(veth,tap,bridge,macvlan,ipvlan), 跨虚拟机或出公网访问:SNAT/DNAT, service转发:iptables/ipvs, SR-IOV Linux网络虚拟化技术(veth,tap,bridge,macvlan,ipvlan), QEMU, SR-IOV storage 本地存储: 容器存储驱动 本地存储:virtio-blk 差异引入问题与实践建议 应用程序未适配 cgroup 的内存隔离导致问题: 典型的是 JVM 虚拟机,在 JVM 启动时候会根据系统内存自动设置 MaxHeapSize 值,通常是系统内存的1/4,但是 JVM 并未考虑 cgroup 场景,读系统内存时候任然读取主机的内存来设置 MaxHeapSize,这样会导致内存超过 cgroup 限制从而导致进程被 kill 。问题详细阐述与解决建议参考Java inside docker: What you must know to not FAIL。 多次网络虚拟化问题: 如果在虚拟机内使用容器,会多一层网络虚拟化,并加入了SNAT/DNAT技术, iptables/ipvs技术,对网络吞吐量与时延都有影响(具体依赖容器网络方案),对问题定位复杂度变高,同时还需要注意网络内核参数调优。 典型的网络调优参数有:转发表大小 /proc/sys/net/netfilter/nf_conntrack_max 使用iptables 作为service转发实现的时候,在转发规则较多的时候,iptables更新由于需要全量更新导致非常耗时,建议使用ipvs。详细参考[华为云在 K8S 大规模场景下的 Service 性能优化实践](https://zhuanlan.zhihu.com/p/37230013)。 容器IP地址频繁变化不固定,周边系统需要协调适配,包括基于IP地址的白名单或防火墙控制策略需要调整,CMDB记录的应用IP地址需要适配动态IP或者使用服务名替代IP地址。 存储驱动带来的性能损耗: 容器本地文件系统是通过联合文件系统方式堆叠出来的,当前主推与默认提供的是overlay2驱动,这种模式应用写本地文件系统文件或修改已有文件,使用Copy-On-Write方式,也就是会先拷贝源文件到可写层然后修改,如果这种操作非常频繁,建议使用 volume 方式。 2.应用打包与分发 应用打包/分发/调度差异 容器 虚拟化 打包 打包既部署 一般不会把应用程序与虚拟机打包在一起,通过部署系统部署应用 分发 使用镜像仓库存储与分发 使用文件存储 调度运行 使用K8S亲和/反亲和调度策略 使用部署系统的调度能力 差异引入问题与实践建议 部署提前到构建阶段,应用需要支持动态配置与静态程序分离;如果在传统部署脚本中依赖外部动态配置,这部分需要做一些调整。 打包格式发生变化,制作容器镜像需要注意安全/效率因素,可参考Dockerfile最佳实践 容器镜像存储与分发是按layer来组织的,镜像在传输过程中放篡改的方式是传统软件包有差异。 3.监控/日志/DFX 差异 容器 虚拟化 监控 cpu/mem的资源上限是cgroup定义的;containerd/shim/docker-daemon等进程的监控 传统进程监控 日志采集 stdout/stderr日志采集方式变化;日志持久化需要挂载到volume;进程会被随机调度到其他节点导致日志需要实时采集否则分散很难定位 传统日志采集 问题定位 进程down之后自动拉起会导致问题定位现场丢失;无法停止进程来定位问题因为停止即删除实例 传统问题定位手段 差异引入问题实践与建议 使用成熟的监控工具,运行在docker中的应用使用cadvisor+prometheus实现采集与警报,cadvisor中预置了常用的监控指标项 对于docker管理进程(containerd/shim/docker-daemon)也需要一并监控 使用成熟的日志采集工具,如果已有日志采集Agent,则可以考虑将日志文件挂载到volume后由Agent采集;需要注意的是stderr/stdout输出也要一并采集 如果希望容器内应用进程退出后保留现场定位问题,则可以将Pod的restartPolicy设置为never,进程退出后进程文件都还保留着(/var/lib/docker/containers)。但是这么做的话需要进程没有及时恢复,会影响业务,需要自己实现进程重拉起。 团队配合 与周边的开发团队、架构团队、测试团队、运维团队评审并交流方案,与周边团队达成一致。 落地策略与注意事项 逐步演进过程中网络互通 根据当前已经存在的基础实施情况,选择容器化落地策略。通常使用逐步演进的方式,由于容器化引入了独立的网络namespace导致容器与传统虚拟机进程网络隔离,逐步演进过程中如何打通隔离的网络是最大的挑战。 分两种场景讨论: 不同服务集群之间使用VIP模式互通: 这种模式相对简单,基于VIP做灰度发布。 不同服务集群之间使用微服务点对点模式互通(SpringCloud/ServiceComb/Dubbo都是这一类): 这种模式相对复杂,在逐步容器化过程中,要求容器网络与传统虚拟机网络能够互通(难点是在虚拟机进程内能够直接访问到容器网络的IP地址),当前解决这个问题有几种方法。 自建Kubernetes场景,可使用开源的kube-router,kube-router 使用BGP协议实现容器网络与传统虚拟机网络之间互通,要求网络交换机支持BGP协议。 使用云厂商托管Kubernetes场景,选择云厂商提供的VPC-Router互通的网络插件,如阿里云的Terway网络插件, 华为云的Underlay网络模式。 选择物理机还是虚拟机 选择物理机运行容器还是虚拟机运行容器,需要结合基础设施与业务隔离性要求综合考虑。分两种场景:自建IDC、租用公有云。 自建IDC: 理想情况是使用物理机组成一个大集群,根据业务诉求,对资源保障与安全性要求高的应用,使用MicorVM方式隔离;普通应用使用LXC方式隔离。所有物理机在一个大集群内,方便削峰填谷提升资源利用率。 租用公有云:当前公有云厂家提供的裸金属服务价格较贵且只能包周期,使用裸金属性价比并不高,使用虚拟机更合适。 集群规模与划分 选择集群时候,是多个应用共用一个大集群,还是按应用分组分成多个小集群呢?我们把节点规模数量>=1000的定义为大集群,节点数<1000的定义为小集群。 大集群的优点是资源池共享容器,方便资源调度(削峰填谷);缺点是随着节点数量与负载数量的增多,会引入管理性能问题(需要量化): DNS 解析表变大,增加/删除 Service 或 增加/删除 Endpoint 导致DNS表刷新慢 K8S Service 转发表变大,导致工作负载增加/删除刷新iptables/ipvs记录变慢 etcd 存储空间变大,如果加上ConfigMap,可能导致 etcd 访问时延增加 小集群的优点是不会有管理性能问题,缺点是会导致资源碎片化,不容易共享。共享分两种情况: 应用之间削峰填谷:目前无法实现 计算任务与应用之间削峰填谷:由于计算任务是短时任务,可以通过上层的任务调度软件,在多个集群之间分发计算任务,从而达到集群之间资源共享的目的。 选择集群规模的时候,可以参考上述分析,结合实际情况选择适合的集群划分。 Helm? Helm是为了解决K8S管理对象散碎的问题,在K8S中并没有"应用"的概念,只有一个个散的对象(Deployment, ConfigMap, Service, etc),而一个"应用"是多个对象组合起来的,且这些对象之间还可能存在一定的版本配套关系。 Helm 通过将K8S多个对象打包为一个包并标注版本号形成一个"应用",通过 Helm 管理进程部署/升级这个"应用"。这种方式解决了一些问题(应用分发更方便)同时也引入了一些问题(引入Helm增加应用发布/管理复杂度、在K8S修改了对象后如何同步到Helm)。对于是否需要使用Helm,建议如下: 在自运维模式下不使用Helm: 自运维模式下,很多场景是开发团队交付一个运行包,运维团队负责部署与配置下发,内部通过兼容性或软件包与配置版本配套清单、管理软件包与配置的配套关系。 在交付软件包模式下使用Helm: 交付软件包模式下,Helm 这种把散碎组件组装为一个应用的模式比较适合,使用Helm实现软件包分发/部署/升级场比较简单。 Reference DOCKER vs LXC vs VIRTUAL MACHINES Cgroup与LXC简介 Introducing Container Runtime Interface (CRI) in Kubernetes frakti rkt appc-spec OCI 和 runc:容器标准化和 docker Linux 容器技术史话:从 chroot 到未来 Linux Namespace和Cgroup Java inside docker: What you must know to not FAIL QEMU,KVM及QEMU-KVM介绍 kvm libvirt qemu实践系列(一)-kvm介绍 KVM 介绍(4):I/O 设备直接分配和 SR-IOV [KVM PCI/PCIe Pass-Through SR-IOV] prometheus-book 到底什么是Unikernel? The Rise and Fall of the Operating System The Design and Implementation of the Anykernel and Rump Kernels UniKernel Unikernel:从不入门到入门 OSv 京东如何打造K8s全球最大集群支撑万亿电商交易 Cloud Native App Hub 更多云最佳实践 https://best.practices.cloud 本篇文章为转载内容。原文链接:https://blog.csdn.net/sinat_33155975/article/details/118013855。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-17 15:03:28
225
转载
Docker
Docker , Docker是一个开源的应用容器引擎,它通过容器化技术为应用程序提供了一种标准化、轻量级的打包、分发和运行环境。在docker中,应用程序及其依赖项被打包到一个可移植的镜像中,用户可以使用该镜像创建并运行一个隔离且独立于宿主机系统的容器实例,确保应用程序在不同环境中的一致性和高效性。 容器化 , 容器化是一种操作系统级别的虚拟化技术,通过将应用程序及其依赖库、配置文件等封装在一个称为“容器”(如Docker容器)的隔离环境中运行,实现了资源的高效利用与管理。每个容器共享主机操作系统的内核,但拥有自己的文件系统、进程空间、网络接口等资源,从而实现应用的快速部署、版本控制以及跨平台运行能力。 Docker Hub , Docker Hub是Docker官方提供的在线镜像仓库,允许用户上传、存储和分享自己构建的Docker镜像,同时也提供了大量由社区和官方维护的标准软件镜像供用户直接下载和使用。通过Docker Hub,开发人员能够方便地获取所需的运行环境和依赖组件,极大地简化了软件开发、测试及部署流程。 Docker Swarm , Docker Swarm是Docker生态系统中的集群管理工具,它将一组物理或虚拟主机作为一个单一的虚拟Docker引擎来管理和调度容器。Swarm模式下,用户可以通过统一的API或命令行界面,在整个集群范围内进行容器服务的部署、扩展和故障转移,以实现高可用性和水平扩展能力。 Docker Compose , Docker Compose是一种用于定义和运行多容器Docker应用程序的工具,通过编写一个YAML格式的Compose文件,用户可以简洁明了地定义多个容器之间的关系和服务依赖,并一键启动所有相关容器。这使得开发者能够轻松地搭建和管理复杂的应用程序堆栈,包括数据库、Web服务器、缓存服务等多种微服务架构场景。
2023-01-02 19:11:15
391
电脑达人
Docker
为什么很多Docker容器中的用户uid默认是999? 在探索Docker容器世界的旅程中,我们经常会发现一个有趣的现象:不少Docker镜像或容器内运行的进程,默认情况下其用户的uid(User ID)被设置为999。你可能心里正犯嘀咕,为啥我们偏偏对这个数字情有独钟,而不是其他的呢?在这篇文里,咱们就一起手拉手,像解密探险一样揭开这个谜团吧!我会带着大伙儿,通过实实在在的例子和深入的讨论,来摸清楚这背后究竟藏着啥讲究。 1. Docker容器与用户权限 首先,让我们简要回顾一下Docker容器内的用户权限模型。你知道吗,Docker那个小家伙,默认情况下启动容器时,会直接动用到root大权限,这在安全性和隔离性方面,可不是什么顶呱呱的优秀操作。为了让大家用得更安心,我常常建议这样做:别让你在容器里运行的应用权限太高了,最好能把它们映射到宿主机上的普通用户级别,这样一来就更加安全啦。就像是让这些应用从VIP房间搬到了经济舱,虽然待遇没那么高,但是安全性却大大提升,避免惹出什么乱子来。这就引出了uid的概念——它是Unix/Linux系统中标识用户身份的重要标识符。 2. 默认uid的选择 999的秘密 那么,为什么许多Docker官方或社区制作的镜像倾向于将应用运行时的用户uid设为999呢?答案其实并不复杂: - 避免冲突:在大多数Linux发行版中,系统用户的uid从100开始分配给普通用户,因此选取大于100但又不是特别大的数字(如999),可以最大程度地减少与宿主机现有用户的uid冲突的可能性。 - 保留空间:选择一个高于常规uid范围的值,确保了不会意外覆盖宿主机上的任何重要用户账号。 - 一致性与约定俗成:随着时间推移,选用999作为非root用户的uid逐渐成为一种行业惯例和最佳实践,尤其是在创建需要低权限运行的应用程序镜像时。 3. 实践示例 自定义uid的Dockerfile 下面是一个简单的Dockerfile片段,展示如何在构建镜像时创建并使用uid为999的用户: dockerfile 首先,基于某个基础镜像 FROM ubuntu:latest 创建一个新的系统用户,指定uid为999 RUN groupadd --gid 999 appuser && \ useradd --system --uid 999 --gid appuser appuser 设置工作目录,并确保所有权归新创建的appuser所有 WORKDIR /app RUN chown -R appuser:appuser /app 以后的所有操作均以appuser身份执行 USER appuser 示例安装和运行一个应用程序 RUN npm install 假设我们要运行一个Node.js应用 CMD ["node", "index.js"] 在这个例子中,我们创建了一个名为appuser的新用户,其uid和gid都被设置为999。然后呢,咱就把容器里面的那个 /app 工作目录的所有权,给归到该用户名下啦。这样一来,应用在跑起来的时候,就能够顺利地打开、编辑和保存文件,不会因为权限问题卡壳。 4. 深入思考 uid映射与安全策略 虽然999是一个常见选项,但它并不是硬性规定。实际上,根据具体的部署环境和安全需求,你可以灵活调整uid。比如,在某些情况下,可能需要把容器里面的用户uid,对应到宿主机上的某个特定用户,这样一来,我们就能对文件系统的权限进行更精准的调控了,就像拿着钥匙开锁那样,该谁访问就给谁访问的权利。这时,可以通过Docker的--user参数或者在Dockerfile中定义用户来实现uid的精确映射。 总而言之,Docker容器中用户uid为999这一现象,体现了开发者们在追求安全、便捷和兼容性之间所做的权衡和智慧。随着我们对容器技术的领悟越来越透彻,这些原则就能被我们玩转得更加游刃有余,随时适应各种实际场景下的需求变化,就像是给不同的应用场景穿上量身定制的衣服一样。而这一切的背后,都离不开我们持续的探索、试错和优化的过程。
2023-05-11 13:05:22
463
秋水共长天一色_
转载文章
...了很多,风格也得到了统一。这个工具现在在我们团队内部仍然还在广泛地使用。 还有个故事我也讲过,就是老大分配给我一个图片下载的任务。我不局限于完成完成任务,而且还把文件系统、磁盘工作原理都深入整理了一遍,就是这篇《Linux文件系统十问》 03 转战搜狗 2013 下半年的时候,我第一次感受到了工作岗位的震荡。我还专注解决某一个 bug,花了不少精力都还没查到 bug 的原因。这时候,部门助理突然招呼我们所有人都下楼,在银科腾讯的 Image 印象店集合。在那里,见到了腾讯的总裁 Martin。这还是第一次离大老板只有一米远的距离。 所有人都是一脸困惑,突然把大家召集下来是干嘛呢。原来就在几个小时前,腾讯总办已经和搜狗达成了协议。腾讯收购搜狗的一部分股份,并把我们连人带业务一起注入到了搜狗。 没想到,是老板用一种更牛逼的方式帮我把 bug 给解决了。 14 年 1 月正式到了搜狗以后,我们没有继续做搜索了。而是内部 Transfer 到了另外一个部门。做起了搜狗网址导航、搜狗手机助手、搜狗浏览器等业务。我也是从那个时间点,开始带团队的,也是从那以后慢慢开始从个人贡献者到带团队集体输出的角色的转变。 在搜狗工作的这 7 年的时间里,我仍然也是延续之前的风格。不拘泥于完成工作中的产品需求,以及老大交付的任务。而是主动去探索各种项目中有价值的事情。 比如在手机助手的推广中,我琢磨了新用户的安装流程的各个环节后,找出影响用户安装率提升的关键因素。然后对新版本安装包采用了多种技术方案,将单用户获取成本削减了20%+,这一年下来就是千万级别的成本节约。 我们还主动在手机助手的搜索模块中应用了简单的学习算法。采用了用户协同,标签相似,点击反馈等方法将手机助手的搜索转化率提升了数个百分点。 除了用技术提升业务以外,我还结合工作中的问题进行了很多的深度技术思考。 如有一次我们自己维护了一个线上的redis(当时工程部还没有redis平台,redis服务要业务自己维护)。为了优化性能,我把后端的请求由短连接改成了长连接。虽然看效果性能确实是优化了,但是我的思考并没有停止。我们所有的后端机都会连接这个redis。这样在这个redis实例上可能得有6000多条并发连接存在。我就开始疑惑,Linux 最多能有多少个TCP连接呢,我这 6000 条长连接会不会把这个服务器玩坏? 再比如,我们组的服务器遭遇过几次连接相关的线上问题。其中一次是因为端口紧张而导致 CPU 消耗飙升。后来我又深入研究了一下。 最近,由于 Docker 的广泛应用。底层的网络工作方式已经在悄悄地发生变化了。所以我又开辟了一个网络虚拟化的坑,来一点一点地填。 现在我们的「开发内功修炼」公众号和 Github 就是在作为一个我和大家分享我的技术思考的一个窗口。 04 重回腾讯 时隔 7 年,我又以一种奇特的方式变回了腾讯人的身份。 腾讯再一次收购了搜狗的股份,这一次不再是控股,而是全资。 在离开腾讯的这 7 年多的时间里,腾讯的内部技术工作方式已经发生了翻天覆地的变化。 所以在刚转回腾讯的这一段时间里,我花了大量的精力来熟悉腾讯基于 tRPC 的各种技术生态。除了工作日,也投入了不少周末的精力。 05 再叨叨几句 最后,水文里挤干货,通过我今天的文章我想给大家分享这么几点经验。 第一,是要学会抬头看路,选择一个好的赛道进去。我非常庆幸我当年从广电赛道切换到了互联网,获得了更大的舞台。不过其实我自己在这点上做的也不是特别好,2013年底入职搜狗前拒绝了字节大把期权的offer,要不然我我早就财务自由了。 第二,不要光被动接收领导的指令干活。要主动积极思考项目中哪些地方是待改进的,想到了你就去做。领导都非常喜欢积极主动的员工。我自己也是喜欢招一些能主动思考,积极推进的同学。这些人能创造意外的价值。 第三,工作中除了业务以外还要主动技术的深度思考。毕竟技术仍然是开发的立命之本。在晋升考核的时候,业务数据做的再好也代替不了技术实力的核心位置。把工作中的技术点总结一下,在公司内分享出来。不涉及机密的话在外网分享一下更好。对你自己,对你的团队,都是好事。 技术交流群 最近有很多人问,有没有读者交流群,想知道怎么加入。 最近我创建了一些群,大家可以加入。交流群都是免费的,只需要大家加入之后不要随便发广告,多多交流技术就好了。 目前创建了多个交流群,全国交流群、北上广杭深等各地区交流群、面试交流群、资源共享群等。 有兴趣入群的同学,可长按扫描下方二维码,一定要备注:全国 Or 城市 Or 面试 Or 资源,根据格式备注,可更快被通过且邀请进群。 ▲长按扫描 往期推荐 武大94年博士年薪201万入职华为!学霸日程表曝光,简直降维打击! 腾讯三面:40亿个QQ号码如何去重? 我被开除了。。只因为看了骂公司的帖子 如果你喜欢本文, 请长按二维码,关注 Hollis. 转发至朋友圈,是对我最大的支持。 点个 在看 喜欢是一种感觉 在看是一种支持 ↘↘↘ 本篇文章为转载内容。原文链接:https://blog.csdn.net/hollis_chuang/article/details/121738393。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-06 11:38:24
232
转载
Docker
...环境下的运行一致性。Docker就是一种流行的容器化引擎,通过提供标准化的方式创建、部署和管理容器,简化了应用程序的生命周期管理。 Docker Compose , Docker Compose是Docker生态系统中的一个工具,用于定义和运行多容器Docker应用程序。通过编写docker-compose.yml文件,用户可以声明式地定义一组相关联的服务、网络以及数据卷等组件,实现对整个分布式应用的快速搭建、配置及启动,方便地进行复杂微服务架构的开发与测试。 Docker API , Docker API是一套RESTful接口,允许程序以编程方式与Docker守护进程交互,执行包括容器创建、启动、停止、删除以及获取容器日志等各种操作。开发者可以通过HTTP请求访问这些API来自动化或扩展Docker的功能,例如在本文中提到的,通过Docker API可以直接获取指定容器的日志流。 标准输出(stdout)和错误输出(stderr) , 在计算机程序中,标准输出和错误输出是两种常见的输出流。标准输出通常用于程序正常运行时产生的信息,而错误输出则用于记录程序运行时出现的错误信息或警告信息。在Docker环境中,容器的标准输出和错误输出会被捕获并作为日志存储,以便于用户通过docker logs命令或其他方式查看和分析容器内部的运行状态和问题排查。
2023-09-05 21:33:01
333
代码侠
Docker
...术也得到了普遍应用。Docker作为容器技术的典型,已经成为了构建和部署应用程序的常用手段之一。它可以提供一种轻量级的解决办法,将应用和它们的依赖项封装到一个可移动的容器中,并在不同的环境下执行。这篇文章将介绍如何运用Docker整合应用程序。 第一步是装置Docker。在Linux或Mac系统上执行以下命令: curl -fsSL https://get.docker.com -o get-docker.sh sudo sh get-docker.sh 在Windows上,需要从官网下载装置包并进行装置。装置完成后,可以执行以下命令查看版本: docker version 接下来,需要将应用程序封装为Docker镜像。Docker镜像是一个只读的文件,它包括了执行应用程序所需要的所有文件及设定。可以运用Dockerfile来规定镜像构建步骤。在文件系统中新建一个Dockerfile文件,然后编写以下内容: FROM ubuntu:latest RUN apt-get update RUN apt-get install -y python3 RUN apt-get install -y python3-pip WORKDIR /app COPY requirements.txt /app RUN pip3 install -r requirements.txt COPY . /app CMD ["python3", "app.py"] 这个Dockerfile的作用是:运用最新版本的Ubuntu作为基础镜像,然后装置Python3和pip包管理器。我们的程序源码位于/app目录下,所以我们将运行目录设置为/app。接下来,我们将应用程序的依赖项列表存储于requirements.txt文件中,并装置这些依赖项。最后,我们拷贝整个程序源码到/app目录下,并规定了应用程序的启动指令。 当我们构建这个Docker镜像时,会执行上述Dockerfile中的指令,生成包括应用程序及其依赖项的镜像。运用以下命令来创建镜像: docker build -t myapp . 其中,“myapp”是我们为此镜像赋予的名字,点号表示运用当前目录中的Dockerfile文件。 现在,我们可以在Docker容器中执行我们的应用程序了。运用以下命令来启动容器: docker run -d -p 5000:5000 myapp 其中,“-d”选项表示在后台执行容器,“-p”选项是将容器的5000端口连接至主机的5000端口。这意味着我们可以在本地浏览器中打开http://localhost:5000来访问应用程序了。 这就是运用Docker整合应用程序的基本过程,它可以简化应用程序的构建和部署过程,提高开发效率。
2023-05-14 18:00:01
553
软件工程师
Docker
...想告诉你一个好消息:Docker可以解决这些问题。 Docker是一个开源的应用容器引擎,它允许开发者打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化。让我们一起开始学习如何安装和使用Docker吧! 二、Docker的基本概念 在我们深入学习Docker之前,我们需要先理解一些基本的概念。首先,Docker镜像可不得了,它超级轻巧、灵活便携,而且是个全能自给自足的小型运行环境容器。这些镜像,你可以随意选择从仓库直接下载,或者更 DIY 一点,通过 Dockerfile 自己动手打造! 接下来,我们来了解下Dockerfile是什么。Dockerfile,你可把它想象成一本菜谱,里面密密麻麻记录了一连串神奇的指令。这些指令啊,就像是做一道道工序,一步步告诉你如何从零开始,精心打造出一个完整的Docker镜像。当你准备动手构建一个新的Docker镜像时,完全可以告诉Docker那个藏着构建秘籍的Dockerfile在哪儿,然后Docker就会超级听话地根据这个文件一步步自动搭建出你的新镜像来。 最后,我们要知道Docker容器。Docker容器是在宿主机(主机)上运行的独立的进程空间。每个容器都有自己的文件系统,网络,端口映射等特性。 三、Docker的安装步骤 1. 更新操作系统的软件源列表 在Ubuntu上,可以通过以下命令更新软件源列表: bash sudo apt-get update 2. 安装Docker Ubuntu用户可以在终端中输入以下命令安装Docker: bash sudo apt-get install docker-ce docker-ce-cli containerd.io 3. 启动Docker服务并设置开机启动 在Ubuntu上,可以执行以下命令启动Docker服务,并设置为开机启动: bash sudo systemctl start docker sudo systemctl enable docker 4. 验证Docker的安装 你可以使用以下命令验证Docker的安装: bash docker run hello-world 5. 设置Docker加速器 如果你在中国,为了提高Docker镜像下载速度,可以设置Docker加速器。首先,需要在Docker官网注册账号,然后复制加速器的地址。在终端中,输入以下命令添加加速器: bash docker pull --registry-username= --registry-password= registry.cn-shanghai.aliyuncs.com/: 将、、和替换为你自己的信息。 四、使用Docker的基本命令 现在,我们已经完成了Docker的安装,接下来让我们一起学习一些基本的Docker命令吧! 1. 查看Docker版本 bash docker version 2. 显示正在运行的容器 bash docker ps 3. 列出所有的镜像 bash docker images 4. 创建一个新的Docker镜像 bash docker build -t . 5. 运行一个Docker容器 bash docker run -it 6. 查看所有容器的日志 bash docker logs 五、总结 总的来说,Docker是一个非常强大的工具,可以帮助我们更高效地管理我们的应用程序。通过本篇文章的学习,我相信你对Docker已经有了初步的理解。希望你以后不论是上班摸鱼,还是下班享受生活,都能更溜地用上Docker这个神器,让效率嗖嗖往上升。
2023-02-21 20:40:21
478
星河万里-t
Docker
Docker , Docker是一款开源的应用容器引擎,它使用容器化技术将应用程序及其依赖项打包在一起,形成一个可移植、自包含的软件单元。在不同的操作系统和环境下,Docker容器可以确保应用的一致性运行,极大地提高了开发、测试和部署的效率与灵活性。 Docker镜像 , Docker镜像是创建Docker容器的基础,是一个只读模板,包含了运行某个软件服务所需的所有文件系统结构、环境变量以及配置信息。在本文中,“liumiaocn/thunder-linux”就是一个迅雷的Docker镜像,通过docker pull命令从Docker Hub仓库下载到本地,然后基于此镜像启动迅雷的Docker容器。 数据卷挂载(-v 参数) , 在Docker中,数据卷是宿主机和容器之间共享数据的一种方式。通过 -v 参数可以在启动容器时指定宿主机目录与容器内部目录的映射关系,使得容器内产生的数据能够持久化存储在宿主机上。在本文的具体场景下,使用 -v $ HOME /Downloads:/root/Downloads 将主机用户的下载目录挂载到容器的根用户下载目录,这样迅雷在容器内下载的文件就可以直接保存在主机的 ~/Downloads 目录下,方便用户在宿主机层面访问和管理这些文件。 X11服务器 (DISPLAY) , X11是一个用于Unix和类Unix系统图形界面显示的网络协议。在Docker容器中运行需要图形界面的应用程序时,通常需要将容器连接到宿主机的X11服务器,以便在宿主机上显示应用程序窗口。在文章中,通过 -e DISPLAY=$DISPLAY 和 -v /tmp/.X11-unix:/tmp/.X11-unix 参数设置,实现了迅雷这个图形界面应用在Docker容器内运行时,其界面能正确显示在宿主机桌面上的功能。
2023-01-28 13:49:08
526
程序媛
Docker
Docker , Docker是一个开源的应用容器引擎,它通过容器化技术将应用程序及其依赖环境打包成一个可移植、自包含的镜像,能够在不同的Linux操作系统上以一致的方式运行。在本文中,用户通过手动输入Docker命令来管理(如创建、启动、停止和进入容器)这些容器。 Docker Hub , Docker Hub是Docker官方提供的镜像仓库服务,类似于软件应用商店,其中包含了大量由社区和官方发布的预构建Docker镜像。用户可以通过docker pull命令从Docker Hub下载所需的镜像,以便快速部署和运行各种应用程序或服务。 容器 , 在Docker环境下,容器是一种轻量级、独立运行的一组进程,它们与主机和其他容器共享内核,但每个容器拥有自己独立的文件系统、网络配置和资源限制。容器提供了隔离且一致的运行环境,使得应用程序可以在不同环境中实现无缝迁移和快速部署。 端口映射 , 端口映射是在Docker容器与宿主机之间建立的一种网络通信机制,通过-p选项在docker run命令中指定。例如,-p 80:80表示将宿主机的80端口与容器内部的80端口进行映射,这样外部客户端可以通过访问宿主机的80端口来与容器内的服务进行通信。 Docker Compose , 尽管文章没有直接提到,但它是Docker生态中的一个重要工具,用于定义和运行多容器应用程序。通过编写一个YAML格式的docker-compose.yml文件,可以轻松地定义一组相关联的服务以及它们之间的依赖关系,然后使用一条命令来启动和协调所有容器的生命周期。 Kubernetes(简称K8s) , 虽然在给出的文章摘要中未详细阐述,但在现代云原生架构中,Kubernetes是一个流行的开源容器编排系统,它可以自动化容器应用的部署、扩展和管理。在文中提及的新版Docker优化了与Kubernetes的集成体验,意味着用户能够更加便捷地将基于Docker的容器部署到Kubernetes集群中,实现大规模容器集群的高效管理和调度。
2023-03-26 21:05:17
324
软件工程师
Docker
Docker日志等级输出:深入理解与实战查看最后100行 一、Docker日志概览 在我们日常的开发运维工作中,Docker作为容器化技术的领军者,极大地简化了应用部署和管理的过程。而Docker容器产生的日志,则是我们洞察程序运行状态、排查问题的重要依据。这篇东西,咱们要聊的就是怎么让Docker日志等级输出变得灵活可控,再就是怎么轻轻松松看透最后那100行日志的高效秘籍。 二、Docker日志级别设置 在Docker中,日志级别的调整通常是在容器启动时通过--log-driver和--log-opt参数指定。比如,我们可以设定日志级别为info,以便只输出信息级别及以上的日志: bash docker run -it --log-driver=json-file --log-opt max-size=10m --log-opt max-file=3 --log-opt labels=info your-image-name 上述命令设置了日志驱动为json-file(这是Docker默认的日志驱动),同时限制了单个日志文件最大10M,最多保存3个文件,并且只记录info及以上级别的日志。 三、查看Docker容器日志的几种方式 1. 使用docker logs命令 Docker提供了一个内置命令docker logs来查看容器的日志,默认情况下,它会显示容器的所有输出。 bash docker logs -f --tail 100 your-container-id-or-name 上述命令中的-f表示实时(follow)输出日志,--tail 100则表示仅显示最后100行日志内容。这就是咱们今天讨论主题的重点操作环节,说白了,就是用来快速瞅一眼某个容器最近都干了啥。 2. 结合journalctl查看systemd驱动的日志 若你配置了Docker使用journald日志驱动,可以借助journalctl工具查看: bash journalctl -u docker.service --since "1 hour ago" _COMM=docker 这里并没有直接实现查看容器最后100行日志,但你可以根据实际需要调整journalctl的查询条件以达到类似效果。 四、深入思考 为什么我们需要查看日志最后100行? 当我们面对复杂的系统环境或突发的问题时,快速定位到问题发生的时间窗口至关重要。瞧瞧Docker容器日志最后的100条信息,就像是翻看最近发生的故事一样,能让我们闪电般地抓住最新的动态,更快地寻找到解决问题的关键线索。这就好比侦探破案,总是先从最新的线索入手,逐步揭开谜团。 五、实践探索 自定义日志输出格式与存储 除了基础的日志查看功能外,Docker还支持丰富的自定义日志处理选项。例如,我们可以将日志发送至syslog服务器,或者对接第三方日志服务如Logstash等。对于资深用户来说,这种灵活性简直就是个宝藏,它意味着无限多的可能性。你可以根据自家业务的具体需求,随心所欲地打造一套最适合自己的日志管理系统,就像私人订制一般,让一切都变得恰到好处。 总结来说,理解和熟练掌握Docker日志管理,尤其是如何便捷地查看日志最后100行,是每个Docker使用者必备技能之一。经过不断动手尝试和摸爬滚打,我们定能把Docker这玩意儿玩得溜起来,让它在咱们的开发运维工作中大显身手,发挥出更大的价值。下次当你面对茫茫日志海洋时,希望这篇指南能助你快速锁定目标,犹如海上的灯塔照亮前行的方向。
2024-01-02 22:55:08
507
青春印记
Redis
...款高效的数据结构存储系统,以其在内存中处理数据的能力和丰富的数据类型支持,在分布式缓存、键值对存储以及实时分析等领域扮演着核心角色。你知道吗,一个状态棒棒哒、表现贼6的Redis服务器,那可是能够轻松应对海量用户的并发请求!这其中有一个特别重要的“小开关”——最大连接数(maxclients),它就像是Redis在高并发环境下的“定海神针”,直接关系到Redis的表现力和稳定性。 二、为什么要关注Redis的最大连接数 Redis最大连接数限制了同一时间内可以有多少客户端与其建立连接并发送请求。当这个数值被突破时,不好意思,新的连接就得乖乖排队等候了,只有等当前哪个连接完成了任务,腾出位置来,新的连接才有机会连进来。因此,合理设置最大连接数至关重要: - 避免资源耗尽:过多的连接可能导致Redis消耗完所有的文件描述符(通常是内核限制),从而无法接受新连接。 - 提高响应速度:过低的连接数可能导致客户端间的竞争,特别是对于频繁读取缓存的情况,过多的等待会导致整体性能下降。 - 维护系统稳定性:过高或者过低的连接数都可能引发各种问题,如资源争抢、网络拥堵、服务器负载不均等。 三、Redis最大连接数的设置步骤 1. 查看Redis默认最大连接数 打开Redis配置文件redis.conf,找到如下行: Default value for maxclients, can be overridden by the command line option maxclients 10000 这就是Redis服务器的默认最大连接数,通常在生产环境中会根据需求进行调整。 2. 修改Redis最大连接数配置 为了演示,我们把最大连接数设为250: 在redis.conf 文件中添加或替换原有maxclients 设置 maxclients 250 确保修改后的配置文件正确无误,并遵循以下原则来确定合适的最大连接数: - 根据预期并发用户量计算所需连接数,一般来说,每个活跃用户至少维持一个持久连接,加上一定的冗余。 - 考虑Redis任务类型:如果主要用于写入操作,如持久化任务,适当增加连接数可加快数据同步;若主要是读取,那么连接数可根据平均并发读取量设置。 - 参考服务器硬件资源:CPU、内存、磁盘I/O等资源水平,以防止因连接数过多导致Redis服务响应变慢或崩溃。 3. 保存并重启Redis服务 完成配置后,记得保存更改并重启Redis服务以使新配置生效: bash Linux 示例 sudo service redis-server restart macOS 或 Docker 使用以下命令 sudo redis-cli config save docker-compose restart redis 4. 检查并监控Redis最大连接数 重启Redis服务后,通过info clients命令检查最大连接数是否已更新: redis-cli info clients 输出应包含connected_clients这一字段,显示当前活跃连接数量,以及maxClients显示允许的最大连接数。 5. 监控系统资源及文件描述符限制 在Linux环境下,可以通过ulimit -n查看当前可用的文件描述符限制,若仍需进一步增大连接数,请通过ulimit -n 设置并重加载限制,然后再重启Redis服务使其受益于新设置。 四、结论与注意事项 设置Redis最大连接数并非一劳永逸,随着业务发展和环境变化,定期评估并调整这一参数是必要的。同时,想要确保Redis既能满足业务需求又能始终保持流畅稳定运行,就得把系统资源监控、Redis的各项性能指标和调优策略一起用上,像拼图一样把它们完美结合起来。在这个过程中,我们巧妙地把实际操作中积累的经验和书本上的理论知识灵活融合起来,让Redis摇身一变,成了推动我们业务迅猛发展的超级好帮手。
2024-02-01 11:01:33
301
彩虹之上_t
Nginx
...解决Nginx + Docker 部署前后端分离项目访问空白问题:一次深度探索之旅 1. 引言 在现代Web开发领域,前后端分离架构因其高效率、易维护等优点而备受推崇。在实际动手操作的时候,尤其是当我们用上了Docker这个容器化技术,并且还把Nginx当作反向代理服务器使唤起来的时候,咱们可能会碰上一个头疼的问题——打开前端页面,却发现白茫茫一片啥也没有。这无疑给开发者带来了困扰,如同迷失在迷宫中寻找出路。今天,让我们一起深入探讨这个问题,揭开其神秘面纱,找到切实可行的解决方案。 2. 现象与问题分析 当我们在Docker环境下使用Nginx服务部署前后端分离项目时,可能遇到前端页面加载不出来,显示为空白的情况。这是因为Nginx配置不当导致无法正确地将请求转发至后端API和前端静态资源。就好比一位快递员接收到包裹,却不知道正确的投递地址一样。 3. Nginx基础配置理解 首先,我们需要对Nginx的基本配置有所理解。在Nginx中,每个server块可以视为一个独立的服务,它通过监听特定的端口接收并处理HTTP请求: nginx server { listen 80; server_name yourdomain.com; 这里是我们需要重点关注的地方,用于定义如何处理不同类型的请求 } 4. 配置Nginx实现前后端分离 假设我们的前端应用构建后的静态文件存放在/usr/share/nginx/html,而后端API运行在一个名为backend的Docker容器上,暴露了8080端口。这时,我们需要配置Nginx来分别处理静态资源请求和API请求: nginx server { listen 80; server_name yourdomain.com; 处理前端静态资源请求 location / { root /usr/share/nginx/html; 前端静态文件目录 index index.html; 默认首页文件 try_files $uri $uri/ /index.html; 当请求的文件不存在时,返回到首页 } 转发后端API请求 location /api { proxy_pass http://backend:8080; 将/api开头的请求转发至backend容器的8080端口 include /etc/nginx/proxy_params; 可以包含一些通用的代理设置,如proxy_set_header等 } } 这个配置的核心在于location指令,它帮助Nginx根据URL路径匹配不同的处理规则。嘿,你知道吗?现在前端那些静态资源啊,比如图片、CSS样式表什么的,都不再从网络上请求了,直接从咱本地电脑的文件系统里调用,超级快!而只要是请求地址以"/api"打头的,就更有趣了,它们会像接力赛一样被巧妙地传递到后端服务器那边去处理。这样既省时又高效,是不是很酷嘞? 5. Docker环境下的实践思考 在Docker环境中,我们还需要确保Nginx服务能正确地发现后端服务。这通常就像是在Docker Compose或者Kubernetes这些牛哄哄的编排工具里“捯饬”一下,让网络配置变得合理起来。比如,咱们可以先把Nginx和后端服务放在同一个“小区”(也就是网络环境)里,然后告诉Nginx:“嘿,老兄,你只需要通过那个叫做backend的门牌号,就能轻松找到你的后端小伙伴啦!”这样的操作,就实现了Nginx对后端服务的访问。 6. 结语 通过以上讨论,我们已成功揭示了在Nginx+Docker部署前后端分离项目中访问空白问题的本质,并给出了解决方案。其实,每一次操作就像是亲手搭建一座小桥,把客户端和服务器两端的信息通道给连通起来,让它们能够顺畅地“对话”。只有当我们把每个环节都搞得明明白白,像那些身经百战的建筑大师一样洞若观火,才能顺顺利利解决各种部署上的“拦路虎”,确保用户享受到既稳定又高效的线上服务体验。所以,无论啥时候在哪个地儿,碰见技术难题了,咱们都得揣着那股子热乎劲儿和胆量去积极探寻解决之道。为啥呢?因为解决问题这档子事啊,其实就是咱自我成长的一个过程嘛!
2023-07-29 10:16:00
55
时光倒流_
Docker
Docker是一个开放源码的应用虚拟环境工具,它可以协助程序员更加有效地创建和操控应用。在Docker中,一个虚拟环境就是一个自主且自给自足的程序包,包括了应用以及运行所需的全部依赖项。 对于Docker虚拟环境中的读写文件动作,常用到的方法是在Dockerfile中使用COPY或ADD命令,将本地文件或文件夹复制到虚拟环境中。例如: COPY /path/to/local/file /path/to/container/file 上述命令将本地路径下的文件复制到Docker虚拟环境中指定的路径下。类似地,也可以使用ADD命令完成同样的操作。 除了在Dockerfile中定义文件复制操作外,我们也可以使用Docker的volumes机制来实现虚拟环境与本地文件系统的交互。该机制可以将主机文件系统中的文件夹映射到虚拟环境的对应路径上,实现文件的双向读写。 使用volumes机制,需要在启动虚拟环境时添加相应参数,如下所示: docker run -v /host/path:/container/path -d image-name 上述命令将主机上的路径 /host/path 映射到虚拟环境中的路径 /container/path 上,实现双向文件的传输。 总的来说,Docker提供了多种文件读写的方法,根据不同场景可以选择最为适合的方法,实现高效的虚拟环境应用的开发和运行。
2023-12-30 15:13:37
472
编程狂人
Docker
Docker , Docker 是一种开源的应用容器引擎,它通过将应用程序及其依赖项打包到一个可移植的容器中,实现了软件的标准化、组件化和便捷部署。在本文语境下,Docker 用于创建和管理独立运行的容器实例,每个容器拥有自己独立的文件系统、网络配置以及进程空间,从而实现资源隔离和环境一致性。 端口映射 , 端口映射是计算机网络技术中的一个概念,在 Docker 中具体表现为将主机(物理机或虚拟机)上的某个端口与容器内部服务监听的端口进行关联绑定。通过端口映射,外部客户端可以通过访问主机的 IP 地址及指定端口号,间接访问到容器内运行的服务,实现了容器内外网络通信的桥梁作用。 docker run , docker run 是 Docker 容器生命周期管理中的一个重要命令,用于启动一个新的容器实例。该命令可以一次性完成拉取镜像、创建容器并启动容器等一系列操作。在本文中,docker run -p 参数组合被用来执行端口映射,即将主机端口与容器端口对应起来,使得外部可以直接访问主机IP和指定端口来连接到容器内部的服务。 NetworkSettings.Networks , 在 Docker 容器的 inspect 输出信息中,NetworkSettings.Networks 表示容器在网络配置方面的详细信息,包括容器加入的所有网络及其对应的网络接口设置。在本文中,通过 docker inspect 命令结合 --format 参数和特定模板语法查询容器的 IPAddress,获取的是当前容器在某一网络下的内部 IP 地址,这对于需要直接基于容器内部 IP 访问其服务的场景尤为关键。
2023-09-21 17:15:59
837
电脑达人
Docker
在利用Docker的期间,数据路径是至关重要的。Docker是利用映像的方式构建容器,容器中的数据也需要存储在本地,因此Docker的数据管控是依赖于存储卷(Volume)和存储卷容器(Volume Container)达成的。 存储卷是Docker提供的一种方式,可以将本地宿主机的目录及文件装载到容器内部。存储卷可以保证容器中的数据持久保存,且容器的数据可以在不同的容器之间分享。比如,下面的命令将本地目录 /data 装载到容器内部的 /app 目录: docker run -v /data:/app image_name 利用这种方式,容器中的数据发生变化时,本地宿主机的数据也会随之更新,也可以通过修改本地宿主机上的文件来修改容器中的文件。 存储卷容器是一种特殊的容器,用于管理存储卷。存储卷容器与存储卷的关系就像是一个储藏室和一个存储空间的关系。存储卷容器负责构建存储卷和管理存储卷的生命周期,而其他容器可以通过装载存储卷容器来利用存储卷。比如,下面的命令构建一个名为 my_data 的存储卷容器: docker create -v /app --name my_data busybox 利用这种方式,可以通过装载 my_data 存储卷容器来利用存储卷,比如: docker run --volumes-from my_data image_name 在利用存储卷的期间,还有一些需要注意的细节。首先,不同的容器中装载的存储卷是相互隔离的,因此不同的容器不能利用相同的目录装载存储卷;其次,利用 -v 参数构建容器时,如果本地目录不存在,则会自动构建;最后,存储卷的更新和删除需要手动执行,否则存储卷和容器中的数据将一直存在。
2023-10-29 12:32:53
504
软件工程师
Docker
Docker , Docker是一种开源的应用容器引擎,它通过容器化技术将应用及其依赖打包成一个标准化的、轻量级的、可移植的独立运行环境。在本文语境中,Docker被用于部署和管理应用,并提供了便捷的日志操作命令和日志存储机制。 logging driver , 在Docker中,logging driver(日志驱动)是一种配置项,用于定义如何处理和输出容器产生的日志信息。用户可以根据需求选择不同的日志驱动器,如syslog、fluentd或logstash等,将容器日志发送到文件系统、第三方日志平台或其他日志管理系统中,便于进行集中式日志收集、分析和监控。 标准输出(stdout)与标准错误(stderr) , 在编程和操作系统中,标准输出和标准错误是两种常见的输出流。在Docker环境下,容器执行时产生的正常输出信息(如程序的运行结果)会通过标准输出流来传递,而异常信息或错误信息则通过标准错误流传递。用户可以通过Docker日志命令分别查看和管理这两种类型的日志数据。在本文中,“docker logs 容器名/容器ID ”用于获取容器的标准输出日志,“2>&1”则是用来合并标准错误流到标准输出流,以便同时查看和处理容器的所有输出信息。
2023-03-19 15:04:33
482
逻辑鬼才
Docker
在Docker日常使用中,我们可能会碰到一些效能降低的状况。这些状况可能会对应用程序的效能和可靠性产生不利干扰。在本文中,我们将探讨几个可能引起Docker效能降低的情况以及解决方法。 第一个引起Docker效能降低的因素是资源争夺。当多个容器共享同一台主机时,它们会争夺中央处理器、RAM和带宽等资源。这可能会引起某些容器减速或宕机。为了防止这种情况,我们可以使用Docker Swarm集群管理工具来智能分配资源。 $ docker swarm init 第二个引起Docker效能降低的因素是大量存储卷的使用。在Docker中,存储卷是用于在容器和主机之间共享数据的一种方式。但是,如果容器数量大且每个容器都有自己的存储卷,这可能会严重干扰效能。因此,我们应该尽量减少存储卷的使用。如果必须使用存储卷,则应该考虑使用网络存储卷,例如Amazon EFS。 $ docker volume create --driver=rexray --name=myEFS 第三个引起Docker效能降低的因素是过度使用Docker镜像。当我们下载和使用大量Docker镜像时,它们会占用大量存储空间和带宽。这可能会引起容器启动时间较长。为了解决这个状况,我们应该尽可能防止不必要的镜像使用,并使用基于Dockerfile构建的自定义镜像来优化容器的启动和运行。 $ docker build -t my-image . 综上所述,我们可以通过使用Docker Swarm集群管理工具智能分配资源、减少存储卷使用和防止不必要的Docker镜像使用等方法来解决效能降低状况。
2023-04-04 23:17:36
512
算法侠
Docker
Docker是一种很普遍的应用容器化平台。它允许程序员在容器中封装,部署和执行各种应用。在Docker中,映像是创建容器的基础。映像是一个不可写的模板文件,它定义如何创建容器。它涵盖应用所需的所有文件和设置,例如源文件,依赖项,环境参数等。映像有标记,标记是对映像版本的引用。 在Docker中,更改映像的标记是一种常见操作。有时您需要为已有的映像打新的标记。这可以用于将映像标记为不同的版本,使其更容易区分和管理。以下是如何在Docker中更改映像标记的示例: 列出您现有的映像 docker images 将映像标记为新标记 docker tag old_image_tag new_image_tag 列出你的映像,观察新的标签是否被添加 docker images 在此示例中,您需要首先列出已有的映像。这将帮助您确定要更改的映像的名称和标记。接下来,您需要执行Docker tag命令,并将所需的标记指定为新标记。这会在映像名称下添加一个新标记。最后,您需要再次列出您的映像,并确保新的标记已添加成功。 更改Docker映像标记是一个很简单的过程。这使得容器的版本控制和管理变得非常容易。您也可以使用标记来跟踪和管理您的容器和应用。
2023-03-17 16:21:20
311
编程狂人
Docker
Docker 是当前比较盛行的虚拟机技术。它赋予可复现安装的场景,这个场景包含了安装应用所必须的所有模块(如关联性、程序库等等)。在采用 Docker 安装应用时,时常需要挂接存储卷来保留应用情况或者提供应用间资源共享的功能。接下来我们来讲解一下 Docker 挂载情况。 $ docker run --name mynginx -v /data/nginx:/etc/nginx -d nginx 上面的命令就是在建立 mynginx 虚拟机的同时,将宿主机 /data/nginx 目录挂载到虚拟机内部的 /etc/nginx 目录。这样就能够通过宿主机的 /data/nginx 目录来读取虚拟机内的 /etc/nginx 目录。然而有时,挂载情况会出现问题,接下来来讲解一些常见的挂载情况。 1. No such file or directory $ docker run -v /host:/data myimage 上述代码在执行时报错,报错信息是 No such file or directory。这是因为在 Docker 虚拟机中 /host 目录不存在,因此 Docker 不能挂载 /host 目录到虚拟机内部的 /data 目录。 2. Permission denied $ docker run -v /root:/data myimage 上述代码在执行时报错,报错信息是 Permission denied。这是因为默认情况下,Docker 挂载本地目录到虚拟机内部时,会采用虚拟机内的没有 root 权限的用户来读取挂载目录,然而 /root 目录是只有 root 用户才能读取的,因此会出现 Permission denied 的错误。解决该问题的方法是,在运行 Docker 命令时采用 -u 参数来指定虚拟机内的用户。 3. Readonly file system $ docker run --read-only -v /data:/data myimage 上述代码在执行时报错,报错信息是 Readonly file system。这是因为 Docker 在运行时采用只读文件系统,因此挂载目录的读取权限是只读的,不能对挂载目录进行写入操作。如果需要对挂载目录进行写入操作,需要在 Dockerfile 中采用 VOLUME 指令来显式定义挂载的目录。 总结 Docker 挂载情况是 Docker 安装应用时时常遇到的问题,本文讲解了一些常见的挂载情况及解决方法。在实际应用中,需要根据实际情况来选择合适的挂载方式,保证 Docker 虚拟机正常运行。
2023-01-13 17:03:08
524
逻辑鬼才
Docker
在运用Docker的时候,我们可能会碰到因为一些因素致使信息遗失的情况,这时我们需要对Docker数据进行找回。下面我们将从几个方面介绍数据找回的方法。 1. 利用实例存档文件 1. 先在需要找回数据的主机上终止所有有关实例。 2. 根据主机上已有实例的存档文件进行新建新的实例。 3. 在新实例里将数据目录映射到本地,运用 scp 命令将备份数据复制到数据目录中。 4. 通过启动新的实例并挂载数据目录的方式实现数据找回。 2. 利用数据卷备份 1. 在需要备份的数据卷所在的实例内,运用 tar 命令将数据卷的所有目录和文件备份为一个文件。 2. 将存档文件传输到安全的存储介质上,例如 NAS 服务器中。 3. 在发生信息遗失的情况下,从备份介质中找回存档文件。 4. 利用 docker volume create 命令创建一个新的数据卷,并挂载到实例中。 5. 利用 tar 命令将存档文件中的数据找回到新的数据卷中。 6. 挂载新的数据卷到有关实例中实现数据找回。 总之,在日常运用 Docker 时,一定要注意备份好数据,保护好自己的数据。
2023-04-14 09:42:03
301
码农
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
tee file.txt
- 将标准输入重定向至文件同时在屏幕上显示。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"